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Abstract— Bringing fairness to energy resource allocation
remains a challenge, due to the complexity of system struc-
tures and economic interdependencies among users and system
operators’ decision-making. The rise of distributed energy re-
sources has introduced more diverse heterogeneous user groups,
surpassing the capabilities of traditional efficiency-oriented
allocation schemes. Without explicitly bringing fairness to user-
system interaction, this disparity often leads to disproportionate
payments for certain user groups due to their utility formats
or group sizes.

Our paper addresses this challenge by formalizing the
problem of fair energy resource allocation and introducing the
framework for aggregators. This framework enables optimal
fairness-efficiency trade-offs by selecting appropriate objectives
in a principled way. By jointly optimizing over the total
resources to allocate and individual allocations, our approach
reveals optimized allocation schemes that lie on the Pareto
front, balancing fairness and efficiency in resource allocation
strategies.

I. INTRODUCTION

Distributed energy resources (DERs), such as small-scale
solar and wind generation, electric vehicles, and batteries,
are crucial components of the clean energy transition; they
enable end-users to actively participate in the energy market
by generating, storing, and potentially selling electricity back
to the grid [1]. However, individual users often cannot
directly interact with the larger electricity market, facing
barriers because of the complexity of energy markets, lack of
economies of scale, and high transaction costs [2]. Therefore,
energy aggregators help overcome the barriers faced by
individuals by negotiating for power on their behalf and
distributing both the costs and benefits amongst the group.

The goal of an aggregator is typically to maximize the effi-
ciency of the group of users. More specifically, it maximizes
the total surplus (utility minus payment) of the users [3],
[4], [5], [6]. A number of algorithms, both distributed and
centralized (see e.g., [7], [8], [9] and the references within),
have been proposed over the years. However, focusing solely
on efficiency may lead to large asymmetries in the allocation
and surplus of the users. In short, the allocation can be unfair.
For example, the results in [10], [11], as well as our own
findings in this paper, demonstrate that maximizing efficiency
may result in disproportionately more energy being allocated
to households or businesses with a higher willingness and
ability to pay, leaving fewer resources for those with lower
incomes.

The authors are with the department of Electrical and
Computer Engineering at the University of Washington. Emails:
{ljy9712,mmotoki,zhangbao}@uw.edu

The authors are partially supported by NSF ECCS-1942326 and NSF
ECCS-2153937.

The need for fairness consideration in the energy domain
has been recognized and has gained importance in recent
years. This highlights the need for a more comprehensive
approach that balances efficiency and fairness in energy
resource allocation. For example, [12] highlights the impor-
tance of fairness by estimating the impact the Department
of Energy’s Office of Energy Efficiency and Renewable En-
ergy’s investments have on disadvantaged communities and
minority-serving universities. In the energy justice literature,
distributional justice examines the fair allocation of energy
benefits and burdens [13], [14]. While these studies have
provided valuable insights into fairness and equity issues in
energy systems, they have primarily focused on qualitative
evaluations of the outcomes of particular allocation policies.
There is a need for a quantitative framework that enables
rigorous analysis and optimization of different allocation
strategies.

This paper makes two main contributions towards this
goal. First, we formalize the problem of fair energy resource
allocation, providing a framework for studying fairness in the
context of energy systems. This framework allows aggrega-
tors to trace out a portion of the Pareto front and explore the
optimal trade-offs between efficiency and fairness. Second,
we generalize the resource allocation problem to involve
jointly optimizing the total resources to allocate and the
allocation to individual users. This generalization leads to
new theoretical and computational challenges. In particular,
the joint optimization problem is, in general, not jointly con-
vex, which makes it difficult to solve directly using standard
optimization techniques; however, we show that it can be
solved effectively by searching over convex subproblems.

Our work is similar in spirit to [15], which introduced the
concept of energy collectives—a community-based market
structure—that can be used to encourage fairness among
market participants. However, [15] did not explicitly model
users’ surplus and can lead to suboptimal tradeoffs between
different fairness measures. In addition, the participants are
restricted to quadratic utilities. Our approach in this paper
takes a broader scope and addresses the challenges of finding
optimal fairness and efficiency tradeoffs between the users.

Fair resource allocation has been widely studied in vari-
ous domains, including wireless communications [16], [17],
networks [18], and machine learning [19]. However, fair
resource allocation in the energy domain has received rel-
atively less attention. The unique characteristics of energy
systems, such as the price being used in actual payments
(instead of shadow prices in communication networks), make
the problem of fair energy resource allocation particularly
interesting and challenging. Specifically, resource allocation
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problems have traditionally focused on fixed users’ utilities;
however, we focus on users’ surpluses where the price for the
resource is a function of the total resources allocated. Opti-
mizing over surpluses allows for a more complete analysis
that captures the relationship between resource allocation and
pricing decisions, which is particularly relevant in the energy
sector.

The remainder of the paper is structured as follows: Sec-
tion II formalizes the fair energy resource allocation problem;
Section III reviews the concept of α-fairness and the price of
fairness and price of efficiency metrics; Section IV discusses
our theoretical results; Section V provides numerical results
and analysis; and Section VI concludes the paper and offers
future research directions.

II. PROBLEM FORMULATION

We study the problem of allocating a group of users’
surplus to reach a desirable level of fairness and efficiency.
Consider a system involving N users and a central decision
maker: the central decision maker decides on the total
resources to purchase and allocates the resources to users
with the objective of maximizing the chosen system perfor-
mance metric. This central decision maker is also called the
aggregator and we use these two terms interchangeably in
the paper.

Denote the utility of user i to be Ui and the amount of
energy allocated to user i as xi. The unit price of energy
faced by the users is denoted as p. Given p, the user surplus
of user i is defined as

si = Ui(xi)− pxi. (1)

For N users, we define the surplus profile s to be the vector
of each user’s surplus si, and the allocation profile x to be
the vector of each user’s allocated energy xi.1

Let l =
∑

i xi be the total energy purchased by the
aggregator and let C(l) be the cost of procuring this amount.
As standard practice, we assume that C is differentiable
and set the price of energy to be to the marginal cost
p = C ′(l) [20]. In this paper, we actually only make use
of C ′(l). Therefore, our results apply to markets where only
the price of energy is given. The total payment from the users
to the aggregator, and from the aggregator to the market, is
l · C ′(l). Quadratic functions are commonly used to model
costs, and these lead to prices that are affine in demand.

In this paper, we make the following assumption:
Assumption 1: Each utility function Ui(xi) is concave in

xi, and Ui(0) = 0,∀i ∈ {1, . . . , N}. Furthermore, the
function C(l) is convex in l and C(0) = 0.
This assumption is very common in economic modeling for
networked systems [21].

To account for fairness among the users, we make use
of a fairness measure, denoted as Φ : RN → R. We will
introduce the format of Φ in more detail in the next section.
In the following, we first introduce the optimization problem

1Throughout the paper, we use bold to indicate vectors and matrices.

of interest:
max

s
Φ(s)

s.t. s ≥ 0
(2)

The optimization problem in (2) is maximizing the fairness
measure over the feasible set of nonnegative surplus. We
sometime use S = {si ≥ 0, ∀i} to denote this feasible set.

For the convenience of the follow-up analysis, it is easier
to work with the allocations x and the load l, rather than
directly with the surpluses. Define the feasible set of (x, l)
be X = {(x, l) |

∑
i xi = l, x ≥ 0, s(x, l) ≥ 0}.

An interesting fact is that S is not necessarily convex, even
for quadratic utility and quadratic cost functions (see Fig. 1).
Therefore, it is not immediately clear that the problem (2)
can be solved, regardless of the fairness measure. These types
of issues have been part of the reason that it is not trivial to
apply results about fairness from other domains to energy. It
turns out we can solve it by directly working with allocations
x and the load l. Define the feasible set of (x, l) be X =
{(x, l) |

∑
i xi = l, x ≥ 0, s(x, l) ≥ 0}, and we study

max
x,l

Φ(s(x, l))

s.t.
∑
i

xi = l

s(x, l) ≥ 0

x ≥ 0.

(3)

We denote the optimal solution to the problem in (3) as
(x∗, l∗), and use s∗ to denote the optimal solution to (2). We
show that (3) can be efficiently solved in the next section.

The format of Φ trades off fairness and efficiency and
the central decision maker chooses Φ depending on the
performance requirements of the system. In the next section,
we specify Φ using the notion of α-fairness.

III. FAIRNESS MEASURES

A. α-fairness

In this section, we detail the form of Φ that we use in this
paper. We use the notion of α-fairness [22], which provides
a parametric family of functions that includes three widely
used fairness measures: social welfare, proportional fairness,
and max-min fairness. The idea of α-fairness is to provide
a unified framework in which the aggregator can tune the
level of fairness by adjusting the α parameter, with higher
α values producing more “fair” allocations. The α-fairness
is defined as

Φ(s) =

{∑
i
s1−α
i

1−α for α ≥ 0, α ̸= 1,∑
i log (si) for α = 1.

(4)

In the following subsections, we describe the three common
special cases of α-fairness.

1) Social Welfare: When α = 0, Φ(s) =
∑

i si, which
is called the utilitarian objective, and the corresponding
solutions are called the social welfare solution, denoted
as xSW . This solution is when the central decision-maker
maximizes the sum of the surplus. This is considered to be
the most “efficient solution” [22], [20].



Fig. 1. The figure illustrates the feasible regions and Pareto fronts for two-
user systems with quadratic utilities. The top panel (U1(x1) = −x2

1+3x1

and U2(x2) = −x2
2 + 6x2) shows a convex feasible region, while the

bottom panel (U1(x1) = −x2
1 + 40x1 and U2(x2) = −x2

2 + 4x2) shows
a non-convex feasible region. Optimal α-fairness solutions lie on the Pareto
front (the upper right boundary of the feasible region) and increasing α
traces out a portion of the Pareto front starting with the least fair social
welfare solution (α = 0) to the most fair max-min solution (α = ∞).

2) Proportional Fairness: When α = 1, the resulting op-
timization problem is said to be maximizing the proportional
fairness of the surpluses. It is also the generalized Nash
bargaining solution for multiple users [23]. Proportional
fairness can be intuitively understood as giving each user a
proportional share of the resources based on their surpluses.
It provides a compromise between efficiency and fairness, as
it balances the total surplus with the individual surpluses of
the users. Proportional fair allocation of user surplus, denoted
as sPF , should satisfy: compared to any other feasible
allocation of user surplus, the aggregated proportional change
is less than or equal to 0. In mathematical terms,∑

i

si − sPF
i

sPF
i

≤ 0,∀s ∈ S. (5)

We state a simple lemma that shows that setting α = 1 in (4)
does give solutions that satisfy (5), and the corresponding
energy allocation x such that s(x,

∑
i xi) = sPF is denoted

as xPF .
Lemma 1: The proportional fair surplus profile denoted as

sPF , can be obtained as the optimal solution to the following
optimization [23], [24]:

max
s

∑
i

log(si)

s.t. s ∈ S
(6)

Proof: By first-order optimality condition, the objective
of optimization problem (6) can be written as〈

s− sPF ,∇
∑
i

log sPF
i

〉
=

∑
i

si − sPF
i

sPF
i

≤ 0,∀s ∈ S

This inequality matches (6).
3) Max-min Fairness: When α = ∞, we obtain the

max-min allocation is denoted as xMaxMin. This solution
maximizes the worst-case surplus for each user in the system,
and is sometimes called the egalitarian solution since it is
considered to be the most “fair”.

B. Pareto Efficiency

To signify how each different α leads to different fair
surplus allocations, we first present the definition of Pareto
optimality and Pareto front [25], [26].

Definition 1 (Pareto Optimality): A feasible surplus pro-
file s ∈ S is Pareto optimal if there doesn’t exist another set
of feasible s̄ such that

si ≤ s̄i,∀i

with at least one inequality strict.
Definition 2 (Pareto Front): The Pareto front is the set of

all Pareto optimal surpluses.
Pareto optimality captures the notion of optimal tradeoffs:

no user can improve its surplus without decreasing other
users’ surpluses. Because Φ is an increasing function for
all α ≥ 0, if a surplus profile is not on the Pareto front,
it is neither efficient nor fair, since there are strictly better
solutions for all values of α.

To illustrate how different fairness notions lead to different
surplus allocations within S, as shown in Fig. 1 we visualize
the feasible set of surplus for an example 2-user systems
with quadratic utility functions and plot the optimal surplus
profile under a selected set of fair objective. As shown in
the plots, the feasible surplus region is not always convex.
Depending on the formats of users’ utilities, the shape of the
Pareto front, as well as the distribution of optimal α-fairness
solutions along the Pareto front, differ from one another.

Such Pareto front [27] trade-off curves allow the aggrega-
tor to make informed decisions on how to balance fairness
and efficiency among the users in designing an appropriate
objective. It’s important to note that we only explore certain
regions of the Pareto front. Some points on the Pareto
front are neither efficient nor fair under our chosen metric.
In particular, the aggregator should only explore between
utilitarian and max-min points by choosing different α.

C. Efficiency Measures

We leverage the price of fairness (PoF) and the price
of efficiency (PoE) [28], [29] to quantitatively measure the
efficiency-fairness trade-offs in our systems.

Given the feasible surplus set S, denote the optimal
utilitarian objective value as SYSTEM(S), the fair objective



under Φ as FAIR(S, α); that is, SYSTEM(S) = FAIR(S, 0).
By definition,

PoF(S, α) = SYSTEM(S)− FAIR(S, α)
SYSTEM(S)

The price of fairness quantifies the relative decrease in
total user surplus when using a fair allocation compared
to the utilitarian solution. In other words, it measures the
relative reduction in overall efficiency. Denote the Max-Min
allocation as maxs∈S mini si and for each α-fair surplus
allocation, denoted as z(α)

PoE(S, α) = maxs∈S mini si −mini zi(α)

maxs∈S mini si

The price of efficiency is the relative decrease in the
minimum surplus of the users under a given allocation
compared to the max-min fair allocation (the most ”fair”
allocation [29], [25]). The price of efficiency measures the
relative reduction in the surplus of the worst-off user.

IV. OPTIMIZATION AND EXPLORING THE PARETO FRONT

A. Fairness Metric and Feasible Surplus Region

Note that for any value of α ≥ 0, the Φ function is
concave and monotonically increasing [30]. The feasible
surplus region S is typically assumed to be convex, thus
making optimizing Φ over S a convex optimization problem.
However, as shown in Fig. 1, S is not convex even for simple
utility and cost functions. In the following, we work with (3)
and optimize directly over x and l, which leads to more
tractable problems.

B. Optimization Characterization

Optimizing over x, l jointly is not a convex optimization
because of the product between C ′(l) and xi’s. We propose
to optimize over x and l separately in an iterative fashion.
Given l, the optimization problem in (7) optimizes over x:

J(l) = max
x

Φ(s(x, l))

s.t.
∑
i

xi = l

s(x, l) ≥ 0

x ≥ 0

(7)

The above optimization problem is clearly convex. Because
l is a scalar, a grid search would find the optimal l without
much difficulty, as shown in Algorithm 1.

In a networked setting where l is a vector, grid search
could become computationally expensive. However, we make
the following conjecture:

Conjecture 2: The function J(l), as defined in (7), is
quasiconvex. In particular, it remains quasiconvex when l
is a vector, as long as the relationship between xi and l is
affine.
We empirically validated this conjecture for a large number
of settings. Providing a rigorous proof is an important future
direction for us.

Last, since quadratic utility functions are commonly
adopted in practice and in the literature [20], [15], we provide

Algorithm 1 Grid Search: Searches through a discretized
set of values for l to approximate the solution for the global
optimization problem (3).
Require: step size ∆l and maximum value lmax

1: initialize ϕ∗ ← −∞ and l∗ ← 0
2: for l in [∆l, 2∆l, . . . , lmax] do
3: ϕ← J(l)
4: if ϕ > ϕ∗ then
5: ϕ∗ ← s and l∗ ← l
6: end if
7: end for
8: return l∗

a result on when the optimization problem is jointly convex
in x and l under this setting.

Theorem 3: If the utility functions of each user are con-
cave and quadratic, C and C ′ are convex, and C ′ is twice
differentiable. Then the optimization problem in (3) jointly
concave in x, l for α = 0, 1,∞ (that is, the social welfare,
proportional fair, and the max-min fairness cases).

Proof: For quadratic utility functions we have Ui(xi) =
−aix2

i + bixi, with ai > 0. We can factor out xi from the
surplus to obtain

si(xi, l) = −aix2
i + bixi − C ′(l)xi

= xi(−aixi + bi − C ′(l)).

Thus, each non-negativity surplus constraint can be decou-
pled into two separate constraints xi ≥ 0 and −aixi + bi −
C ′(l) ≥ 0. Both of these constraints are convex, hence the
feasible set is convex. Next, we look at the objective function
for different values of α.

1) When α = 0, the objective in (3) can be written as

Φ(s(x, l)) =
∑
i

xi(−aixi + bi − C ′(l))

=
∑
i

xi(−aixi + bi)− l · C ′(l).

In the second line, we used
∑

i xi = l. Since∑
i xi(−aixi + bi) is concave in x by assumption,

we focus on showing l · C ′(l) is convex in l. As
both C and C ′ are convex, we have C ′′(l) ≥ 0 and
C ′′′(l) ≥ 0. Since we only consider l ≥ 0, we have
d2(l · C ′(l))

dl2
= 2C ′′(l) + l · C ′′′(l) ≥ 0.

2) When α = 1, the objective function is

Φ(s(x, l)) =
∑
i

log(xi(−aixi + bi − C ′(l)))

=
∑
i

log(xi) + log(−aixi + bi − C ′(l)).

The composition of a concave function (log) and a
concave function (−aixi+ bi−C ′(l)) is also concave.

3) When α =∞, we recognize that

max
(x,l)∈X

min
i

aix
2
i + bixi − C ′(l)xi



is equivalent to

max
(x,l)∈X

min
i

log(−aix2
i + bixi − C ′(l)xi).

As proved in previous case, log(−aix2
i + bixi −

C ′(l)xi) is concave on xi and l. So the minimum of
concave functions is a concave function on x, l.

C. Pareto Efficiency

Here we state a lemma about the Pareto optimality, which
allows us to restrict our attention to the Pareto front.

Lemma 4: The optimal solution s∗ to (2) (or it’s the
corresponding x∗, l∗ to (3)), lies at the Pareto front of S,
which is the upper right side boundary of the set of feasible
surplus.

Proof: A function f : RN → R is component-wise
strictly increasing if for ȳ ≥ y, where the inequality is
strict in at least one component, we have f(ȳ) > f(y).
The function Φ is component-wise strictly increasing for all
α ≥ 0 [22].

Now suppose the solution to optimization (2), s∗, doesn’t
lie at the upper right boundary of S. Then there exist another
feasible point s∗+ϵ where ϵi > 0 for at least one i. Since Φ
is component-wise strictly increasing, we have Φ(s∗ + ϵ) >
Φ(s∗), which contradicts our assumption that s∗ is an optimal
solution to optimization problem (2).

V. SIMULATION RESULTS

In this section, we demonstrate through simulations how
our modeling framework could enable the aggregator to
make fair allocations. We first present a simple two-user
example that shows how different fairness criteria lead to
different allocations and surpluses. Next, we examine how
the price of fairness and price of efficiency scale with the
number of users. Finally, we provide a two-class example that
demonstrates how fair allocation mechanisms (specifically
proportional fairness) can help reduce disparities amongst
different user groups.2

A. Two-user example

We now demonstrate in a simple two-user example how
the social welfare solution can produce an unfair allocation
while the max-min solution results in a more even allocation
at the expense of efficiency and the proportionally fair
solution provides a compromise between the two. In this ex-
ample, the users have quadratic utilities U1(x1) = −x2

1+3x1

and U2(x2) = −x2
2 + 6x2. As shown in Fig. 1 and Table I,

we see that under the social welfare solution, user 1 receives
most of the allocation while user 2 receives almost nothing.
On the other hand, optimizing max-min fairness results in
a relatively even allocation, but the efficiency (total surplus)
of the system is greatly reduced. Optimizing proportional
fairness gives an allocation that is more even than the social
welfare solution and has a higher efficiency than that of the
max-min fairness solution.

2Our code for the numerical simulations can be found at https://
github.com/lijiayi9712/fair_resource_allocation.

Allocation Surplus
Criterion User 1 User 2 User 1 User 2 Total
α = 0.0 (SW) 0.187 1.125 0.281 3.375 3.656
α = 0.5 0.427 0.911 0.527 3.003 3.530
α = 1.0 (PF) 0.535 0.682 0.668 2.564 3.232
α = 2.0 0.620 0.435 0.822 1.867 2.689
α = ∞ (MM) 0.691 0.204 0.977 0.977 1.954

TABLE I
ALLOCATIONS AND SURPLUSES FOR THE TWO-USER EXAMPLE.

B. Price of Fairness and Efficiency

This section demonstrates how the PoF and PoE scale with
the number of users. We run 100 experiments for various
number of users. Each experiment has users with quadratic
utilities Ui(xi) = − 1

2aix
2
i + bixi with ai ∼ 1 + Unif(0, 1)

and bi ∼ 1 + 10 · (ai + 1) + 10 · Unif(0, 1).3 Fig. 2 and
Fig. 3 both show that the PoF and PoE increase as the
number of users increases. As the PoF increases, the system
becomes less efficient compared to the socially optimal
solution. However, it is important to note that the PoF does
not converge to 1, even as the number of users N grows
large. This implies that the efficiency loss due to fairness
considerations remains bounded. Similarly, an increasing
PoE indicates that the system becomes less equitable as the
number of users increases. For α ̸= 0, the PoE also does
not approach 1, suggesting that the fairness loss compared
to the max-min fair solution is limited, even as the number
of users increases.

C. Two-class Example: How Fair Objectives Help

We now provide a simple example that splits users into
two classes and demonstrates that the social welfare solution
produces a large asymmetry in the allocation while the
proportional fairness scheme produces allocations that are
less one-sided.

To define the classes, first suppose energy was free. For
quadratic utilities Ui(xi) = − 1

2aix
2
i + bixi, user i would

want to consume xi = bi/ai energy (set the derivative
of Ui(xi) to zero and solve for xi). In this example, we
assume that all users have the same desired consumption
when energy is free x̄ = bi/ai. For a non-zero price p,
user i would want to consume energy to maximize their
surplus si(xi) = − 1

2aix
2
i + bixi − pxi or equivalently

xi = (bi − p)/ai = x̄ − p/ai. Thus, the larger ai is, the
more user i would prefer not to deviate from x̄. For the first
class, we sample a

(1)
i ∼ Unif(1, 2) and for the second class,

we sample a
(2)
i ∼ Unif(3, 4).

We run 1000 experiments with 10 users in each class and
compare the distribution of allocations and surpluses under
the social welfare (SW) solution and the proportionally fair
(PF) solution. In Fig. 4, we see that under the SW solution,
the users in Class 1 receive almost no resources and have
close to zero surpluses while the users in Class 2 receive

3To avoid experiments with small feasible regions, we chose bi to be
large relative to ai. This is because the constraints xi ≥ 0 and si =
− 1

2
aix

2
i + bixi − lxi ≥ 0 imply that 0 ≤ xi ≤ 2(bi − l)/ai.

https://github.com/lijiayi9712/fair_resource_allocation
https://github.com/lijiayi9712/fair_resource_allocation


Fig. 2. This graph plots the PoF and PoE for various α-fairness criteria
as a function of the number of users. The shaded areas represent the 90%
confidence interval (from the 5th to the 95th percentile) for each parameter
setting. Fairness parameters closer to the socially optimal (α = 0.0) tend to
have a lower PoF and higher PoE. On the other hand, fairness parameters
closer to the max-min solution (α = ∞) tend to have higher PoF and lower
PoE

most of the resources and large surpluses. On the other hand,
the PF solution gives almost equal resources to users in both
classes and the difference between the surpluses in Class 1
and Class 2 is reduced.

We refer to the gain in allocation/surplus as how much a
user’s allocation/surplus changed when going from the SW
solution to the PF solution. In Fig. 4, we see the users in
Class 1 almost always benefit from moving from the SW
solution to the PF solution. Some users in Class 2 also benefit
from the PF solution; however, many of the users in Class
2 receive smaller allocations and lower surpluses under the
PF solution.

VI. CONCLUSION AND FUTURE WORK

In this paper, we formalized the problem of fair energy
resource allocation in the context of distributed energy re-
sources (DERs) and energy aggregators. We generalized the
resource allocation problem to involve jointly optimizing the
total resources to allocate and the allocation itself. By doing
so, we provided a principled framework that allows aggrega-
tors to explore the trade-offs between efficiency and fairness
by tracing out a portion of the Pareto front. The theoretical
results, numerical simulations, and analysis presented in this
paper demonstrate the effectiveness of the proposed approach
in achieving fair energy resource allocation.

Our work opens up several avenues for future research. In
this work, we assume the aggregator knows the users’ utility
functions, which may be unrealistic in some scenarios. Future
research could focus on developing fair resource allocation
schemes for cases where the aggregator has only partial or

Fig. 3. This graph plots the PoF and PoE for various α-fairness criteria
and number of users. Each bar represents the mean value of PoF/PoE for a
specific number of users, with error bars indicating the standard deviation.
Fairness parameters closer to the socially optimal (α = 0.0) tend to have
a lower PoF and higher PoE. On the other hand, fairness parameters closer
to the max-min solution (α = ∞) tend to have higher PoF and lower PoE.

no knowledge of each user’s utility. Additionally, applying
our framework to real-world datasets and exploring methods
to learn utility functions from historical data could provide
valuable insights and improve the practicality of our ap-
proach. Furthermore, investigating decentralized algorithms
for solving the fair energy resource allocation problem could
lead to more scalable and privacy-preserving solutions.
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