
Integrated workflows and interfaces for data-driven semi-empirical electronic
structure calculations

Pavel Stishenko∗ and Andrew Logsdail†

Cardiff Catalysis Institute, School of Chemistry, Cardiff University,
Park Place, Cardiff CF10 3AT, United Kingdom

Adam McSloy,∗ Berk Onat, and James R. Kermode‡

Warwick Centre for Predictive Modelling, School of Engineering,
University of Warwick, Coventry, CV4 7AL, United Kingdom

Ben Hourahine§

SUPA, Department of Physics, John Anderson Building, 107 Rottenrow,
University of Strathclyde, Glasgow G4 0NG, United Kingdom

Reinhard J. Maurer
Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom and

Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom
(Dated: March 26, 2024)

Modern software engineering of electronic structure codes has seen a paradigm shift from mono-
lithic workflows towards object-based modularity. Software objectivity allows for greater flexibility
in the application of electronic structure calculations, with particular benefits when integrated with
approaches for data-driven analysis. Here, we discuss different approaches to create “deep” modular
interfaces that connect big-data workflows and electronic structure codes, and explore the diversity
of use cases that they can enable. We present two such interface approaches for the semi-empirical
electronic structure package, DFTB+. In one case, DFTB+ is applied as a library and provides data to
an external workflow; and in another, DFTB+ receives data via external bindings and processes the
information subsequently within an internal workflow. We provide a general framework to enable
data exchange workflows for embedding new machine-learning-based Hamiltonians within DFTB+, or
to enabling deep integration of DFTB+ in multiscale embedding workflows. These modular interfaces
demonstrate opportunities in emergent software and workflows to accelerate scientific discovery by
harnessing existing software capabilities.

∗ These authors contributed equally to this work.
† LogsdailA@cardiff.ac.uk
‡ j.r.kermode@warwick.ac.uk
§ benjamin.hourahine@strath.ac.uk

ar
X

iv
:2

40
3.

15
62

5v
1

 [
co

nd
-m

at
.m

tr
l-

sc
i]

 2
2

M
ar

 2
02

4

mailto:These authors contributed equally to this work.
mailto:LogsdailA@cardiff.ac.uk
mailto:j.r.kermode@warwick.ac.uk
mailto:benjamin.hourahine@strath.ac.uk

2

I. INTRODUCTION

Semi-empirical electronic structure methods, such as Density Functional Tight-Binding (DFTB) theory,[1, 2] have
a long-standing history of enabling fast and robust predictions on a diverse range of materials for time and length
scales.[2] The atomistic resolution accessible with DFTB (up to ∼ 1018 atoms)[3] is traditionally out of reach for
conventional first-principles calculations, making these approaches particularly appealing for large-scale simulation
of dynamical chemical processes. Semi-empirical approaches can provide robust accuracy for conventional organic
molecular materials[4, 5] or inorganic materials.[6] Integration of these approaches in complex automated computa-
tional workflows and machine learning (ML) surrogate models is now timely given the impact of these new capabilities
on computational materials science and chemistry over the last decade.[7–9]

The concept of using data-driven approaches to transfer first-principles information into second-principles electronic
structure codes has a long history in the construction of tight binding parametrizations; for example, through global
stochastic optimization of tight-binding parameters or repulsive potentials via particle swarm optimization.[10–12]
With the emergence of modern ML methods, the prospect of closer integration and direct learning between methods
has been explored by several studies. As an example, Stöhr et al. have used ML interatomic potentials to represent
the repulsive potential in DFTB;[13] and several studies have shown that ML surrogate models can accurately predict
first-principles electronic structure in local orbital representation.[14–19] In the context of Density Functional Theory
(DFT) and other semi-empirical methods, ML has also been used to represent electronic Hamiltonian parameters,
[20, 21] including the TBmalt approach providing end-to-end learning of parameters based on target properties.[22]
The proof-of-principle applications show what is possible in this space, but standardized workflows or integrated
approaches are yet to emerge.

The majority of well-established electronic structure software packages have developed as monolithic codebases with
a single entry point, due to extensive investment in their development before the widespread adoption of integrated
workflows. The consequence is a bottleneck for the integration between electronic structure and big-data approaches.
Electronic structure software packages with modularity in their design, that provide external accessibility to inner
functionality, have become more prominent in recent years, reflecting the evolving landscape of computational mate-
rials science and the uptake of objective, modular programming and data-driven workflows (e.g., GPAW,[23] Psi4,[24]
and pySCF[25]) or UNIX philosophy[26] inspired designs such as WIEN2k[27]; furthermore, established packages have
sought to reshape their designs with library components that allow execution through an externally-driven interface.
These retrofitted approaches typically rely on file input/output (I/O) and parsing, with only basic variable communi-
cation (e.g., MPI communicators), though alternative strategies with in-memory data transmission have increased in
popularity. Examples of established strategies include the automated building of deep Python interfaces to Fortran
codes using f90wrap[28] and socket-type interfaces.[29, 30] High-level Pythonic packages, such as the Atomic Simu-
lation Environment (ASE)[31], have emerged as a de facto standard for building atomistic simulation workflows,[32],
enabling some classes of high-level algorithms to be written once and reused between codes; however, this gener-
ality is commonly restricted to atomic and molecular properties rather than electronic. Recently, the emergence
of automated and machine-learning-augmented workflows, and establishment of extensive materials databases using
FAIR principles,[33] has led to a need for more flexible infrastructure capabilities in the design of electronic structure
software. In particular, there is evidence of a clear need for greater modularity and interoperability in code design,
which should support strong interfaces between electronic structure codes and external software packages. Such de-
velopments would circumvent traditional bottlenecks in data communication and accelerate discoveries facilitated by
electronic structure theory.

Currently, there remains limited demonstration and standardization of deployable, user-ready interfaces that fa-
cilitate interaction and application of external workflows and data-driven frameworks with first-principles and semi-
empirical electronic structure software packages. In particular, there is a need for “deep” module interfaces that
can expose the extensive and well-developed functionality in existing established software. The interfaces should be
simple code-level interfaces, rather than commonly shallow interfaces that work predominantly with complex file I/O
or external scripted workflows. The ability to use such “deep” interfaces, which allows large data objects to be manip-
ulated during run-time, will reward the community with computationally efficient approaches concerning both data
processing and data storage. The Atomic Simulation Interface (ASI)[34] is a recent example interface that is built
to import and export electronic structure information from quantum chemistry codes during runtime with minimal
performance penalty, as demonstrated via coupling with the DFTB+ and FHI-aims software packages.[35]

The commonly articulated strategies for integration of electronic structure software packages can be categorized in
order of depth and complexity of the interface as:

Data parsing via file I/O operations: typically focused on input and output data files only. This provides no
data accessibility at the mid-process stage and has limited data precision and data object sizes.

Socket (and alternative) data transport protocols: small data objects are communicated in byte format via a

3

lower-level transport method.[29, 30] This provides data-accessibility mid-process but is limited in terms of data
object size.

Directly connecting to an API: an Application Programming Interface (API) provides a well-defined set of func-
tion calls. This provides data accessibility mid-process, can handle flexible data object sizes, and provides fixed
API standards.

Flexible interfacial wrappers: an intermediate package manages couplings between different API standards across
multiple languages. This provides data-accessibility mid-process and is flexible in both data object size and API
definitions.

Recent work on the DFTB+ software package[36, 37] has investigated how “deep” interfaces can be established and
used for the benefit of workflow-based computational simulation. Herein, we discuss general strategies for interfacing
to electronic structure codes before presenting two interfaces that are capable of either being driven by an external
workflow to provide data,[34] or driving a workflow, with external bindings used to obtain data from an external
engine.[18] The interfaces follow different strategies and philosophies, and address distinct potential use cases, such
as embedding and ML workflows.

II. GENERAL CONSIDERATIONS ON DEEP INTERFACES TO ELECTRONIC STRUCTURE CODES

FIG. 1. Schematic representation of interfacing paradigms where DFTB+ is used: as a resource, driven by an external package
(left-hand side); or instead drives communication with an external package as part of its own workflow (right-hand side). In
both cases, the majority of data communication is returned to the software driving the relationship (i.e., client), as indicated
by the asymmetry in the arrows representing data flow.

The contemporary difficulties of interfacing with electronic structure software packages are rooted in the assumption
that the transient data objects that describe the electronic structure of a simulated system are not valuable outside
of the code. Therefore, such data structures were often placed deep in the code foundations, and exposing these data
structures for read or write operations typically requires intrusive changes in the core codebase.

An additional difficulty when interfacing with electronic structure software packages is the substantial size of elec-
tronic structure descriptors (electronic density, Kohn-Sham orbitals, matrices of Kohn-Sham equations). Simulations
often take up the majority of available random access memory and transferring large amounts of data between formats,
or copying between codes, can be limited by accessible memory and become a performance bottleneck. Unnecessary
copying of the data between inter-operating codes can be avoided by providing direct access to the memory buffers
via shared memory, memory-mapped files, or by running these codes as libraries in a single process; however, such
approaches face other obstacles caused by data efficiency practices in high-performance computing, such as the reuse
of large arrays for storage of various different data. For example, many routines in the Basic Linear Algebra Subpro-
grams (BLAS) library return their results in their input buffers,[38] overwriting the data in repeated execution; if one
wants to, e.g., export a large array, a pointer to the internal data buffer is insufficient and instead the data must be
accessed when the desired data is actually in that array. In practice, accessing the data in this manner means that the
code execution must be paused and restarted at various (initially unplanned) moments, often deep in the call stack.
Given that many electronic structure software packages have been initially designed as standalone applications, such
changes in the control flow can be intrusive and error-prone.

Approaches to suspend and restart a subroutine map on to two different code interfacing paradigms (see Figure
1). One option is refactoring and splitting code into two separate subroutines that are called immediately before and
after any data import or export. An alternative option is invoking a user-provided callback function to perform data
read or write. The former method essentially converts the code into a library, inverting the control of the workflow;

4

if the routine that is split is nested deep within the call stack, every function along the call stack must also be split.
The latter method introduces local inversions of control through callbacks, but the modified code generally still drives
the overall workflow. In the following, we present realizations of these paradigms inside the DFTB+ software package.

III. METHODS

A. The DFTB family of models

The DFTB method,[1] and related semi-empirical tight-binding models,[39] approximate density functional theory
(DFT). By expanding the Kohn-Sham functional around an approximate reference density, the total energy expressions
are written as a sum of: a (generally) attractive electronic band-structure contribution; an electrostatic energy; and
a repulsive energy (which corresponds to the double-counting terms in DFT). The expressions for the electrostatic
contributions are derived with respect to fluctuations from a reference charge density, which itself is assumed to be
the sum of a set of neutral atomic densities corresponding to the structure being modeled. The electronic structure
Hamiltonian itself is typically evaluated from reference neutral atoms and atomic dimers. The 2-centre integrals are
for a minimal, non-orthogonal, atomic valence basis (neglecting crystal field and 4-centre contributions[1]). Depending
on the choice of Hamiltonian (DFTB or xTB) these values are (typically) obtained from DFT calculations, either by
tabulation or by fitting empirical expressions.

The charge fluctuations from the neutral reference are expressed using Mulliken (gross) charges[40] and, depending
on the Hamiltonian, the electrostatics are restricted to atomic monopoles or selected multipole contributions. The
electrostatic potential is then evaluated at each atomic site, with the resulting 2-centre contributions approximating
the integrals as a product of the overlap between sites and the average of their potentials (for the monopole).

The exchange-correlation contributions are included in the parameterization of the reference neutral system, com-
bined with taking a suitable atomic limit for the electrostatic energy of the charge fluctuations.[41, 42] The double-
counting terms in the energy expressions are represented as fitted inter-atomic potentials[1, 36] or as parameterized
inter-atomic integrals.[39]

B. The DFTB+ code

The DFTB+ code implements various DFTB and xTB models. Interactions between atoms are internally represented
using a data structure based on spatial atomic neighbors[43] and most terms are evaluated in real space, hence
the majority of the code is boundary-condition independent. Therefore, for periodic structures (and other space-
filling geometries), the Hamiltonian and overlap matrices are transformed into a crystal-momentum (k) dependent
dense Hamiltonian. The resulting set of secular equations for the band structure is solved either via conventional
diagonalization (LAPACK[44] or ScaLAPACK[45]), via hybrid CPU-GPU calculations (MAGMA[46, 47] or ELPA[48])
or through one of the eigenvalue or density-matrix distributed solvers provided by the ELSI project.[49]

The DFTB+ codebase[50] is primarily written in Fortran 2008, with components in C/C++ and Python3. An
API is provided in these languages to use the code as an external library for energy/force calculations, or other modes
such as real-time electronic propagation, e.g., Ehrenfest dynamics,[51]). The software is licensed under the GNU
Lesser General Public License 3.0 (or later),[52] chosen based on the code’s library capability. Continuous integration
of DFTB+ is performed via the project GitHub repository,[50] with custom regression testing scripts, plus a unit test
system using the FyTest framework.[53] The code is internally documented with Doxygen[54] and FORD[55] compatible
comments.

C. Extensions enabled by the present work

The external Hamiltonian evaluation via ACEhamiltonians.jl[18] (Section IV) is performed in real space, hence
can be evaluated for the general range of boundary conditions supported by DFTB+. These include conventional
molecular/cluster structures in free space or periodic boundary conditions; more general boundary conditions can also
be evaluated by DFTB+, such as Green’s function embedding[56] or helical structures,[57]. The externally provided
electronic structure model is built piece-wise from local geometric cluster fragments to give coverage of the entire
geometry, that then includes the boundary conditions managed by DFTB+.
The ASI bindings (Section V) directly exchange the dense Hamiltonian matrices to be diagonalized, and/or the

dense single-particle density matrix, between codes. The direct communication enables direct comparison of the
semi-empirical Hamiltonians against local or non-local first principles models. The local potential exchange via ASI

5

(Section VB1) also enables the use of various forms of external electrostatic embedding models, along with testing
of the approximations in self-consistent semi-empirical Hamiltonians against the first principles local potentials.

D. Computational Details

To demonstrate the capabilities of the ASI interface, we have calculated the band structure of Al with the Hamil-
tonian (H) and overlap (S) matrices evaluated in the all-electron full-potential numerical atomic orbital software
package FHI-aims (Version: 230905) [35] that implements ASI API version 1.1.[34] The ground state electron density
of the Al bulk crystal with a lattice parameter of 2.024 Åwas evaluated using DFT with the PBE exchange-correlation
functional,[58] a scalar-relativistic zeroth order regular approximation (ZORA) correction,[35] and a 2×2×2 Γ-centered
k-grid. A “minimal” basis set was used for Al, which consists of 13 numerical orbitals (3s, 2p, and 1d orbitals). H was
subsequently evaluated along the k-path W -X-Γ-L-K-Γ-L, with 50 sampling points in each section of the pathway. H
and S were exported via the ASI callback functions from FHI-aims to DFTB+. The DFTB+ computation was configured
to use the same basis and path in k-space, with the eigensolver of DFTB+ used to obtain the band structure.
In the case of the ACEhamiltonians interface, the same FHI-aims configurations were used. The H and S

matrices were exported from FHI-aims as real-space matrices using ACEhamiltonians version v0.1.0.[18].

IV. ACEHAMILTONIANS AS A LIBRARY TO PROVIDE EXTERNAL HAMILTONIAN EVALUATION FOR
DFTB+

Within DFTB+, an interface was constructed to facilitate communication between the ACEhamiltonians and DFTB+
software packages. The interface enables data-driven ACEhamiltonans models for H and S to be combined with
the robust functionality of the DFTB+ framework. The interface design provides threefold benefit: (i) modularity,
by providing a means by which observables can be computed using ACEhamiltonians models without having to
unnecessarily extend the ACEhamiltonians codebase itself; (ii) performance, by using an optimized production-level
framework such as DFTB+, especially when dealing with larger systems where domain decomposition-based parallelism
is essential; (iii) accessibility, as such an interface reduces the barrier associated with using an ACEhamiltonians
model by allowing combination with widely used software that has a broad userbase.

A. Interface Description

Communication between the Fortran-based DFTB+ and ACEhamiltonians follows the general structure illustrated
in Figure 2, except that the Julia-based ACEhamiltonians is facilitated via an intermediary C layer. This interfacial
layer ensures that the modifications to DFTB+, which allow invocation of external models, are not restricted to one
external framework or programming language. The translation layer was written in low-level C, which provides good
interoperability with other languages through external bindings. When executed, DFTB+ calls the ACEhamiltonians
interface to invoke a setup subroutine, during which an initial bidirectional exchange of information occurs. The
exchange allows DFTB+ to specify the chemical species present in the target system; the ACEhamiltonians interface
responds by providing the environmental and interaction cutoff distances, followed by the number of orbitals present
for each species along with their occupancy and azimuthal quantum numbers.
DFTB+ constructs all relevant atom and bond clusters with the information obtained. The clusters are provided to

the interface, along with a list of indices specifying which block of the Hamiltonian/overlap matrix are represented
by each cluster. The information is stored internally in the ACEhamiltonians interface until a new set of clusters
is provided, such as would be expected during a molecular dynamics simulation; or the model cleanup subroutine is
invoked, which clears memory in preparation for code termination.

Subsequently, DFTB+ calls the prediction subroutine in the ACEhamiltonians interface, providing pointers to the
Hamiltonian and overlap matrices that are to be populated. The interface loops over the atom clusters and populates
the associated on-site Hamiltonian matrix block by block for each atom by evaluating the model. During each loop,
the ACEhamiltonians function responsible for constructing on-site blocks is called; the coordinates and species of the
atoms are provided, along with the model that is to be evaluated and the block of the Hamiltonian matrix into which
the results should be placed; the on-site blocks of the overlap matrix are set to an identity matrix. The process is
repeated with the bond clusters to fill in the offsite blocks of the Hamiltonian and overlap matrices.

As shown in Figure 3, the clusters needed to compute onsite blocks are spherical and atom-centered, while those for
offsite blocks, which represent interactions between orbitals on distinct two atoms, are cylindrical and bond-centered.
Atomic coordinates are provided relative to the origin atom i, with which atomic clusters are constructed for every

6

FIG. 2. Schematic representation of the specific workflows invoked between DFTB+, ASI, and ACEhamiltonians. Boxes and
arrows in blue are part of the ASI execution pathway, and in green for the ACEhamiltonians pathway

FIG. 3. Schematic representation of an atom-centred cluster (central atom shown in red), and a bond-centred cluster formed
between a pair of atoms (shown in blue), in a periodic crystal lattice. Shaded regions indicate areas where an atom would be
considered to be part of the cluster. Black and gray colored atoms are used to indicate those that are and are not part of a
cluster, respectively.

atom in the structure. The atomic cluster for atom i can be defined as the subset of atoms that satisfy rij ≤ rcut;
where rij is the distance between atom i and some other atom j, and the environmental cutoff distance rcut is a
free parameter. Bond clusters are created for all atom pairs {i, j}, for which atom i resides in the origin cell and
rij ≤ rbond holds true; where rbond specifies the interaction cutoff distance. For a given atom pair {i, j}, the bond
cluster is the subset of atoms whose perpendicular distance to the open line segment between atoms i and j does not
exceed the specified environmental cutoff distance rcut. All coordinates are specified to the midpoint of the bond.
Further details of the DFTB+ external API are given in the Supporting Information (SI).

7

B. Results

FIG. 4. Band structure of a pristine aluminum FCC unit cell as calculated directly by the ACEhamiltonians package (black),
and obtained using the DFTB+ API with the same model (red dotted). Green shading is used to highlight areas of discrepancy
in the unoccupied states.

Figure 4 presents the band structure of a pristine aluminum FCC unit cell as obtained via the DFTB+ API (red dots),
alongside the same calculation performed using the ACEhamiltonians package directly (black line). The results agree
quantitatively in the occupied levels, however local deviations become apparent within the higher energy unoccupied
levels. Notably, the band structure exhibits a mean absolute eigenvalue error of approximately 10−2 eV. This is
greater than would naturally be expected given that the two results are generated using the same underlying model,
and share many of the same prediction subroutines. In an effort to determine the source of the observed deviation,
the DFTB+ API was used to generate and subsequently write out the Hamiltonian and overlap matrices. These were
then used by ACEhamiltonians to reconstruct the band structure. The resulting band structure was within machine
precision of that derived using ACEhamiltonians directly, which demonstrates that the discrepancy originates from
the means by which the band structures were calculated rather than the underlying matrices (i.e., the API is not
the source of the difference). The discrepancy stems from the different eigensolvers used by the ACEhamiltonians
and DFTB+ codebase: when using a common matrix source, the subroutines of the ACEhamiltonians package produce
band structures that agree (∼ 8×10−6 eV) with those generated by FHI-aims, and alleviates the discrepancies in the
higher energy levels.

V. ATOMIC SIMULATION INTERFACE (ASI) AS A DRIVER THAT USES DFTB+

The ability to drive calculations externally, and use a specific package to evaluate system properties on demand,
motivates the development of an infrastructure where DFTB+ can be deployed as a software library. Modern Python
coding developments provide capacity for high-level interfaces, reliant on file I/O for data transfer, but “deep” inte-
gration via pre-compiled software languages can enable more efficient and accurate data communication and software
application. Recent efforts towards this software paradigm have seen the development of the Atomic Simulation Inter-

8

face (ASI), with the primary purpose of conveniently connecting ASI-enabled codes in multiscale simulation workflows,
such as hybrid quantum/molecular mechanics (QM/MM), multiscale quantum mechanical embedding (QM/QM), or
integration with machine learning (ML) frameworks (QM/ML).

A. Interface Description

ASI has been developed as a plain C API, again demonstrating the use of a low-level language enabling compati-
bility across software infrastructure. The key feature of the ASI is the provision of an efficient and portable method
to transmit large data arrays, relevant to electronic structure models, between software packages. ASI itself is funda-
mentally an API specification, similar to MPI or BLAS standards, that ensures compatibility; the complete ASI API
specification is available as a C header file with comments in Doxygen[54] format, along with HTML pages generated
by Doxygen[54] from the aforementioned C header file. The ASI API is designed to be implemented by software
packages to provide programmatic access to their internal data structures. We refer to software that implements ASI
API as ASI-enabled codes, and we refer to software that invoke ASI API functions as ASI clients.

In the current example, DFTB+ is an ASI-enabled code with functionality provided for the communication of key
electronic data structures, such as Hamiltonian (H) and overlap (S) matrices, as well as less complex data objects,
e.g., variables and arrays, such as energies (E) and forces on atomic centers (−∇E). The DFTB+ ASI is implemented
as a separate C library that links with the DFTB+ library and ASI clients. A Python wrapper for the ASI API,
asi4py, provides compatibility with Python workflows and is available for installation via the pip command line
tool. The convenience of asi4py complements the deep integration of the ASI interface and provides a user-friendly
way to create ASI clients in Python.

The key ASI functions can be broken into four groups: control flow; atomic information; electrostatic potential;
and electronic structure matrices.[34] The necessary intrusions to implement in an existing codebase are minimal. For
the application of DFTB+ using the ASI standard, the DFTB+ package is compiled as a shared object library to allow
dynamic linkage with the client. The workflow is driven by the ASI client; thus, after ASI initialisation, key data
objects are communicated to/from DFTB+ and callback functions registered before the request for execution of a DFTB+
calculation. Callback functions give direct access to data objects within DFTB+, thus causing near-zero computational
cost, and also adapting to the chosen parallelisation schemes. The callback functions are invoked during the execution
process, providing external access to data objects when calculated. Derived quantities, such as energy, forces, stress,
atomic charges, are also available. Once all necessary operations on the exposed data objects have been completed,
finalization is performed, which includes the release of allocated memory. The ASI workflow is presented in Figure 2,
and contrasted against the ACEhamiltonians interface. Further details of the key ASI functions are provided in the
SI.

B. Results

1. Electrostatic embedding

The ASI functions that allow communication of the electrostatic potential can facilitate electrostatic QM/QM em-
bedding. Figure 5 compares the total intermolecular interaction energy of two water molecules evaluated with DFTB+,
and separately the electrostatic component of that interaction as evaluated with a Python script that orchestrates
two DFTB+ instances using the asi4py library interface. In the latter case, each DFTB+ instance calculates a single
water molecule, and the electrostatic potential from one molecule is then exported from one DFTB+ instance, using
ASI calc esp function, and transferred via MPI calls to the second DFTB+ instance, where it is included via the
callback installed by the ASI register external potential function.

The calculation is performed self-consistently: the energy of both molecules is calculated with zero external potential
initially; then the calculation for each molecule is repeated using the electrostatic potential provided by the other
molecule. The calculation should be repeated until self-consistency is achieved. Convergence criteria should be defined
and checked by ASI clients; for a simple system with two water molecules simulated by separate DFTB+ instances,
five iterations are sufficient to reach 10−5 eV accuracy on the distances from 2.5 Å and above (see Figure 5). Figure 5
shows that the electrostatic potential is dominant for the intermolecular interaction at large distance (> 4 Å), which
is the expected behaviour.

9

3 4 5 6 7
d, Å

0.150

0.125

0.100

0.075

0.050

0.025

0.000

in
te

rm
ol

ec
ul

ar
 in

te
ra

ct
io

n,
 e

V

d

Etotal, eV
EESP, eV

FIG. 5. Example of electrostatic embedding in DFTB+ achieved with the ASI interface. The distance (d) between two water
dimers, as shown in the inset. The graph shows the interaction energy as a function of d (blue line), and the electrostatic
embedding energy evaluated with ASI API in a self-consistent manner (red line). The lines are shown to converge at large d

2. Electronic structure transfer

The ASI implementation in DFTB+ supports the import of Hamiltonian (H) and overlap (S) matrices. With this
functionality, data objects evaluated in electronic structure software packages can be imported into DFTB+ and evalu-
ated. The potential of this functionality is demonstrated with computation of the electronic band structure for bulk
Al (Supporting Information, SI, Figure S1), where H and S have been computed with the software package FHI-aims.
FHI-aims supports the ASI API, and with the ASI data transfer protocols it is possible to calculate and analyse
the band structure in DFTB+. The resulting band structure is given in the SI: the result overlays the band structure
achieved with the standalone ACEhamiltonians approach and matches the FHI-aims native calculation of the same
data, showing the versatility of this modular interface.

VI. CONCLUSIONS

As workflows in computational materials science become more complex, codes need to become more interoperable.
Potential paradigms when interfacing electronic structure software with other codes are: the software can act as
the driver, requesting information; or as the library, being queried for information. In both cases, data transfer is
bidirectional, although asymmetric. With the emergence of ML workflows, there are many opportunities to achieve
synergy between semi-empirical electronic structure methods and data-driven approaches;[9] to yield usable software
solutions in that enable complex simulations or data-driven workflows, robust interfaces between different codes must
be established.

Here, we have reported examples of electronic structure interfaces, implemented in the DFTB+ code, which explore
the driver and library paradigms. We explain the general considerations and traits of the interfaces and showcase
possible use cases by communicating electronic structure information in the form of the Hamiltonian in local basis
representation, and evaluation of emebedding electostatic potential.

10

Both interfaces have the potential to provide exciting future capabilities. The ASI bindings can in principle be used
for a self-consistent workflow, either driven inside DFTB+ or externally. Similarly, the ACEhamiltonians framework
could exchange atomic properties such as charge, enabling self-consistent updates of the supplied model. Either
option would then also immediately be compatible with a subset of the DFTB+ capabilities beyond ground state
calculations, such as ∆-SCF excitations.[36] Similarly, calculations using a density-functional ground state reference,
which then uses the DFTB approximated random-phase excitation poles, becomes possible.[59] Generalization to
spin-polarization or extending the real-time electronic propagation to receive an external model are also interesting
further applications. Another extension built on top of the current work would be to exchange derivatives of the
external models with respect to atomic displacements, enabling forces/strains from the Hellmann-Feynman theorem,
or higher-order response properties using the internal DFTB+ coupled perturbed routines.[60]

In summary, the presented outcomes demonstrate the potential for flexible and powerful usage of components of
the DFTB+ package by harnessing modularity. There is ample space for further integration of data workflows. The
modularity of the package integration presents insertion points that can be used for evaluating a range of data objects
in a variety of software packages, using the best implementations of any given step when these may be in separate
software.

DATA AND CODE AVAILABILITY

The DFTB+ software package is available at https://github.com/dftbplus/dftbplus. The v24.2 release will
contain all functionality outlined in this manuscript; the described changes for the ASI binding or to connect to the
ACEhamiltonians are undergoing review and are currently available a [61] and [62] respectively. Full documentation is
available at https://dftbplus.org/. The ACEhamiltonians v0.1.0 software package is available at https://github.
com/ACEsuit/ACEhamiltonians.jl. The ASI v1.1 software package is available at https://gitlab.com/pvst/asi.
The interface specification and DFTB+ implementation are available at https://pvst.gitlab.io/.

CREDIT AUTHOR STATEMENT

Pavel Stishenko: Methodology, Software, Writing - Original Draft, Writing - Review & Editing, Visualization.
Adam McSloy: Software, Visualization, Writing - Review & Editing. Berk Onat: Software. Ben Hourahine:
Conceptualization, Methodology, Writing - Original Draft, Writing - Review & Editing, Visualization, Supervision,
Project administration, Funding acquisition. Reinhard J. Maurer: Conceptualization, Writing - Original Draft,
Writing - Review & Editing, Supervision, Project administration, Funding acquisition. James Kermode: Concep-
tualization, Methodology, Writing - Original Draft, Writing - Review & Editing, Visualization, Supervision, Project
administration, Funding acquisition. Andrew Logsdail: Conceptualization, Writing - Original Draft, Writing -
Review & Editing, Supervision, Project administration, Funding acquisition.

ACKNOWLEDGMENTS

This work was financially supported by the Leverhulme Trust Research Project Grant (RPG-2017-191) and the
NOMAD Centre of Excellence (European Commission grant agreement ID 951786). AJL and PVS acknowledge
funding by the UKRI Future Leaders Fellowship program (MR/T018372/1, MR/Y034279/1). RJM acknowledges
funding by the UKRI Future Leaders Fellowship program (MR/S016023/1, MR/X023109/1) and a UKRI frontier
research grant (EP/X014088/1). PVS, RJM and AJL acknowledge funding from the ARCHER2 eCSE Programme
(eCSE03-10).

We acknowledge computational resources provided by the Scientific Computing Research Technology Platform of
the University of Warwick, Supercomputing Wales for access to the Hawk HPC facility, which is part-funded by the
European Regional Development Fund via the Welsh Government, the EPSRC-funded HPC Midlands+ consortium
(EP/T022108/1), and the UK Car-Parinello consortium (EP/P022065/1) and the U.K. High Performance Computing
“Materials Chemistry Consortium” (EP/R029431/1, EP/X035859/1) for access to the ARCHER2 high-performance

https://github.com/dftbplus/dftbplus
https://dftbplus.org/
https://github.com/ACEsuit/ACEhamiltonians.jl
https://github.com/ACEsuit/ACEhamiltonians.jl
https://gitlab.com/pvst/asi
https://pvst.gitlab.io/

11

computing facility.

[1] M. Elstner and G. Seifert, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences 372, 20120483 (2014).

[2] C. Bannwarth, B. Hourahine, and J. Moussa, in Software for electronic structure based simulations in chemistry and
materials, IOP Roadmap, edited by T. Windus and V. Blum (Electronic Structure, 2024) volume is still in review.

[3] Y. Nishimura and H. Nakai, Chemistry Letters 50, 1546 (2021).
[4] M. Gaus, A. Goez, and M. Elstner, J. Chem. Theory Comput. 9, 338 (2013).
[5] M. Mortazavi, J. G. Brandenburg, R. J. Maurer, and A. Tkatchenko, The Journal of Physical Chemistry Letters 9, 399

(2018).
[6] G. Jha and T. Heine, Journal of Chemical Theory and Computation 18, 4472 (2022).
[7] J. A. Keith, V. Vassilev-Galindo, B. Cheng, S. Chmiela, M. Gastegger, K.-R. Müller, and A. Tkatchenko, Chemical Reviews

121, 9816 (2021).
[8] J. Westermayr, M. Gastegger, K. T. Schütt, and R. J. Maurer, The Journal of Chemical Physics 154, 230903 (2021).
[9] N. Fedik, B. Nebgen, N. Lubbers, K. Barros, M. Kulichenko, Y. W. Li, R. Zubatyuk, R. Messerly, O. Isayev, and S. Tretiak,

The Journal of Chemical Physics 159, 110901 (2023).
[10] J. M. Knaup, B. Hourahine, and T. Frauenheim, The Journal of Physical Chemistry A 111, 5637 (2007).
[11] N. F. Aguirre, A. Morgenstern, M. J. Cawkwell, E. R. Batista, and P. Yang, Journal of Chemical Theory and Computation

16, 1469 (2020).
[12] A. S. Hutama, C.-p. Chou, Y. Nishimura, H. A. Witek, and S. Irle, The Journal of Physical Chemistry A 125, 2184 (2021).
[13] M. Stöhr, L. Medrano Sandonas, and A. Tkatchenko, The Journal of Physical Chemistry Letters 11, 6835 (2020).
[14] K. T. Schütt, M. Gastegger, A. Tkatchenko, K.-R. Müller, and R. J. Maurer, Nature Communications 10, 5024 (2019).
[15] M. Gastegger, A. McSloy, M. Luya, K. T. Schütt, and R. J. Maurer, Journal of Chemical Physics 153, 044123 (2020).
[16] O. Unke, M. Bogojeski, M. Gastegger, M. Geiger, T. Smidt, and K.-R. Müller, in Advances in Neural Information Processing

Systems, Vol. 34 (Curran Associates, Inc., 2021) pp. 14434–14447.
[17] J. Nigam, M. J. Willatt, and M. Ceriotti, The Journal of Chemical Physics 156, 014115 (2022).
[18] L. Zhang, B. Onat, G. Dusson, A. McSloy, G. Anand, R. J. Maurer, C. Ortner, and J. R. Kermode, npj Computational

Materials 8, 1 (2022), number: 1 Publisher: Nature Publishing Group.
[19] H. Li, Z. Wang, N. Zou, M. Ye, R. Xu, X. Gong, W. Duan, and Y. Xu, Nature Computational Science 2, 367 (2022).
[20] P. O. Dral, O. A. Von Lilienfeld, and W. Thiel, Journal of Chemical Theory and Computation 11, 2120 (2015).
[21] G. Zhou, N. Lubbers, K. Barros, S. Tretiak, and B. Nebgen, Proceedings of the National Academy of Sciences 119,

e2120333119 (2022).
[22] A. McSloy, G. Fan, W. Sun, C. Hölzer, M. Friede, S. Ehlert, N.-E. Schütte, S. Grimme, T. Frauenheim, and B. Aradi, The

Journal of Chemical Physics 158, 034801 (2023).
[23] J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. B Condens. Matter 71, 035109 (2005).
[24] D. G. Smith, L. A. Burns, A. C. Simmonett, R. M. Parrish, M. C. Schieber, R. Galvelis, P. Kraus, H. Kruse, R. Di Remigio,

A. Alenaizan, et al., The Journal of Chemical Physics 152 (2020).
[25] Q. Sun, X. Zhang, S. Banerjee, P. Bao, M. Barbry, N. S. Blunt, N. A. Bogdanov, G. H. Booth, J. Chen, Z.-H. Cui, et al.,

The Journal of Chemical Physics 153 (2020).
[26] M. McIlroy, E. Pinson, and B. Tague, The Bell system technical journal 57, 1899 (1978).
[27] P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G. K. H. Madsen, and L. D. Marks, The Journal of Chemical Physics 152,

074101 (2020).
[28] J. R. Kermode, Journal of Physics: Condensed Matter 32, 305901 (2020).
[29] V. Kapil, M. Rossi, O. Marsalek, R. Petraglia, Y. Litman, T. Spura, B. Cheng, A. Cuzzocrea, R. H. Meißner, D. M. Wilkins,

B. A. Helfrecht, P. Juda, S. P. Bienvenue, W. Fang, J. Kessler, I. Poltavsky, S. Vandenbrande, J. Wieme, C. Corminboeuf,
T. D. Kühne, D. E. Manolopoulos, T. E. Markland, J. O. Richardson, A. Tkatchenko, G. A. Tribello, V. Van Speybroeck,
and M. Ceriotti, Computer Physics Communications 236, 214 (2019).

[30] The Molssi Driver Interface Library, https://molssi-mdi.github.io/MDI_Library (2022), accessed: 2022-10-24.
[31] A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M. Du lak, J. Friis, M. N. Groves, B. Hammer,

C. Hargus, et al., Journal of Physics: Condensed Matter 29, 273002 (2017).
[32] G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, and B. Kozinsky, Computational Materials Science 111, 218 (2016).
[33] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L. B.

da Silva Santos, P. E. Bourne, et al., Scientific data 3, 1 (2016).
[34] P. V. Stishenko, T. W. Keal, S. M. Woodley, V. Blum, B. Hourahine, R. J. Maurer, and A. J. Logsdail, Journal of Open

Source Software 8, 5186 (2023).
[35] V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, and M. Scheffler, Computer Physics Communications

180, 2175 (2009).
[36] B. Hourahine, B. Aradi, V. Blum, F. Bonafé, A. Buccheri, C. Camacho, C. Cevallos, M. Y. Deshaye, T. Dumitrică,

A. Dominguez, S. Ehlert, M. Elstner, T. van der Heide, J. Hermann, S. Irle, J. J. Kranz, C. Köhler, T. Kowalczyk,
T. Kubař, I. S. Lee, V. Lutsker, R. J. Maurer, S. K. Min, I. Mitchell, C. Negre, T. A. Niehaus, A. M. N. Niklasson,

https://doi.org/10.1098/rsta.2012.0483
https://doi.org/10.1098/rsta.2012.0483
https://doi.org/10.1021/ct300849w
https://doi.org/10.1021/acs.jpclett.7b03234
https://doi.org/10.1021/acs.jpclett.7b03234
https://doi.org/10.1021/acs.jctc.2c00376
https://doi.org/10.1021/acs.chemrev.1c00107
https://doi.org/10.1021/acs.chemrev.1c00107
https://doi.org/10.1063/5.0047760
https://doi.org/10.1063/5.0151833
https://doi.org/10.1021/acs.jctc.9b00880
https://doi.org/10.1021/acs.jctc.9b00880
https://doi.org/10.1021/acs.jpca.0c11178
https://doi.org/10.1021/acs.jpclett.0c01307
https://doi.org/10.1038/s41467-019-12875-2
https://doi.org/10.1063/5.0012911
https://proceedings.neurips.cc/paper_files/paper/2021/hash/78f1893678afbeaa90b1fa01b9cfb860-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/78f1893678afbeaa90b1fa01b9cfb860-Abstract.html
https://doi.org/10.1063/5.0072784
https://doi.org/10.1038/s41524-022-00843-2
https://doi.org/10.1038/s41524-022-00843-2
https://doi.org/10.1038/s43588-022-00265-6
https://doi.org/10.1021/acs.jctc.5b00141
https://doi.org/10.1073/pnas.2120333119
https://doi.org/10.1073/pnas.2120333119
https://doi.org/10.1063/5.0132892
https://doi.org/10.1063/5.0132892
https://doi.org/10.1103/PhysRevB.71.035109
https://doi.org/10.1063/1.5143061
https://doi.org/10.1063/1.5143061
https://doi.org/https://doi.org/10.1016/j.cpc.2018.09.020
https://molssi-mdi.github.io/MDI_Library
https://doi.org/10.21105/joss.05186
https://doi.org/10.21105/joss.05186

12

A. J. Page, A. Pecchia, G. Penazzi, M. P. Persson, J. Řezáč, C. G. Sánchez, M. Sternberg, M. Stöhr, F. Stuckenberg,
A. Tkatchenko, V. W.-z. Yu, and T. Frauenheim, Journal of Chemical Physics 152, 124101 (2020).

[37] B. Hourahine, B. Aradi, V. Blum, F. Bonafé, A. Buccheri, C. Camacho, C. Cevallos, M. Y. Deshaye, T. Dumitrică,
A. Dominguez, S. Ehlert, M. Elstner, T. van der Heide, J. Hermann, S. Irle, J. Jakowski, J. J. Kranz, C. Köhler, T. Kowal-
czyk, T. Kubař, I. S. Lee, V. Lutsker, R. J. Maurer, S. K. Min, I. Mitchell, C. Negre, T. A. Niehaus, A. M. N. Niklasson,
A. J. Page, A. Pecchia, G. Penazzi, M. P. Persson, J. Řezáč, C. G. Sánchez, M. Sternberg, M. Stöhr, F. Stuckenberg,
A. Tkatchenko, V. W.-z. Yu, and T. Frauenheim, The Journal of Chemical Physics 157, 039901 (2022).

[38] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley, J. Demmel, J. Dongarra, I. Duff, S. Hammarling,
G. Henry, et al., ACM Transactions on Mathematical Software 28, 135 (2002).

[39] C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher, and S. Grimme, WIREs Comput.
Mol. Sci. 11, e01493 (2020).

[40] R. S. Mulliken, The Journal of Chemical Physics 23, 1833 (2004).
[41] M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, Physical Review B

58, 7260 (1998).
[42] C. Bannwarth, S. Ehlert, and S. Grimme, Journal of Chemical Theory and Computation 15, 1652 (2019).
[43] B. Aradi, B. Hourahine, and T. Frauenheim, The Journal of Physical Chemistry A 111, 5678 (2007).
[44] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,

A. McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd ed. (Society for Industrial and Applied Mathematics, Philadel-
phia, PA, 1999).

[45] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet,
K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK Users’ Guide (Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1997).

[46] J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and I. Yamazaki, Numerical Computations with
GPUs , 1 (2014).

[47] V.-Q. Vuong, C. Cevallos, B. Hourahine, B. Aradi, J. Jakowski, S. Irle, and C. Camacho, The Journal of Chemical Physics
158 (2023).

[48] V. W. Yu, J. Moussa, P. Kůs, A. Marek, P. Messmer, M. Yoon, H. Lederer, and V. Blum, Computer Physics Communi-
cations 262, 107808 (2021).

[49] V. W. Yu, C. Campos, W. Dawson, A. Garćıa, V. Havu, B. Hourahine, W. P. Huhn, M. Jacquelin, W. Jia, M. Keçeli,

R. Laasner, Y. Li, L. Lin, J. Lu, J. Moussa, J. E. Roman, Álvaro Vázquez-Mayagoitia, C. Yang, and V. Blum, Computer
Physics Communications 256, 107459 (2020).

[50] B. Hourahine, B. Aradi, V. Blum, F. Bonafé, A. Buccheri, C. Camacho, C. Cevallos, M. Y. Deshaye, T. Dumitrică,
A. Dominguez, S. Ehlert, M. Elstner, T. van der Heide, J. Hermann, S. Irle, J. J. Kranz, C. Köhler, T. Kowalczyk,
T. Kubař, I. S. Lee, V. Lutsker, R. J. Maurer, S. K. Min, I. Mitchell, C. Negre, T. A. Niehaus, A. M. N. Niklasson,
A. J. Page, A. Pecchia, G. Penazzi, M. P. Persson, J. Řezáč, C. G. Sánchez, M. Sternberg, M. Stöhr, F. Stuckenberg,
A. Tkatchenko, V. W.-z. Yu, and T. Frauenheim, DFTB+, a software package for efficient approximate density functional
theory based atomistic simulations, https://doi.org/10.5281/zenodo.8117766 (2023), 23.1.

[51] F. P. Bonafé, B. Aradi, B. Hourahine, C. R. Medrano, F. J. Hernández, T. Frauenheim, and C. G. Sánchez, Journal of
Chemical Theory and Computation 16, 4454 (2020).

[52] I. Free Software Foundation, GNU Lesser General Public License, version 3, (2007).
[53] B. Aradi, FyTest – instant Fortran unit testing, https://github.com/aradi/fytest (2021).
[54] D. van Heesch, Doxygen, https://www.doxygen.nl/ (1997 – 2024).
[55] C. MacMackin, FORtran Documenter, https://github.com/Fortran-FOSS-Programmers/ford (2015 – 2023).
[56] A. Pecchia and A. Di Carlo, Rep. Prog. Phys. 67, 1497 (2004).
[57] I. Nikiforov, B. Hourahine, B. Aradi, T. Frauenheim, and T. Dumitrică, The Journal of Chemical Physics 139, 094110

(2013).
[58] J. P. Perdew, K. Burke, and M. Ernzerhof, Physical review letters 77, 3865 (1996).
[59] R. Rüger, E. van Lenthe, T. Heine, and L. Visscher, The Journal of Chemical Physics 144, 184103 (2016).
[60] D. Maag, J. Böser, H. A. Witek, B. Hourahine, M. Elstner, and T. Kubař, The Journal of Chemical Physics 158 (2023).
[61] P. Stishenko and B. Hourahine, Pull request #1335: “asirebase”, https://github.com/dftbplus/dftbplus/pull/1335

(2024).
[62] B. Hourahine, Pull request #1420: “external model interface”, https://github.com/dftbplus/dftbplus/pull/1420

(2024).

https://doi.org/10.1063/1.5143190
https://doi.org/10.1063/5.0103026
https://doi.org/10.1002/wcms.1493
https://doi.org/10.1002/wcms.1493
https://doi.org/10.1063/1.1740588
https://doi.org/10.1103/PhysRevB.58.7260
https://doi.org/10.1103/PhysRevB.58.7260
https://doi.org/10.1021/acs.jctc.8b01176
https://doi.org/https://doi.org/10.1016/j.cpc.2020.107808
https://doi.org/https://doi.org/10.1016/j.cpc.2020.107808
https://doi.org/https://doi.org/10.1016/j.cpc.2020.107459
https://doi.org/https://doi.org/10.1016/j.cpc.2020.107459
https://doi.org/10.5281/zenodo.8117766
https://doi.org/10.5281/zenodo.8117766
https://www.gnu.org/licenses/lgpl.html
https://doi.org/10.1088/0034-4885/67/8/R04
https://doi.org/10.1063/1.4819910
https://doi.org/10.1063/1.4819910
https://doi.org/10.1063/1.4948647
https://github.com/dftbplus/dftbplus/pull/1335
https://github.com/dftbplus/dftbplus/pull/1420

	Integrated workflows and interfaces for data-driven semi-empirical electronic structure calculations
	Abstract
	Introduction
	General considerations on deep interfaces to electronic structure codes
	Methods
	The DFTB family of models
	 The DFTB+ code
	Extensions enabled by the present work
	Computational Details

	ACEhamiltonians as a library to provide external Hamiltonian evaluation for DFTB+
	 Interface Description
	Results

	 Atomic Simulation Interface (ASI) as a driver that uses DFTB+
	 Interface Description
	 Results
	 Electrostatic embedding
	Electronic structure transfer

	Conclusions
	Data and Code Availability
	CRediT author statement
	Acknowledgments
	References

