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Abstract: 

Topologically-engineered mechanical frames are important model constructs for architecture, 

machine mechanisms, and metamaterials. Despite significant advances in macroscopically 

fashioned frames, realization and phonon imaging of nanoframes have remained challenging. Here 

we extend for the first time the principles of topologically-engineered mechanical frames to lattices 

self-assembled from nanoparticles. Liquid-phase transmission electron microscopy images the 

vibrations of nanoparticles in self-assembled Maxwell and hexagonal lattices at the nanometer 

resolution, measuring a series of otherwise inaccessible properties such as phonon spectra and 

nonlinear lattice deformation paths. These properties are experimentally modulated by ionic 

strength, captured by our discrete mechanical model considering the complexity of nanoscale 

interactions and thermal fluctuations. The experiment‒theory integration bridges mechanical 

metamaterials and colloidal self-assembly, opening new opportunities to manufacture phononic 

devices with solution processibility, transformability, light weight, and emergent functions, at 

underexplored length, frequency, and energy scales.   

Main text: 

Topological design principles are employed in many systems to produce exotic properties, from 

the MAXXI museum featuring curved ramps and voids for shadow effects (1), shape-morphing 

actuators for soft robotics (2), to topological metamaterials (3) inspired by the discovery of 
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topological insulators in condensed matter (4). In the last case, topology control can engineer 

phonons and photons with remarkable phenomena, from spin-momentum locking, unidirectional 

edge states, to reconfigurable waveguiding (5). For example, Maxwell lattices as a special class of 

topologically-engineered mechanical frames exhibit marginal stability, where degrees of freedom 

balance with constraints in the bulk (6). In contrast to close packing, Maxwell lattices are porous 

systems with structural degeneracy that is sub-extensive in system size, leading to transformability 

and topologically protected low-energy modes (i.e., floppy modes) (3, 7). These features are 

important for applications in shock absorption, stress focusing, and nonreciprocal wave 

transmission (8, 9). Due to such broad relevance, topologically-engineered mechanical frames 

have been extensively realized at the macroscopic scale (7, 9, 10) and more recently at the 

nanoscale (11-13)  by top-down lithography or printing. 

Meanwhile, self-assembly of colloidal nanoparticles (NPs) has attracted extensive efforts over the 

last few decades for their unique advantages to generate scalable, solution processible, and 

reconfigurable structures of exquisite topology control, thanks to the high tunability of NP shape, 

composition, and inter-NP interaction (14, 15). However, studying NP-assembled lattices as 

mechanical frames has remained unexplored, let alone mapping and understanding their phonon 

behaviors. On one hand, NP-assembled mechanical frames can cover unique frequency ranges (a 

few MHz to hundreds of GHz) and energy scales that are highly desirable to access in phonon 

manipulation for applications in optomechanical devices and thermal transport (note S1, table S1) 

(16, 17). NPs also promise unique potentials to make novel metamaterials by coupling their shape- 

and size-defined optical, electronic, catalytic, and magnetic properties with the lattices’ 

topologically-encoded mechanical features (14, 18, 19). On the other hand, while digital camera, 

laser vibrometry, and first-principle models have been developed and used for macroscopic 

mechanical frames (20, 21), these methods do not apply to NP-assembled lattices due to 

insufficient imaging resolution or limited coverage on the frequency and energy range. Moreover, 

new theoretical advancements over existing framework of mechanical metamaterials are needed 

to assess and incorporate factors such as NP shape anisotropy, thermal fluctuation, as well as the 

directionality, range, anharmonicity, and multi-body nature of inter-NP interactions, which are 

emergent design parameters for NP-assembled mechanical frames. 

Here we present the first experimental realization and theoretical framework of a self-assembled, 

topologically-engineered Maxwell lattice from NPs suspended in solution. The phonon behaviors 

and the consequent reconfiguration of the lattice upon thermal perturbation are mapped at the 

previously inaccessible nanometer resolution, enabled by adapting liquid-phase transmission 

electron microscopy (TEM) (22-24)—a recent breakthrough that images the real-space and real-

time dynamics in solution under TEM—to phonon mode nanoscopy (PMN). For Maxwell lattices, 

one essential structural ingredient is a perfect hinge. The hinge constrains longitudinal motion 

while allowing freedom for rotation and structural degeneracy (Fig. 1a), which we realize 

experimentally at the nanoscale by employing interactions of anisotropic NPs. Liquid-phase TEM 

tracks the local vibrations of NPs around the lattice sites, thereby experimentally measuring the 

phonon dispersion spectra of different Maxwell lattices following our customized PMN workflow. 

Integrated with our discrete mechanical model and coarse-grained (CG) inter-NP interaction 

calculations, these phonon dispersion spectra map the phonon modes and interaction potentials of 

the lattices, elucidating the relationship between phonon dynamics and colloidal interactions while 

bringing entropic and many-body effects unique to nanoassemblies to traditional mechanics 

theories (25). Our work delineates the design rules of NP-assembled mechanical frames and 

demonstrates a collection of unconventional nonlinear lattice deformation paths guided by linear 
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phonon modes for nanoframes, such as gliding, twin boundary migration, and quadruple junction 

formation, opening new avenues in manufacturing self-assembled topologically-engineered 

mechanical metamaterials. The PMN platform is also applied to hexagonal lattices, whose phonon 

dispersion spectra are isotropic at long wavelength without floppy modes, suppressing lattice 

reconfiguration. The platform can be generalized to facilitate phonon engineering at the nanoscale, 

in systems such as the vastly diverse NP-assembled lattices that have been achieved (14), random 

or amorphous networks (26), and nanostructures with controlled defects as next-generation 

phononic materials.   

Self-assembly of a nanoscale Maxwell lattice with structural degeneracy 

We first choose to study the extreme case of Maxwell lattices, which are at the verge of mechanical 

instability. In particular, we use shape anisotropy of NPs to control the stability of these Maxwell 

lattices. Maxwell lattices are characterized by the balance of degrees of freedom of building blocks 

and constraints from interactions between them (6, 7). In the simplified case of point-like building 

blocks and central-force potentials (radially symmetric), this balance takes the form of 〈𝑧〉 = 2𝑑, 

where 〈𝑧〉 denotes the average coordination number of the building blocks and 𝑑 is the dimension 

of space (e.g., 〈𝑧〉 = 4 when 𝑑 = 2). In the case of anisotropic NPs, deviations from central-force 

potentials lead to an interesting contrast between “strong” interactions which only depend on the 

center-to-center distance between the NPs (usually the nearest-neighboring (NN) bonds in the 

lattice), and “weak” interactions beyond NNs (e.g., potentials that depend on bond angles). We 

thus introduce an additional parameter of Maxwellness to measure the ratio of the leading order 

weak interactions to strong interactions, with twofold importance: First, the mechanical properties 

of ideal Maxwell lattices are asymptotically approached when this ratio goes to 0, making it a 

desirable limit to achieve the predicted properties; Second, the stability of the lattices requires 

weak interactions (without which the lattices have unbounded floppy modes leading to collapsing), 

which favors a slight non-zero Maxwellness.  

We use gold nanocubes with slight corner truncation (Fig. 1b,c and fig. S1) as the building blocks 

for Maxwell lattices. The gold nanocubes are negatively-charged and dispersed in water due to 

electrostatic repulsion 𝐸el. Liquid-phase TEM imaging is performed at low electron dose rates to 

minimize beam-induced reactions and to preserve inter-NP interactions (22). Increased ionic 

strength 𝐼  makes the inter-NP van der Waals attraction 𝐸vdw  overwhelm the screened 𝐸el , 

triggering the assembly into a single-layer rhombic lattice of 〈𝑧〉 = 4 (Fig. 1d,e and movie S1). 

Radial distribution function of the lattice confirms a high crystallinity due to low dispersity of the 

cubes and self-correction dynamics during assembly (fig. S2 and movie S1). Regarding Maxwell 

characteristics, the rhombic lattice maintains a stable bond length 𝑙 and a bimodal distribution of 

the bond angle θ, suggesting a high enough Maxwellness to ensure structural stability and a low 

enough Maxwellness to permit floppy modes (Fig. 1b). Following the Boltzmann distribution, the 

bond angle histogram is converted to a free energy diagram with two potential wells connected by 

an energy barrier,  which can be overcome by thermal fluctuation to allow reconfiguration of 

rhombuses between degenerate left- and right-leaning states (Fig. 1g and note S2), contrasting 

from the stable relaxation dynamics of traditional close packings (22).   
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Fig. 1. Self-assembled Maxwell lattice from gold nanocubes with structural degeneracy. a, Schematics 

of macroscopic (kagome bilayer (28)) Maxwell lattices and a hinge exhibiting rotational freedom. b, 

Schematic of a rhombic lattice with structural degeneracy. Bond angle θ and bond length 𝑙 are noted. c, 

Self-assembly of gold nanocubes into a rhombic Maxwell lattice in silicon nitride (SiNx) chambered liquid-

phase TEM. d,e, Time-lapse liquid-phase TEM images (d) overlaid with tracked NP centroids (yellow filled 

circles) and the bond network with rhombuses colored according to θtilt (e) describing the angle that each 

rhombus leans towards. Definition of θtilt in fig. S4. f, Histogram of rhombuses of certain 𝑙 and θ values 

in movie S1. g, Free energy of rhombuses as a function of θ derived from f (all 𝑙 values combined). h,i, CG 

modeling of interaction energy 𝐸vdw , 𝐸el  and 𝐸tot  for a NP pair as a function of the center-to-center 

distance 𝑟 (inset schematic) when the side facets of the NPs are aligned (h) and schematics of the CG model 

of a gold nanocube (gold) with ligands (black) (i, note S2). j, Diagram of total energy 𝐸sum of multiple 

pairs between the central NP and a surrounding NP as a function of θ and 𝑙  up to the second nearest 

neighbors, which is sufficient for predicting the stable assembly structure (fig. S5 and note S3). Scale bars: 

150 nm. 
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To understand what inter-NP interactions are important in determining the rhombic lattice self-

assembly, we adopt both CG modeling describing the full forms of inter-NP interactions and 

Brownian dynamics (BD) simulation capturing the assembly process, which pinpoint the role of 

beyond-NN interactions. Figure 1i shows the CG models of ligand-coated gold cubes (note S2) to 

calculate the pairwise interaction 𝐸tot between two NPs following 𝐸tot = 𝐸vdw + 𝐸el  (Eq. 1) (see 

an example in Fig. 1h). Given one central NP, while NN-only interactions predict a square lattice 

(θ = 90°) at the energy minimum, considering next-NNs and beyond converges to energy minima 

split at two θ values with a mirror plane at θ = 90° (Fig. 1j, figs. S5 and S6, notes S2 and S3), 

matching the structural degeneracy of a rhombic lattice. Zoomed-in view of Fig. 1j reveals an 

interaction energy landscape (fig. 5c) saddled at a square lattice (θ = 90°), which is metastable and 

can fall into the global minimum of a rhombic lattice, consistent with our BD simulation of the 

self-assembly process (fig. S7, note S4, and movie S2). To account for the large size of the system 

and the complexity of inter-NP interaction (anisotropic and beyond NNs), we develop deep neural 

network-based machine learning (ML) method for fast prediction of the force and torque exerted 

on each NP at each time step in our BD simulation (fig. S7 and note S4), which can be generalized 

to other NP systems. In comparison, previous simulations of cube assemblies considered only NN 

interactions and predicted square lattices in two dimensions (29, 30). The importance of beyond-

NN interaction can be a feature of NP systems, where the range of colloidal interactions can be 

comparable with or even larger than the size of NPs. 

Nanoscale mapping of floppy modes and phonon dispersion spectra by PMN  

In addition to structural transformability, the defining mechanical feature of Maxwell lattices is 

the existence of floppy phonon modes (7), which can take the form of soft planewave modes along 

certain high-symmetry directions in the bulk phonon spectra (the case of the rhombic lattices that 

we consider here), or floppy modes exponentially localized at the edges or interfaces of the lattice, 

depending on the type of the Maxwell lattice (7). Inspired by the pioneering work on phonon mode 

mapping using optical microscopy (31-33), we adapt liquid-phase TEM into a PMN platform to 

directly image phonon dynamics of NP-assembled lattices, where NP positions are resolved at the 

nanometer resolution. 

The fundamental assumption of PMN is that the assembled structure experiences small vibrations 

around a stable configuration under thermal fluctuation (33), which is satisfied in our NP system 

between structural reconfiguration (Fig. 2a, fig. S8, and note S5). Following equilibrium statistical 

mechanics, the correlation functions of NP vibrations are related to the dynamical matrix 𝐷 

by 〈𝒖𝑖𝒖𝑖′〉 = 𝑘B𝑇𝐷𝑖,𝑖′
−1 (Eq. 2), where 𝑖, 𝑖′ label the NPs tracked in liquid-phase TEM videos, and 

𝒖 is the displacement vector of a NP per frame from its time-averaged position after drift correction 

(Fig. 2, b to d, fig. S9, note S6, and movie S3). Phonon structures are then experimentally measured 

for the first time for NP-assembled lattices from the dynamical matrix in Fourier space 𝐷𝒌 (a 2×2 

matrix, leading to 2 branches of modes), while eigenvectors are derived as polarization of the 

modes, giving 1 for longitudinal and 0 for transverse waves (Fig. 2f and note S7). The low values 

of polarization for the lower branch indicate that it is dominated by transverse waves where NPs 

slide past each other. In contrast, the upper branch is dominated by longitudinal waves, indicating 

bond length changes and thus higher energies. This PMN method for phonon structures of lattices 

only requires high spatial resolution tracking of NP vibrations; it does not require theoretical 

modeling or a priori knowledge on the inter-NP interaction as long as the lattice vibrates in 

equilibrium.  
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Fig. 2. Direct imaging of phonon dynamics and integrated theoretical framework to extract phonon 

dispersion spectra using PMN. a, Illustration of the time-lapse liquid-phase TEM videos of lattices. b,c, 

Drift corrected trajectory mapped over a selected region (b) of a stable rhombus lattice and a zoomed-in 

single NP trajectory (c) corresponding to the NP boxed in white in b. The trajectory is colored to elapsed 

time. d, Histogram of the displacements (Δ𝑥 and Δ𝑦) of NPs at a given frame from their time-averaged 

centroid positions; statistics include all the NPs in b. e, Discrete mechanical model of one rhombus in the 

lattice, consisting of four NN springs and four angular springs. f,g, Phonon frequencies (top row) and 

polarizations (bottom row) of experiment (f) and model (g) plotted based on spring constants fitted 

following PMN. h, Phonon dispersion along high symmetry paths. The lower branch has higher precision 

since it is a mode of large displacements and is well sampled in liquid-phase TEM experiments. The errors 

are estimated as detailed in note S7. Results of the lower branch are in black, and the upper branch in gray. 

Scale bars: 200 nm. 
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Phonon behaviors of NP-assembled lattices determined quantitatively by complex inter-NP 

interactions  

To understand the experimentally measured phonon dispersion spectra, we develop a discrete 

mechanical model (Fig. 2e, note S7, and table S2) to describe the NP-assembled lattices as mass 

beads connected by “effective” springs. This model consists of two sets of potentials, one 

connecting NNs representing the strong interaction, with 𝑘NN as the harmonic spring constant, and 

the other a bistable angular (ANG) potential to account for the weak interaction which are beyond-

NN interactions, three-body, and anharmonic, with 𝑘ANG as the strength of the ANG potential. 

Here 𝑘ANG controls both the stiffness of the ANG spring when expanded around the local minima 

and the barrier between them, an approximation justified by expanding the potential locally around 

θ = 90°. Compared to traditional models of Maxwell lattices, we account for the complexity of 

inter-NP interactions by not only introducing the three-body ANG potentials but also capturing 

the intrinsic bistability of this potential: The two minima of 𝑉ANG(θ)  at θ0  and (180° −θ0 ) 

correspond to the two degenerate, left- and right-leaning rhombus configurations.  

This step of PMN fits the dynamic matrix calculated from experimental tracking of NPs to that 

predicted from our discrete mechanical model, to extract spring stiffness and Maxwellness of the 

lattice. For clarity, a phonon dispersion is plotted along the high symmetry paths in this example 

(Fig. 2h). A branch of floppy modes with low frequency sits between the Γ and M points in the 

first Brillouin zone, corresponding to the zero modes in an ideal rhombic lattice and serving as a 

clear signature that the lattice is close to an ideal Maxwell lattice. The highest measurable phonon 

frequency by PMN is on the order of GHz determined by the tracking precision of NPs, varied 

upon the mass of NPs (fig. S10 and note S1). The fitting (Fig. 2f,g and note S7) yields 𝑘NN = 

(0.971 ± 0.012) kBT nm‒2 and 𝑘ANG = (4.99 ± 0.15) ×10−5 kBT deg‒4. Physically, these parameters 

describe that a mechanical deformation associated with an energy of 1 kBT leads to a longitudinal 

stretching of a NN bond as small as 1.4 nm and an angular fluctuation as high as 8.3°. Maxwellness 

𝑀  is calculated by 𝑀 = 𝑘ANG
′ /𝑘NN  (Eq. 3), where 𝑘ANG

′  is normalized 𝑘ANG  to make 𝑀 

dimensionless (fig. S10, note S7, and table S2). In this example, 𝑀 = 0.0383 ± 0.0012, suggesting 

that the system is close to an ideal Maxwell lattice yet robust under thermal fluctuation. As a 

comparison, for macroscopic structures, 𝑀 = 0 is often achieved with high bulk modulus compared 

with hinge friction (9). Our result of a NP-assembled Maxwell lattice demonstrates a promising 

design space of materials with both longitudinal stability and rotational freedom at the hinges. 

Rotational degrees of freedom of the NPs are excluded from this fitting by representing the NPs 

as point-like particles in the model. The NP rotations are observed to be tightly confined and 

provide small entropic corrections to the spring constants (figs. S11 and S12, note S8, and table 

S3).  
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Fig. 3. Effects of inter-NP interactions on NP vibrations, phonon modes, and spring constants. a,b, 

CG-modeled interaction energy of NN springs as a function of 𝑙 (a) and interaction energy of ANG springs 

as a function of θ (b). The dashed lines are fittings to the potential forms of the discrete mechanical models 

(Eqs. 3,4). The brackets indicate the [𝐸NN,m, 𝐸NN,m + 1 kBT] fitting range in a and [𝐸ANG,m, 𝐸ANG,m + 1 

kBT] in b, where 𝐸NN,m is the minimum of the sum of interaction energy of all four NN pairs 𝐸NN,  and 

𝐸ANG,m is the minimum of the sum of interaction energy of two diagonal pairs 𝐸ANG (insets, note S9). c‒h, 

Liquid-phase TEM image overlaid with drift corrected trajectories colored to elapsed time (c,f), a 

representative trajectory of one particle (d,g) and displacement distribution of drift corrected centroids of 

all NPs (e,h) in a Maxwell lattice at low (c–e) and high ionic strength (f–h). i,j, Phonon dispersion spectra 

along high symmetry paths of low (i) and high ionic strength (j). k,l, Liquid-phase TEM image (k) and 

schematic (l) of standing gold nanorods assembling into a hexagonal lattice overlaid with drift corrected 
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trajectories colored to elapsed time. m, Displacement distribution of the drift corrected centroids of all 

nanorods. n, Phonon dispersion spectra along high symmetry paths for nanorod assembly. Scale bars: 200 

nm. 

It is noteworthy that the experimentally mapped phonon modes via PMN fit well with our discrete 

mechanical model at the harmonic level, although inter-NP interactions can exhibit far more 

complexity than harmonic potentials and are sensitive to details such as NP surface chemistry and 

shapes. To rationalize the agreement, we study comparatively the sets of 𝑘NN and 𝑘ANG
′  derived 

from the CG-modeled inter-NP interaction and from our liquid-phase TEM experiments (using the 

PMN workflow) for rhombic lattices assembled at different ionic strengths (low and high, fig. S13 

and movie S4). In CG models that construct inter-NP interactions in an ab initio manner, within 1 

kBT of fluctuations around the equilibrium lattice site, the NN interaction is well fitted by a 

harmonic potential with spring constant 𝑘NN and the ANG potential is well fitted by a quartic 

double-well form of coefficient 𝑘ANG, supporting the discrete mechanics model (Fig. 3a,b, note  

S9, and table S4). The fitted values of 𝑘NN and 𝑘ANG
′  from the CG model and from the liquid-phase 

TEM imaging agree qualitatively (Fig. 3, a to j, and Table 1), which suggests that thermal 

fluctuations smoothen the complex forms of inter-NP interactions at the nanoscale, permitting 

simple effective models for lattice dynamics. The slight quantitative discrepancies in the 𝑘NN and 

𝑘ANG
′  values from CG model and liquid-phase TEM imaging come from limitations both in 

modeling complex inter-NP interactions and statistical sampling in PMN. As 𝐼 increases, 𝑘NN and 

𝑘ANG
′  significantly increase, indicating steeper inter-NP interaction potentials. The variations of 

inter-NP interactions manifest as the coefficients controlling the mechanical strength and 

flexibility of nanoframes.  

 

𝐼 (mM) 
𝑘NN (kBT/nm2) 𝑘ANG

′  (kBT/nm2) 𝑀 

PMN CG PMN CG PMN CG 

Low 
0.450 

±0.007 

0.219 

±0.017 

0.0097 

±0.0005 

0.0044 

±0.0002 

0.0216 

±0.0012 

0.0201 

±0.0018 

High 
3.05 

±0.06 

4.18 

±0.47 

0.0575 

±0.0045 

0.0259 

±0.0008 

0.0189 

±0.0015 

0.0062 

±0.0007 

Table 1. Comparison of spring stiffness and Maxwellness derived from PMN and CG model 

at low and high ionic strength. 

The PMN workflow is generally applicable to other NP self-assemblies. In our study of a 

hexagonal lattice self-assembled from gold nanorods (Fig. 3, k to m) as an example of close-packed 

non-Maxwell lattices (〈𝑧〉 = 6 > 2𝑑, “over-constrained”), no floppy modes should arise in its 

spectra except the trivial translational modes at 𝑘 = 0, and the phonon structure should be isotropic 

at small 𝒌. The measured phonon spectra in Fig. 3n agrees well with these expectations and is 

well-fitted by a simple mechanical model with harmonic springs between NNs.  

Nonlinear lattice reconfiguration upon agitation characteristic of a Maxwell lattice 

The floppy modes in Maxwell lattices are easily excited to large amplitudes, leading to collective 

nonlinear lattice deformation paths upon agitation. As shown in Fig. 4a,f, the low kinetic barrier 

for a rhombus to switch between left- and right-leaning states given the anharmonic potential (Fig. 
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1g) underpins the elementary motion of “layer gliding” where one row (or sub-row) of cubes glide 

concertedly. Gliding creates a contact twin, which can be dynamically driven by thermal 

fluctuations at the twin boundary (TB). Subsequent shifting of the orientations of other rhombus 

rows pushes the migration of the TB (Fig. 4a and movie S5). Such spatially localized TB shifting 

starts from a linear combination of the floppy modes along the Γ and M points in the first Brillouin 

zone (Fig. 4, b to e) and continues to the nonlinear regime. Although twinning and the associated 

dynamics have been found in crystalline minerals or metals (34), such as deformation twinning 

upon an external stress (35), this is the first-time observation of twinning dynamics in NP-

assembled lattices. When the displacement of gliding is multiples of bond length, no twinning is 

created; instead, the lattice symmetry is maintained across the gliding plane (fig. S14, c to e).  

 

Fig. 4. Collective deformation paths of Maxwell lattices upon thermal agitation. a,f, Time-lapse liquid-

phase TEM images overlaid with tracked NP centroid positions (top), and rhombuses colored by θtilt 

(bottom). The TB (a, labelled as green dashed lines) migration process is captured by direct electron 
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detector at a frame rate of 400 frames per second (fps). The quadruple junction formation and annealing 

process (f) is captured with Orius camera. b,d, Zoomed-in view of NP motions in the dashed (b) and solid 

boxes (d) in a, highlighting gliding. c,e, Schematics of the first Brillouin zone and one of the phonon modes 

corresponding to the positions marked by the green stars. f,g, Zoomed-in view of NP motions in the dashed 

box in f, highlighting quadruple junction formation. h, Schematic of the first Brillouin zone and 

superposition of the phonon modes corresponding to the positions marked by the green stars. Scale bars: 

200 nm. 

When multiple layers (either parallel or intercepting) glide together, large scale collective twinning 

(fig. S14a,b) or quadruple junction formation are observed. Figure 4f shows the formation and 

annealing of a quadruple junction where twins intercept and pin. This leads to polysynthetic 

twinning (36), characterized by a plurality of contact twins with parallel or nonparallel layers. 

Previous simulation studies have suggested this relaxation mode in DNA-coated colloidal lattice 

(37), which has not been verified experimentally. This lattice relaxation to linear order is a 

combination of phonon modes along the valleys in the phonon spectra in Fig. 2f,g, corresponding 

to transverse motions (Fig. 4g,h), contrasting with the stable relaxation dynamics limited to lattice 

surface or local defect observed in previous studies (22). Conventionally the effect of TB on 

materials’ mechanical strength is understood in metal systems in two ways (38). The generation 

and migration of TB can effectively soften the material, while TB can also strengthen the material 

by acting as pinning points impeding dislocation propagation, known as the Hall-Petch effect. Our 

observation of quadruple junction might suggest that the TB strengthening mechanism does not 

hold for the nanoscale Maxwell lattice. 

Conclusion 

We bridge topologically-engineered mechanical frames with NP self-assembly, all the way from 

experimental realization of Maxwell nanoframes to direct spatially-resolved phonon imaging and 

establishment of a theoretical framework predicting phonon dynamics from fundamental inter-NP 

interactions. Our Maxwell lattices suspended in liquids are overdamped, exhibiting structural 

reconfigurability and a frequency range of 0‒117 MHz (~ultrasound), with floppy mode features 

at 20 MHz.  Phononic devices at this frequency range are of interest for applications in noninvasive 

imaging, sensing, acoustic waveguide, and diode for sonar cloaking. When the same assemblies 

are dry, we expect the modes to become underdamped, and appear at higher frequencies (about 

GHz scale) due to the lack of screening of inter-NP interactions.  

Here the floppy modes are unambiguously captured by our PMN platform. At the nonlinear level, 

the floppy modes lead to various lattice deformation paths captured for the first time upon external 

perturbation, which are modulated by inter-NP interactions (e.g., ionic strengths for charged NPs; 

figs. S15 and S16, note S10). Technically, the PMN platform based on liquid-phase TEM can 

extend to other NP-based assemblies, including not only lattices of diverse symmetries but 

amorphous glass or networks for quantitative phonon manipulation. We foresee enormous 

opportunities in “self-assembled mechanical metamaterials” given (i) the ever-increasing libraries 

of topologies that can be achieved by diverse self-assembly strategies such as solvent-evaporation, 

binary mixing and out-of-equilibrium pattern formation, (ii) new theories to be established that 

can account for more complexity of nanoassemblies (e.g., chirality, mixtures, amorphous 

structures) and reconfigurability, (iii) the essentially limitless selections of NP building blocks of 

different size, composition, surface chemistry as well as plasmonic, electronic, catalytic, and 

magnetic properties for emergent functions beyond mere topology-encoded mechanical properties.  
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