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Abstract

Observations of groundwater pollutants, such as arsenic or Perfluorooctane sul-
fonate (PFOS), are riddled with left censoring. These measurements have impact
on the health and lifestyle of the populace. Left censoring of these spatially cor-
related observations are usually addressed by applying Gaussian processes (GPs),
which have theoretical advantages. However, this comes with a challenging compu-
tational complexity of O(n3), which is impractical for large datasets. Additionally,
a sizable proportion of the data being left-censored creates further bottlenecks, since
the likelihood computation now involves an intractable high-dimensional integral of
the multivariate Gaussian density. In this article, we tackle these two problems simul-
taneously by approximating the GP with a Gaussian Markov random field (GMRF)
approach that exploits an explicit link between a GP with Matérn correlation function
and a GMRF using stochastic partial differential equations (SPDEs). We introduce
a GMRF-based measurement error into the model, which alleviates the likelihood
computation for the censored data, drastically improving the speed of the model
while maintaining admirable accuracy. Our approach demonstrates robustness and
substantial computational scalability, compared to state-of-the-art methods for cen-
sored spatial responses across various simulation settings. Finally, the fit of this fully
Bayesian model to the concentration of PFOS in groundwater available at 24,959 sites
across California, where 46.62% responses are censored, produces prediction surface
and uncertainty quantification in real time, thereby substantiating the applicability
and scalability of the proposed method. Code for implementation is made available
via GitHub.
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1 Introduction

Analysis of censored data has been around in the statistical literature since the late 1900s

regularly, with the earliest instance of a statistical analysis of censored data being in 1766

(Rosen, 1955). Measurements are often censored due to limitations of measuring instru-

ments, physical inability to acquire data, human error, or similar.

While most analyses on censored data focus on right-censoring (Hosmer et al., 2008),

some applications, such as analyzing the concentration of contaminants such as arsenic

or per-and polyfluoroalkyl substances (PFAS) in groundwater call for utilizing methods

involving left-censored data. This kind of censoring is prevalent in environmental moni-

toring and has applications in environmental and public health, epidemiology, hydrology,

agriculture, and more. Typically these applications involve geostatistical data, where the

measurements are censored because they fall below the minimum detection limit (MDL)

of the measuring instrument. Early applications would remove censored observations or

replace them with makeshift values such as MDL or MDL/2, or impute them with the mean

or median of observed responses. Such ad-hoc imputations can result in biased estimates

of the overall spatial variability, as demonstrated by Fridley and Dixon (2007).

Recent approaches for statistical inference of spatially distributed censored data over-

whelmingly considered the Expectation-Maximization (EM) algorithm (Militino and Ugarte,

1999). Ordoñez et al. (2018) proposed an exact maximum likelihood (ML) estimation of

model parameters under censoring, called ‘CensSpatial’, using the Stochastic Approxima-

tion of the Expectation Maximization (SAEM; Delyon et al., 1999) algorithm. To tackle

the computational complexities arising from censored likelihoods in correlated data, Monte

Carlo approximations have been employed, both within the classical framework (Stein,

1992; Rathbun, 2006), and the Bayesian paradigm (De Oliveira, 2005; Tadayon, 2017; Sa-

3



hoo and Hazra, 2021). For example, Schelin and Sjöstedt-de Luna (2014) introduced a

semi-naive approach that utilizes an iterative algorithm and variogram estimation to de-

termine imputed values at locations where data are censored. Finally, various data augmen-

tation techniques have been proposed to facilitate analysis of spatially correlated censored

data (Abrahamsen and Benth, 2001; Hopke et al., 2001; Fridley and Dixon, 2007; Sedda

et al., 2012). However, the scalability of the suggested approaches is restricted, rendering

them unsuitable for the analysis of large spatial datasets featuring censoring, a common

occurrence in contemporary scientific research.

Gaussian processes (GPs; Schulz et al., 2018) are heavily used for modeling continuous

spatial data due to their several theoretical and computational advantages: the likelihood

involves only the first two moments, conditional independence and zeros in the underlying

precision matrix are equivalent, and various linear algebraic results are well-known in the

literature that are required for computing covariance matrices (Gelfand and Schliep, 2016).

However, once the number of spatial sites is large and data at a large proportion of sites are

censored, likelihoods based on the underlying GPs involve an intractable high-dimensional

integral of a multivariate Gaussian density. This paper aims to overcome the computational

challenges inherent to censored likelihoods for high-dimensional spatial settings through a

combined application of two key steps:

1. We focus on a fully Bayesian method for censored point referenced data, where the un-

derlying GP is approximated as a Matérn-like Gaussian Markov random field (GMRF,

Rue and Held, 2005). The GMRF is obtained as the solution of a stochastic partial

differential equation (SPDE, Lindgren et al., 2011) on a fine mesh, which yields a

sparse precision matrix of the underlying basis function coefficients. This sparse

spatial structure then allows for fast and scalable Bayesian computations.
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2. We consider a GMRF-based measurement error model that incorporates a nugget

effect in the formulation of the underlying GMRF, which expedites the imputation

process for the censored observations. This inclusion effectively reduces the compu-

tational burden associated with censored likelihoods (Hazra et al., 2018; Yadav et al.,

2019; Zhang et al., 2021).

We draw inferences regarding model parameters using an adaptive Markov Chain Monte

Carlo (MCMC) sampling approach, where we use random walk Metropolis-Hastings (MH)

steps within Gibbs sampling. Extensive simulations demonstrate the scalability and per-

formance of the proposed methodology in comparison to the ‘CensSpatial’ algorithm, and

the traditional local likelihood method (Wiens et al., 2020; Sahoo et al., 2023) applied

using Vecchia’s approximation (Vecchia, 1988), across varying degrees of censoring and

varying grid sizes. While the idea of a GMRF-based measurement error model has been

explored in the context of spatial extremes (Hazra et al., 2021; Cisneros et al., 2023), where

replications of the underlying spatial processes are available and censoring a portion of the

data is artificial, per our knowledge this modeling strategy has not been explored yet for

high-dimensional censored spatial data without replications. Although, the lack of tempo-

ral replications typically leads to unstable computations, the proposed stable and scalable

computational framework is specifically tailored for handling censored spatial data without

requiring temporal replications. Furthermore, unlike previous studies involving GMRF-

based measurement error model, a novel feature of the proposed approach is the inclusion

of spatial predictions.

PFAS constitute a substantial group of synthetic compounds absent in natural envi-

ronments, notable for their resistance to heat, water, and oil. PFAS are persistent in the

environment and can accumulate within the human body over time, and are toxic at rela-

tively low concentrations (Wang et al., 2017). Exposure to elevated levels of PFAS can lead
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to various adverse health outcomes, including developmental issues during pregnancy, can-

cer, liver impairment, immune system dysfunction, thyroid disruption, and alterations in

cholesterol levels. Due to their chemical robustness, PFAS endure in the environment, and

are resistant to degradation. Contamination of drinking water with PFAS occurs through

the use or accidental spillage of products containing these substances onto land or into

waterbodies (Hepburn et al., 2019). PFAS also poses a significant threat to public health,

with concentrations measured as high as 82 parts per trillion (ppt) in June 2023 in the

United States, above the limit set by the United States Environmental Protection Agency

(EPA) at 70 ppt (Cordner et al., 2019). A recent study (Andrews and Naidenko, 2020)

estimated that PFAS in publicly accessible drinking water could be affecting as many as

200 million people across the United States. Along similar lines, a robust Bayesian hi-

erarchical approach was proposed (Smalling et al., 2023) to accommodate left-censored

PFAS responses; however, the model was implemented on a limited number of sample site

locations. As such, the review of existing literature highlights the necessity for further

investigation into PFAS occurrences in groundwater, alongside the development of fast and

efficient approaches to handle large-scale left-censored spatial data in real time. Motivated

by data on PFAS concentrations collected by the Groundwater Ambient Monitoring and

Assessment (GAMA) program (Moran et al., 2005) across the state of California, we de-

velop our Bayesian scalable model for spatially-referenced left-censored PFAS responses,

in an attempt to provide a more accurate quantification of the groundwater contamina-

tion within the state. These data, collected by GAMA since 2019, allow thorough quality

assessments of water sources and enable the establishment of safety thresholds for select

PFAS constituents. Thus, our analysis is capable of identifying possible hotspots of higher

PFAS concentration, thereby providing insights for further analysis of impacts on public

health.
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The subsequent sections of the paper are organized as follows. In Section 2, we pro-

vide details regarding the dataset on the groundwater levels of PFAS within the state of

California, along with some exploratory analyses. We outline our methodology and related

computational details in Section 3, and test its scalability and predictive performance on

simulated datasets in Section 4. In Section 5, we apply the proposed methodology to the

PFAS dataset and report the findings. We conclude with a brief discussion in Section 6.

2 Motivating PFAS data

The groundwater PFAS data for the state of California are available online at the website

GAMA Groundwater Information Systems under the label Statewide PFOS Data. In this

paper, we focus specifically on the measurements of the chemical substance, known as

Perfluorooctane sulfonate (PFOS). The dataset contains 24,959 measurements (in ng/L) of

PFOS concentration and their locations (in longitudes and latitudes) as well as indicators

of whether the observations are censored or not and the corresponding censoring limits

within the state of California. Almost half of the measurements (46.62%) are censored

observations, with varying degrees of censoring limits.

Figure 1 shows transformed PFOS concentration measurements, after transforming the

raw PFOS by g(PFOS) = log(1+ log(1+PFOS)) at the 24,959 irregularly sampled spatial

locations across the state of California, prompting an approximate spatial inference model

to be employed, which also accounts for the huge proportion of censored observations.

Most observation sites are towards the densely populated areas on the coast. The censored

observations are presented as tiny black dots in Fig 1. The censored observations are all over

the spatial domain, and are not limited to one single area. Most of the measurements are

below 150 ng/L, but there are observations as high as 1,330,000 ng/L, which is well-beyond
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the safety limit prescribed by the EPA.

The histogram of the raw non-censored PFOS observations is presented in the left panel

of Figure 2. The raw data exhibit a highly positively skewed nature, and thus a station-

ary Gaussian process assumption naturally becomes questionable, even after considering a

spatially-smooth mean surface with covariates, like longitude and latitude. Following an

exploration of different transformations of the raw data such that the histogram behaves

in an approximately bell-shaped fashion, we identify that the iterated log-transformation

g(PFOS) = log(1 + log(1 + PFOS)) performs reasonably well; the histogram of the trans-

formed PFOS data is presented in the middle panel of Figure 2. We further explore the

effects of the natural covariates longitude and latitude on the transformed data; following

a simple linear regression, we obtain the residuals, and their histogram is presented in the

right panel of Figure 2. This histogram is reasonably bell-shaped and thus we model this

transformed PFOS data using a Gaussian process framework with a regression structure

for the mean process where we allow longitude and latitude as covariates.

We further explore the presence of spatial correlation following a variogram analysis

of the residuals (scaled by their sample standard deviation) discussed above. The sample

semivariogram at distance d is defined as

γ̂(d) =
1

2N(d)

n∑
i=1

i∑
j=1

wij(d)(R(si)−R(sj))
2,

where, R(si) and R(sj) are the residuals at spatial sites si and sj, wij(d) = 1 if dij ∈

(d− h, d+ h) and wij = 0 otherwise, dij being the distance between si and sj. Also, N(d)

is the number of pairs with wij(d) = 1. The sample semivariogram, presented in Figure

3, indicates the presence of spatial correlation, along with the presence of possible nugget

effects (Bivand et al., 2008). We fit an isotropic Matérn spatial correlation function, with
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Figure 1: Concentrations of (transformed) PFOS, using the transformation g(PFOS) =

log(1+log(1+PFOS)), measured at 24,959 irregularly-sampled spatial locations across the

state of California (in ng/L). The tiny black dots indicate the sites with censored data.
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Figure 2: Pictoral representation of the raw PFOS responses. Left panel: Histogram of raw

concentrations of PFOS across sites where the data are not censored. Middle: Histogram

of non-censored PFOS concentrations after the transformation g(PFOS) = log(1 + log(1 +

PFOS)). Right panel: Histogram of the residuals obtained after regressing non-censored

transformed PFOS observations to longitude and latitude, via a linear model.

its smoothness parameter set to one, plus a nugget effect, given by

ρ(si, sj) ≡ ρ(d) = γ
d

ϕ
κ1

(
d

ϕ

)
+ (1− γ)1(si = sj), (1)

where, d is the Euclidean distance between locations si and sj, ϕ > 0 is the range pa-

rameter, γ ∈ [0, 1] is the ratio of spatial to total variation, κ1(·) is the modified Bessel

function of second kind with degree 1, and 1(·) is the indicator function. The fitted pop-

ulation semivariance indicates a reasonable fit to the sample semivariogram. While these

exploratory analyses are based on non-censored observations only, they indicate a need for

proper spatial modeling after considering the censored nature of a large proportion of the

data. Specifically, most of the observations near the eastern regions of the study domain are

censored, and ignoring them in the spatial prediction would lead to poor spatial prediction

for the nearby regions.
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Figure 3: Sample semivariogram of residuals obtained after regressing non-censored trans-

formed PFOS observations to longitude and latitude, as a function of distance (dots). The

overlapped solid line represents the fitted population semivariance obtained from (1).
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3 Methodology

Let Y (s) represent transformed PFOS concentration at a spatial location s ∈ D ⊂ R2,

where D represents the spatial domain of interest, i.e., the entire state of California in our

case. We model Y (s) as

Y (s) = X(s)Tβ + τ−1/2Z(s),

where, X(s) = [X1(s), . . . , Xp(s)]
T denotes the vector of p covariates at location s, β =

[β1, . . . , βp]
T is a vector of unknown regression parameters and τ > 0 is a spatially-constant

precision parameter. Given the absence of meaningful covariates in our data, we choose

X(s) = [1, longitude(s), latitude(s)]T for our analysis. We assume that Z(·) is a standard

(mean zero and variance one at each site) GP with an isotropic Matérn spatial correlation

plus a nugget effect, given by (1). While the incorporation of the nugget effect is justified

by our exploratory analysis (nonzero semivariance at origin), it effectively addresses the

issue of censoring in the response, thereby circumnavigating the computational burden

occurring due to censored likelihoods (Hazra et al., 2018; Yadav et al., 2019; Zhang et al.,

2021). Here, we fix the smoothness parameter of the Matérn correlation of the purely spatial

component of (1) to one. In practice, it is difficult to estimate the smoothness parameter

from the data, and hence it is generally fixed. Besides, we later build a stochastic partial

differential equation-based approximation of the Matérn correlation structure, where fixing

the smoothness parameter to one is a standard choice (Hazra et al., 2021; Cisneros et al.,

2023).

Suppose the data are observed (either censored or non-censored) at the set of sites

S = {s1, . . . , sn}. In matrix notations, the spatial linear model can be written as

Y = Xβ + τ−1/2Z, (2)

where, Y(n×1) is the response vector, X(n×p) is the matrix of covariates, β(p×1) is the vector
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of regression coefficients, and Z(n×1) ∼ MVN(0, γΣ + (1 − γ)In), where Σ is the Matérn

correlation matrix, and In denotes the identity matrix of order n. Here, by construction

and the PFAS dataset, Σ is non-singular and X has full rank.

In a spatial censored linear (SCL) model, it is further assumed that Y (s) is not fully

observed at all spatial locations. Motivated by the dataset considered, we assume Y (·) to

be left-censored at sites S(c) = {s(c)1 , . . . , s
(c)
nc } ⊂ S and the corresponding censoring levels

be U = {u1, . . . , unc}. However, a similar approach can be applied if the response is right

or interval-censored. We define the censoring indicator δ(s) as

δ(s) =

1, if Y (s) is censored at site s,

0, otherwise,

and the vector of censored observations as v = [Y (si) : δ(si) = 1]T ≡ [Y (s
(c)
1 ), . . . , Y (s

(c)
nc )]

T .

Then, for censored spatial data, the likelihood is given by

L(θ) =
∫
v≤u

fMVN(y;Xβ, τ−1[γΣ+ (1− γ)In])dv, (3)

where the integral is over the censored responses {y : y(si) ≤ ui if si ∈ S(c)} and

fMVN(·;µ,Σ) denotes a multivariate normal density with mean µ and covariance matrix

Σ. A version of this likelihood has been studied in Sahoo and Hazra (2021).

3.1 Approximation of the Matérn Gaussian Process

Here, we follow the approximation strategy of the Matérn GP with nugget (Hazra et al.,

2021). To ensure computational efficiency, we choose to approximate the Gaussian process

Z(·) with a GP Z̃(·), constructed from a Gaussian Markov random field (GMRF) defined

on a finite mesh, thereby circumventing the computational overhead associated with the

dense correlation matrix inherent in the exact Matérn GP defined by (1). This strategy
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capitalizes on the direct correspondence between continuous-space Matérn GP with dense

covariance matrices and GMRFs with sparse precision matrices (Lindgren et al., 2011),

which yields an approximate data process

Ỹ (s) = X(s)Tβ + τ−1/2Z̃(s), s ∈ D.

For γ = 1, the Gaussian Matérn process Z(·) can be obtained as a solution to the linear

Stochastic Partial Differential Equation (SPDE)

(ϕ−2 −∆)Z(s) = 4πϕ−2W(s), s ∈ R2, (4)

where W(·) is a Gaussian white noise process, and ∆ is the Laplacian. The solution Z(s) to

the SPDE can be effectively approximated through finite-element methods (Ciarlet, 2002)

applied to a triangulated mesh defined within a bounded region of R2, where the triangula-

tion is formed through a refined Delaunay triangulation process (Borouchaki and Lo, 1995).

In practical applications, the mesh can be easily constructed using the (currently depreci-

ated) inla.mesh.2d function, implemented in the R package INLA (www.r-inla.org) or

the fm mesh 2d inla function in the R package fmesher (https://cran.r-project.org/

package=fmesher); see Lindgren and Rue (2015) for more details. The left panel of Figure

4 depicts the mesh utilized in the data application discussed in Section 5.

Let S∗ = {s∗1, . . . , s∗N} denote the set of mesh nodes. We construct a finite-element

solution by writing Z̃(s) =
∑N

j=1 ζj(s)Z
∗
j , and plugging it in (4) in place of Z(·). Here,

{ζj(·)} are piecewise linear and compactly-supported “hat” basis functions defined over the

mesh, and {Z∗
j } are normally distributed weights defined for each basis function (that is,

one for each mesh node in S∗). Then, Z∗ = [Z∗
1 , . . . , Z

∗
N ]

T ∼ MVN(0,Q−1
ϕ ), where the

(N ×N)-dimensional precision matrix Qϕ can be written as

Qϕ =
ϕ2

4π

[
1

ϕ4
D +

2

ϕ2
G1 +G2

]
, (5)
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Figure 4: Left: Triangulated mesh over California, that is used to approximate the spatial

SPDE process Z(·). Right: Comparison of the true Matérn correlation (solid line) and the

pairwise covariances between two spatial locations obtained by the SPDE approximation

(points), as a function of distance. The parameters are set to ϕ = 0.1∆S , with ∆S being

the maximum spatial distance between two locations in the domain, and r = 0.8.
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where D,G1, and G2 are sparse (N ×N)-dimensional finite-element matrices that can be

obtained as follows. The matrix D is diagonal with its jth diagonal entry Dj,j = ⟨ζj(·), 1⟩,

where ⟨f, g⟩ =
∫
f(s)g(s)ds denotes an inner product. Similarly, G1 has the elements

G1;j,k = ⟨∇ζj(·),∇ζk(·)⟩ and G2 = G1D
−1G1. Efficient computation of these sparse

matrices is implemented using the function inla.mesh.fem from the R package INLA. For

further theoretical details, see Bakka et al. (2018) and Lindgren et al. (2022).

In order to map the spatial random effects Z∗ (defined across mesh nodes) back to the

observation locations S, we use an (n×N)-dimensional projection matrix A. The (i, j)th

element of this matrix corresponds to ζj(si) for every spatial location si ∈ S and mesh

node s∗j ∈ S∗, allowing us to compute AZ∗, the projection of Z∗ at the data locations.

The generation of the matrix A is carried out through the function inla.spde.make.A

within the R package INLA.

In presence of a nugget effect γ ∈ [0, 1] in (1), the model for Z̃ = [Z̃(s1), . . . , Z̃(sn)]
T ≡

[Z̃1, . . . , Z̃n]
T becomes

Z̃ =
√
γAZ∗ +

√
1− γη,

where η = [η1, . . . , ηn]
T with ηi

IID∼ N(0, 1), i = 1, . . . , n. Then, the covariance matrix of Z̃

can be written as

ΣZ̃ = γAQ−1
ϕ AT + (1− γ)In. (6)

The SPDE approach yields a precise approximation of the true correlation structure; see

the right panel of Figure 4. Leveraging the sparsity of the matrix Q−1
ϕ , we facilitate rapid

Bayesian computations. Furthermore, we exploit the conditional independence structure

of Z̃|Z∗ ∼ MVN(
√
γAZ∗, (1− γ)In) for swift imputation of left-censored observations.
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3.2 Final hierarchical model

Suppose we write the vector of the final approximate data process, Ỹ (·), evaluated at S by

Ỹ = [Ỹ (s1), . . . , Ỹ (sn)]
T . We define a rescaled random effects vector defined at mesh nodes

by Z̃∗ =
√

γ/τZ∗. Then, similar to (2), the model for Ỹ can be written hierarchically as

Ỹ |Z̃∗ ∼ MVN
(
Xβ +AZ̃∗, τ−1(1− γ)In

)
,

Z̃∗ ∼ MVN(0, γτ−1Q−1
ϕ ),

{β, τ, ϕ, γ} ∼ π(β)× π(τ)× π(ϕ)× π(γ). (7)

Here the last layer of the model indicates prior choices for the model parameters that we

discuss in Section 3.4. Instead of the likelihood based on (2), we fit the approximate data

process (7) to the actual observation process.

3.3 Prediction

Let S(0) = {s(0)1 , . . . , s
(0)
n0 } ⊂ D denote a set of n0 prediction sites, and define Ỹ (0) =

[Ỹ (s
(0)
1 ), . . . , Ỹ (s

(0)
n0 )]

T . Also, let X(0) denote the (n0 × p)-dimensional design matrix, with

its ith row X(s
(0)
i ), i = 1, . . . , n0 denoting the vector of covariates at prediction location

s
(0)
i . For mapping the (scaled) spatial random effects Z̃∗ (defined across mesh nodes) to

the prediction locations S(0), we use an (n0 ×N)-dimensional projection matrix A(0). The

(i, j)th element of this matrix corresponds to ζj(s
(0)
i ) for every spatial location s

(0)
i ∈ S(0)

and mesh node s∗j ∈ S∗, allowing us to compute A(0)Z̃∗, the projection of Z̃∗ at S(0).

Then, given Z̃∗, the conditional distribution of Ỹ (0) is

Ỹ (0)|Z̃∗ ∼ MVN
(
X(0)β +A(0)Z̃∗, τ−1(1− γ)In

)
(8)
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3.4 Computational details

Inference concerning the model parameters is conducted through Markov chain Monte

Carlo (MCMC) sampling, implemented in R. Given the computational dependence on prior

selections for the model parameters, we first specify these priors. Whenever feasible, we

opt for conjugate priors and employ Gibbs sampling to update them iteratively. When

prior conjugacy is unavailable, we resort to random walk Metropolis-Hastings (MH) steps

for parameter updates. During the burn-in period, we adjust the candidate distributions

within the MH steps to ensure that the acceptance rate throughout the post-burn-in period

remains within the range of 0.3 to 0.5.

Here we draw samples from the full posterior

π(β, τ, ϕ, γ, Z̃∗, Ỹ (c)|Ỹ (nc)),

where Ỹ (c) is the vector of censored data vector and Ỹ (nc) is the vector of non-censored

data vector. For the vector of regression coefficients β, we consider weakly-informative

conjugate prior β ∼ MVN(0, 1002Ip). The full conditional posterior of β is then multi-

variate normal and hence updated using direct sampling within Gibbs steps. Due to the

strong posterior correlation between β and Z̃∗, they are updated jointly within each Gibbs

sampling step. For the hyperparameters involved in the correlation function in (1), we

consider the non-informative priors as well. Specifically, we choose ϕ ∼ Uniform(0, 0.5∆S)

for the spatial range parameter, where ∆S is the largest Euclidean distance between two

data locations, and γ ∼ Uniform(0, 1) for the nugget effect γ. We further designate a non-

informative conjugate prior for the spatially-constant precision parameter τ in the process

model, namely τ ∼ Gamma(0.1, 0.1). The full conditional posterior distribution of Ỹ (c) is

MVN
(
X(c)β +A(c)Z̃∗, τ−1(1− γ)In

)
, where X(c) and A(c) are design matrix and SPDE

projection matrix (from mesh nodes), respectively, corresponding to the locations with cen-
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sored data, i.e., they comprise of the rows of X and A that correspond to the censored

entries of Y .

3.5 Software

We have developed an open-source R package, called CensSpBayes, which implements the

proposed approximate Matérn GP model for large left-censored spatial data. Implemen-

tation code, along with details of execution using simulated data are made available at

https://github.com/SumanM47/CensSpBayes.

4 Simulation Study

In this section, we conduct simulation studies using synthetic data to assess the effi-

cacy of our proposed scalable modeling framework in terms of spatial prediction, while

imputing censored values. We simulate 100 datasets over grids D∗ = {(i, j) : i, j ∈

{1/K, 2/K, . . . , 1}} of varying sizes within a spatial domain [0, 1]2. We consider K × K

grids with K = 20, 50, 100, and 200, to demonstrate the computational power and scala-

bility inherent to our proposed methodology.

For simulating the datasets, we consider an intercept term only and no other covariates,

and we assume the true value of the regression coefficient to be βtrue = 5. The true value

of the range parameter of the spatial Matérn correlation is chosen to be ϕtrue = 0.15×∆∗,

where ∆∗ =
√
2, the maximum spatial distance between two locations in [0, 1]2. The

smoothness parameter is set to one and not estimated while fitting our proposed model.

The true ratio of partial sill to total variation is chosen to be γtrue = 0.9, and the true

precision parameter is chosen to be τtrue = 1/5. Exact simulations are conducted to

generate datasets from a GP with Matérn correlation, as given in (1).
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Once the datasets are generated, we divide each dataset randomly into 80% training

and 20% test datasets. Within each training set, we consider two different levels of cen-

soring (denoted by L1 and L2) for the response by setting different values of the minimum

detection limit (MDL):

L1 Low censoring: The MDL is at the 15th percentile point of observations and thus

15% data are censored.

L2 High censoring: The MDL is at the 45th percentile point of observations and thus

45% data are censored.

For each of the two levels of censoring, we implement our proposed approximate Matérn

GP model under three different settings, denoted by S1, S2, and S3:

S1 We selectively exclude spatial locations where observations are censored and apply

the spatial model approximated via SPDE, as elaborated in Section 3.1, exclusively

to the observed locations. This does not require any imputation of the censored

observations.

S2 We set the censored observations at the MDL and employ the SPDE-approximated

Matérn GP model, as detailed in Section 3.1. This once again circumvents the need

for imputing the censored observations.

S3 We fit the full proposed model, treating the observations below MDL as censored ob-

servations, and implement the SPDE-approximated Matérn GP model, as in Section

3.1, while simultaneously performing imputations for the censored observations.

In each of the three scenarios, the approximated spatial process using SPDE has been

fitted to assess the effects of removing or considering ad hoc imputations of censored obser-

vations, in terms of mean squared prediction error (MSPE), in contrast to treating them
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as genuinely censored. The prior distributions for β and γ as described in Section 3.4

remain unchanged in the simulation study. However, for the range parameter, we assume

ϕ ∼ Uniform(0, 0.25∆∗).

For comparison, we consider two additional models, S4 and S5:

S4 We use ML estimation to locally fit the full Matérn Gaussian censored likelihood,

using Vecchia’s approximation withm = 30 nearest neighbors, thereby estimating the

model parameters under censoring. Here, we fix the Matérn smoothness parameter

to 1 in keeping with the data generation mechanism.

S5 We use the ‘CensSpatial’ algorithm to perform an exact ML estimation of model

parameters, which implements the SAEM algorithm of Ordoñez et al. (2018).

Table 1 presents the average (across 100 simulated datasets) mean squared prediction

errors (MSPE), along with corresponding average standard errors, obtained from fitting the

models S1-S5 to data in test sets that varies according to censoring levels and grid sizes.

Notably, under low levels of censoring (L1), the proposed model in scenario S3 yields com-

parable performance to situations where censored observations are excluded from analysis.

However, ignoring spatial locations with censored observations entirely leads to unreliable

estimates, particularly for the covariance parameters. Conversely, in instances of high data

censoring (L2), the final model along with the imputation of censored observations (S3)

outperforms all other models. It is noteworthy that the ‘CensSpatial’ method also demon-

strates relatively favorable performance for a grid size of 20×20, when the data-generating

model is Matérn GP; however, its computational inefficiency and inadequate scaling im-

peded our ability to apply the method to the higher-dimensional simulated datasets. In

fact, Ordoñez et al. (2018) showcased the efficacy of the ‘CensSpatial’ algorithm through
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Table 1: Average mean squared prediction error (MSPE) corresponding to model fitting

under the five different settings (S1-S5) to simulated test data from a Matérn GP that varies

with censoring levels L1 (low-censoring; 15%) and L2 (high-censoring; 45%), and grid sizes.

The values in parenthesis represent the corresponding average prediction standard errors.

The lowest MSPE in each row is in bold. Since model S5 (‘CensSpatial’) was infeasible for

larger grids, table entries (MSPE and standard errors) appear as ‘-’.

Censoring Grid Mean Squared Prediction Error

Level size S1 S2 S3 S4 S5

L1

20× 20 1.13(0.82) 2.10(0.86) 0.79(0.85) 99.15(6.0E18) 0.89(0.97)

50× 50 0.87(0.74) 2.03(0.80) 0.61(0.77) 136.55(3.3E84) -

100× 100 0.80(0.70) 1.88(0.76) 0.55(0.74) 189.94(3.5E124) -

200× 200 0.79(0.69) 2.00(0.77) 0.54(0.73) 242.44(4.1E122) -

L2

20× 20 2.95(0.82) 4.92(0.63) 0.90(0.90) 52.77(2.4E34) 1.51(1.08)

50× 50 2.52(0.74) 5.22(0.60) 0.69(0.82) 103.02(4.3E109) -

100× 100 2.29(0.69) 4.89(0.57) 0.61(0.77) 137.25(2.8E119) -

200× 200 2.29(0.66) 4.91(0.55) 0.58(0.75) 176.24(1.2E124) -

simulations involving only 50 and 200 spatial locations, clearly indicating its inadequacy

regarding scalability.

Table 2 presents the median computation time corresponding to fitting the models S1-S5

to data in test sets that varies according to censoring levels and grid size. The computation

times for S1, S2, and S3 are comparable, as they all employ the SPDE-approximated

Matérn GP, with runtime approximately proportional to the size of the INLA mesh used

for process approximation (between 557 and 673 nodes for different datasets of different
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Table 2: Median computation time (in minutes) corresponding to model fitting under the

five different settings (S1-S5) to simulated test data from a Matérn GP that varies with

censoring levels L1 (low-censoring; 15%) and L2 (high-censoring; 45%), and grid sizes.

The values in parenthesis represent the median absolute deviation for the corresponding

computing times. Since model S5 (‘CensSpatial’) was infeasible for larger grids, table

entries appear as ‘-’.

Censoring Grid Computation Time (in minutes)

Level size S1 S2 S3 S4 S5

L1

20× 20 27.91(0.79) 28.64(0.46) 29.94(0.67) 0.97(0.30) 42.70(2.23)

50× 50 22.32(0.30) 22.61(0.48) 22.39(0.51) 7.41(0.90) -

100× 100 31.22(1.13) 31.58(1.18) 31.47(0.80) 31.75(2.22) -

200× 200 25.40(0.33) 25.46(0.34) 25.98(0.31) 129.11(8.60) -

L2

20× 20 26.47(0.50) 28.82(0.48) 29.68(0.92) 3.99(0.26) 80.40(3.53)

50× 50 21.67(0.45) 22.70(0.56) 22.78(0.22) 25.82(0.92) -

100× 100 29.28(1.05) 30.18(1.41) 31.06(1.14) 104.14(2.69) -

200× 200 24.74(0.51) 25.47(0.27) 26.56(0.36) 423.26(8.90) -

sizes). As anticipated, the runtime for the local likelihood approach utilizing Vecchia’s

approximation increases with larger grid sizes. As discussed earlier, the ‘CensSpatial’

algorithm was infeasible for larger grids. The initial four methods, S1 - S4, were executed

on SLURM clusters with one core per job and 8 GB RAM allocation. However, due to the

current version of ‘CensSpatial’ on CRAN being incompatible with the UNIX system, the

algorithm was implemented on a personal Dell 7210 computer featuring 16 GB RAM, an

Intel Core i5 dual-core processor, and a Windows 11 Enterprise 64-bit operating system.
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5 Application: California PFAS Data

5.1 Analysis Plan and Hyperparameters

We use the iterated log-transformed data (as described in Section 2) as our input to the

proposed method. Since we have no covariates in this dataset, we use the coordinates of

the locations (longitude, latitude) as covariates. The hyperparameters for the priors are

the same as mentioned in Section 3.4. We fit a variogram model on the non-censored

observations to obtain an initial set of parameter estimates for β, τ , ϕ, and r. We run three

chains with different starting values that are all close to the initial parameter estimates

obtained by variogram fitting to allow for checking convergence and increasing the reliability

of the model output. Each of the chains was run for 25, 000 iterations with the first 15, 000

samples discarded as burn-in. We thinned the post-burn-in samples by 5 to obtain 2, 000

samples from the posterior distribution of the parameters.

5.2 Results

For the observed data comprising 24, 959 locations and the prediction grid set at 0.1° ×

0.1°, resulting in 405, 893 prediction locations across California, each of the three chains

completed within approximately 62 minutes, with computations conducted on a SLURM

cluster with an 8GB RAM allocation. We observe a reasonable well-mixing of the three

chains. Each of the estimated covariate effects turned out to be significant (see Table 3).

The estimated spatial range is low (∼7km). The prediction surface is smooth at places (left

panel of 5) with higher detailing around the regions with observed data. The prediction

standard deviation is low towards the western parts where we have more observed data,

but has an intriguing pattern on the east-southeastern parts (right panel of Figure 5). We
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Figure 5: Left : The predicted surface map for g(PFOS) = log(1+log(1+PFOS)) concentra-

tion in the state of California. Right : The corresponding uncertainty estimates associated

with the predictions for g(PFOS) across the pixels.
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predict high values of PFOS concentration along the western part of the state, surpassing

the EPA safety limit of approximately 0.45 in the transformed scale. Particularly notable

are the elevated PFOS levels observed in and around Sonoma, Napa, Solano, Contra Costa,

Alameda, San Francisco, and Santa Clara counties in central-west California, as well as in

Los Angeles, Orange, and San Diego counties in southwest California.

Table 3: Table of estimates and standard deviations corresponding to the parameters β0−β2

denoting the intercept and the 2 covariates, respectively, ϕ (the spatial range), τ (the

precision) and r (ratio of partial sill to total variance).

Estimates Standard Deviation

β0 −22.04 7.60

β1 −0.23 0.08

β2 −0.14 0.07

ϕ 0.07 0.02

τ 0.22 0.08

r 0.95 0.02

6 Discussion

We present a novel method to address the problem of modeling censored outcomes that

are spatially correlated in big data settings. We observe that the proposed model scales

nicely with an increased number of total observations and performs better than all other

competing methods, even when nearly half of the observed data are censored. Despite being

a fully Bayesian model, the runtime is moderate and better than the competing methods,

highlighting its scalability, which combined with its demonstrated accuracy and precision
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makes this method an optimally efficient approximate method for modeling large spatial

data in the presence of (left-) censoring. The real data analysis demonstrated this further

as the model achieved satisfactory mixing of three chains for a large dataset in only an

hour, producing sensible prediction surfaces and uncertainty quantification.

However, the data presents specific challenges during modeling, which may also be

considered as limitations of the proposed method. The predicted surface in the left panel

of Figure 5 is very smooth towards the east-southeast end of California. This is expected, as

we have very few observations around that area to inform our spatial process. This, while

being non-desirable, makes sense and is in line with what one would expect to happen for

such a dataset. We can not hope to manufacture information in the absence of observations

and we do not, reflecting the consistency of statistical principles being adhered to here in our

analysis. The map of prediction uncertainty (right panel of Figure 5) also reflects this. We

have nearly zero uncertainty for the bulk of the region, where we observe numerous instances

and have higher uncertainty whenever we move far from observations. Interestingly, we

also notice a quilting pattern in the right panel of Figure 5. This is a byproduct of the

computation mesh considered here along with the lack of observations in the east-southeast

region.

Further consideration are therefore needed for choosing the mesh and smoothness pa-

rameters for fitting the model. We explain our choice of mesh in Section 2. But this process

is ad-hoc in nature, and a concrete workflow for selecting a mesh would be greatly beneficial

for users. We consider this as a plausible future research direction. Another development

on both the software and methodological fronts would be to include fractional smoothness

parameters in the model, which is currently restricted to integer smoothness (we use ν = 1

for all our analyses). One possible approach would be to use the fractional rational approx-

imations to the SPDE model (Bolin et al., 2024; Bolin and Kirchner, 2020). Combining
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the theory for fractional approximations with the software should render additional model

flexibility, and more well-suited to real data applications. Further developments for multi-

variate extensions of the model that can model multiple spatial processes, both having a

mix of censored and uncensored observations, simultaneously, are underway.

Other than proposing a novel, scalable spatial model in its own right, the implications

of this study extend beyond academic interest. By elucidating the spatial distribution of

PFAS/PFOS contamination and its associated factors, we can inform targeted interven-

tions, policy recommendations, and resource allocation to mitigate the impact of PFAS

exposure on public health. Additionally, our research provides a framework, which can

be adapted to analyze censored data in other environmental contexts, fostering a deeper

understanding of complex contamination scenarios and enabling evidence-based decision-

making.
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