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Parity-time-reversal symmetry (PT symmetry), a symmetry for the combined opera-
tions of space inversion (P) and time reversal (T ), is a fundamental concept of physics
and characterizes the functionality of materials as well as P and T symmetries. In
particular, the PT -symmetric systems can be found in the centrosymmetric crystals
undergoing the parity-violating magnetic order which we call the odd-parity magnetic
multipole order. While this spontaneous order leaves PT symmetry intact, the simul-
taneous violation of P and T symmetries gives rise to various emergent responses that
are qualitatively different from those allowed by the nonmagnetic P-symmetry breaking
or by the ferromagnetic order. In this review, we introduce candidates hosting the in-
triguing spontaneous order and overview the characteristic physical responses. Various
off-diagonal and/or nonreciprocal responses are identified, which are closely related to
the unusual electronic structures such as hidden spin-momentum locking and asymmet-
ric band dispersion.
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I. Introduction

Over the past few decades, the exploration of physical responses arising from symmetry breaking has been ex-
tensively conducted in various research fields. One notable example is the response induced by the parity-symmetry
(P-symmetry) breaking. Materials lacking space inversion centers, such as ferroelectric materials and zinc-blende type
semiconductors, are attracting a lot of interest in light of the interconversion between different degrees of freedom
and the nonlinear effects applied to frequency conversion. The physical properties often involve the bulk electronic
structure and are of paramount interest in condensed matter physics.

A lot of studies have been devoted to nonmagnetic systems in terms of the P violation, and previous studies have
explored a wide range of materials such as nonmagnetic semiconductors with significant spin-orbit coupling by spec-
troscopic and transport measurements (Ishizaka et al., 2011; Krempaský et al., 2016; Murakawa et al., 2013). We also
find works on the P-violating effect in magnetic materials named magnetic parity violation, that is, the violation of
P and time-reversal (T ) symmetries. The magnetic parity violation occurs trivially due to the noncentrosymmetric
crystal structure and external magnetic field by which the P and T symmetries are respectively broken. On the other
hand, the simultaneous violation of the two symmetries can happen in a series of antiferromagnets. The antiferro-
magnetic materials, called magnetoelectric systems, have been of much interest in the field of multiferroic science
because the magnetic-electric interconversion originates from the magnetic parity violation (Fiebig, 2005; Spaldin
et al., 2008). Owing to the controllability ensured by the magnetic-electric coupling, the antiferromagnetic state can
be nicely computed by external fields (Van Aken et al., 2007; Zimmermann et al., 2014). Since the antiferromagnetic
domains can be monitored via the electric and optical signals (Kocsis et al., 2018; Kosub et al., 2017, 2015), there
may exist applications such as memory devices invulnerable to magnetic noises.

Much attention has been drawn to the magnetoelectric material which is mostly insulating to keep the electric
polarization. Few studies, however, have been performed on the interplay between the magnetic parity violation and
itinerant properties such as electric conductivity. Recent rapid developments paved the way for spintronic physics
based on the antiferromagnets, so-called antiferromagnetic spintronics (Baltz et al., 2018; Jungwirth et al., 2016). The
promising candidates for the growing field include not only the magnetoelectric insulators but also various kinds of
antiferromagnetic metals such as those offering the anomalous Hall effect (Šmejkal et al., 2022) and those switchable
by the electric current (Wadley et al., 2016). The large variety of candidates stems from the fact that the symmetry
breaking by the antiferromagnetic order varies depending on the structural degree of freedom coupled to the magnetic
order. Furthermore, since the energy scale relevant to the antiferromagnetic order may be much higher than that of the
ferromagnets, the antiferromagnetic spintronics possesses advantageous properties (e.g., large transition temperature
and faster magnetic dynamics) when compared to the ferromagnetic spintronics. These growing interests motivate us
to take a deeper look into the role of the magnetic parity violation in metals. To this end, we overview the physics
originating from the magnetic parity violation mainly in terms of itinerant properties.

The organization is the following. Firstly, we present a brief symmetry analysis of the magnetic parity violation with
a comparative study with that of the electric parity violation, the P-symmetry violation preserving the T symmetry
(Sec. II). Many candidate materials manifesting the magnetic parity violation show a special property in their crystal
structure, namely locally noncentrosymmetric crystal symmetry. The characteristics arising from the structure are
seemingly inaccessible without microscopic measurements (Sec. II.B), whereas it is unveiled in a macroscopic manner
because of the antiferroic ordering (Sec. II.C). Such an intimate coupling between the structural degree of freedom
and antiferroic ordering cultivates the basic understanding of the itinerant property of magnetically-parity-violating
materials. In Sec. III, we present some representative examples of the emergent responses induced by the magnetic
parity violation. Similarly to discussions in Sec. II.C, there are contrasting roles of the magnetic and electric parity
violations in a broad range of physical responses such as electric-elastic coupling (Sec. III.B) and nonreciprocal
transport and optical responses (Sec. III.C). Based on the arguments presented in these sections, one can figure out
that the PT symmetry (symmetry of the combined operation of P and T ) holds an essential role in disentangling
the emergent responses induced by the parity violation. Moreover, we overview recent studies working on the control
of the magnetic parity violation in Sec. IV. In light of the field of antiferromagnetic spintronics, a lot of efforts have
been made to control and utilize the parity-violating magnets. Similarly to a series of antiferromagnets, the magnetic
parity violation may exist in superconductors. We introduce candidate superconductors hosting the magnetic parity
violation and the physical property resulting from the interplay between superconductivity and magnetic parity
violation (Sec. V). Finally, we summarize the review and give some outlooks in Sec. VI.
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II. Magnetic Parity Violation and Space-Time Symmetry

The parity violation can be classified by whether it is accompanied by the T -symmetry breaking. We call the
parity violations magnetic parity violation and electric parity violation, when the symmetry breaking accompanies T
violation or not, respectively. The electric parity violation may be typical and is found in mundane acentric crystals
and those undergoing structural transitions such as the ferroelectric order. The magnetic parity violation trivially
occurs by applying the external magnetic field to systems manifesting the electric parity violation. On the other
hand, the magnetic parity violation can occur not to be admixed with the electric parity violation. In this section,
we explain the symmetry of each parity violation and discuss candidates for magnetically-parity-violating materials
(Sec. II.A). The candidate materials consist of a class of antiferromagnets called PT -symmetric magnets. A lot of PT -
symmetric magnets show a common feature in their crystal structure, that is, locally-noncentrosymmetric structure.
We briefly discuss the structural feature and associated physical properties such as hidden magnetic degrees of freedom
(Sec. II.B).

A. Parity-time-reversal symmetry and parity violations

Two types of parity violation are clearly distinguished by the space-time symmetry. One may take account of
P- and T -parities to characterize the space-time symmetry. We, however, stress that the combination of P and T
operations plays a fundamental role as well as P and T symmetries. To this end, we raise examples of symmetry
breaking arising from the antiferromagnetic order.

FIG. 1 (a) Checkerboard-type antiferromagnetic order in the square lattice. The red- and blue-colored magnetic moments are
interchanged under the combined operation of the time-reversal operation and translation operation τ = (a, 0) depicted by the
orange arrow. (b) Zigzag chain comprised of two sites (orange-colored spheres). The small red-colored spheres are inversion
centers with which the parity operation interchanges the two sites. (c) Antiferromagnetic order with the zero propagation
vector in the zigzag chain. The red- and blue-colored magnetic moments are placed at different crystallographic sites of the
zigzag chain.

The antiferromagnetic order is defined by the antiferroic alignment of magnetic moments in crystals. Owing to the
T -odd nature of magnetic moments, the antiferromagnetic order is accompanied by the T -symmetry violation. The
symmetry related to the T operation, however, may be retained; e.g., for the q = (π, π) antiferromagnetic order in the
square lattice, there exists T symmetry coupled to the lattice translation τ = (a, 0), (0, a) [Fig. 1(a)]. The preserved
symmetry is equivalent to the T symmetry in terms of the bulk physical properties because the microscopic lattice
translation τ does not lead to any symmetry constraint. Such an effective T symmetry makes it difficult to detect
the antiferromagnetic state without microscopic spectroscopy such as neutron diffraction.

The antiferromagnetic order gives rise to various symmetry breaking due to the crystal structure in contrast to the
case of checkerboard antiferromagnetic order depicted in Fig. 1(a). Here, we consider the zigzag chain to corroborate
the space-time symmetry arising from the magnetic parity violation. The zigzag chain is comprised of two sites (A
and B sites) inside the unit cell (Yanase, 2014) [Fig. 1(b)]. The system holds the P symmetry due to interchanging
the sublattices, while each site is not an inversion center. Let us introduce the antiferromagnetic order with the zero
propagation vector (q = 0) [Fig. 1(c)]. The ordered state is described by using the magnetic moments localized at
sites as

(mA,mB) = (+x̂,−x̂). (1)

Intriguingly, the antiferromagnetic order breaks both of the P and T symmetries in the macroscopic scale. It is readily
checked by applying the operations to the magnetic configuration given in Eq. (1). The P operation interchanging
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the two sites does not flip the localized magnetic moments due to the axial symmetry of magnetic moments. Then,
the magnetic moments at each site are transformed as

(mA,mB) = (+x̂,−x̂)
P−→ (−x̂,+x̂). (2)

Similarly, the T operation reverses the magnetic moments with keeping structural degrees of freedom invariant as

(mA,mB) = (+x̂,−x̂)
T−→ (−x̂,+x̂). (3)

As a result, the antiferromagnetic state shows the odd parity under the P and T operation, which is a magnetic parity
violation. The symmetry breaking is not compensated by any symmetry operation such as a lattice translation in
sharp contrast to the antiferromagnetic order shown in Fig. 1(a).

One can notice the symmetry unique to the antiferromagnetic zigzag chain by considering Eqs. (2) and (3). The
antiferromagnetic state returns to the original configuration under the combined operation as

(+x̂,−x̂)
P−→ (−x̂,+x̂)

T−→ (+x̂,−x̂), (4)

which indicates the PT symmetry. In the light of the PT -even nature, the parity-violating magnets may be called
PT -symmetric magnets. The PT -symmetric magnets are comprised of intriguing materials such as magnetoelectric
materials (Fiebig, 2005) and electrically-switchable antiferromagnets (Wadley et al., 2016).

The intact PT symmetry is a fundamental property distinguishing the PT -symmetric magnets from systems show-
ing the electric parity violation. For an example of electric parity violation, the macroscopic electric polarization
P is flipped under the PT operation while it is invariant under the T operation (PT -odd, T -even). The electric
polarization P is therefore absent in the PT -symmetric systems. As a result, parity-violating systems are divided
into three classes; the T -symmetric case with only the electric parity violation, PT -symmetric case with only the
magnetic parity violation, and the otherwise manifesting both electric and magnetic parity violations. The third class
contains an important series of the multiferroic magnets such as RMnO3 (R: rare-earth element) (Kimura et al., 2003;
Tokura et al., 2014), which is not in the scope of this review. As a result, we have obtained the classification of parity
violations based on the parity under P, T , and PT operations.

Adding the case of the ferromagnets, we tabulate the space-time symmetry of ordered states in Fig. 2. Owing to
different space-time symmetry, the order is not admixed with each other unless the preserved symmetry is lost.

FIG. 2 Space-time symmetry of (a) ferroelectric material, (b) ferromagnetic material, and (c) PT -symmetric magnets. The
classification is based on the parity under the P, T , and PT operations. The electric and magnetic parity violations are
classified into the class (a) and (c), respectively.

Keys to the magnetic parity violation are antiferromagnetism and the crystal structure showing the local parity
violation at atomic sites as depicted in Fig. 1(b). The PT -symmetric magnets can be found in a broad range of
materials as tabulated in Refs. (Gallego et al., 2016; Schmid, 1973; Siratori et al., 1992; Watanabe and Yanase,
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2018a). The structural feature, called locally-noncentrosymmetric property, is ascribed to various structural degrees of
freedom other than atomic sites; layers, clusters of atoms, chains, and so on (see Sec. II.B). Furthermore, the magnetic
parity violation can be realized without the locally-noncentrosymmetric structure by unconventional order such as
the loop-current order (Murayama et al., 2021; Seyler et al., 2020; Watanabe and Yanase, 2021b; Zhao et al., 2015)
and exotic superconductivity (Kanasugi and Yanase, 2022; Kitamura et al., 2023; Wang and Fu, 2017). Interestingly,
the magnetic parity violation can be implemented by micro-fabrications as demonstrated in Refs. (Lehmann et al.,
2020, 2019).

B. Hidden Magnetic Degrees of Freedom in Crystals

The locally-noncentrosymmetric property can be found in various sectors in crystal structure (Fischer et al., 2023).
The series of locally-noncentrosymmetric crystals consists of the subsector degree of freedom such as atomic site,
cluster, chain, and so on (Fig. 3). We here introduce a key ingredient to understand the itinerant property unique to
locally-noncentrosymmetric crystals, that is hidden magnetic degrees of freedom such as spin and Berry curvature.

FIG. 3 Locally-noncentrosymmetric systems. The objects in green and purple are transformed into each other by the parity op-
eration. Inversion centers are depicted in red. (a) zigzag chain (b) honeycomb net (c) bilayer. Other locally-noncentrosymmetric
configurations can be found in Ref. (Fischer et al., 2023).

Firstly, we explain spin-charge coupling hidden by the inversion partners in crystals. The concept has been intro-
duced to predict the T -symmetric counterpart of Chern insulator proposed in Ref. (Haldane, 1988), that is quantum
spin Hall insulator (Fu et al., 2007; Kane and Mele, 2005). Independently, the concept has been proposed in the
contexts of superconductivity (Fischer et al., 2011; Yanase, 2010), spintronic applications (Železný et al., 2014), and
the first-principles study of spin-momentum coupling (Zhang et al., 2014). A prototypical example is the bilayer two-
dimensional electron gas which may be found in double quantum wells and layered materials such as the cuprate (Liu
et al., 2013) [Fig. 3(c)]. Although the inversion center is present between the layers, the P symmetry does not hold
if each layer is taken to be the origin. The locally-noncentrosymmetric symmetry indicates that each layer is under
unidirectional potential arising from the other layer. Owing to the global P parity, the polarity of the unidirectional
field should be opposite between the two layers.

The structural property is built into the peculiar spin-orbit interaction as follows. The two-dimensional electron
gas manifests the so-called Rashba spin-orbit coupling in the presence of the polar field as written by the one-body
Hamiltonian

hR = αR (k × σ)z = αR (kxσy − kyσy) , (5)

where the polar field is along the z direction, and the electron’s momentum k and spin σ. The Rashba spin-
orbit coupling gives rise to the vortex-like spin configuration in the momentum space as confirmed in spin-resolved
spectroscopy of bulk materials such as BiTeI (Ishizaka et al., 2011; Landolt et al., 2012). In the case of the bilayer
system, the Rashba spin-orbit coupling has the opposite signs as

αR (k × σ)z , (6)

for the upper layer and

−αR (k × σ)z , (7)
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for the lower layer. It indicates that spins are closely coupled to the layer degree of freedom as well as the momentum
and that the spin-momentum locking is completely compensated.

To elucidate the electronic structure, let us write down a Hamiltonian of the bilayer system in the field-quantization
representation as

H =
∑
k

(
ck+

†, ck−
†)(hk+ t

t∗ hk−

)(
ck+
ck−

)
. (8)

The creation (annihilation) operators ckρz
† (ck,ρz ) are for the upper (ρz = +) and lower (ρz = −) layers and implicitly

include the spin degree of freedom written by the Pauli matrices σ. A constituent Hamiltonian reads as

hkρz
=

k2

2m
+ ρz αR (kxσy − kyσy) , (9)

for the diagonal components and the tunneling parameter t for the off-diagonal components. When the constant
tunneling parameter t varies, the energy spectrum of Hamiltonian Eq. (8) changes as schematically depicted in
Fig. 4(a,b,c). It is noteworthy that in the case of no tunneling (t = 0) one can observe the energy spectrum similar
to that with the Rashba spin-orbit coupling nevertheless each spectrum shows double degeneracy due to the PT
symmetry [Fig. 4(a)]. This is because the opposite spin-momentum coupling in two layers leads to the vanishing spin
polarization at each momentum as ∑

α

⟨ϕkpα |σ |ϕkpα⟩ = 0, (10)

where |ϕkpα⟩ is the eigenstate for energy εkp of Eq. (8) denoted by the momentum k, level index p, and Kramers
degree of freedom α. On the other hand, there exists the spin-momentum locking in a staggered manner as given by∑

α

⟨ϕkpα | ρz σ |ϕkpα⟩ ≠ 0. (11)

The obtained subsector-dependent spin-momentum coupling is called hidden spin polarization (Zhang et al., 2014).
If the hopping t surpasses the spin-orbit coupling quantified by αR [Fig. 4 (b,c)], the entanglement of wavefunction
localized at each layer weakens the hidden spin-polarization (Maruyama et al., 2012).

The concept of hidden spin polarization is generalized to other locally-noncentrosymmetric crystals (Fu et al., 2007;
Kane and Mele, 2005; Yanase, 2014; Železný et al., 2014). For instance, given that local inversion asymmetry comes
from the sublattice degree of freedom as in the zigzag chain and the honeycomb net [Fig. 3(b)], the hidden spin
polarization is given by the sublattice-dependent spin-orbit coupling

hSOC =
∑
k

gk · σ ρz. (12)

The basis for Pauli matrices |ρz = ±⟩ is spanned by the two sublattice degrees of freedom, and thus ρz indicates that
the antisymmetric spin-orbit coupling (g−k = −gk) appears in a staggered manner for electrons localized at each
sublattice. The expression for the vector gk is determined by the local site symmetry of the sublattice (Fischer et al.,
2023; Guan et al., 2022) such as

gk = α sin kzx̂, (13)

with the coupling constant α given for the next-nearest neighbor hopping path of the zigzag chain [Fig. 3(a)], and

gk = α sin
ky
2

(
cos

ky
2

− cos

√
3

2
kx

)
ẑ, (14)

for that of the honeycomb lattice (Hayami et al., 2014b; Kane and Mele, 2005) [Fig. 3(b)]. The coupling is similarly
obtained in more complex cases such as locally-noncentrosymmetric crystals consisting of n(> 2) sublattice like
Cr2O3 (Daido et al., 2019; Hayami et al., 2014b; Niu et al., 2017; Sumita et al., 2017).

After the discovery of the hidden spin polarization, many studies have been devoted to utilizing and maximizing
this peculiar charge-spin coupling mostly for the case of local asymmetry of atomic sites. For instance, since the
hidden spin-orbit coupling gives a significant modification of the spin susceptibility, the superconducting state acquires
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FIG. 4 (a,b,c) Energy spectrum of the bilayer two-dimensional electron gas obtained from Eq. (8). The spectrum is illustrated
along the ky = 0 line. Each plot is given by the tunneling parameter as (a) t = 0, (b) t = αR/2, and (c) t ≫ αR. Note
that each dispersion is doubly degenerate due to the spinful PT symmetry. (d) Bilayer system where the layers are labeled by
ρ = ±. (e,f) Energy spectrum for t = 0. The expectation value of the spin evaluated at each momentum σk is depicted by the
red-colored arrows for (e) the upper layer and (f) the lower layer. The spin-momentum locking is opposite between the layers.

more robustness to the paramagnetic pair breaking (Maruyama et al., 2012) as reviewed in Refs. (Fischer et al., 2023;
Sigrist et al., 2014). In addition to the enriched property of nonmagnetic superconductors, the hidden spin-momentum
coupling leads to various physical phenomena if coupled to the antiferroic order (see the following sections).

The hidden spin-charge coupling has been quantitatively evaluated for various materials. The model studies clarified
important ingredients for the large sublattice-dependent spin-orbit coupling, that is the atomic spin-orbit coupling and
odd-parity hopping allowed by the local parity violation (Fischer et al., 2011; Hayami et al., 2014a,b; Yanase, 2014). It
follows that the hidden spin polarization is significant for the bands consisting of orbitals at heavy atoms (Goh et al.,
2012; Liu et al., 2013; Yao et al., 2017). On one hand, as implied in Fig. 4(a-c), the inter-sublattice hopping may smear
out the hidden spin-charge coupling. In this regard, large hidden spin polarization may occur due to negligible inter-
sublattice hopping that can be realized in the layered materials such as 2H-stacking transition metal dichalcogenides
(e.g., WSe2) (Bertoni et al., 2016; Devarakonda et al., 2020; Gehlmann et al., 2016; Gong et al., 2013; Jones et al.,
2014; Razzoli et al., 2017; Riley et al., 2014; Tu et al., 2020) and layered superconductor (Gotlieb et al., 2018; Liu
et al., 2013, 2015; Nakamura and Yanase, 2017; Wu et al., 2017). The layered materials are promising platforms for
manipulating the spin-orbit coupling due to the high controllability offered by gating fields and the epitaxial-growth
method. (Goh et al., 2012; Gong et al., 2013; Shimozawa et al., 2016). Interestingly, nonsymmorphic space group
symmetry may realize the segregation between sublattice degrees of freedom in the high-symmetry subspace of the
Brillouin zone (Young and Kane, 2015) and therefore leads to enhanced hidden spin polarization. The hidden spin
polarization protected by the nonsymmorphic symmetry has been pointed out by theories (S lawińska et al., 2016;
Yanase, 2016; Yuan et al., 2019) and demonstrated in experiments (Santos-Cottin et al., 2016; Zhang et al., 2021).
In the two-sublattice Hamiltonian Eq. (8), the inter-sublattice decoupling is represented by vanishing hopping t at
high-symmetry momentum. Such decoupling can also be protected by symmorphic symmetries, depending on the
symmetry of the local orbitals (Akashi et al., 2017; Nakamura and Yanase, 2017).

Since the electronic bands of layered materials are described in a spin- and layer-resolved manner, the spin-resolved
ARPES study may allow us to measure the hidden spin polarization if there is no complete compensation in the spin
polarization between the photoelectrons emitted by the scattering at each layer (Riley et al., 2014; Zhang et al., 2014).
For example, the intimate coupling between the spin, valley, and layer degrees of freedom in van der Waals materials
has been reported by Ref. (Razzoli et al., 2017) (Fig. 5). Such an interplay between various degrees of freedom has
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been investigated by photoluminescence measurements as well (Jones et al., 2014; Wu et al., 2013; Zhu et al., 2014).

FIG. 5 Spin-resolved ARPES study of the bulk MoS2. (a) Crystal structure (upper panel) and its bulk and surface Brillouin
zones (lower panel). (b) Layer-resolved electronic structure of 2H-stacked MoS2. Owing to the locally-noncentrosymmetric
structure, the layer, momentum, spin, and valley degrees of freedom are intimately coupled to each other; e.g. at the K
valley, valence bands manifest significant spin splitting in a staggered manner between the top and bottom layers. (c) Energy
distribution curves from the spin-resolved ARPES measurement at the K̄ point with the left-handed (CL) / right-handed (CR)
circularly-polarized lights. The sizable and staggered out-of-plane spin polarization of two valence bands is consistent with the
Zeeman-Ising type spin-orbit coupling of Eq. (14) and coupled to the circularly-polarized light via the valley-selective excitation.
Panels are taken from (Razzoli et al., 2017) (©American Physical Society).

In the preceding discussions, we considered the electrical activity of spins hidden by the locally noncentrosymmetric
structure. It is noteworthy that other T -odd quantities are coupled to the momentum in a similar manner to spins (Lin
et al., 2020). For instance, the celebrated Kane-Mele model shows the hidden Berry curvature offering the quantum
spin Hall effect (Kane and Mele, 2005). The hidden magnetic properties have been explored in terms of the orbital
magnetic moment and Berry curvature (Beaulieu et al., 2020; Cho et al., 2018; Go et al., 2018).

C. Multipolar degree of freedom of visible antiferromagnets

The locally-noncentrosymmetric symmetry can be incorporated into the model studies by using the hidden spin-
orbit coupling introduced in Sec. II.B. This peculiar spin-charge coupling seemingly may not dramatically affect
the physical property due to the fact that the symmetry-breaking effect is compensated between subsectors. On
the other hand, once the antiferroic ordering such as anti-ferroelectricity and antiferromagnetism occurs, staggered
order parameters may give rise to macroscopic symmetry breaking. As a result, the emergent responses arise from the
coupling between the hidden spin-charge coupling and ‘antiferroic’ order. It is convenient for clarifying the macroscopic
physical properties to introduce the multipolar degrees of freedom (Hayami et al., 2018; Watanabe and Yanase, 2017,
2018a; Winkler and Zülicke, 2023).

Let us again consider the antiferromagnetic state of the zigzag chain where magnetic moments are ordered along
the y direction as an example. Note that the Néel vector is taken to be along the y axis different from that depicted
in Fig. 1(c). As implied by the form of spin-orbit coupling in Eq. (13), each sublattice is under the polar field along
the x direction in a staggered manner. By taking the cross product of the local polar fields P and magnetic moments
m, the products are the same between the sublattices A and B

PA ×mA = PB ×mB ∥ ẑ, (15)

which are termed with an atomic toroidal moment [Fig. 6(a)]. Thus, the antiferromagnetic state is translated into the
ferroic arrangement of atomic toroidal moments, which is in agreement with the zero propagation vector indicating
the uniformly manifesting physical quantity. As depicted in Fig. 6(b,c), the atomic toroidal moments uniformly
align along the z direction, and its direction is opposite between the two antiferromagnetic states. Given that the
toroidal moment is the polar vector with the T -odd and PT -even parities, one can see that the obtained ferro-toroidal
state shows the magnetic parity violation. Similarly, if the zigzag chain undergoes a q = 0 antiferroic ordering of
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FIG. 6 (a) Atomic toroidal moment P ×m defined by the local polar field P and local magnetic moment m. (b,c) Uniformly
aligned toroidal moments in the antiferromagnetic zigzag chain. The atomic toroidal moments are in the (b) +z direction and
(c) −z direction depending on the antiferromagnetic pattern.

nonmagnetic even-parity objects such as commensurate charge density wave and orbital order, the order results in the
ferroic alignment of odd-parity and T -preserving quantities such as electric polarization. It indicates that the ordered
state shows the electric parity violation (Hitomi and Yanase, 2014, 2016).

These examples imply that the antiferroic order in the locally noncentrosymmetric crystals is a promising playground
for the spontaneous parity violation in solids and that the ordered state may be classified in terms of the electric or
magnetic anisotropy showing the P-odd parity, that is the odd-parity electric or magnetic multipolar field (Kuramoto
et al., 2009; Kusunose, 2008). Similar arguments are obtained for the even-parity magnetic multipolar order without
uniform magnetization such as collinear magnetic order in a rutile-type magnet, MnF2, and noncollinear magnetic
order in Mn3X (X = Ga, Ge, Sn, Ir, and Pt) (Nakatsuji et al., 2015; Nayak et al., 2016; Šmejkal et al., 2020). In those
cases, the seemingly antiferroic order is characterized by q = 0 and classified into an even-parity multipolar phase,
whereas the local parity violation is not required because the ferroic even-parity multipolar order does not break the
P symmetry. It is noteworthy that the importance of the magnetic octupole moment has been confirmed in Mn3Sn
and Mn3Ge (Go et al., 2022; Higo et al., 2022; Kimata et al., 2021; Nomoto and Arita, 2020; Suzuki et al., 2017; Yoon
et al., 2023).

Physical consequences of the odd-parity multipolar order can be derived by group-theoretical tools once the symme-
try of the phase is identified. Let us raise some examples of odd-parity multipoles and associated physical properties
from the viewpoint of the representation analysis below. Notably, the odd-parity multipolar symmetry can emerge
not only due to the antiferroic order in the locally-noncentrosymmetric systems but also by other exotic quantum
phases such as the loop-current order (Murayama et al., 2021; Zhao et al., 2015). We emphasize that the classification
result obtained by group theory can be applied to any system showing electric and magnetic parity violations.

The uniformly emerging order parameter characterizing the (second-order) phase transition is classified by irre-
ducible representations of a given crystallographic point group. For instance, when the ordered phase belongs to the
B1u representation of the tetragonal point group 4/mmm (D4h), odd-parity multipole moments appear in the ferroic
manner. When the B1u-type phase transition is attributed to multipolar degrees of freedom, candidates for the order
parameter are the electric octupole moment

Q+
31 = xyz, (16)

for the electric parity violation and the magnetic quadrupole moment

M+
22 = xmx − ymy, (17)

for the magnetic parity violation (Watanabe and Yanase, 2017). These multipole moments indicate the lowest order
of electric or magnetic anisotropy in real space. Since these multipole moments show the opposite parity under the
T or PT operation, the corresponding irreducible representation should be labeled by the T -parity such as B+

1u for
Q+

31 and B−
1u for M+

22; i.e., the odd-parity irreducible representation Γu is T -even and PT -odd for Γ+
u , or T -odd and

PT -even for Γ−
u (subscript ‘u’ denotes the odd P parity). 1

1 We implicitly assume that the para phase is T -symmetric and P-symmetric to characterize the multipolar order by the definite parity of
each operation. Generalized representation analysis is similarly obtained by making use of the magnetic point group (Erb and Hlinka,
2020).
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As in the classification of order parameters in terms of the real-space basis [Eqs. (16) and (17)], the relevant
basis functions in the momentum space (k) are identified in the group-theoretical manner (Sigrist and Ueda, 1991).
Referring to the classification presented in Refs. (Hayami et al., 2018; Watanabe and Yanase, 2017, 2018a), we can
construct a basis function formed by the momentum k and magnetic moment m as

kxmx − kymy, (18)

for the B+
1u representaion and

kxkykz, (19)

for the B−
1u representation. One may notice that the momentum-space basis for the electric parity violation of Eq. (18)

is obtained by replacing r with k in the real-space basis for the magnetic parity violation [Eq. (17)] and vice versa.
The cross-correlation is a consequence of the intact symmetry, that is T or PT symmetry.

FIG. 7 The real- and momentum-space structure of the odd-parity multipolar states. Corresponding to the odd-parity
multipolar state depicted in (a,b), the energy spectrum shows the characteristic structure shown in (c,d). (a) electric octupolar
state for an odd-parity electric multipolar (odd EM) state. (b) magnetic quadrupolar state for an odd-parity magnetic multipolar
(odd MM) state. (c) Rashba-like spin splitting of the electronic band structure induced by the electric octupolar order. The
split bands show the spin-momentum locking in the opposite way (red-colored arrows denote spins coupled to each momentum).
(d) Fermi surface undergoing asymmetric and octupolar modulation due to the magnetic quadrupolar order. Note that the
Fermi surface is doubly degenerate due to the PT symmetry and that there is no spin splitting as depicted by the spins
(red-colored vectors) antiparallel to each other.

The correspondence between the real- and momentum-space basis functions conveniently gives clues to understand-
ing the itinerant property of the parity-violating materials such as changes in the electronic structure and emergent
responses. Leaving discussions of the physical responses to the following sections, let us consider the band structure
undergoing the B1u-type odd-parity multipolar order for an example. In case of the electric parity violation, the
odd-parity electric multipolar anisotropy of Eq. (16) corresponds to spontaneous emergence of the spin-momentum
locking of Eq. (18) whose form is similar to that of the Rashba spin-orbit coupling of Eq. (5). Contrastingly, in the
case of the magnetic parity violation, the magnetic multipolar anisotropy of Eq. (17) gives rise to the spin-independent
modulation of electronic bands of Eq. (19). The asymmetric energy spectrum has been observed in experiments of a
PT -symmetric magnet (Fedchenko et al., 2022; Lytvynenko et al., 2023). These characteristic changes in the band
structure are strictly forbidden if the T or PT symmetry is present; the asymmetric modulation such as Eq. (19) is
forbidden due to the T symmetry, while the spin-momentum locking as in Eq. (18) is absent in total if the PT sym-
metry is retained. The modified band structures arising from electric and magnetic parity violation are summarized
in Fig. 7.
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The microscopic grounds for the multipole moments in solids remain to be completed, though the macroscopic
aspects have been addressed from the viewpoint of point group symmetry. The origin of the multipole moments may be
attributed to the atomic orbitals well-localized at rare-earth atoms in some f-electron systems (Kuramoto et al., 2009).
The quantitative estimates of the multipole moments have been explored by first-principles calculations (Bultmark
et al., 2009; Cricchio et al., 2010; Suzuki et al., 2018); e.g., the close relationship between the magneto-electric coupling
and the odd-parity magnetic multipole moments has been pointed out (Spaldin et al., 2013; Thöle et al., 2016, 2020).

Furthermore, recent theoretical studies revisited the connection between the observable physical property and
multipolar degrees of freedom in the context of generalized free energy. For instance, the thermodynamic magnetic
quadrupole moments are defined to be conjugate to the gradient of magnetic fields, and they are directly related to
the magnetoelectric property (Bhowal and Spaldin, 2022; Gao et al., 2018; Shitade et al., 2018). It is noteworthy
that the thermodynamic multipole moments contribute to other cross-correlated responses such as the nonlinear
thermoelectric response (Gao and Xiao, 2018), temperature-gradient-induced magnetization (gravito-magnetoelectric
effect) (Shinada and Peters, 2023; Shitade et al., 2019), and spin accumulations (Shitade and Tatara, 2022). In
the same spirit, the electric quadrupole moments are defined and estimated in the language of thermodynamics and
quantum geometry (Daido et al., 2020; Kitamura et al., 2021). It is desirable to perform further explorations for
higher-order multipolar degrees of freedom in solids (Tahir and Chen, 2023).

Finally, we comment on material realizations of the PT -symmetric (odd-parity magnetic multipolar) magnets.
Although the uniform odd-parity magnetic multipolar fields show up in the presence of special crystal and anti-
ferromagnetic structures, one can notice that they exist in a broad range of materials as we tabulate candidates
in Appendix A. Historically, enormous efforts have been made to explore materials undergoing the PT -symmetric
magnetic order, with special attention to the oxides motivated by the interests in the magnetoelectric coupling in
magnetic insulators such as Cr2O3 and LiCoPO4 (Fiebig, 2005). On the other hand, as mentioned in the introductory
part, recent studies shed light on magnetic metals as well with the developments in the field of antiferromagnetic
spintronics (Baltz et al., 2018; Jungwirth et al., 2016). The candidates cover a diverse class of materials such as
ferro-pnictide (e.g., BaMn2As2, EuMnBi2, CuMnAs, YbMnBi2) (Borisenko et al., 2019; Sakai, 2022; Tanida et al.,
2022; Wadley et al., 2015) and rare-earth-based magnetic conductors (Arakawa et al., 2023; Ota et al., 2022; Saito
et al., 2018). It is expected that the magnetic parity violation may show intriguing interplays with the physical prop-
erties unique to the metals like topological electrons nearby the Fermi energy (Šmejkal et al., 2018; Tang et al., 2016),
giant magnetoresistance (Aoyama et al., 2022; Ogasawara et al., 2021; Sun et al., 2021), and what is discussed in the
following sections (e.g., magnetopiezoelectric effect and nonreciprocal electrical transport induced by the magnetic
parity violation).

III. Emergent Responses of PT -symmetric magnets

A. Electric-Magnetic Classification of Response Function

The contrasting space-time symmetry of the odd-parity electric/magnetic multipolar materials is reflected in the
response as well as the electronic structure described in Sec. II.C. In this section, taking the linear response function,
we introduce the T -odd/T -even classification of physical responses and argue that the T and PT symmetries play
complementary roles.

The response formula is generally given by

Xi = χXY
ij FY

j , (20)

where the physical quantity X responds to the external field F Y conjugate to a physical quantity Y by the perturbed
Hamiltonian Hex = Y ·F Y . Based on the Kubo formula, we derive the ac response function χXY

ij (ω) in the Lehmann
representation

χXY
ij (ω) =

∑
a,b

ρa − ρb
ω + iη + ϵa − ϵb

Xi
abY

j
ba, (21)

with the summation over the many-body eigenstates (a, b) for the unperturbed Hamiltonian. We introduced the
eigenenergy ϵa, Boltzmann factor ρa = exp (−ϵa/T )/Z (Z: partition function), and infinitesimal positive parameter
η = +0. Physical quantities are given by the matrix element for the eigenstates Xi

ab = ⟨a |Xi | b⟩. The response
function is classified by the parity τg under a symmetry operation g such as P, T , and PT operations. In the case
of magnetization response to the electric field [(X,Y ) = (M ,E)] known as the magnetoelectric effect, the response
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function χ̂ME has odd- (τI = −1), odd- (τθ = −1), and even-parity (τIθ = +1) under the P, T , and PT operations,
respectively. Note that the parity satisfies the relation τIθ = τI · τθ.

The response function is further divided into the symmetric and antisymmetric parts under the permutation of Xi

and Yj as

χXY
ij = χXY ;s

ij + χXY ;a
ij . (22)

The components are respectively given by

χXY ;a
ij (ω) =

∑
a,b

(ρa − ρb)
ω + iη

(ω + iη)
2 − (ϵa − ϵb)

2X
i
abY

j
ba, (23)

and

χXY ;s
ij (ω) =

∑
a,b

(ρa − ρb)
ϵb − ϵa

(ω + iη)
2 − (ϵa − ϵb)

2X
i
abY

j
ba. (24)

We may gain an intuitive understanding of the symmetric and antisymmetric terms by considering the dc limit
(ω → 0). By replacing η with the phenomenological scattering effect γ > 0, each contribution is given as

χ̂XY ;a ∼ γ

γ2 + (ϵa − ϵb)
2 , χ̂XY ;s ∼ ϵa − ϵb

γ2 + (ϵa − ϵb)
2 . (25)

The antisymmetric contribution explicitly depends on the sign of γ and is proportional to γ−1 for the equi-energy
transitions (ϵa = ϵb). As a result, the response is in an intimate relation with the dissipative phenomenon accompanied
by energy absorption. On the other hand, the symmetric term does depend on |γ| and remains finite even in the limit
of γ → +0. This property indicates that the symmetric term is generically irrelevant to the scattering process and
may occur without dissipation. In the light of these contrasting aspects with respect to dissipation, the antisymmetric
and symmetric terms are also called dissipative and dissipation-less responses, respectively (Freimuth et al., 2014;
Watanabe and Yanase, 2017; Železný et al., 2017a).

Following the symmetry arguments in Ref. (Watanabe et al., 2023), we finally obtain the T -parity decomposition
of the antisymmetric and symmetric responses in Eqs. (23) and (24). We here introduce the T -even and T -odd
contributions which appear with and without T -symmetry, respectively. As displayed in Table I, the symmetric and
antisymmetric parts of a given response function are classified by the T -parity τθ; for a response with τθ = +1,
only the symmetric part is allowed in the T -symmetric system, while the antisymmetric contribution is admixed by
the T -symmetry breaking. On the other hand, for the case of τθ = −1, the response in the T -symmetric system
is solely attributed to the antisymmetric part, but it contains both antisymmetric and symmetric contributions
when the T symmetry is lost. For instance, the dc electric conductivity tensor (Ja = σabEb) formally shows the
odd-parity under the T operation, and thus τθ = −1. Therefore, only the antisymmetric part is finite in the T -
symmetric system, consistent with the fact that the allowed longitudinal response is dissipative as formulated in
the Boltzmann’s semiclassical theory of transport phenomena. The symmetric part is relevant to the T -symmetry
breaking. This argument agrees with the fact that the electric conductivity tensor hosts the symmetric part such as
the Hall conductivity which can generically be free from dissipation. 2

Similarly, the response function with τθ = +1 is decomposed into the T -even and T -odd contributions. An example
is the nonmagnetic and magnetic spin Hall effects which are of high interest in recent studies on spintronic effects.
The spin-polarized current response to the electric fields is given by the formula

Jsc
a = σc

abEb, (26)

where Jsc denotes the current with the spin polarization along the c direction. Specifically, the spin Hall conductivity
is defined by the off-diagonal elements σc

ab + σc
ba ̸= 0. The T -even component can make contributions through

the symmetric part of the tensor [Eq. (24)], consistent with the dissipationless nature of the spin-Hall effect, as

2 The symmetric and antisymmetric terms of the electric conductivity do not indicate the tensor symmetry of σab; for instance, the
antisymmetric term we introduced is not the Hall response (σab = −σba) but the dissipative and longitudinal conductivity (σab = σba).
This is because we relate the electric conductivity with the inverse response written by Pa = χabAb (P is the electric polarization, A
is the vector potential). The antisymmetric term therefore satisfies σab = −χba. The well-known Onsager relation is reproduced by
using the relations J = −iωP and E = iωA. Similarly, one can derive the symmetric-antisymmetric decomposition by using the linear
response formula in the canonical-correlation representation, by which the Onsager reciprocity is obtained more explicitly (Watanabe
et al., 2023).
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demonstrated in intensive studies of the spin Hall effect of nonmagnetic semiconductors (Sinova et al., 2015). On the
other hand, the T -symmetry violation gives rise to the antisymmetric counterpart [Eq. (23)] of spin Hall response
called magnetic spin Hall effect (Kimata et al., 2019). Since its dissipative aspect is closely linked with the metallic
conductivity, the magnetic spin Hall effect is characteristic of magnetic (T -odd) metals (Mook et al., 2020; Železný
et al., 2017b).

TABLE I T -parity classification of the linear response tensor. For a given response with the time-reversal parity τθ = ±1, its
antisymmetric and symmetric parts are attributed to the T -even and T -odd contributions.

Symmetric χ̂s Antisymmetric χ̂a

τθ : +1 T even T odd

τθ : −1 T odd T even

It is noteworthy that either T -even or T -odd contribution may appear without being concomitant with the other
due to the additional symmetry constraint. For example, the magnetoelectric effect is P-odd (τI = −1) and can
occur in parity-violating materials. The electric parity violation allows the system to have the antisymmetric part of
χ̂ME;A because of the preserved T symmetry. This response is accompanied by dissipation and is called the inverse
magnetogalvanic effect (Edelstein effect). On the other hand, those with the pure magnetic parity violation manifest
only the symmetric counterpart not being admixed with the antisymmetric contribution, because the magnetoelectric
effect is incompatible with the space-time symmetry of magnetic parity violation due to the PT -odd nature. Conse-
quently, the T - and PT -symmetries play complementary roles in P-odd physical responses due to the P-symmetry
constraint. The symmetry argument is applicable to the nonlinear responses as well as the linear response, as we see
later in Sec. III.C.

B. Magnetic Counterpart of Piezoelectric Effect

The piezoelectric effect is the interconversion between the stress and electric polarization allowed in noncentrosym-
metric materials. The effect has been widely used for applications such as the transducer. The response formula reads
as

Pa = ēabcsbc, εab = eabcEc, (27)

with electric polarization P , stress ŝ, and strain ε̂. Typically, the piezoelectric-active materials are limited to insulators
such as ferroelectric ceramics to hold electric polarization. By taking X = P and F Y = ŝ in Eq. (20), the time-
reversal parity τθ = +1 indicates that the T -even part is the symmetric part (see Table I) and may be attributed
to the equilibrium property in the DC limit, being consistent with the piezoelectric effect. On the other hand, the
T -parity classification in Table I also makes us aware of the possibility of the T -odd and antisymmetric contribution to
the electric-elastic coupling. Notably, owing to the P-odd property of the response (τI = −1), the T -odd contribution
is allowed without being admixed with the conventional piezoelectric effect in the PT -symmetric systems.

Let us take the response function given by X = ε̂ and F Y = E and corroborate the DC limit. Owing to the
PT -symmetry constraint, the surviving term is purely the antisymmetric part as

emabc ≡
(
χ̂εP ;a

)
abc

=
∑
p,q

(ρp − ρq)
−iγ

γ2 + (ϵp − ϵq)
2 ε

ab
pqP

c
qp. (28)

We introduced the phenomenological scattering effect parametrized by γ similarly to Eq. (25). In the clean limit
(γ → +0), the response is dominated by the equi-energy transition process (ϵa = ϵb) giving rise to the response as
much as O(γ−1).

In the independent particle approximation, the formula in the clean limit is recast as (Watanabe and Yanase, 2017)

emabc = − e

γ

∫
dk

(2π)d

∑
p

εabppv
c
pp

∂f(ε)

∂ε

∣∣∣∣
ε=εkp

, (29)
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where e > 0 is the elementary charge of electrons and the summation is over the momentum (k) and the band indices
(p). We introduced the velocity operator v for electrons and the Fermi-Dirac distribution function f(ε). The strain
and velocity operators are evaluated by the Bloch states |ψkp⟩ having the eigenvalue εkp for the Hamiltonian. The
Fermi-surface factor ∂εf(ε) indicates that metallic conductivity is required for this piezoelectric-like response in sharp
contrast to the conventional piezoelectric response allowed even in insulators.

This unconventional type of “piezoelectricity” is termed as magnetopiezoelectric effect and was predicted by theories
with a semiclassical theory including the quantum-geometrical effect (Varjas et al., 2016) and with full-quantum
treatment based on the linear response theory (Watanabe and Yanase, 2017). When the stimulus Ez is replaced with
the electric current Jz, the response formula is rewritten by

εab = κabcJc, (30)

where the response function is obtained as κabc = εmabc/σcc by using the formula for longitudinal conductivity Ja =
σaaEa. The obtained magnetopiezoelectric response function κabc is not sensitive to the phenomenological scattering
parameter. This is because the Drude-type conductivity σaa = O(γ−1) leads to the scattering-rate dependence of
κabc = emabc/σcc = O(γ0) with Eq. (28). As a result, the response function κ̂ does depend on the generic material
properties as in the case of inverse magneto-galvanic effect (Edelstein, 1990; Levitov et al., 1985). It indicates the
fact that the electric current plays an essential role in this magnetic counterpart of the piezoelectric response rather
than the electric field. It follows that the magnetopiezoelectric response occurs under the electric current flow and
is inevitably accompanied by the Joule heating. The energy loss may be unfavorable for future applications based
on the magnetic metals. The undesirable heating effect may be alleviated by utilizing the superconducting property
(see Sec. V). The metallic property could also be an advantage of the magnetopiezoelectric effect for applications as
we discuss at the end of this subsection. We summarize the contrasting properties of the known piezoelectric effect
and the magnetopiezoelectric effect in Table II. For the switchability of the PT -symmetric magnetic order and the
magnetopiezoelectric effect, one can refer to the discussions in Sec. IV.

TABLE II Comparison of the conventional piezoelectric effect and the magnetopiezoelectric effect.

Piezoelectric effect (εab = eabcEc) Magnetopiezoelectric effect (εab = emabcEc)

T parity Even Odd

Stimulus Electric field E Electric current J

System Insulator & Metal Metal

Relaxation time dependence ê ∝ τ2n êm ∝ τ2n+1

Joule heating No Yes

Switching E w/ or w/o ŝ J w/ or w/o ŝ

The magnetopiezoelectric effect can also be observed in nonmagnetic materials with the electric parity violation
by applying the external magnetic field. In this case, not only the T symmetry but also the PT symmetry is
broken, and the elastic-electric coupling is obtained as the combination of the conventional piezoelectric response
and the magnetopiezoelectric response. The admixture may prevent us from specifying the magnetopiezoelectric
response (Varjas et al., 2016). On the other hand, there is no such concern in the case of the PT -symmetric magnets
because the PT symmetry exactly forbids the conventional piezoelectric response.

In the following, we explain the microscopic grounds for the magnetopiezoelectric effect by taking a PT -symmetric
magnetic metal, hole-doped BaMn2Pn2 (Pn=As, Sb, Bi) (Watanabe and Yanase, 2017). BaMn2As2, for instance,
undergoes the G-type antiferromagnetic order at high Néel temperature TN ∼ 600 K which breaks the P symmetry.
The P violation originates from the coupling between the antiferromagnetic order and the locally noncentrosymmetric
environment of Mn sites [Fig. 8(a)]. Considering the site symmetry at Mn atoms, one can derive the antisymmetric
spin-orbit coupling as

gk =

(
α1 sin ky, α1 sin kx, α3 sin

kx
2

sin
ky
2

sin
kz
2

)
, (31)

where α1, α3 denote the coupling constants of the sublattice-dependent anti-symmetric spin-orbit coupling. The
locally noncentrosymmetric Mn atoms show hidden spin polarization described by Eq. (12) with Eq. (31), and it
couples to the antiferromagnetic order.
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The ordered state manifests the magnetic parity violation. Specifically, the magnetic point group symmetry is

G = 4′/m′m′m = 4̄2m ∪ Iθ · 4̄2m, (32)

consisting of the unitary symmetry with the point group 4̄2m and of the anti-unitary symmetry including the PT
symmetry (Iθ). Although the parent compound BaMn2As2 shows insulating behavior with a small gap ∼ 10 (meV),
the metallic conductivity is acquired by doping hole carriers or by applying high pressure. Thus, the material is
a promising candidate for PT -symmetric magnetic metals by which we can demonstrate the interplay between the
metallic conductivity and magnetic parity violation.

By imposing the unitary symmetry 4̄2m in Eq. (32), the allowed components of the response tensor Eq. (28) are

emxyz, emzxy = emyzx. (33)

We again stress that the preserved PT symmetry forbids the conventional (inverse) piezoelectric effect of Eq. (27).
Taking the independent-particle approximation, the microscopic origin can be inferred from the formula Eq. (29). To
grasp the intuitive picture of the magnetopiezoelectric effect in BaMn2As2, let us focus on the electronic structure
unique to it. The metallic conductivity is ascribed to the hole pocket placed at Γ point, which is expected to realize
the interplay between the magnetic parity violation and itinerant property. According to the magnetic point group
symmetry of Eq. (32), the active odd-parity magnetic multipoles are such as the magnetic quadrupole [Eq. (17)]
and magnetic hexadecapole moment (Watanabe and Yanase, 2018a). The group-theoretical argument introduced in
Sec. II.C allows us to identify the anti-symmetric modulation in the electronic structure given by the tetrahedral
modulation of the energy spectrum δεkp ∼ kxkykz [Eq. (19)].

The obtained asymmetric electronic band structure plays an essential role in the magnetopiezoelectric effect. When
applying the electric field to metals, the Fermi surface is shifted along the applied direction as obtained in the
semiclassical theory of transport as

δf(εkp) ∼ γ−1E · vpp∂εf(εkp) = γ−1Ek · ∂kεkp∂εf(εkp). (34)

The field-induced shift (δf) is coupled to the asymmetry in the band dispersion (δεkp) and may induce additional
anisotropy in the Fermi surface. In the case of BaMn2As2, the coupling between the tetrahedral modulation and
the field-induced shift along the z-axis results in the nematic anisotropy in the kx-ky plane. The resultant nematic
anisotropy is absent in equilibrium according to the magnetic symmetry of Eq. (32).

By Letting ε
(k)
xy be kxky-type nematic anisotropy in the Fermi surface, the response formula reads as

ε(k)xy = emxyz(k)Ez, (35)

where the electric-elastic coupling is defined with the electronic strain ε
(k)
xy ∼ kxky. The strain is induced by the

dissipative electrical stimulus leading to the shift in Eq. (34). Then, the response formula may be better to be
rewritten by using the electric current J as

ε(k)xy = emxyz(k)Jz, (36)

agreeing with Eq. (30). The current-induced electronic strain ε
(k)
xy may subsequently induce the lattice strain εxy

through the electron-phonon coupling.

The theoretical prediction of magnetopiezoelectric responses has been confirmed by a series of experiments (Shiomi
et al., 2019a,b, 2020). The experiments with the PT -symmetric magnets such as EuMnBi2 and CaMn2Bi2 are
consistent with theories. It has been verified that the elastic response is proportional to the applied current density
and follows the aforementioned symmetry analysis (Shiomi et al., 2020) (Fig. 8). While extensive research has been
devoted to maximizing the magnitude of the conventional piezoelectric effect, the magnetopiezoelectric effect has not
been fully explored for its material dependence and potential applications. For instance, the magnetopiezoelectric effect
varies by the magnetic order and may apply to future elastic devices due to its compatibility with the functionality
unique to metals (e.g., giant magnetoresistance (Aoyama et al., 2022; Huynh et al., 2019; Ogasawara et al., 2021; Sun
et al., 2021)) and nontrivial temperature dependence coming from that of magnetic moments. Notably, the switchable
property of PT -symmetric magnetic order (see Sec. IV) may be favorable for that purpose. More explorations by
experiments and quantitative estimates by the first-principles calculations are highly desirable.
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FIG. 8 Experimental results of the magnetopiezoelectric response in EuMnBi2. (a) The crystal and magnetic structures of
EuMnBi2. (b) Measurement set-up of the magnetopiezoelectric effect. The laser Doppler vibrometer optically monitors the
displacement responding to the AC current. (c) Frequency profile of the displacement signals with varying intensity of AC
electric current. The frequency of the electric current is 10 kHz. As the electric current increases, the current-induced signals
marked by green arrows monotonically grow. (d) The dependence of current-induced signals on the applied electric current.
The signal is clearly distinguished from the background (BG) and is proportional to the electric current. The figures are taken
from Ref. (Shiomi et al., 2020).

C. Nonreciprocal Property of Electronic Transport and Optical Response

The T -parity classification introduced in Sec. III.A is generalized to the nonlinear responses, while the parameter
dependence of each contribution gets more complicated than the linear response functions. For an example of the
nonlinear response, let us consider the electric current response to double electric fields

Ja(ω) =

∫
dω1dω2

2π
δ(ω − ω1 − ω2) σa;bc(ω1, ω2)Eb(ω1)Ec(ω2). (37)

The generated current is not flipped under the reversal of the electric field. Thus, the response can be termed as the
nonreciprocal current generation and is characteristic of parity-violating materials (Tokura and Nagaosa, 2018). The
formula covers various phenomena attracting a lot of interest for a long time such as the nonreciprocal conductivity
(ω1 = ω2 = 0), second-harmonic generation (ω1 = ω2), photocurrent generation (ω1 = −ω2), and parametric gener-
ation (|ω1| ≠ |ω2|). In the following, we mainly discuss the nonreciprocal conductivity and photocurrent generation
from the viewpoint of the PT symmetry. 3

1. Nonreciprocal conductivity

A typical example of the DC nonreciprocal current generation is the diode effect of the p-n semiconductor junction
where the parity violation comes from the artificial and mesoscale electric field in the depletion layer. Bulk materials
similarly show unidirectional behaviors in their conductivity because of the microscopic symmetry breaking. The
(bulk) nonreciprocal conductivity is further divided into that with the external magnetic field and that without it,
called field-induced and field-free nonreciprocal conductivity, respectively.

Firstly, we briefly overview each type of nonreciprocal conductivity realized in materials manifesting the electric
parity violation. There exist extensive works on the field-induced nonreciprocal conductivity realized by the electric
parity violation and external magnetic field. For the longitudinal component (σa;aa) in Eq. (37), the response is
quantified by the nonlinear resistivity

R = R0 (1 + ΓJ) , (38)

up to the correction linear in the electric current. The linear resistance R0 usually surpasses the nonreciprocal
correction, and thus the nonreciprocal correction Γ is approximately obtained as

Γ ∝ σa;aa
σ3
aa

. (39)

3 The photocurrent may respond to the irradiating light in materials without the parity violation such as due to the drag effect (Plank
et al., 2016). In this review, we consider only the nonreciprocal photocurrent response arising from the parity violation.
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Then, the nonreciprocal conductivity σa;aa quantifies the nonreciprocal electric transport. Under a weak magnetic
field, the nonreciprocal resistivity is approximately written as

Γ = Γ0 + γH +O(H2), (40)

where a field-induced contribution γ is determined by the effect of electric parity violation such as the strength of
antisymmetric spin-orbit coupling of Eq. (5). Although the nonreciprocal correction is typically smaller than the
linear response, it can be identified by using the AC measurement with small but finite frequency (Ideue et al., 2017).

From the viewpoint of symmetry, the field-induced nonreciprocal longitudinal transport can be classified into two
classes; one comes from the magnetoelectric anisotropy and the other from the trigonal anisotropy (Szaller et al., 2013).
In the case of the magnetoelectric anisotropy, the unidirectionality is parallel to the T -odd polar vector resulting from
the coupling of electric parity violation and external magnetic fields. In the seminal work of Ref. (Rikken et al., 2001),
the T -odd polar vector, given by E×H ̸= 0, is built onto the two-dimensional electron gas in a semiconductor device
with the perpendicular external electric and magnetic fields. The T -odd polar vector similarly appears under the
magnetic field along the whirling spiral in a chiral system (Akaike et al., 2021; Aoki et al., 2019; Jiang et al., 2020; Krstić
et al., 2002; Rikken and Wyder, 2005; Yokouchi et al., 2017), namely magnetochiral anisotropy, since the chirality
couples axial vectors to polar vectors with their T -parity kept. On the other hand, the trigonal anisotropy does not
require the polar asymmetry of systems as demonstrated in MoS2 under the out-of-plane magnetic field (Wakatsuki
et al., 2017).

The nonreciprocal conductivity manifests enhancement by the strong spin-orbit coupling and sizable T -breaking
effect. In spin-orbit-coupled materials such as a topological insulator (Yasuda et al., 2017, 2016), Weyl semimetal (Mo-
rimoto and Nagaosa, 2016a; Wang et al., 2022), and polar semiconductor consisting of heavy elements (Ideue et al.,
2017; Li et al., 2021). Similarly, the field-induced nonreciprocal conductivity significantly increases by large spin
splitting via the coupling to the ferromagnetic order (Yoshimi et al., 2022; Železný et al., 2021).

The field-free nonreciprocal conductivity of nonmagnetic systems is also of much interest, though the studies have
been devoted to the transverse response, that is, nonlinear Hall effect σa;bb (a ̸= b). Notably, the nonlinear Hall
response occurs without being admixed with the linear-response signal since the preserved T symmetry forbids the
linear Hall response. The known mechanism for the nonlinear Hall response stems from the intrinsic or extrinsic
origin. The intrinsic mechanism originates from, so-called, the Berry curvature dipole (Deyo et al., 2009; Moore
and Orenstein, 2010; Sodemann and Fu, 2015), where the Hall effect occurs due to the imbalance in the Berry
curvature at ±k stimulated by the electric current. The extrinsic effect denotes the mechanism essentially beyond
the independent-particle approximation such as the electron-disorder scattering and electron-electron interaction. In
the case of the disorder effect, the skew and side-jump scatterings contribute to the nonreciprocal conductivity (Du
et al., 2019, 2021b; Isobe et al., 2020; Nandy and Sodemann, 2019; Xiao et al., 2019) similarly to the anomalous Hall
and spin Hall responses (Nagaosa et al., 2010; Sinova et al., 2015). The intrinsic and extrinsic contributions can be
comparable to each other (Du et al., 2021a); e.g., a spin-orbit-coupled semiconductor WTe2 shows the large nonlinear
Hall effect which may be from the comparable contributions from the intrinsic and extrinsic effects (Kang et al.,
2019; Ma et al., 2019). Note that one can exclude the Berry curvature dipole effect by taking the highly-symmetric
noncentrosymmetric materials with nongyrotropic point group symmetry since gyrotropic symmetry is required for
the Berry curvature dipole (Dzsaber et al., 2021; He et al., 2021; Isobe et al., 2020; Toshio et al., 2020).

Next, let us consider the nonreciprocal conductivity of the PT -symmetric magnets, that is the response purely
induced by the magnetic parity violation. The nonreciprocal conductivity of the PT -symmetric materials received
delayed attention despite intensive interest in that of the T -symmetric materials, possibly because parity-violation-
induced phenomena have been rarely explored in the antiferromagnetic conductors. Circumventing this situation,
recent experimental work has identified nonreciprocal transport of the PT -symmetric magnets (Gao et al., 2023;
Godinho et al., 2018; Ota et al., 2022; Wang et al., 2023). The nonreciprocal transport of PT -symmetric magnets
is expected to be huge due to the remarkable parity violation. The energy scale of the parity violation can be as
much as the Hund’s coupling, which is much larger than the external Zeeman field. It is worth mentioning that the
nonreciprocal nature is in intimate relation with the domain state of PT -symmetric magnetic order and that it can
be applied to the antiferromagnetic spintronics (see also Sec. IV).

Let us look into theoretical backgrounds for the nonreciprocal transport mainly with respect to the band-electron
system. A basic understanding of the phenomena is obtained by examining the intrinsic mechanism identified by
a simple theoretical set-up where the perturbation calculation is performed under the independent-particle approx-
imation. The scattering effect is phenomenologically taken into account by the relaxation-time approximation in
the semiclassical transport theory (Ideue et al., 2017) and by introducing the damping term into the von-Neumann
equation of the quantum transport theory (Matsyshyn and Sodemann, 2019; Ventura et al., 2017). Including the
mechanisms originating from the electric and magnetic parity violations, there exist three intrinsic effects in the clean



18

limit; the nonlinear Drude, Berry curvature dipole, and intrinsic Hall effects. The formula for each mechanism is
given as

σD
a;bc = − e3

γ2

∫
dk

(2π)
d

∑
p

vapp
∂2f(εkp)

∂kb∂kc
, (41)

= − e3

γ2

∫
dk

(2π)
d

∑
p

vappv
b
ppv

c
pp

∂2f(ε)

∂2ε
|ε=εkp

, (42)

for the nonlinear Drude effect (Ideue et al., 2017),

σBCD
a:bc = − e3

2γ

∫
dk

(2π)
d

∑
p

ϵabd
∂f(ϵkp)

∂kc
Ωd

p + [b↔ c] , (43)

=
e3

2γ

∫
dk

(2π)
d

∑
p

ϵabdf(ϵkp)
∂Ωd

p

∂kc
+ [b↔ c] , (44)

=
e3

2γ
ϵabdD cd + [b↔ c] , (45)

for the Berry-curvature-dipole effect (Deyo et al., 2009; Sodemann and Fu, 2015), and

σint
a;bc = −e3

∫
dk

(2π)d

∑
p ̸=q

1

ϵkp − ϵkq

[
gabpq

∂f(εkp)

∂kc
+ gacpq

∂f(εkp)

∂kb
− 2gbcpq

∂f(εkp)

∂ka

]
, (46)

for the intrinsic Hall effect (Gao et al., 2014; Watanabe, 2021; Watanabe and Yanase, 2020). All the formulas comprise
the Fermi-surface effect ∂εf(ε), and hence the above intrinsic mechanisms are allowed in conductors and prohibited
in insulators. The derivations have been presented in the density-matrix formalism (Kaplan et al., 2022; Matsyshyn
and Sodemann, 2019; Watanabe and Yanase, 2020; Yatsushiro et al., 2022) and diagrammatic approach (João and
Viana Parente Lopes, 2020; Michishita and Nagaosa, 2022; Oiwa and Kusunose, 2022).

Since the intraband matrix element of the velocity operator is given as vapp = ∂ka
εka in the band-electron system,

only the band energy εkp is relevant to the nonlinear Drude effect. This is in agreement with the fact that the
nonlinear Drude term can be captured by Boltzmann’s transport theory. On the other hand, the multiband property
plays an essential role in the latter two effects as they include the Berry curvature

Ωa
p = ϵabc

∂ξcpp
∂kb

, (47)

and the band-resolved quantum metric (Gao et al., 2020)

gabpq = Re
[
ξapqξ

b
qp

]
, (48)

with the Berry connection ξapq = i ⟨ukp | ∂ka
ukq⟩ (|ukq⟩ is the periodic part of the Bloch state). We have also introduced

the Berry curvature dipole

D ab =

∫
dk

(2π)
d

∑
p

f(ϵkp)∂kaΩb
p, (49)

indicating the dipolar distribution of the Berry curvature along the Fermi surface. The multiband nature is captured
by the full-quantum theory and by the semiclassical transport theory taking account of the quantum-geometric correc-
tions; e.g., following the semiclassical transport theory, the Berry curvature dipole effect comes from the anomalous-
velocity correction (vano ∼ Ω×E) (Xiao et al., 2010). Although the intrinsic Hall effect originates from the anomalous
velocity as well, the Berry curvature comes from the E-induced virtual transition, namely positional-shift effect (Gao
et al., 2014).

The Berry curvature dipole effect depends on the scattering rate as O(γ). The sensitivity to scatterings is intuitively
figured out by the imbalance of Berry curvature dipole driven by the electric current (Toshio et al., 2020). Similarly
to the current-induced correction to the distribution function in Eq. (34), the compensation between opposite Berry
curvature at ±k is removed under the ohmic electric current. The resultant total Berry curvature is finite in the steady
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state and allows for the deflection of electrons. The obtained Hall response originating from the current-induced Berry
curvature is consistent with the symmetry of the nonlinear Hall effect. On the other hand, the intrinsic Hall effect
does not show prominent dependence on the scattering rate as much as O(γ0), because of the uncompensated Berry
curvature as well as the positional shift stem from the interband mixing.

The mechanism of nonreciprocal transport is classified by the preserved anti-unitary symmetry (T and PT symme-
tries) as summarized in Table III based on its dependence on the phenomenological relaxation time defined by τ = γ−1.
As in the case of linear response function (see Sec. III.A), the anti-unitary symmetry determines the τ dependence;
i.e., O(τ2n+1) for the T -symmetric case and O(τ2n) for the PT -symmetric case. When the system manifests both
electric and magnetic parity violations (without T or PT symmetry), all of the effects contribute (Shao et al., 2020).
Note that the nonlinear Drude effect gives rise to the longitudinal nonreciprocity by taking an appropriate geometry
of measurement, while the Berry curvature and intrinsic Hall effects lead to only the Hall response. As a result of
the adopted approximations, the PT -symmetric magnetic metals offer both longitudinal and transverse nonreciprocal
conductivity, while the T -symmetric conductors do show only the Hall response if without the electron correlation
effect or more rigorous treatment of disorder scattering (Du et al., 2019; Isobe et al., 2020; Morimoto and Nagaosa,
2018).

TABLE III Classification of intrinsic nonreciprocal conductivity in the clean limit in terms of the relaxation time τ = γ−1

and preserved anti-unitary symmetry (Watanabe and Yanase, 2020). “N/A” denotes that contribution is forbidden by the
symmetry.

Nonlinear Drude Berry curvature dipole Intrinsic Hall

T N/A O(τ) O(τ−1)

PT O(τ2) N/A O(τ0)

The PT -symmetric magnetic metals show the nonlinear Drude and intrinsic Hall effects which may dominate the
nonreciprocal conductivity with the scarce and moderate disorder concentration, respectively. When the Fermi energy
is placed in the vicinity of the Dirac dispersion, the quantum-geometrical effect is so significant as to overwhelm the
nonlinear Drude effect (Liu et al., 2021; Wang et al., 2021) as implied in even-layer MnBi2Te4 (Gao et al., 2023;
Wang et al., 2023). For an example of the nonreciprocal conductivity of PT -symmetric magnets, Ref. (Watanabe and
Yanase, 2020) reported that the nonlinear Drude effect of the carrier-doped BaMn2As2 is estimated to be

σz;xy =
e3α3nτ

2

4
sgn (mAF) +O(τ0), (50)

with the small density of electron n in the clean limit (τ → +∞). The result shows that the nonreciprocal conductivity
is informative for investigating the PT -symmetric magnetic order. Firstly, the response is related to the magnitude
and sign of the hidden spin-momentum coupling constant α3 in Eq. (31) which may be hard to directly measure since
it is originally hidden by the sublattice degree of freedom. Secondly, the response directly indicates the AFM-domain
state by sgn (mAF) (mAF: sign of Néel vector) and will be a promising tool for the electronics based on PT -symmetric
magnets.

The nonreciprocal conductivity shows the richer property when one goes beyond the independent-particle approxi-
mation such as by taking account of the electron-correlation and disorder-scattering effects (Isobe et al., 2020; Kappl
et al., 2023; Kofuji et al., 2021; Michishita and Nagaosa, 2022; Morimoto and Nagaosa, 2018). For instance, the
scattering event occurs in the presence of impurities (Du et al., 2019; Ma et al., 2023a; Nandy and Sodemann, 2019;
Xiao et al., 2019), spin degree of freedom (Ishizuka and Nagaosa, 2020; Yasuda et al., 2017), and magnetic-multipolar
object (Isobe and Nagaosa, 2022; Liu et al., 2022). Recent studies further clarified that superconductivity leads to
the giant nonreciprocal conductivity by the superconducting fluctuation and the vortex motion. Although we do not
discuss it in detail, interested readers can refer to Refs. (Nagaosa and Yanase, 2024; Tokura and Nagaosa, 2018).

The disorder effect is particularly of importance for the conduction phenomena as intensively investigated in the
studies of the anomalous Hall effect (Nagaosa et al., 2010), where the so-called skew-scattering effect due to disorders
can surpass the intrinsic mechanism determined by the Berry curvature (Onoda et al., 2008). For the nonreciprocal
transport, the field-free nonlinear Hall effect may be attributed to comparable contributions of the intrinsic mechanism
[Eq. (45)] and of the skew scattering effect (Kang et al., 2019). It is therefore important to take a brief look at the
disorder effect on the nonreciprocal conductivity.
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The disorder effect beyond the relaxation-time approximation has been corroborated in recent theories. The known
mechanisms such as the side-jump and skew-scattering effects can be incorporated by the semiclassical theory and
by a full quantum-mechanical theory (Du et al., 2021a). Following a semiclassical formulation with the Boltzmann
kinetic equation, disorder scattering affects the collision integral and correction to the energy spectrum. In the clean
limit, the extrinsic mechanism (skew-scattering term σsk

a;bc and side-jump term σsj
a;bc) contributes to the nonreciprocal

conductivity with the relaxation time dependence

σsk
a;bc = O(τ3 · τ−1

sk ), σsj
a;bc = O(τ), (51)

where τ ∝ (nimpV
2
0 )−1 and τsk ∝ (nimpV

3
0 )−1 denote the characteristic time for relaxation due to the symmetric and

antisymmetric scattering, respectively (Du et al., 2019; Isobe et al., 2020). Specifically, the antisymmetric scattering
event is given by the difference in the scattering rates between k → k′ and k′ → k, the latter of which can be
substituted by the scattering process −k → −k′ in the presence of the T symmetry.

We illustrate the origin of the asymmetric scattering rate in the light of wave-packet dynamics (Isobe et al., 2020). In
the presence of the electric parity violation, the wave-packet comprised of the Bloch states manifests spinning behavior
due to the orbital angular momentum morb(k) (Chang and Niu, 1996; Xiao et al., 2010), which is highly related to
the Berry curvature Ω(k) (Sinitsyn, 2008). Let us consider that the spinning wave packet with the momentum k
gets deflected into the orbit with k′ by the impurity scattering like the Magnus effect [Fig. 9(a)]. If the incident
momentum flipped, the wave packet with the momentum −k shows self-rotation in the opposite way as ensured by
the T symmetry as morb(k) = −morb(−k) and thereby shows nonreciprocal scattering [Fig. 9(a,b)].

The PT -symmetric magnets do not allow for such a nonreciprocal-deflection process because of the zero Berry
curvature at every momentum [Ω(k) = 0]. The absence of extrinsic contributions follows from the fact that the
scattering matrix is reciprocal in the presence of the PT symmetry unless the spin-flip process is taken into account.
As a result, the nonreciprocal conductivity of the PT -symmetric magnets is free from the extrinsic mechanism of
Eq. (51) in contrast to that of the nonmagnetic materials. Note that the argument can be applied to systems with
the effective PT symmetry; e.g., the isotropic two-dimensional Dirac electron retains the antiunitary symmetry θ2⊥,
the combination of T operation and out-of-plane two-fold rotation. The symmetry satisfying (θ2⊥)

2
= +1 makes the

scattering process reciprocal in the two-dimensional plane. It implies that an ideal Dirac electron on the topological-
insulator surface shows the nonreciprocal conductivity tolerant of the disorder scattering.

FIG. 9 Illustration of skew-scattering mechanisms in (a,b) T - and (c,d) PT -symmetric systems. (a) Spinning wave packet
(orange-colored) is scattered by the impurity (black-colored), resulting in the momentum transfer as k → k′. The self-rotation
leading to deflection arises from the orbital angular momentum morb(k) due to the electric parity violation. (b) The impurity-
scattering event for the oppositely-incident wave packet. Owing to the opposite spinning [morb(−k) = −morb(k)], the deflected
direction does not show the reciprocity, that is, the wave packet is deflected into k′′, not into −k′. (c) Spin-dependent scattering
of electrons. (d) Nonlinear Hall response induced by the anomalous skew scatterings in PT -symmetric systems. The spin-
dependent skew scattering gives the correction to the electron’s distribution function (colored in blue and yellow). Because of
the PT -symmetric magnetic order, the skew scattering mostly occurs for up and down electrons in the sublattice A (ρ = +)
and B (ρ = −), respectively. The Berry curvature roughly appears upwards and downwards in the sublattices A and B due
to the coupling between the antiferromagnetic exchange splitting and hidden Berry curvature. The resultant electric-field-
induced anomalous velocity shows the opposite sign between sublattice (green- and red-colored arrows). The staggered signs of
anomalous velocity and deviation in the electrons’ distribution are canceled to produce a finite Hall current. The panels (c,d)
are taken from Ref. (Ma et al., 2023a) (© American Physical Society).

Equation (51) claims that extrinsic effects are comparable to or dominating the intrinsic effects when they are not
forbidden by the PT symmetry, since the leading contribution in the clean limit is the skew-scattering mechanism
in the order of ∼ τ3/τsk. The contributions in Eq. (51) comes from scattering events without spin flip, whereas the
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spin-flip process gives rise to another extrinsic mechanism characteristic of PT -symmetric magnets (Ma et al., 2023a)
[Fig. 9(c)]. For instance, there exists anomalous skew-scattering effect σAsk

a;bc, which depends on the relaxation time as

σAsk
a;bc = O(τ2 · τ−1

sk ), (52)

being comparable to the nonlinear Drude effect of Eq. (42) with a moderate antisymmetric scattering rate τ−1
sk . The

nonvanishing skew-scattering effect is closely related to the hidden Berry curvature of PT -symmetric magnets. For
the PT -symmetric magnets comprised of A/B sublattice, the strong exchange splitting may result in electric transport
carried by spin-up electrons on the sublattice A and the spin-down electrons on the sublattice B. The two kinds of
carriers are connected by the PT symmetry and undergo the opposite Berry curvature even at the same momentum
[ΩA(k) = −ΩB(k)], by which the total Berry curvature is completely compensated at each momentum. The hidden
Berry curvature gives rise to the sublattice-dependent anomalous velocity under the electric field as

v′
ano(ρz) ∼ ρzΩ(k) ×E, (53)

where ρz = +1 (−1) for the sublattice A (B) [Fig. 9(d)]. The staggered anomalous velocity may offer a nonvanishing
nonlinear Hall response, since electrons at each site may experience different spin-dependent antisymmetric scattering
events which are correlated with the sublattice [Fig. 9(c)]. The emergence of the hidden Berry curvature stems from
the PT -symmetric magnetic order by which the spin degeneracy is lifted at each sublattice in a staggered manner. If
disorder concentration is not negligible, another mechanism for the nonreciprocal conductivity also plays an important
role. For instance, the side-jump effect similarly gives contributions differently from Eq. (51) (Atencia et al., 2023;
Ma et al., 2023a) and may be dominant in the presence of moderate disorder scattering.

Finally, the space-time classification of Table III remains meaningful even when taking into account the extrinsic
mechanism (Ma et al., 2023a; Watanabe and Yanase, 2020); in other words, the (conventional) skew-scattering and
side-jump effects of Eq. (51) vanishes by the PT symmetry, while the anomalous skew-scattering effect survives in
the PT -symmetric system due to its T -odd and PT -even nature. The classification is similarly extended to cover the
self-energy effect as corroborated in the Green’s-function fashion (Michishita and Nagaosa, 2022).

2. Photocurrent generation

The photocurrent generation (photogalvanic effect, photovoltaic effect) is a response extensively applied to our
daily lives such as solar panels and photodetector. The response can occur due to microscopic parity violation as the
nonreciprocal conductivity does, while it has been implemented by mesoscale parity violation such as the internal
electric fields of the semiconductor-based p-n junction and ferroelectric materials (Fridkin and Popov, 1978; Sturman,
1992). The mechanism derived from microscopic symmetry breaking is called bulk photocurrent generation. In
contrast to typical photo-electric rectifiers, bulk photocurrent generation is allowed not only in polar materials but also
in noncentrosymmetric but nonpolar materials including well-known zinc-blende-type semiconductors such as GaAs.
The bulk photocurrent response has been attracting enormous interest from theoretical and experimental investigators
due to an active discussion of applications to conversion efficiency (Liu et al., 2020; Nagaosa and Morimoto, 2017;
Pusch et al., 2023; Spanier et al., 2016).

The (bulk) photocurrent responses have been microscopically investigated in studies of the band-electron sys-
tems (von Baltz and Kraut, 1981; Kristoffel, 1985; Sipe and Shkrebtii, 2000; Sturman, 1992). For instance, it was
shown that the electric parity violation gives rise to various mechanisms for the photocurrent response. The mecha-
nism is in close relation to the quantum geometry of electronic structure similar to the mechanism of nonreciprocal
conductivity (see Sec. III.C.1) (de Juan et al., 2020; Moore and Orenstein, 2010). In the light of topological material
science, a lot of theoretical and experimental works have been devoted to the photocurrent responses in topological
materials (Ma et al., 2021, 2023b; Morimoto et al., 2023; Orenstein et al., 2021). For example, the significant pho-
tocurrent generation is attributed to the electron-hole creations around Weyl nodes of TaAs (Ma et al., 2017) and
RhSi (de Juan et al., 2017; Rees et al., 2020). These results indicate that the photocurrent response is a possible probe
of the quantum geometry in solids in addition to its potential for energy harvesting devices and other engineering
applications. Furthermore, the photocurrent measurement being sensitive to the symmetry of materials has been
applied to various quantum materials to examine exotic quantum phases such as those of cuprate superconductor
and excitonic insulators (Lim et al., 2020; Xu et al., 2020). Diagnosis based on the photocurrent response may be
advantageous compared to the widely-used other nonlinear optical probe such as second-harmonic generation where
the interference with the reference signals should be prepared (Ma et al., 2023b).
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Recent works have further addressed the microscopic mechanism of the photocurrent responses induced by the mag-
netic parity violation after the symmetry analysis (Men’shenin and Turov, 2000). We first introduce the photocurrent
mechanism induced by the electric and magnetic parity violations in the context of the band-electron picture. Simi-
larly to the nonreciprocal transport response, the electric and magnetic parity violations play contrasting roles in the
photocurrent generation. Then, several remarks will be made about modifications coming from the disorder scattering
and electron correlation.

The mechanism of photocurrent generation has been thoroughly investigated in the framework of the independent-
particle approximation. Such intrinsic mechanism stems from the carrier dynamics such as due to the Fermi-surface
(FS) and particle-hole creation (PH) effects, which give the photocurrent conductivity

σa:bc = σFS
a:bc + σPH

a:bc, (54)

where the frequency dependence of σa:bc(ω,−ω) in Eq. (37) is implicit. Assuming the absence of scatterers, the known
Fermi-surface effects are given by

σFS
a:bc = σD

a:bc + σBCD
a:bc + σiFS

a:bc, (55)

that is nonlinear Drude, Berry curvature dipole, intrinsic Fermi-surface effects, respectively (Holder et al., 2020;
de Juan et al., 2020; Moore and Orenstein, 2010). The mechanism based on particle-hole excitations gives contributions
that are similarly decomposed into

σPH
a:bc = σe-inj

a:bc + σm-inj
a:bc + σshift

a:bc + σgyro
a:bc , (56)

called electric-injection, magnetic-injection, shift, and gyration-current mechanisms (Ahn et al., 2020; von Baltz and
Kraut, 1981; Okumura et al., 2021; Sipe and Shkrebtii, 2000; Watanabe and Yanase, 2021a; Zhang et al., 2019c).
These contributions to the photocurrent conductivity are classified in terms of their definite parity under the T and
PT operations as tabulated in Fig. 10. In contrast to the DC response in Sec. III.C.1, the space-time classification of
photocurrent response is related to the degrees of freedom of irradiating light such as frequency (ω) and polarization
state (linearly-polarized light and circularly-polarized light). 4

FIG. 10 Classification of the intrinsic photocurrent mechanism in terms of the space-time symmetry (allowed in the T -
symmetric or PT -symmetric systems) and the polarization state of the incident light (linearly-polarized or circularly-polarized
light). The mechanisms with the superscript “∗” denote those allowed in metals. Each mechanism has been identified in a (von
Baltz and Kraut, 1981), b (Moore and Orenstein, 2010), c (Sipe and Shkrebtii, 2000), d (de Juan et al., 2020), e (Holder et al.,
2020), f (Zhang et al., 2019c), g (Watanabe and Yanase, 2021a), h (Ahn et al., 2020; Watanabe and Yanase, 2021a).

4 More accurately, the photocurrent responds to linearly polarized, circularly polarized, and unpolarized light. The mechanism for the
unpolarized-light-induced photocurrent response is the same as that for the linearly-polarized light, while it contributes even under the
circularly-polarized light since the unpolarized-light contribution originates from |E|2. Then, the circular contribution is obtained by
taking the difference in the responses to the light with opposite circular polarizations.
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Let us write down the explicit formulas for each contribution. The Fermi-surface effects are formulated as

σD
a;bc = − e3

2ω2

∫
dk

(2π)d

∑
p

vapp
∂2f(εkp)

∂kb∂kc
, (57)

σBCD
a;bc = − ie

3

2ω
(ϵabdDcd − ϵacdDbd) , (58)

σiFS
a;bc = −e

3

2

∫
dk

(2π)d

∑
p ̸=q

ξbpqξ
c
qp

1

ω + εkq − εkp
∂ka {f(εkp) − f(εkq)} , (59)

all of which consist of the Fermi-surface effect ∂εf(ε) and vanish without any gapless quasiparticle excitations. In
particular, the nonlinear Drude and Berry curvature dipole effects resemble the contributions to the nonreciprocal
conductivity of Eqs. (42), (45) and are therefore allowed in the presence of the magnetic and electric parity violations,
respectively (see also Table III). Under the nearly-static electric field, the formulas for dc and ac nonreciprocal current
generation are given in a unified manner by properly taking into account the scattering effect (Du et al., 2019).

The intrinsic Fermi-surface effect is further divided into

σiFS
a;bc = σe-iFS

a;bc + σm-iFS
a;bc , (60)

that include the Berry curvature and quantum metric as

σe-iFS
a;bc = − ie

3

2

∫
dk

(2π)d

∑
p ̸=q

Ωbc
pq

ω

ω2 − (εkq − εkp)
2 ∂ka

f(εkp), (61)

σm-iFS
a;bc = −e3

∫
dk

(2π)d

∑
p ̸=q

gbcpq
εkp − εkq

ω2 − (εkq − εkp)
2 ∂kaf(εkp), (62)

where Ωbc
pq = −2Im

(
ξbpqξ

c
qp

)
is the band-resolved Berry curvature which leads to the Berry curvature by summing

over one of the band indices as Ωa
p =

∑
q ϵabcΩ

bc
pq/2. Since the band-resolved Berry curvature determines the helicity-

dependent dipole excitations at k under the circularly-polarized light. This term is finite in the system with the electric
parity violation because the opposite sign in Fermi-surface deviations at ±k multiplied with the staggered Berry
curvature Ωbc

pq(k) = −Ωbc
pq(−k) gives nonvanishing contribution. Thus, it is called the electric intrinsic Fermi-surface

(e-iFS) effect. Contrastingly, the band-resolved quantum metric related to the linearly-polarized-light excitation does
show the same sign between gbcpq(±k) of Eq. (62) leading to the perfect compensation.

One can see the opposite situation in the case of the PT -symmetric system. The electric intrinsic Fermi-surface
effect is forbidden since the retained PT symmetry leads to the zero Berry curvature. Instead, Eq. (62) including
the band-resolved quantum metric offers finite photocurrent response, since the asymmetric electronic band structure
of the PT -symmetric system [Fig. 7(d)] allows for the uncompensated contribution. Thus, Eq. (62) is the magnetic
counterpart of Eq. (61), named the magnetic intrinsic Fermi-surface (m-iFS) effect. As a result, the quantum-
geometrical factors lead to the contrasting mechanism for photocurrent generation originating from the characteristic
electronic structure purely showing the electric or magnetic parity violation.

The photocurrent conductivity arising from the mechanism based on particle-hole excitations is written by

σe-inj
a;bc = lim

τ→+∞

iπe3τ

2

∫
dk

(2π)d

∑
p ̸=q

(
vapp − vaqq

)
Ωbc

pqIpq(ω), (63)

σm-inj
a;bc = lim

τ→+∞
πe3τ

∫
dk

(2π)d

∑
p ̸=q

(
vapp − vaqq

)
gbcpqIpq(ω), (64)

σshift
a;bc = −πe

3

2

∫
dk

(2π)d

∑
p ̸=q

Im
([
Dka

ξb
]
pq
ξcqp + [Dka

ξc]pq ξ
b
qp

)
Ipq(ω), (65)

σgyro
a;bc =

iπe3

2

∫
dk

(2π)d

∑
p ̸=q

Re
([
Dka

ξb
]
pq
ξcqp − [Dka

ξc]pq ξ
b
qp

)
Ipq(ω). (66)

All the formulas include the factor representing the particle-hole excitations

Ipq(ω) = {f(εkp) − f(εkq)} δ(ω + εkq − εkp). (67)
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Note that the diverging behavior due to τ in Eqs. (63) and (64) is bounded by scattering effects (de Juan et al.,
2017). Dka denotes the derivative covariant under the gauge transformation by which different energy eigenstates are
not admixed with each other. For instance, in the case of the U(1) gauge associated with the non-degenerate energy
spectrum, the covariant derivative is defined by

[Dka
O]pq = ∂ka

Opq − i
(
ξapp − ξaqq

)
Opq, (68)

where the additional terms including the intraband Berry connection ξapp make [Dka
O]pq gauge covariant as

[Dka
O]pq → eiϕp [Dka

O]pq e
−iϕq , (69)

under the gauge transformation |ukp⟩ → |ukp⟩ exp (−iϕp).
Recalling that the absorptive part (‘antisymmetric’ in Table I) in the resonant optical conductivity is

Reσab(ω) ∼
∫

dk

(2π)d

∑
p ̸=q

ξapqξ
b
qpIpq(ω), (70)

the photocurrent response described by σPH
a;bc can be explained by two steps; irradiating light excites particle-hole

pairs similarly to the linear optical response, and the created particle and hole are rectified along opposite directions
by ‘director’ determined by the microscopic parity-violating property. For instance, the director is the group-velocity
difference in bands vapp − vaqq for the injection current mechanism.

The shift- and gyration-current mechanisms similarly consist of the director. When we do not consider the degen-
eracy of band energy at each momentum k for simplicity, the two formulas are recast as

σshift
a;bb = πe3

∫
dk

(2π)d

∑
p ̸=q

Ra
pq;bg

bb
pqIpq(ω), (71)

σgyro
a;xy = iπe3

∫
dk

(2π)d

∑
p ̸=q

(
Ra

pq;+

∣∣ξ+pq∣∣2 −Ra
pq;−

∣∣ξ−pq∣∣2) Ipq(ω), (72)

where we consider b = c for the shift current and (b, c) = (x, y) for the gyration current without loss of generality
because the photocurrents of each effect respond to the linearly-polarized and circularly-polarized lights, respectively.
For the gyration-current mechanism, the circularly polarized light is incident along the z direction by which the
photo-electric field is in the xy plane. The directors are given by the linear shift vector

Ra
pq;b = −∂ka

arg ξbpq + ξapp − ξaqq, (73)

for the shift current mechanism (von Baltz and Kraut, 1981) and the circular shift vector

Ra
pq;± = −∂ka

arg ξ±pq + ξapp − ξaqq, (74)

for the gyration current mechanism (Watanabe and Yanase, 2021a) with the circular Berry connections ξ±pq =(
ξxpq ± iξypq

)
/
√

2. Since the intraband Berry connection ξapp roughly represents the position of the wave packet with
(k, p), the shift vectors of Eqs. (73) (74) correspond to the wave-packet positional shift along the xa direction during
the dipole transition p↔ q (Fregoso et al., 2017; Morimoto and Nagaosa, 2016b) [Fig. 11(a)]. As a result, the direc-
tors of the shift- and gyration-current mechanisms are interpreted based on the real-space picture, while those of the
injection current mechanism are based on the momentum-space picture.

As in the case of the intrinsic Fermi-surface effects, Eqs. (63) and (64) are respectively allowed by the electric and
magnetic parity violations due to the relevant quantum-geometrical quantities. The T -even but PT -odd nature of
the linear shift vector indicates that the shift current effect is unique to the T -symmetric materials, while the case
is opposite for the gyration current characteristic of the PT -symmetric materials. Note that the shift and gyration
current effects can also be explained by the quantum-geometrical quantities defined in the two-band model, that is,
the Christoffel symbols which can be halved into the T - and PT -symmetric parts (Ahn et al., 2020). Notably, the
photocurrent response is similarly induced by the orbital order. For instance, photocurrent generation due to the
orbital-current order has been predicted (Artamonov et al., 1992; Watanabe and Yanase, 2021b) and expected to give
implications for the wide range of exotic quantum phases (Murayama et al., 2021).

So far, we have explained the photocurrent mechanism derived within the independent particle approximation.
It may be desirable to develop more elaborate treatments for quantitative estimations; e.g., disorder-scattering and
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electron-correlation effects. For instance, the photocurrent performance of the electric and magnetic injection effects
suffer from hard degradation because the response decreases in inversely proportional to the increasing scattering rate
γ ∼ τ−1 of Eqs. (63) and (64).

The disorder scattering modifies the shift mechanism written by Eqs. (71) and (72). However, although the scat-
tering may smear out the resonant condition represented by δ(ℏω + εkq − εkp) in Eq. (67), the shift mechanism is
expected to show strong tolerance for the disorder effects. Supporting this argument, in Ref. (Hatada et al., 2020), the
robustness against the disorder concentration has been successfully observed in doped polar semiconductors, in which
the shift-current response undergoes negligible degradation despite the high doping level as much as that allowing
for sizable electric conductivity. Theoretical studies of the shift-current mechanism are in agreement with the exper-
imental results as the response does not significantly change unless the disorders smear out the multiband property
relevant to optical excitations (Ishizuka and Nagaosa, 2021; Morimoto and Nagaosa, 2016b) [Fig. 11(b)].

The gyration current similarly leads to disorder-tolerant photocurrent response to the circularly-polarized light
because of its similarity to the shift current [Eq. (72) and Fig. 11(a)]. Although there exists no experimental demon-
stration of the disorder-concentration dependence of the gyration current, it may be feasible by the systematic
study of doped magnetic semiconductors such as Mn-based PT -symmetric magnets (BaMn2Pn2, SrMn2Pn2, and
so on) (Watanabe and Yanase, 2018a). It is noteworthy that the ultrafast spectroscopy is informative in identifying
the shift mechanism of the gyration-current response as evidenced in Ref. (Sotome et al., 2019a,b) reporting that
the photocurrent generation is distinguished from the polarization current (Bass et al., 1962) by its temporal form
[Fig. 11(c)].

FIG. 11 (a) Gyration mechanism for the photocurrent generation. Irradiating circularly-polarized light causes the shift of
wave packets (orange-colored) resulting in the photocurrent. (b) Disorder-tolerant property of the shift-current response in a
nonmagnetic polar semiconductor SbSI. A: Temperature dependence of the DC electric (dark sheet) conductivity for a series of

samples. Plots are log σdark
sheet with respect to T−1/4 and show the linear relation indicating the variable-range hopping transport.

B: Temperature dependence of the photocurrent response of the samples. C: Relation between the DC electric conductivity
and the shift current with varying samples and temperature. Over a wide range of the DC electric conductivity related to the
disorder concentration, the photocurrent attributed to the shift current does show negligible changes in magnitude. (c) Time-
resolved measurement of the current density of SbSI. A: Schematic temporal profile of nonlinear polarization (P ), transient
current (J), and emitted electric field (Eemit). The signal Eemit is modified into Eobs by the corrections taking into account
the experimental details. The electric current stemming from the polarization current (in-gap) manifests the sinusoidal shape
(panel for transient current), while the shift current does the asymmetric shape by which finite DC current is generated. B:
Temporal profile of the shift and polarization currents corresponding to Eobs. The experimental results plotted by triangles
and dots are fitted by the solid curves. The figure (b) from (Hatada et al., 2020) (© National Academy of Sciences) and (c)
from (Sotome et al., 2019a) (© AIP Publishing).

Lastly, let us comment on the disorder effect on the Fermi-surface effects [Eq. (55)] which is non-negligible, partic-
ularly in the case the low-frequency light irradiation such as terahertz light. The significant contributions have been
observed by detailed studies of frequency dependence of the photocurrent generation (Hild et al., 2023; Olbrich et al.,
2014) where extrinsic scattering effects play a key role, while the resonant contributions are dominant in the frequency
range of visible light (Matsubara et al., 2022; Plank et al., 2018). The extrinsic mechanism for the photocurrent gen-
eration has been formulated in the framework of the semiclassical theory. The formulas give unified descriptions for
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the nonreciprocal conductivity and photocurrent generation. Let us exemplify it by considering the Berry curvature
dipole effect given by

σa;bc(ω) = −e
3

4

∫
dk

(2π)d

∑
p

(
τ

1 + iωτ
ϵacdΩd

p∂kb
fp +

τ

1 − iωτ
ϵabdΩd

p∂kc
fp

)
, (75)

in which Reσa;bc converges to Eq. (45) in the dc limit (ω → 0), and Imσa;bc reproduces Eq. (58) in the optical limit
ωτ ≫ 1 (Du et al., 2019; Sodemann and Fu, 2015). Because the extrinsic mechanism can contribute to the photocurrent
generation (Belinicher et al., 1982; Du et al., 2019; Isobe et al., 2020; Ma et al., 2023a), the skew scattering and side
jump effects should be taken into account when we discuss the low-frequency photocurrent response.

The semiclassical treatments may be reasonable for the nonlinear Drude effect [Eq. (57)] and the Berry-curvature-
dipole effect of Eq. (75), whereas one has to carefully consider disorder effects on the intrinsic Fermi-surface effects
[Eq. (59)]. Previous theoretical studies have corroborated the possibility of observing the photocurrent response to
the light in the in-gap frequency regime, which is related to the intrinsic Fermi-surface effects (Belinicher et al., 1986).
More rigorous considerations of the impurity scattering have recently concluded that the in-gap photocurrent is absent
in a steady state, while there exists transient photocurrent (Onishi et al., 2022; Pershoguba and Yakovenko, 2022;
Taguchi et al., 2016). The absence of such off-resonant photocurrent generation may be circumvented by including
the coupling to the bath and the phonon (Golub and Glazov, 2022; Matsyshyn et al., 2023; Shi et al., 2023)

IV. Availability of PT -symmetric Magnets and Physical Properties

A. Switching the compensated magnets

In general, the antiferromagnetic state is hard to observe because of the zero magnetization, as is evident from the
fact that the antiferromagnetism was microscopically identified centuries after the discovery of ferromagnet (Shull and
Samuel Smart, 1949). The difficulty in manipulation is partly because there is no universal macroscopic field coupled
to the antiferromagnetic state in contrast to known controllable order parameters of ferromagnetic and ferroelectric
states. It is, however, not the case for a series of antiferromagnetic where magnetic anisotropy and crystal structure
play a key role.

For instance, if the antiferromagnetic order shows the multi-axial magnetic symmetry, the stimuli for the switching
ferromagnetic order may control the antiferromagnetic order as well (Jungwirth et al., 2016). Let us consider the
biaxial antiferromagnets where the Néel vector orientation favors either of the x or y direction. The Néel vector
directed along the x axis can be switched into the y-axis by the external magnetic field along the x axis since it is
energetically favorable for the staggered magnetic moments to be perpendicular to the magnetic fields as in the case
of the spin-flop transition. This spin-flop-like mechanism has been applied to the biaxial antiferromagnet IrMn (Marti
et al., 2014). Similar manipulation of antiferromagnetic order is feasible by making use of the external fields having
the same symmetry as the magnetic field such as spin-polarized electric current and pure spin current (Gomonay and
Loktev, 2010; Moriyama et al., 2018; Reichlová et al., 2015). The written antiferromagnetic state can be detected in
the anisotropic magnetoresistance by which the x- or y-collinear antiferromagnetic states manifest different electric
resistivity typically as much as a few percent (Shick et al., 2010). The difference in the magnetoresistance may be
improved significantly with a tunneling junction (Park et al., 2011).

The spin-flop-like switching of antiferromagnetic order can be applied to various materials showing multi-axial
magnetoanisotropy such as Fe2O3 and NiO, but it does not allow us to distinguish the direction of the Néel vector,
L and −L. Similarly, the anisotropic magnetoresistance depends on the antiferromagnetic order in the even-order of
its order parameter as δρ(L

¯
) ∝ ||L||.

Being in high contrast to partially switchable antiferromagnetic materials, another series of magnets have properties
favorable for spintronic applications. The key is the sublattice degree of freedom with which the antiferromagnetic
order can be characterized by the ferroic ordering of even- and odd-parity magnetic multipole moments as discussed
in Sec. II.C. For the case of even-parity magnetic multipole order, one may identify high controllability of antifer-
romagnetic order by using the external magnetic field, piezomagnetic property, and electric current (Šmejkal et al.,
2022). We do not present detailed discussions of antiferromagnets characterized by the even-parity multipolar order
by leaving them to other literature such as Ref. (Han et al., 2023; Nakatsuji and Arita, 2022). In the following, we
review the availability of the odd-parity magnetic multipolar class including PT -symmetric magnets.

The scheme of switching PT -symmetric magnets differs between the insulators and metals in which we can make
use of the magnetoelectric effect and antiferromagnetic Edelstein effect, respectively. For the former case, the antifer-
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romagnetic domain state may be distinguished by the magnetoelectric free energy

FME = −αabEaHb, (76)

where the coefficient αab depends on the polarization state of the PT -symmetric magnets as it changes the sign
(αab → −αab) when the magnetic moments are flipped. By applying both the magnetic and electric fields to be aligned
with the symmetry of the allowed magnetoelectric components in αab, the antiferromagnetic state can be manipulated
in the deterministic manner distinguishing the sign of the Néel vector. The scheme is applied to the magnetoelectric
annealing (Borisov et al., 2005) and has served the successful observation of switching of the antiferromagnetic
order (Van Aken et al., 2007). Note that the magnetoelectric energy is typically small and hence manipulation
requires the system with good insulating properties to apply the large electric bias.

The different mechanism is available for the switching of the PT -symmetric magnetic metals. Although the good
metallic properties may be unfavorable in the context of magnetoelectric switching, we can utilize the hidden spin
polarization coupled to the electrons’ momentum instead. The locally-noncentrosymmetric crystal, a key to PT -
symmetric magnetic order, manifests the locking between spin, sublattice, and momentum even in the paramagnetic
state as introduced in Sec. II.B. This intriguing locking gives rise to the transport phenomenon written by

δmp
a = χp

abJb, (77)

with the spin magnetization response mp to the electric current at the p-th sublattice (Yanase, 2014; Železný et al.,
2014). Owing to the locally-noncentrosymmetric symmetry, the response function obeys the relation χp

ab = −χq
ab where

the sites (p, q) are interchanged under the P operation. As a result, the response denotes the correlation between
the electric current and antiferromagnetic spin polarization, because the induced spin polarization is compensated
in total (

∑
p δm

p = 0). By analogy with the Edelstein effect (magnetization response to electric current, inverse
magnetogalvanic effect) (Edelstein, 1990; Levitov et al., 1985), it is called antiferromagnetic Edelstein effect (Watanabe
and Yanase, 2017).

FIG. 12 (a) Bilayer system. The green and purple layers are interchanged under the parity operation. (b) Fermi surface
(orange-colored circle) and its hidden spin-momentum locking. The momentum-resolved spin polarization is depicted by green
and purple arrows for the upper and lower layers of (a). Owing to the locally polar symmetry of the bilayer system, the
hidden spin polarization shows the Rashba-type distribution. (c) Sketch for the antiferromagnetic Edelstein effect. Under
the electric-current flow (orange arrow), the imbalanced distribution of the momentum-resolved spin polarization leads to the
transverse spin polarization in the opposite manner between the layers. (d) Energy spectrum of the bilayer system colored by
the hidden spin polarization with varying the tunneling hopping parameter t. The yellow-colored shade indicates the range of
chemical potential in which only the lower band is occupied.

The microscopic grounds for the antiferromagnetic Edelstein effect have been established similarly to the (ferromag-
netic) Edelstein effect. Let us illustrate the mechanism in the framework of the semiclassical theory (Železný et al.,
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2014). Note that we here assume the paramagnetic state of a locally-noncentrosymmetric crystal since the mechanism
does not require the antiferromagnetic order. As in Eq. (34), the electric current induces the Fermi-surface shift in
metals as

δf(εk) ∼ τE · ∇kf(εk) = τσ−1J · ∇kf(εk) = τσ−1J · ∇kεk∂εf(ε)|ε=εk , (78)

in which τ denotes the phenomenological relaxation time and σ is the longitudinal conductivity. In agreement with
the form of current-induced response in Eq. (77), the relaxation-time dependence is canceled out as τσ−1 ∝ τ0 by
taking the current as the external stimulus. Owing to the staggered deviation at ±k [δf(εk) = −δf(ε−k)] in the
paramagnetic state, the local magnetization is not compensated after the summation over the momentum [Fig. 12(c)]
as

δmp
a ∼

∫
dkσp

a(k)δf(εk) ̸= 0, (79)

different from that in equilibrium where the hidden spin polarization at each crystal momentum σp
a(k) vanishes in

total due to the degeneracy between the opposite momentums (mp = 0 for every sublattice) [Fig. 12(b)]. Notably, the
antiferroic magnetization occurs only in the presence of the metallic conductivity as is inferred by the Fermi-surface
term ∇kf(εk), being contrasting to the magnetoelectric effect.

We note that the structure of hidden spin polarization is determined by the local site symmetry of sites (Železný
et al., 2017a). When the locally-noncentrosymmetric crystal structure consists of the two sublattices, the symmetry
of χp

ab in Eq. (77) is identified by the sublattice-dependent antisymmetric spin-orbit coupling of Eq. (12) such as
χp
yx = −χp

xy for the bilayer system [Eq. (9)] and χp
xz for the zigzag chain [Eq. (13)]. In the terminology of crystallog-

raphy, the antiferromagnetic Edelstein effect occurs due to the gyrotropic site symmetry of each sublattice since the
gyrotropy ensures the linear coupling between the momentum k and spin polarization σ. Vanishing antiferromagnetic
Edelstein effect (χp

ab = 0) of the honeycomb net follows from the non-gyrotropic site symmetry offering the hidden
spin polarization given by Eq. (14).

To obtain a significant response, it is desirable to maximize the hidden spin polarization on the Fermi surface.
For instance, special crystal symmetry such as the nonsymmorphic symmetry suppresses the inter-sublattice hopping
which smears out the sublattice-dependent spin-momentum locking (see also Sec. II.B). On the other hand, small
inter-sublattice hopping may contribute to enhancing the hidden spin polarization with the fine-tuning of material
parameters. For the Hamiltonian for the bilayer system [Eq. (8)], the hidden spin polarization is sizable but undergoes
the partial compensation between contributions from the inner and outer Fermi surfaces in the absence of the tunneling
hopping (t = 0). As depicted in the left panel of Fig. 12(d), the energy spectrum is singly occupied only in a narrow
chemical-potential range. Such a favorable parameter range can be broadened by including moderate tunneling
hopping. As in the plot with t = αR/3 of Fig. 12(d), one can obtain the single Fermi surface with a non-negligible
hidden spin polarization over a wider range of chemical potential. Note that the hidden spin polarization gets weak
if t is much larger than the spin-orbit coupling (right panel of Fig. 12(d)). It has been shown in Ref. (Yanase, 2014)
that the antiferromagnetic Edelstein effect is significant when the chemical potential is placed in the range where
the single Fermi surface appears. The spin-current generation stemming from the antiferromagnetic Edelstein effect
similarly undergoes enhancement (Suzuki et al., 2023).

When the induced antiferroic magnetization {δmp} has the same symmetry as that of the equilibrium spin con-
figuration, it can directly act on the PT -symmetric magnetic order as the so-called Néel spin-orbit torque (Železný
et al., 2014). As the symmetry of the response is determined by the locally-noncentrosymmetric crystal structure,
the induced spin torque is field-like; the favorable antiferroic spin polarization depends not on the antiferromagnetic
state but on the direction of applied current (Manchon et al., 2019). The field-like nature allows for deterministic
current-induced switching without any auxiliary fields.

Following the theoretical predictions, the switching of antiferromagnetic states has been experimentally demon-
strated by PT -symmetric magnetic metals such as CuMnAs (Olejńık et al., 2017; Wadley et al., 2016, 2018) [Fig. 13(a)]
and Mn2Au (Bodnar et al., 2018). The domain state written by the large pulsive electric current has been monitored
by the anisotropic magnetoresistance related to the biaxial magnetoanisotropy. Both of CuMnAs and Mn2Au show
the biaxial in-plane magnetoanisotropy by which the Néel vector is favorably directed along the x and y axes. It
follows that there are four possible domain states written by the Néel vector L as L ∥ ±x̂, ± ŷ [Fig. 13(b)]. These
magnetic materials show the locally polar symmetry as in the case of the bilayer system [Eq. (9)] (Barthem et al.,
2013; Wadley et al., 2015), and the large electric current drives the Néel vector to be perpendicular to the applied
direction as the current J ∥ x̂ leads to L ∥ ŷ.

The domain state of biaxial antiferromagnets can be detected if there is appreciable anisotropic magnetoresistance
in antiferromagnetic metals whose electronic structure may undergo significant modification by the magnetic or-
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FIG. 13 (a) Crystal and magnetic structures of tetragonal CuMnAs (Wadley et al., 2015). Owing to the biaxial in-plane
magnetoanisotropy, the Néel vector points to the favorable directions, that is x and y axes. (b) Four domain states (A, B, C,
D) of the PT -symmetric magnetic order of CuMnAs (upper panel). In the lower panel, the four colored arrows denote the
electric current driving the system to each domain state; e.g., Jp ∥ +ŷ for the domain state A. (c) Geometry of measurements
for the linear [(d)] and second-order nonlinear conductivity [(e)] of CuMnAs. (d) Anisotropic magnetoresistance of CuMnAs
during the current-induced switching of antiferromagnetic domains. The domain state is marked by the colors depicted in
the lower panel of (b). The signals distinguish the domain states with different Néel-vector orientations such as the A and C
domain states but do not distinguish those with the same orientations as A and B. (e) Nonreciprocal Hall response during the
current-induced switching. The domain states (A, B) with the opposite Néel vectors are distinguished, while there is no signal
for the domain states C and D due to the symmetry constraint. A part of the panel (b) and panels (c,d,e) are taken from
(Godinho et al., 2018).

der (Elmers et al., 2020). The signal is quantified by the Néel-vector dependent part of the electric resistance δρab(L).
In the case of CuMnAs, one can find the difference in δρab(L) as

δρxx(L ∥ x̂) ̸= δρxx(L ∥ ŷ), (80)

by which the antiferromagnetic state is monitored [Fig. 13(d)]. The order-induced anisotropy in the electronic property
has been similarly probed via optical measurements (Grigorev et al., 2021; Grzybowski et al., 2017; Saidl et al., 2017;
Sapozhnik et al., 2018; Wadley et al., 2018).

The readout based on anisotropic magnetoresistance may not be direct evidence for the perfect switching because
the anisotropic magnetoresistance does not distinguish all the possible domain states completely; i.e., the magne-
toresistance is equivalent between the domain states interchanged by the P operation, for example, δρxx(L ∥ +x̂) =
δρab(L ∥ −x̂). In addition, one may take account of thermal effects implying that observed signals are possibly
attributed to the nonequilibrium state not to the domain state in equilibrium (Cheng et al., 2020; Chiang et al., 2019;
Churikova et al., 2020; Surýnek et al., 2020; Zhang et al., 2019b). In contrast to the readout by the anisotropic magne-
toresistance, the polarity can be identified by the nonreciprocal conductivity which is sensitive to the magnetic parity
violation (see also Sec. III.C.1). The observed change in the odd-parity nonreciprocal response indicates the perfect
switching of the PT -symmetric magnetic order (Godinho et al., 2018) [Fig. 13(e)], where the domain states with the
opposite Néel vectors have been separately detected by the nonlinear Hall conductivity with the antisymmetry

σx;yy(L ∥ +ŷ) = −σx;yy(L ∥ −ŷ). (81)

Here, the Néel-vector dependence of the nonreciprocal conductivity is explicitly denoted as in Eq. (80). Note that
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σx;yy(L ∥ ±x̂) = 0 while σy;xx(L ∥ ±x̂) ̸= 0. Similarly, the PT -symmetric magnetic state can be distinguished
unambiguously by odd-parity physical phenomena introduced in preceding sections such as the magnetopiezoelectric
effect, photocurrent response, and so on (Song et al., 2021; Zhang et al., 2019c).

The scheme for perfect switching based on the antiferromagnetic Edelstein effect has been proposed in several
candidate materials and has been subsequently generalized to identify the switchability of PT -symmetric magnets in
a group-theoretical framework (Watanabe and Yanase, 2018b). Among a lot of candidate materials for PT -symmetric
magnetic states, a class of the magnetic states, that is the magnetic toroidal state (Fig. 6), enables the current-induced
manipulation. Similarly to the nonmagnetic and noncentrosymmetric materials possessing the electric parity violation,
PT -symmetric magnets are classified into the polar and nonpolar classes concerning the unitary symmetry including
no T operation. For instance, the PT -symmetric magnetic states of CuMnAs and Mn2Au show the polar symmetry in
the unitary part of their magnetic point group (2mm), while that of BaMn2As2 is noncentrosymmetric but nonpolar
(4̄2m) [Eq. (32)]. As a result, the former can be manipulated by the electric current, whereas the latter cannot be done.
Note that the criterion based on the toroidal degree of freedom applies to general cases including PT -violating and
noncentrosymmetric magnets. The presence of the magnetic toroidal moment ensures the feasibility of current-induced
switching (see also Appendix A). This criterion is also generalized to cover the switchability of nonpolar magnets with
the help of strain (Watanabe and Yanase, 2018b) such as demonstrated in ferromagnetic semiconductor (Chernyshov
et al., 2009).

B. Control of electronic property with PT -symmetric magnetic order

The proof-of-concept experiment of electrical control of antiferromagnets paved the way for intensive investigations
of its reading-writing scheme. It is anticipated that one can realize unprecedented designing of physical properties
if the PT -symmetric magnetic order is under our control. For instance, since the topologically-nontrivial electrons
are hosted on the antiferromagnetic conductors (Tang et al., 2016), strong modulation of the electronic bands may
be feasible through current-aided manipulation (Šmejkal et al., 2017) and by the spin-flop transition (Masuda et al.,
2016).

Furthermore, owing to the PT -symmetric but P-violating symmetry, the symmetry and its characteristic responses
can be tuned in a nontrivial manner. As tabulated in Fig. 2, the PT symmetry forbids uniform electric and magnetic
polarizations and thereby keeps the spin degeneracy intact at each crystal momentum. Since the degenerate states show
the intimate coupling between the spin and sublattice degree of freedom, the spin-momentum-sublattice locking can
exert unique transport phenomena like the layer Hall effect (Gao et al., 2021) where the anomalous Hall response occurs
in the staggered way between the twined layers. The degeneracy is easily lifted by the external fields violating the
PT symmetry such as the external magnetic and electric fields. The available elimination of PT -ensured degeneracy
implies that one can manipulate the physical phenomena arising from the ferroelectric and ferromagnetic order.
For instance, it has been shown that the electric-field effect gives rise to the uniform Berry curvature and associated
magnetooptical and magnetogalvanic effects in layered materials such as CrI3 (Huang et al., 2018; Jiang et al., 2018a,b)
and even-layer MnBi2Te4 (Du et al., 2020).

Similarly, the external magnetic field leads to the physical phenomena originating from the PT -symmetry violation.
For instance, induced small canting of antiferromagnetic moments leads to sizable anomalous Hall response which
is called chiral Hall effect (Lux et al., 2020). This sizable response is in contrast to the typical case of canted
antiferromagnets where the anomalous Hall response may not be significant when the induced magnetization is small.
Intriguingly, the spin-momentum texture experiences the magnetic-field-induced correction that is entirely different
from the typical case. To corroborate the induced spin-momentum structure, let us consider the bilayer system
undergoing the layer-dependent spin polarization. The obtained PT -symmetric antiferromagnetic state can be found
in layered magnetic materials. When the magnetic field is in the out-of-plane direction, the combination of the
PT -symmetric magnetic order and external field results in lifting the spin-layer-coupled degeneracy at every crystal
momentum and thereby in the Rashba-type spin-momentum locking.

The resultant Rashba spin-orbit coupling stems from the purely magnetic modification of electronic structure
and does not require the noncentrosymmetric crystal structure, being in sharp contrast to the known cases of spin-
momentum locking such as those found in nonmagnetic polar crystals. Thus, such magnetically-induced antisymmetric
spin-orbit coupling is dubbed with magnetic antisymmetric spin-orbit coupling (magnetic ASOC) (Watanabe and
Yanase, 2020). Let us exemplify the magnetic ASOC by taking the model Hamiltonian for the bilayer system [Eq. (8)].
We further add the antiferromagnetic molecular field and Zeeman field written by

Hmag =
∑
ρz=±

− (h + Lρz) · σ, (82)
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FIG. 14 Sketch for the mechanism of magnetic ASOC in the bilayer antiferromagnet. (a) Energy spectrum εk with the zero
interlayer tunneling t = 0. Energy bands in the antiferromagnetic phase with a finite molecular field are shown by solid lines
while those in the nonmagnetic phase are by dashed lines. The magnetic structure is in-plane ferromagnetic and interlayer
antiferromagnetic as depicted in the inset. Lower panels indicate the spin-momentum texture on the Fermi surface for L ̸= 0
parametrized by the chemical potential µ (red arrows denote the spin polarization at each momentum). The Fermi surface,
being doubly degenerate due to the PT symmetry, is decomposed into those in the upper (ρz = +1) and lower layers (ρz = −1).
(b) Energy spectrum obtained by adding the out-of-plane Zeeman field h. Solid lines in blue (red) show the energy of electrons
on the upper (lower) layers. Dashed lines are equivalent to the solid lines in (a) with h = 0. The degenerate Fermi surface is
split into two showing the opposite helical spin texture with different out-of-plane polarization as depicted in the lower panel,
where the spin-momentum structure on each Fermi surface is illustrated.

with L ∥ ẑ. Note that σ and ρ are Pauli matrices for the spin and layer degrees of freedom, respectively. In the
case of zero tunneling hopping (t = 0), the momentum-resolved spin polarization quantifying the magnetic ASOC is
analytically obtained as

⟨σ⟩ (k, ρz) =
G

||G||
, G = −αRĝkρz + h + Lρz, (83)

for the lower-energy eigenstates of the upper (ρz = +1) and lower (ρz = −1) layers. The hidden Rashba spin-orbit
coupling is given with the vector ĝk = (ky,−kx, 0). The two lower energy spectrums are originally degenerate due
to the PT symmetry, and their energies are slightly separated by the Zeeman field as much as ∼ |h|. The resultant
difference in Fermi-surface volumes and Fermi wavelengths (k±F ) between the layers gives rise to the uncompensated
Rashba-like spin-momentum texture.

Furthermore, the magnetic ASOC may take a form different from that of the hidden ASOC determined by the
crystal structure in the nonmagnetic phase. For instance, under the in-plane magnetic field such as h ∥ x̂, the
induced magnetic ASOC has the form of kxσz being irrelevant to the existing Rashba spin-orbit coupling hidden
by the layer degree of freedom. The interlayer tunneling hopping t plays an essential role in producing this type of
magnetic ASOC. This is in sharp contrast to the fact that the large inter-subsector hopping weakens the hidden spin
polarization governed by the paramagnetic Hamiltonian.

The magnetic ASOC may offer tunable spin-momentum locking, while the conventional ASOC is usually determined
by the noncentrosymmetric crystal structure whose parity violation is hard to control externally. Considering vast PT -
symmetric magnetic materials (Watanabe and Yanase, 2018a), we can find various types of magnetic ASOC different
from the Rashba ASOC, such as the Dresselhaus-type (Watanabe and Yanase, 2020) and the chiral ones. The concept
of the magnetic ASOC can be comprehensively generalized to magnetically-induced electric parity violations. Then,
combining the PT -symmetric magnet with the external magnetic field, one can obtain the various physical phenomena
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unique to the nonmagnetic and noncentrosymmetric crystals; e.g., piezoelectricity, nonlinear Hall effect arising from
the Berry curvature dipole (Watanabe and Yanase, 2020), photogalvanic effects for charge and spin current (Merte
et al., 2023), and so on. The emergence of the Berry curvature dipole is identified by the discussions parallel to those
of the magnetic ASOC because the spin and momentum-space Berry curvature have the same space-time symmetry
(P-even and T -odd). The magnetically-tunable responses discussed above can be systematically identified with the
help of magnetic symmetry analysis (Erb and Hlinka, 2020; Watanabe and Yanase, 2020; Yatsushiro et al., 2022) and
are expected to be a key to rich spintronic phenomena based on antiferromagnetic materials.

V. Parity-violating Superconducting Responses

In the preceding sections, we overviewed the physical phenomena induced by the magnetic parity violation. Various
emergent responses and itinerant properties originate from the electronic structure unique to the parity violation.
Similarly, such intriguing electronic structures have a significant influence on the quantum phases emerging in metals
such as superconductivity. Noncentrosymmetric superconductors, superconductors with the lack of the P symmetry,
have been intensively studied in light of the strong spin-orbit coupling as found in heavy fermion and van der Waals
materials (Bauer and (eds.), 2012; Ideue and Iwasa, 2021). Those studies mainly worked on modifications of the basic
superconducting properties such as critical magnetic fields and pairing states. This section is devoted to discussions
of physical phenomena unique to the parity violation in superconductors.

Let us consider candidates for the noncentrosymmetric superconductors other than known materials crystalizing in
the noncentrosymmetric structure. The parity violation can be invoked in the following three ways; (1) parity-violating
order concurrently existing with the superconductivity, (2) the supercurrent injection, and (3) multiple superconduct-
ing transitions where the P parity is different between those superconducting pairing potentials (Watanabe et al.,
2022b).

Firstly, the parity violation due to the spontaneous order is ascribed to the nonmagnetic and magnetic origins.
Specifically, for the former the ferroelectric- or piezoelectric-like order has been identified to coexist with the super-
conductivity in doped SrTiO3 (Rischau et al., 2017) and heavy-fermion systems (Hu et al., 2017), while for the latter
the odd-parity magnetic multipolar order may be involved in the superconductivity of a locally-noncentrosymmetric
superconductor CeRh2As2 (Kibune et al., 2022; Kitagawa et al., 2022). The order-induced modifications of the elec-
tronic structures may assist the emergence of exotic superconductivity such as the finite-momentum pairing state
in the presence of the magnetic parity violation (Sumita et al., 2017; Sumita and Yanase, 2016). Although similar
interplay between the superconductivity and magnetic parity violation can be realized in the noncentrosymmetric
superconductors under the external magnetic field (Bauer and (eds.), 2012; Dimitrova and Feigel’man, 2003; Kaur
et al., 2005; Smidman et al., 2017; Wakatsuki et al., 2017), the odd-parity magnetic order may offer more significant
modification of the electronic property with the energy scale of the Hund’s coupling, which can be much larger than
the Zeeman coupling, and cause a prominent parity-violating effect on the superconductivity.

Secondly, the parity violation can be built into the superconductor by the supercurrent injection. The superfluidity
allows the current to flow without the Joule heating and thereby realizes the parity-violating phase even in prototypical
s-wave superconductors. Owing to its space-time symmetry, the biased electric current gives rise to the magnetic
parity violation. The resulting finite-momentum superconductivity has been verified in experiments detecting the
optical signals unique to the parity violation (Nakamura et al., 2020; Vaswani et al., 2020; Yang et al., 2019).

Lastly, the superconductivity itself can break the P symmetry. Since the P parity is definite in the conventional
pairing states such as the even-parity s-wave and odd-parity for p-wave superconductivity in centrosymmetric ma-
terials, the parity violation does not happen at the single superconducting transition. Note that the P operation is
effectively retained in the odd-parity superconducting states because the P symmetry is preserved in the form of its
combination with the U(1) gauge transformation. This is a significant difference from the odd-parity multipolar order.
On the other hand, spontaneous symmetry breaking occurs if the system exhibits multiple superconducting transi-
tions. Evidencing such possibility, Ginzburg-Landau analysis of the multiple superconducting transitions showed that
the s+ ip-wave pairing state, an exotic pairing state showing the purely magnetic parity violation, is stable when both
of s- and p-wave superconductivity emerge (Wang and Fu, 2017). Interestingly, the multiband nature in the normal
phase allows for richer properties of magnetically parity-violating superconductivity in the Bogoliubov-quasiparticle
spectrum (Kanasugi and Yanase, 2022; Kitamura et al., 2023). Following the parallel discussion of the electrically-
switchable PT -symmetric magnets, one can identify the possibility of supercurrent-induced switching of the magnet-
ically parity-violating superconductivity, such as between the s ± ip-wave states. When the superconducting order
parameters have the same symmetry as the magnetic toroidal order, it is called anapole superconductivity (Kanasugi
and Yanase, 2022) and allows supercurrent-induced switching. The spontaneously parity-violating superconductivity



33

demands the stringent condition of sizable fluctuations leading to the multiple Cooper instability and thus material
realization requires further studies, while such fluctuations have been implied in a heavy-fermion superconductor (Aoki
et al., 2022; Ishizuka and Yanase, 2021).

The superconductivity-induced symmetry breaking is similarly found in the chiral superconductivity manifesting
the T -symmetry breaking. The chiral superconductivity, however, differs from the parity-violating superconductivity
as it can occur in the single transition labeled by a multi-dimensional irreducible representation (Sigrist, 2005; Sigrist
and Ueda, 1991).

Considering the playgrounds for the parity-violating superconductivity, one may be interested in their character-
istic physical responses. Recently, active experimental and theoretical research has identified various nonreciprocal
responses related to superconductivity. For instance, tremendous interest has been drawn by the recent discoveries
of the nonreciprocal charge transport of superconductors such as nonreciprocal conductivity, superconducting diode
effect, and nonreciprocal Josephson effect (Ideue and Iwasa, 2021; Nadeem et al., 2023; Nagaosa and Yanase, 2024).
Furthermore, the superconducting property shows up in various responses including cross-correlated and optical re-
sponses as follows.

Here, we review the cross-correlated responses in superconductors. Let us consider the free energy in the supercon-
ducting state dependent on external fields (magnetic field H, stress ŝ, and vector potential A)

F = F (H, ŝ,A). (84)

Importantly, the vector potential characterizes the supercurrent injection through the London equation. Taking the
derivative with respect to each field, we obtain the conjugate quantities as

M = − ∂F

∂H
, ε̂ = −∂F

∂ŝ
, J sc = − ∂F

∂A
, (85)

that is, magnetization, strain, and supercurrent. The free energy is transformed as

F (H, ŝ,A) → F (H, ŝ,−A), (86)

under the P operation and

F (H, ŝ,A) → F (−H, ŝ,−A), (87)

under the T operation. Then, corrections to the free energy arising from the parity violation is given by

δFcc = −αabHaAb − βabsaAb, (88)

up to the bilinear form. The coefficient αab is T -even but PT -odd, while the parity of βab is opposite for each
operation. It follows that the cross-correlation αab (βab) is unique to the superconductors with the electric (magnetic)
parity violation. One can obtain the cross-correlated response from the former coupling as

Ma = αabJ
sc
b , (89)

that is the superconducting Edelstein effect (Edelstein, 1995) being in stark contrast to the normal Edelstein (inverse
magnetogalvanic) effect in which the ohmic current leads to the magnetization (Edelstein, 1990; Levitov et al., 1985) 5.
Notably, the magnetization response of Eq. (89) can be significant due to nontrivial contribution from the topological
edge states of nodal superconductors (Ikeda and Yanase, 2020).

For the latter coupling in Eq. (88), one can identify the strain response to the supercurrent

εa = βabJ
sc
b , (90)

called superconducting piezoelectric effect (Chazono et al., 2023, 2022). As in the case of the magnetization-
supercurrent correlation, the superconducting piezoelectric effect is clearly distinguished from the conventional (in-
verse) piezoelectric and magnetopiezoelectric effects in terms of the fields stimulating the strain, since the latter two
effects are involved in the electric field and ohmic current, respectively. One can refer to Eqs. (27) and (30) for

5 Note that the inverse response written by Jsc
b = αabHa does not occur in the DC regime due to the Bloch’s no-go theorem (Ohashi and

Momoi, 1996).
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comparison. Unlike them, superconducting Edelstein and superconducting piezoelectric effects are the responses to
the supercurrent.

We summarize the cross-correlated responses in Fig. 15. To be of interest, it has been shown that the superconduct-
ing piezoelectric effect displays an abrupt change during the crossover between the two superconducting phases in the
Rashba superconductor (Chazono et al., 2022), that is, helical and Fulde-Ferrell states (Dimitrova and Feigel’man,
2003; Kaur et al., 2005). This implies that the cross-correlated response plays a key to identifying the exotic phase
induced by the coupling between superconductivity and magnetic parity violation. Notably, the supercurrent in-
jection in bulk can be replaced with the biased Josephson junction (Kapustin and Radzihovsky, 2022) because the
vector potential plays a role equivalent to the gradient of the superconducting phase due to the minimal coupling.
For instance, the giant superconducting Edelstein effect is possibly realized in the biased Josephson junction, which
could be essential for superconductor-based spintronics. Although the research of superconducting nonreciprocal re-
sponses has advanced significantly as reviewed below and elsewhere (Nadeem et al., 2023; Nagaosa and Yanase, 2024),
cross-correlated responses in superconductors have not been explored experimentally, pointing to the next issue in
superconducting science.

FIG. 15 Classification of the cross-correlated responses. The cross correlation is tabulated for the strain (elastic) and mag-
netization (magnetic) responses to the electrical stimuli, that is electric field E, ohmic electric current J , and supercurrent
Jsc. The responses are colored in blue and yellow depending on the type of parity breaking; the responses shaded in yellow are
induced by the electric parity violation, while those in blue are induced by the magnetic parity violation.

Next, we discuss the nonreciprocal responses in superconductors. The free energy can be expanded to nonlinear
order with respect to the external fields as well. Considering only the effects of vector-potentials, we obtain the
correction up to the cubic components as

δFA = −1

2
ρabAaAb −

1

3
fabcAaAbAc. (91)

The quadratic correction results in the well-known Meissner response, while the cubic coefficient fabc gives P-odd,
T -odd, and PT -even corrections. Then, one arrives at the nonreciprocal response induced by the magnetic parity
violation

1

2
[J sc

a (A) − J sc
a (−A)] = fabcAbAc. (92)

This formula represents the nonreciprocal Meissner effect, by which the supercurrent response differs depending on
the direction of the supercurrent shielding the external magnetic field (Watanabe et al., 2022a). The nonreciprocal
response is determined by the nonreciprocal correction to the superfluid weight fabc, namely, nonreciprocal superfluid
weight. Its relevance to the superfluid weight follows from the relation

fabc = lim
A→0

∂Aa
ρbc. (93)

The nonreciprocal superfluid weight plays a key role in various nonreciprocal responses of superconductors, not only
the nonreciprocal Meissner effect [Eq. (92)], but also the nonreciprocal conductivity (Hoshino et al., 2018) and the
nonreciprocal optical responses (Watanabe et al., 2022b).
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For the nonreciprocal current generation of Eq. (37), let us again consider the photocurrent response as in
Sec. III.C.2. The perturbative calculations are straightforwardly performed if one works on the molecular-field (BCS)
approximation for the superconductivity (Watanabe et al., 2022b; Xu et al., 2019) where the electronic excitation is
attributed to the Bogoliubov quasiparticles. The nonreciprocal optics of superconductors have unique features that
are not found in the normal conducting phase. One is the optical excitation associated with the van Hove singular-
ity in the Bogoliubov spectrum, which gives the peak of the DOS at the gap edge, and another is the anomalous
nonreciprocal optical responses.

To introduce these features, we consider the expression for the photocurrent conductivity in the clean limit. The
formula consists of two contributions

σa;bc(0;ω,−ω) = σreg
a;bc + σano

a;bc. (94)

The first and second terms are conventional and anomalous contributions, respectively. The conventional contribution
(σreg) is given by the expressions similar to those in the normal state [Eq. (54)]; e.g., it originates from the Fermi-
surface excitation and the resonantly-created Bogoliubov quasiparticles (Watanabe et al., 2022b; Xu et al., 2019). The
Fermi-surface contribution may be significant in nodal-gap superconductors such as those manifesting the Bogoliubov
Fermi surface (Agterberg et al., 2017), although it disappears in the full gap superconductors at zero temperatures.
Note that the Berry connection contributing to various nonreciprocal optical responses is defined in the parameter
space described by the vector potential, not by the momentum. This is because the electrons and holes are treated on
equal footing in the framework of the Bogoliubov-de Gennes Hamiltonian and thereby the minimal coupling does not
imply the equivalence between the derivatives with respect to the vector potential (∂A) and to the crystal momentum
(∂k).

Let us consider the resonant optical response of superconductors included in the conventional contribution σreg
a;bc.

An intriguing property of the resonant superconducting optical responses is the optical excitation available after the
formation of the superconducting gap. When the system undergoes the superconducting transition, the superconduct-
ing gap gives rise to the van Hove singularity, which is related to the characteristic behaviors of physical properties.
In terms of the optical response, the energy spectrum of Bogoliubov quasiparticles indicates the optical excitation β
bridging the van Hove singularities as ω ∼ 2|∆| (∆: pair potential) in addition to the high-frequency optical path α′

[Fig. 16(b)]. We note that the path α′ gives the optical response similar to that given by the path α in the normal
state [Fig. 16(a)] if the frequency of light is much higher than the superconducting gap energy. Thus, the optical path
β is unique to the superconducting state, however, it was considered to make no contribution to the optical response
due to the selection rule related to the T symmetry (Schrieffer, 1964).

The absence of optical excitations relevant to the optical path β has been recently revisited in the context of the
superconducting fitness (Ahn and Nagaosa, 2021) quantifying the multiband nature of the pair potential (Fischer, 2013;
Ramires and Sigrist, 2016). The newly-contributing optical path β does not work in prototypical superconductors such
as the conventional s-wave superconductors, whereas it is not the case if one takes into account the strong-coupling
effect, multi-band nature in the normal state, and supercurrent flow (Ahn and Nagaosa, 2021; Bickers et al., 1990;
Jujo, 2022). Consistent with this argument, the peak structure stemming from the van Hove singularity has been
identified in the optical spectrum for the linear (Ahn and Nagaosa, 2021) and second-order optical responses (Tanaka
et al., 2023).

In contrast to the conventional contributions discussed above, the anomalous contribution to the photocurrent
conductivity Eq. (94) is characteristic of the parity-violating superconductors and has no counterpart in the normal
phase. The formula is explicitly given by the two terms both of which are written by the total derivative with respect
to the vector potential as

σano
a;bc = − 1

2ω2
fabc +

1

4ω2

∑
p ̸=q

lim
A→0

∂Aa

[
Jb
pqJ

c
qp

(
1

ω − εp + εq
+

1

εp − εq

)
{f(εp) − f(εq)}

]
, (95)

with the paramagnetic current operator Ĵa and indices (p, q) for the energy eigenstates. We note that the gapful su-
perconductivity is assumed in Eq. (95). It should be noticed that the chain rule between ∂A and ∂k holds in the normal
state, and thereby the anomalous contribution vanishes due to the periodicity in the momentum space (Michishita and
Peters, 2021). The nonreciprocal superfluid weight covers various superconducting properties such as the Meissner
and photocurrent responses, similarly to the (linear) superfluid weight (Ferrell and Glover, 1958).

The anomalous contribution is comprised of the nonreciprocal superfluid density and the second term of Eq. (95).
The latter part is proportional to the vector-potential derivative of the reactive part in the linear optical conductivity

σreg
ab (ω) =

1

iω

∑
p ̸=q

Jb
pqJ

c
qp

(
1

ω − εp + εq
+

1

εp − εq

)
{f(εp) − f(εq)} . (96)
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FIG. 16 Schematics of resonant optical excitations in the normal and superconducting states. (a) Energy spectrum εk in the
normal state of the Rashba model and its optical excitation across the chemical potential µ denoted by α. (b) Energy spectrum
Ek of Bogoliubov quasiparticles in the superconducting state, optical paths (α′, β), and density of states D(E). The energy
spectrum is obtained by introducing the pair potential to the Rashba Hamiltonian in (a). The high-frequency optical excitation
α′ is almost the same as that in the normal state (α), while the optical path β bridging the coherence peaks is unique to the
superconducting state.

Given this expression, the second term in Eq. (95) is called the conductivity derivative. By taking the DC limit, the
conductivity derivative becomes the derivative of the Berry curvature as

i

4ω
lim
A→0

∂Aaσ
reg
bc (ω) =

1

4ω2
lim
A→0

∂Aa

∑
p ̸=q

[
Jb
pqJ

c
qp

(
1

ω − εp + εq
+

1

εp − εq

)
{f(εp) − f(εq)}

]
, (97)

=
i

4ω
lim
A→0

ϵbcd ∂Aa

(∑
p

Ωd
pfp

)
. (98)

Note that the derivative of the Berry curvature is totally different from the Berry curvature dipole defined in Eq. (45)
where the derivative acts only on the Berry curvature. Being concerned with the anomalous photocurrent response
at the frequency below the superconducting gap, we can attribute the response to the derivative of the superfluid

weight fabc and the total Berry curvature ∂Aa

(∑
p Ωd

pfp

)
. These terms give rise to the photocurrent responses to the

linearly and circularly polarized light, respectively.

An intriguing property of the anomalous contribution is the diverging behavior in the low-frequency limit; i.e., the
nonreciprocal superfluid weight leads to the diverging photocurrent conductivity σa;bc ∝ ω−2 with the frequency of
irradiating light ω, and the derivative of the Berry curvature does σa;bc ∝ ω−1. The diverging behavior does not
result from the assumption of the clean limit in Eq. (94), while scattering effects restrict the normal contributions
to a finite value in the DC limit (Du et al., 2019; Michishita and Peters, 2021). The robustness of the low-frequency
divergence has been confirmed in the numerical studies by varying the scattering rate (Watanabe et al., 2022b). The
low-frequency divergence and disorder-tolerant nature may be advantageous for applications to optoelectronic devices
based on superconductors.

Furthermore, the two anomalous contributions show the contrasting space-time symmetry and are therefore con-
veniently classified by the electric and magnetic parity violations. The nonreciprocal superfluid weight is T -odd and
PT -even as mentioned around Eq. (91), while the derivative of the Berry curvature has the same space-time symmetry
as the Berry curvature dipole, that is T -even and PT -odd. It implies that the anomalous nonreciprocal optical re-
sponse is a convenient tool for identifying the symmetry of parity violation. Under the irradiation of the low-frequency
light, the PT -symmetric superconductors show significant photocurrent response to the linearly-polarized light and
the T -symmetric superconductors do that to the circularly-polarized light.

The anomalous mechanism works not only in the photocurrent response but also in other nonreciprocal optical
responses in superconductors. In the DC limit, the anomalous terms are determined by several indicators irrespective of
the frequency (ω1, ω2) in the response function σa;bc(ω1, ω2) (Watanabe et al., 2022b). For the gapful superconductors,
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the formula is given by

σano
a;bc(ω1, ω2) =

1

2ω1ω2
fabc −

i

8
lim
A→0

[
1

ω1
ϵacd ∂Ab

(∑
p

Ωd
pfp

)
+

1

ω2
ϵabd ∂Ac

(∑
p

Ωd
pfp

)]
, (99)

to which the nonreciprocity in the superfluid weight and the Berry curvature universally contribute. Thus, the low-
frequency divergence is similarly predicted in various responses including the second-harmonic generation (ω1 = ω2).
It may be relevant to recent experiments where the supercurrent-induced parity breaking leads to the second-harmonic
generation (Nakamura et al., 2020).

Finally, it should be noted that the nonreciprocal and superconducting optical responses may be informative for
quantifying the parity mixing in the superconducting pairing. The superconducting gap symmetry does not show the
definite parity under the P violation in noncentrosymmetric systems, and the resultant parity mixing is expected to
give rise to intriguing superconducting properties (Bauer and (eds.), 2012). It has been a longstanding issue whether
such parity mixing can be evaluated in the experiments. In this regard, the nonreciprocal optical response was found
to be enhanced in the presence of moderate parity mixing (Tanaka et al., 2023; Watanabe et al., 2022b), similar to
the nonreciprocal paraconductivity (Wakatsuki and Nagaosa, 2018). The quantitative estimates of the parity mixing
can be obtained by future optical measurements of tunable materials, such as Li2(Pt3−xPdx)B (Badica et al., 2005)
where the parity mixing presumably changes by chemical substitution.

VI. Summary and Outlook

The role of magnetic parity violation in solid state electron systems has been reviewed with the comparison to that
of the electric parity violation, a known type of parity violation found in the materials crystalizing in a noncentrosym-
metric structure. Since the magnetic parity violation is accompanied by the time-reversal-symmetry breaking, it may
be considered less fundamental than the electric parity violation. The preserved space-time symmetry, however, allows
us to make clear distinctions between physical phenomena induced by either the electric or magnetic parity violation;
i.e., the T -symmetric system manifests the physical properties arising from the electric parity violation, while the
PT -symmetric system shows phenomena unique to the magnetic parity violation.

The physical responses originating purely from the magnetic parity violation have been intensively discussed in the
field of multiferroics in terms of the magnetoelectric phenomena. In addition, recent studies have been devoted to
the investigation of magnetically parity-violating physical phenomena, which have advanced the earlier studies of the
electric parity violation, such as for the photocurrent response. The identified responses are complementary to those
induced by the electric parity violation. The complementary roles of magnetic and electric parity violation have been
highlighted and grasped by their contrasting electronic structures.

The magnetic parity violation may lead to nontrivial physical phenomena due to its combination with other quan-
tum nature of materials, for example, giant optoelectronic responses enhanced by the quantum-geometrical effect of
topological electrons, nonreciprocity in the electromagnetic responses in superconductors, and so on. Despite the
rapid growth in theoretical understandings of magnetic parity violation and the ubiquity of PT -symmetric magnetic
materials (Watanabe and Yanase, 2018a) (see also Appendix A), the material realization and experimental observa-
tions of emergent responses remain elusive. Promissing materials include those having the Dirac electrons such as
quasi-two-dimensional Mn compounds (e.g., even-layer MnBi2Te4 and EuMnBi2) (Sakai, 2022; Zhang et al., 2019a)
and massless Dirac systems (e.g., CuMnAs) (Linn et al., 2023; Tang et al., 2016; Šmejkal et al., 2017).

The material realization may be feasible in playgrounds other than the bulk materials. The magnetic parity
violation has been realized by metamaterials where the magnetic islands are arrayed (Lehmann et al., 2019) and the
ferromagnetic thin films are patterned (Hild et al., 2023; Matsubara et al., 2022). The high tunability of physical
responses is advantageous, and it has been demonstrated, for example, for the photocurrent generation in the magnetic
metamaterials (Matsubara et al., 2022). Furthermore, the magnetic parity violation may be found in the fictitious
fields of the topological solitons. Recent studies clarified that the emergent magneto-multipolar fields of the magnetic
hopfion give rise to various spin-charge-coupled phenomena (Liu et al., 2022; Pershoguba et al., 2021).

The systematics based on the preserved space-time symmetry is expected to be applied to a broad range of phys-
ical responses other than those explained in this review. For instance, the electric and magnetic decomposition is
similarly found in various physical phenomena such as second-harmonic generation (Bhalla et al., 2022), parametric
conversion (Wang et al., 2010; Werake and Zhao, 2010) and photo-induced and current-induced spin current re-
sponses (Adamantopoulos et al., 2022; Hamamoto et al., 2017; Hayami et al., 2022; Kim et al., 2017; Matsubara et al.,
2022; Merte et al., 2023; Xiao et al., 2021; Xu et al., 2021; Young et al., 2013). The mechanism for each response
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has been mainly investigated in the framework of band electrons’ Hamiltonian, whereas further precise treatments
including disorders and interactions may allow for quantitative estimates and imply the potential of the responses in
probing the quantum nature of matter. For instance, parity-violating responses may show enhancement due to the
electron correlation effect (Peters and Yanase, 2018) and collective modes such as phonons (Okamura et al., 2022),
spin fluctuation (Iguchi et al., 2024; Ishizuka and Nagaosa, 2020; Morimoto and Nagaosa, 2019; Yokouchi et al., 2017),
plasmon (Sano et al., 2021; Toshio and Kawakami, 2022), and exciton (Kaneko et al., 2021; Morimoto and Nagaosa,
2020; Sotome et al., 2021).
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Appendix A: Table of magnetic multipolar magnets

Many magnetic materials are characterized by the zero propagation vector q = 0 of order parameter, by which
the unit cell does not change at the magnetic phase transition. Zero propagation vector implies that the seemingly
antiferroic magnetic order does induce uniform fields through the coupling to the crystal sublattice degree of freedom.
From the viewpoint of symmetry, such a uniform field is classified into the even-parity and odd-parity magnetic
multipolar fields in terms of parity under the space-inversion (P) operation.

Let us consider the point group symmetry of those magnetic multipolar materials. The even-parity magnetic
multipolar order breaks the T symmetry as well as the PT symmetry while preserving the P symmetry. On the
contrary, the odd-parity magnetic multipolar order, though it similarly breaks the T symmetry, is PT -even and
P-odd. Then, when we assume the centrosymmetric symmetry of the paramagnetic state, the point group of the
magnetic state is comprised of the space-inversion operation (g = I) but lacks parity-time-reversal operation (g = Iθ)
in the case of even-parity magnetic multipolar systems, while it is comprised of g = Iθ but lacks g = I for the
odd-parity magnetic multipolar systems. Owing to the preserved P or PT symmetry, either even-parity or odd-parity
magnetic multipolar field is allowed.

Letting G be the magnetic point group, the coset decomposition is obtained as

G = Heven ∪ I ·Heven, (A1)

for the even-parity magnetic multipolar systems and

G = Hodd ∪ Iθ ·Hodd, (A2)

for the odd-parity magnetic multipolar systems. The subgroup H of G is convenient to identify the emergent responses
induced by each magnetic multipolar field; e.g. a response unique to the odd-parity magnetic multipolar systems is
subject to symmetry constraints of Hodd and thereby may be zero even when it is not forbidden by the PT symmetry.

In Tables IV, V, we tabulate the pairs of G and Heven/odd with some characteristics and candidate materials.
Notably, since we consider the P-symmetric or PT -symmetric magnetic point groups, the even- and odd-parity
magnetic multipolar fields show up without being admixed with each other. The even-parity magnetic multipolar
symmetry is characterized by whether the magnetic dipolar field (M) and piezomagnetic effect (PM) are allowed. For
instance, if the magnetic dipole field is active (M: ✓), the magnetic materials denoted by the symmetry show the
anomalous Hall effect.

Similarly, the odd-parity magnetic multipolar symmetry is characterized by the magnetic toroidal moment (T),
magnetic quadrupole moment (MQ), and magnetopiezoelectric effect (MPE). If ‘T: ✓’, the PT -symmetric magnetic
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order may be switchable with the electric current (Watanabe and Yanase, 2018b) (see also Sec. IV). Magnetic materials
with ‘MQ: ✓’ allow for various odd-parity responses formulated by the rank-2 and PT -symmetric axial tensor such
as the magnetoelectric effect, photocurrent response under the circularly-polarized lights (see Sec. III.C.2), and so on.
Magnetic materials with ‘MPE: ✓’ similarly host odd-parity responses described by the PT -symmetric tensor sharing
the same symmetry as that of the magnetopiezoelectric effect [e.g, nonreciprocal electric conductivity (Sec. III.C.1)
and photocurrent response under the linearly-polarized and unpolarized lights (Sec. III.C.2)]. Note that ‘T’ is always
active if ‘MQ’ is active because the magnetic quadrupole moments include the magnetic toroidal moment.

TABLE IV: Magnetic point groups (MPG) G hosting pure even-parity
magnetic multipolar fields. Each group is decomposed by its subgroup
Heven by Eq. (A1). Each item is characterized by the magnetic dipole
moment (M), piezomagnetic activity (PM), and candidate material. In
some cases, candidate materials are missing (N/A) to our knowledge.

MPG Heven M PM Candidate materials

m3̄m 432 N/A

m3̄m′ 4′32′ ✓ Cd2Os2O7

m3̄ 23 ✓ NiS2

6/mmm 622 ✓ N/A

6/mm′m′ 62′2′ ✓ ✓ Mn5Ge3

6′/m′mm′ 6′22′ ✓ CrNb4S8

6/m 6 ✓ ✓ N/A
6′/m′ 6′ ✓ N/A

3̄m 32 ✓ CoF3

3̄m′ 32′ ✓ ✓ Mn3Ir

3̄ 3 ✓ ✓ Mn3NiN

4/mmm 422 ✓ KMnF3
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TABLE IV (cont.)

MPG Heven M PM Candidate materials

4/mm′m′ 42′2′ ✓ ✓ Nd2NiO4

4′/mm′m 4′22′ ✓ MnF2

4/m 4 ✓ ✓ MnV2O4

4′/m 4′ ✓

mmm 222 ✓ MnTe

m′m′m 2′2′2 ✓ ✓ Mn3Sn

2/m 2 ✓ ✓ MnCO3

2′/m′ 2′ ✓ ✓ KMnF4

1̄ 1 ✓ ✓ RbMnF4

TABLE V: Magnetic point groups G hosting pure odd-parity magnetic
multipolar fields. Each group is decomposed by its subgroup Hodd by
Eq. (A2). Each item is characterized by the magnetic toroidal moment
(T), magnetic quadrupole moment (MQ), magnetopiezoelectric activity
(MPE), and candidate material. In some cases, candidate materials are
missing to our knowledge.

MPG Hodd T MQ MPE Candidate materials

m′3̄′m′ 432 ✓ N/A
m′3̄′m 4̄3m ✓ N/A
m′3̄′ 23 ✓ ✓ N/A
6′/mmm′ 6̄m2 ✓ N/A
6/m′mm 6mm ✓ ✓ ✓ N/A
6/m′m′m′ 622 ✓ ✓ N/A
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TABLE V (cont.)

MPG Hodd T MQ MPE Candidate materials

6′/m 6̄ ✓ U14Au51

6/m′ 6 ✓ ✓ ✓ PbMn2Ni6Te3O18

3̄′m′ 32 ✓ ✓ Cr2O3

3̄′m 3m ✓ ✓ ✓ Ca2YZr2Fe3O12

3̄′ 3 ✓ ✓ ✓ MnGeO3

4/m′m′m′ 422 ✓ ✓ GdB4

4/m′mm 4mm ✓ ✓ ✓ Co3Al2Si3O12

4′/m′m′m 4̄2m ✓ ✓ BaMn2As2

4/m′ 4 ✓ ✓ ✓ TlFe1.6Se2

4′/m′ 4̄ ✓ ✓ KOsO4

m′m′m′ 222 ✓ ✓ LiMnPO4
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TABLE V (cont.)

MPG Hodd T MQ MPE Candidate materials

mmm′ mm2 ✓ ✓ ✓ CuMnAs

2/m′ 2 ✓ ✓ ✓ Na2RuO4

2′/m m ✓ ✓ ✓ SrMn2As2

1̄′ 1 ✓ ✓ ✓ YbMn2Sb2
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Liedke, Jürgen Fassbender, Oliver G Schmidt, and Denys Makarov (2017), “Purely antiferromagnetic magnetoelectric random
access memory,” Nature Communications 8, 13985.

Kosub, Tobias, Martin Kopte, Florin Radu, Oliver G Schmidt, and Denys Makarov (2015), “All-electric access to the magnetic-
field-invariant magnetization of antiferromagnets,” Physical Review Letters 115 (9), 097201.
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Park, B G, J Wunderlich, X Mart́ı, V Holý, Y Kurosaki, M Yamada, H Yamamoto, A Nishide, J Hayakawa, H Takahashi, A B

http://dx.doi.org/10.1038/s41598-018-20539-2
https://link.aps.org/doi/10.1103/PhysRevB.100.235138
https://link.aps.org/doi/10.1103/PhysRevB.100.235138
https://link.aps.org/doi/10.1103/PhysRevB.102.235139
http://dx.doi.org/10.1038/s41598-018-32508-w
http://dx.doi.org/10.1126/science.1242247
https://link.aps.org/doi/10.1103/PhysRevX.11.011021
https://www.nature.com/articles/s42254-023-00632-w
https://www.nature.com/articles/s42254-023-00632-w
http://dx.doi.org/10.1002/adma.201603345
https://link.aps.org/doi/10.1103/RevModPhys.82.1539
https://link.aps.org/doi/10.1103/RevModPhys.82.1539
https://www.annualreviews.org/doi/abs/10.1146/annurev-conmatphys-032822-033734
https://www.annualreviews.org/doi/abs/10.1146/annurev-conmatphys-032822-033734
http://dx.doi.org/10.1103/PhysRevLett.125.097004
http://link.aps.org/doi/10.1103/PhysRevB.96.054501
https://doi.org/10.1146/annurev-conmatphys-031620-103859
https://doi.org/10.1146/annurev-conmatphys-031620-103859
http://dx.doi.org/10.1038/nature15723
https://link.aps.org/doi/10.1103/PhysRevB.100.195117
https://link.aps.org/doi/10.1103/PhysRevB.100.195117
http://dx.doi.org/10.1126/sciadv.1501870
https://doi.org/10.1038/ncomms15358
https://link.aps.org/doi/10.1103/PhysRevResearch.2.012045
https://link.aps.org/doi/10.1103/PhysRevResearch.2.012045
http://link.aps.org/pdf/10.1103/PhysRevB.103.125108
https://doi.org/10.1143/JPSJ.65.3254
https://doi.org/10.1143/JPSJ.65.3254
https://doi.org/10.7566/JPSJ.91.014701
https://doi.org/10.7566/JPSJ.91.014701
https://www.pnas.org/doi/10.1073/pnas.2122313119?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
https://www.pnas.org/doi/10.1073/pnas.2122313119?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
https://link.aps.org/doi/10.1103/PhysRevB.104.L180407
http://dx.doi.org/10.1103/PhysRevLett.113.096601
https://www.nature.com/articles/ncomms15434
https://link.aps.org/doi/10.1103/PhysRevB.106.235110
https://link.aps.org/doi/10.1103/PhysRevB.77.165103
https://doi.org/10.1146/annurev-conmatphys-031218-013712
http://arxiv.org/abs/2205.05555
https://arxiv.org/abs/2205.05555


50

Shick, and T Jungwirth (2011), “A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction,” Nature
Materials 10 (5), 347–351.

Pershoguba, Sergey S, Domenico Andreoli, and Jiadong Zang (2021), “Electronic scattering off a magnetic hopfion,” Physical
Review B 104 (7), 075102.

Pershoguba, Sergey S, and Victor M Yakovenko (2022), “Direct current in a stirred optical lattice,” Annals of Physics 447,
169075.

Peters, Robert, and Youichi Yanase (2018), “Strong enhancement of the edelstein effect in f -electron systems,” Physical Review
B 97 (11), 115128.

Plank, H, L. E. Golub, S. Bauer, V. V. Bel’kov, T. Herrmann, P. Olbrich, M. Eschbach, L. Plucinski, C. M. Schneider,
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structure in tetragonal CuMnAs thin films,” Scientific Reports 5 (1), 17079.
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Wang, Yongjian, Henry F Legg, Thomas Bömerich, Jinhong Park, Sebastian Biesenkamp, A A Taskin, Markus Braden, Achim
Rosch, and Yoichi Ando (2022), “Gigantic Magnetochiral Anisotropy in the Topological Semimetal ZrTe5,” Physical Review
Letters 128 (17), 176602.

Wang, Yuxuan, and Liang Fu (2017), “Topological phase transitions in multicomponent superconductors,” Physical Review
Letters 119 (18), 187003.

Watanabe, Hikaru (2021), Theoretical Study of Nonlinear Current Generation in Parity-time Inversion Symmetric Magnets,
Ph.D. thesis (Kyoto University).

Watanabe, Hikaru, Akito Daido, and Youichi Yanase (2022a), “Nonreciprocal meissner response in parity-mixed superconduc-
tors,” Physical Review B 105 (10), L100504.

Watanabe, Hikaru, Akito Daido, and Youichi Yanase (2022b), “Nonreciprocal optical response in parity-breaking superconduc-
tors,” Physical Review B 105 (2), 024308.

Watanabe, Hikaru, Kohei Shinohara, Takuya Nomoto, Atsushi Togo, and Ryotaro Arita (2023), “Symmetry analysis with
spin crystallographic groups: Disentangling spin-orbit-free effects in emergent electromagnetism,” arXiv:2307.11560 [cond-
mat.mtrl-sci].

Watanabe, Hikaru, and Youichi Yanase (2017), “Magnetic hexadecapole order and magnetopiezoelectric metal state in
Ba1−xKxMn2As2,” Physical Review B 96 (6), 984, ; material properties are detailed in references therein.

Watanabe, Hikaru, and Youichi Yanase (2018a), “Group-theoretical classification of multipole order: Emergent responses and
candidate materials,” Physical Review B 98 (24), 245129.

Watanabe, Hikaru, and Youichi Yanase (2018b), “Symmetry analysis of current-induced switching of antiferromagnets,” Physical
Review B 98 (22), 220412.

Watanabe, Hikaru, and Youichi Yanase (2020), “Nonlinear electric transport in odd-parity magnetic multipole systems: Appli-
cation to mn-based compounds,” Physical Review Research 2 (4), 043081.

Watanabe, Hikaru, and Youichi Yanase (2021a), “Chiral photocurrent in parity-violating magnet and enhanced response in
topological antiferromagnet,” Physical Review X 11 (1), 011001.

Watanabe, Hikaru, and Youichi Yanase (2021b), “Photocurrent response in parity-time symmetric current-ordered states,”
Physical Review B 104 (2), 024416.

Werake, Lalani K, and Hui Zhao (2010), “Observation of second-harmonic generation induced by pure spin currents,” Nature
Physics 6 (11), 875–878.
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