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Abstract: Hyperelastic models have been widely used to model polymers and soft tissues. 

However, most hyperelastic models are phenomenological material models. Based on statistical 

mechanics and molecular chain configuration, 8 chain model or Arruda-Boyce model is a physical 

model which can be used to understand how microstructures of chains affect macroscopic 

mechanical properties of  polymers and soft tissues.  Mechanical properties of many polymers and 

soft tissues are directional dependent. Polymer matrix can be reinforced by fibers. For soft tissues, 

ligaments and tendons will lead to anisotropic properties. Since matrix and reinforcements are 

composed of similar microstructural molecular chains, they can be modeled by using the same 

mathematical model. In this paper, a series of 8 chain models is used to understand composite 

properties. That is, an isotropic 8 chain model will be used to model matrix and anisotropic 8 chain 

models will be used to model fibers. Replacing 𝐼1 in isotropic 8 chain model with 𝐼4 in anisotropic 

8 chain model is physically corresponding to changing representative 8 chain cubic cell to 8 chain 

slender cell. This treatment not only simplifies exist anisotropic mathematical structures but also 

keeps microscopic physics of 8 chain model unchanged. 

 

Key Words:  Arruda-Boyce Model; Inverse Langevin Function; Anisotropic Statistical 

Hyperelastic Models;  Abaqus & Ls-Dyna 

 

1 Introduction 
 

Hyperelastic constitutive models are important for industrial applications involving rubbers, 

elastomers, and other soft elastic materials [1] [2] [3] [4] [5] [6] [7]. Hyperelastic material models 

can be classified as compressible or incompressible depending on the importance of volume 

changes [8] [9] [10] [11] [12]. They can also be classified as phenomenological or physical, with 
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the latter based on the underlying microstructure of the material [13] [14] [15] [16] [17]. They can 

be combined with equation of motion to model stress wave propagation in different solid materials 

[18] [19] [20] [21] [22]. The 8-chain or Arruda-Boyce model is one of the mostly widely used 

physical constitutive models in hyperelasticity [23] [24] [25] [26]. It can also be extended to 

include orthotropic mechanical behavior, with application in biotissue material characterization 

[27] [28] [29] [30] [31] [32]. It considers the microstructure of rubbery materials by statistically 

approximating the random distribution of polymer chains as 8 chains in a small representative 

cubic space. This 8-chain model has been successfully applied to a wide range of rubbery materials 

[33] [34] [35], and is widely used as a nonlinear spring component in other polymer constitutive 

models [36] [37] [38] [39] [40] [41] to capture nonlinear viscoelastic and rate-dependent 

viscoplastic behavior. However, due to the mathematical complexity of the inverse Langevin 

function in the Arruda-Boyce model, approximate forms are generally sought when numerically 

implementing it in finite-element codes [42] [43]. Currently, a short 5-term approximation is used 

in Abaqus and Ls-Dyna. While acceptable for small and moderate deformations, the 5-term 

approximation may be insufficient for large deformations.  

On the other hand, 8-chain model is better than 3-chain model and 4-chain model. In 8-

chain model, a representative cell is constructed which is shown in Fig. 1. Each side of the cell is 

assumed to be equal. There are 8 chains inside this cell. Each molecular chain starts from the center 

of cell and connect to each corner of the cell.  Force and displacement relationship of each 

molecular chain is mathematically related by inverse Langevin function. For many polymer 

materials, molecular chains are cross linked and randomly distributed. If entanglements are 

neglected, these randomly distributed cross linked molecular chains are perfectly represented by 8 

chain cells.  It is well known that the same parameters in 8 chain model can be used to fit all simple 



tensile, bi-axial tensile, and shear test data. In 8 chain model,  chain =
1

√3
(1

2 + 2
2 + 3

2)1/2 =

1

√3
(𝐼1)1/2,  where 𝐼1 is the first stretch invariant. Elongation of each modular chain in the cell will 

be related to the change of 𝐼1 .  The physical meaning of 𝐼1  is average elongation of all line 

segments or all molecular chains in the polymer materials. 𝐼1 is independent of coordinate system. 

In continuum mechanics, 𝐼1 can be viewed as a function of the right Cauchy-Green deformation 

tensor 𝐶. When 𝐶 changes, 𝐼1 will change as well. Since 𝐶 is independent of rigid body rotation, 

it is widely used in hyperelastic model to build constitutive relationship for large elastic 

deformations. Matrix 𝐶 only depends on the deformation of materials. It will be changed from one 

coordinate system to another. But 𝐼1  will remain the same in different coordinate systems.  

Therefore, 8 chain model assumption connects polymer physics, average molecular chain 

elongation, with continuum mechanics hyperelastic mathematical structures. 

 

Fig. 1. A representative 8-chain cell. Undeformed cell (left) and deformed cell (right). The cubic 

cell in undeformed state is changed to a rectangular prism.  

 



In continuum mechanics, a common way to add anisotropic properties into the hyperelastic 

model is to break the symmetry of strain energy function. Most researchers added 𝐼4 into the strain 

energy function, where 𝐼4 = 𝒂𝟎 ∙ 𝑪𝒂𝟎 and 𝒂𝟎 is a unit vector that gives the orientation of the fibers 

through the materials.  Aided by 𝐼4, strain energy function will be decomposed into two parts. One 

part is isotropic strain energy function, and the other part is anisotropic strain energy function. For 

example, Holzapfel et al. [44] built an anisotropic hyperelastic model to nonlinear elastic behavior 

of arterial walls. In their constitutive model, neo-Hookean model is used for isotropic strain energy 

function and an exponential function of 𝐼4  is used to describe the energy stored in the collagen 

fibers. Their model was extended by other researchers [45] and widely used to understand 

mechanical behavior of soft tissues [46, 47]. They claimed the model is based on the histological 

structure of arterial walls. But it should be considered as a phenomenological model. Especially, 

for neo-Hookean model, it can be derived based on Gaussian chain distribution. But from statistical 

mechanics perspective, it is based on microcanonical ensemble assumption [48]. That is why neo-

Hookean model usually can only fit very small deformation experimental data. It will deviate from 

tests if deformation of materials is large. 

Bischoff et al. [31] extended isotropic 8-chain model to an orthotropic 8-chain model. In 

their constitutive model, strain energy is decomposed into entropy part, repulsive part and bulk 

part. The freely jointed chain based inverse Langevin function is adopted for the mechanical 

behavior of a single chain.  An orthotropic cell which has 8 chains is proposed to explain different 

mechanical properties in three principal directions. The total strain energy stored in the materials 

is the summation of the energy storage by an individual molecule chain which is calculated based 

on  𝐼4  assumption.  Their derivation is started from 8-chain model. After introducing many new 



concepts and new defined equations, their model is quite different from the original 8 chain or 

Arruda-Boyce model. Their mathematical structure, therefore, becomes unnecessarily hard.  

In this paper, a new anisotropic model is proposed based on a series of 8-chain models. By 

keeping 8-chain mathematical structures, a series of 8-chain models will be adopted for both matrix 

and fibers. We think 8-chain model by itself is good enough to describe the anisotropic properties 

of soft materials.  In another word, the 8 chain model will be used for matrix as well as reinforced 

fibers. If there is only one directional fiber, 8 chain model will be used for 2 times. If there are two 

directional fibers, 8 chain model will be used for 3 times. One for matrix, and two for fibers. The 

detail discussion will be given in section 5. 

The paper is organized as follows. In the section 2, fundamental of continuum mechanics 

will be discussed.  In the section 3, the accuracy of the Arruda-Boyce model at large elastic 

deformations by extending the current 5-term approximation to more terms will be illustrated. In 

the section 4, high order term Arruda-Boyce model was compared to uni-axial tension, bi-axial 

tension, and simple shear test results. In the following section, a series of 8-chain models will be 

used to model directional dependent materials. Conclusion will be given at the end of the paper. 

2 Fundamentals of Continuum Mechanics 
 

Any material model should agree with the thermodynamics second law. The entropy cannot 

decrease. In other word, it needs to agree with Clausius-Duhem inequality as shown below                                     

- 𝜌0(𝜓̇ + 𝜂𝜃̇) + S: 𝐸̇ - 
𝑄 ·∇𝜃

𝜃
 ≥ 0      (1) 

where ψ, ρ, η, θ, S, E, and Q are Helmholtz free energy, density, entropy density, temperature, 2nd 

Piola-Kirchhoff stress tensor, Green Lagrange strain tensor, and heat flux in reference coordinate 

[49]. ∇𝜃 is the temperature gradient in initial configuration. 



The constitutive equations of  thermo-visco-elastic sold are introduced as  

𝜓(X,t) = 𝜓(E, 𝐸̇, 𝜃,  𝜃̇,  ∇𝜃, X) (2) 

𝜂(X,t) = 𝜂(E, 𝐸̇, 𝜃,  𝜃̇,  𝛻𝜃, X)  

S(X,t) = S(E, 𝐸̇, 𝜃,  𝜃̇,  ∇𝜃, X)  

Q(X,t) = Q(E, 𝐸̇, 𝜃,  𝜃̇,  ∇𝜃, X)  

Substituting equation (2) in (1), the time rate of Helmholtz free energy ψ is shown in Eqn. (3) and 

the Clausius-Duhem inequality can be finally arrange to Eqn. (4) and then Eqn. (5). 

𝜓̇ = 
𝜕𝜓

𝜕𝐸
 : 𝐸̇ + 

𝜕𝜓

𝜕𝐸̇
 : 𝐸̈ + 

𝜕𝜓

𝜕𝜃
: 𝜃̇ + 

𝜕𝜓

𝜕𝜃̇
 : 𝜃̈ + 

𝜕𝜓

𝜕∇𝜃
 : ∇𝜃̇   (3) 

- 𝜌0(
𝜕𝜓

𝜕𝐸
 : 𝐸̇ + 

𝜕𝜓

𝜕𝐸̇
 : 𝐸̈ + 

𝜕𝜓

𝜕𝜃
: 𝜃̇ + 

𝜕𝜓

𝜕𝜃̇
 : 𝜃̈ + 

𝜕𝜓

𝜕∇𝜃
 : ∇𝜃̇+ 𝜂𝜃̇) + S: 𝐸̇ - 

𝑄 ·∇𝜃

𝜃
 ≥ 0      (4) 

- 𝜌0( 
𝜕𝜓

𝜕𝐸̇
 : 𝐸̈ + 

𝜕𝜓

𝜕𝜃
: 𝜃̇ + 

𝜕𝜓

𝜕𝜃̇
 : 𝜃̈ + 

𝜕𝜓

𝜕∇𝜃
 : ∇𝜃̇+ 𝜂𝜃̇) + (S - 𝜌0 

𝜕𝜓

𝜕𝐸
): 𝐸̇ - 

𝑄 ·∇𝜃

𝜃
 ≥ 0 (5) 

To maintain the Clausius-Duhem inequality valid, it is necessary to force 
𝜕𝜓

𝜕𝐸̇
 ,  

𝜕𝜓

𝜕𝜃̇
,  and 

𝜕𝜓

𝜕∇𝜃
 to be 

zero shown in Eqn. (6) to be zero, since we do not have 𝐸̈, 𝜃̈, and ∇𝜃̇ in Eqn. (2)                                    

𝜕𝜓

𝜕𝐸̇
 = 

𝜕𝜓

𝜕𝜃̇
 = 

𝜕𝜓

𝜕∇𝜃
 = 0 .                                           (6) 

Finally, the Clausius-Duhem inequality is expressed as                                          

- 𝜌0(
𝜕𝜓

𝜕𝜃
  + 𝜂) 𝜃̇  + (S - 𝜌0 

𝜕𝜓

𝜕𝐸
): 𝐸̇ - 

𝑄 ·∇𝜃

𝜃
 ≥ 0. (7) 

In other word, the expression inside brackets on the left-hand side of Eq. (7) is the dissipated part 

and they can be expressed as                                           



η𝑑 = 
𝜕𝜓

𝜕𝜃
  + 𝜂                                                          (8) 

𝑆𝑑 = S - 𝜌0 
𝜕𝜓

𝜕𝐸
                                                                                                            (9) 

with 

𝜂 = - 
𝜕𝜓

𝜕𝜃
  + η𝑑 (10) 

𝑆 = 𝜌0 
𝜕𝜓

𝜕𝐸
 + 𝑆𝑑                                                                                                            (11) 

The strain energy density function is written as                                        

W = 𝜌0𝜓. (12) 

In the continuous medium, vector X describes the material points initial configuration, while vector 

x is the current configuration. Their relation is shown as x= x(X, t) where at t=0 means initial 

configuration equal current configuration.  The deformation gradient tensor is introduced as  

                                             F= 
𝜕𝑥

𝜕𝑋
                                                                       (13) 

where F is a two-point tensor and it relates the initial configuration and current configuration. 

The right Cauchy-Green deformation tensor (C) and Green-Lagrange strain tensor (E) are defined 

as  

   C = 𝐹𝑇F, E =  
1

2
 (C-I)                                                     (14) 

where they are positive definite and symmetric tensors. 

To construct the constitutive model, we need coordinate measurement to be frame-

indifference. Thus, the invariants are needed, and they are constructed as  



𝐼1 = tr(C), 𝐼2 = 
1

2
 (tr(C)2 - tr(𝐶2)), 𝐼3 = det(C) , 𝐼4 = 𝑎0 ∙ C𝑎0, 𝐼5 = 𝑎0 ∙ C2𝑎0  (15) 

where tr(C) and det(C) is the trace and the determinate of right Cauchy-Green deformation tensor. 

𝑎0 is the unit vector in fiber direction. It is noted that the det(C) also equals the volume fraction  

𝑉/𝑉0.  Their derivative with respect to right Cauchy-Green deformation tensor are [50]                                                         

𝜕𝐼1

𝜕𝐶
 = I, 

𝜕𝐼2

𝜕𝐶
 = 𝐼1I – C,  

𝜕𝐼3

𝜕𝐶
 = 𝐼3𝐶−1,

𝜕𝐼4

𝜕𝐶
 = 𝑎0𝑎0,

𝜕𝐼5

𝜕𝐶
 = 𝑎0𝐶𝑎0 + 𝑎0𝐶𝑎0. (16)  

Accordingly, the isochoric part of deformation gradient tensor and right Cauchy-Green 

deformation tensors are 𝐹̅ = 𝐽− 
1

3 F, 𝐶̅ = 𝐽− 
2

3 C.                                                   

Based on this definitions, modified invariants, e.g., 𝐼1̅, 𝐼2̅, 𝐼3̅,  can be defined as 

𝐼1̅ = 𝑡𝑟(𝐶̅), 𝐼2 = 
1

2
 (𝑡𝑟(𝐶̅)2 - tr(𝐶̅2)), 𝐼3 = 𝑑𝑒𝑡(𝐶̅),  (17) 

A general anisotropic strain energy function can be written as 

                 𝜓 = 𝜓𝑖𝑠𝑜(𝐼1̅, 𝐼2̅) + 𝜓𝑎𝑛𝑖𝑠𝑜(𝐼4, 𝐼5 ) + 𝜓𝑣𝑜𝑙(𝐽 ),                                                (18) 

where 𝜓𝑖𝑠𝑜(𝐼1̅, 𝐼2̅)  is isotropic part, 𝜓𝑎𝑛𝑖𝑠𝑜(𝐼4, 𝐼5 )  is anisotropic part, and 𝜓𝑣𝑜𝑙(𝐽 )  is 

volumetric part of strain energy function.  

3 Approximation of 8-Chain Model 
 

In 8 chain hyperelastic model, the single chain is described by the inverse Langevin 

function. Because of its mathematic complexity, the inverse Langevin function is approximated in 

several ways, such as the Pade approximation and the Warner approximation [51]. However, a key 

drawback of these approximations is the presence of singularities, which can cause numerical 

issues when these approximations are implemented in finite-element codes. To avoid singularities, 

we employ the Taylor expansion of inverse Langevin function, which is shown as 



 y = ℒ−1(x) = ∑ Bnxn.

∞

n=0

 (19) 

In Eq. (19), all even coefficients of the Taylor expansion are zero. The odd coefficients of the 

Taylor expansion can be computed through recurrence relations [52]. The recurrence relations are 

used here to calculate the first 36 odd coefficients, which are provided in Table 1.  

Table 1. Taylor series coefficients of the inverse Langevin function 

n 𝑩𝒏 n 𝑩𝒏 

1 3 3 1.8 

5 1.6971 7 1.7589 

9 1.8719 11 1.9972 

13 2.1128 15 2.2023 

17 2.2530 19 2.2558 

21 2.2064 23 2.1064 

25 1.9644 27 1.7962 

29 1.6251 31 1.4799 

33 1.3929 35 1.3953 

37 1.5125 39 1.7581 

41 2.1281 43 2.5962 

45 3.1104 47 3.5933 

49 3.9473 51 4.0638 

53 3.8387 55 3.1924 

57 2.0955 59 0.6016 

61 -1.0928 63 -2.4914 

65 -2.2916 67 3.3051 

69 26.2421 71 105.5569 

 

 
The strain energy function associated with the Arruda-Boyce model [53] can be expressed as  

 U = 𝑛𝑘𝑁 (
chain

√𝑁
β + ln

β

sinh β
) − c′, (20) 

where n is the chain density, k is Boltzmann’s constant,  is temperature, N is the number of rigid 

links of equal chain length l.   c′ is a combination of constants, and  

β = ℒ−1 [
chain

√N
] ,           chain =

1

√3
(1

2 + 2
2 + 3

2)
1/2

, 

ℒ−1(∗)  represents the inverse Langevin function. The chain which force and displacement 

relationship can be expressed as inverse Langevin function is called inverse Langevin chain. Due 



to the complex mathematical form of the inverse Langevin function, expansionist Taylor series 

approximation is used in finite-element software such as Abaqus and Ls-Dyna for simplification. 

However, the approximated expansion of the Arruda-Boyce model never goes beyond the first 5 

terms in FEA code. For instance, the hyperelastic Arruda-Boyce potential from the Abaqus 2021 

theory guide has the following form: 

 

 

 

W =  nk∑
Ci

𝑁𝑖−1

5

i=1

(I1̅
𝑖 − 3𝑖) +

1

D
(

J2 − 1

2
− lnJ),  (21) 

where 

C1 =
1

2
,   C2 =

1

20
,   C3 =

11

1050
,   C4 =

19

7000
,   C5 =

519

673750
 

and 𝐽 = 𝑑𝑒𝑡(𝐹). 𝐼1̅ is the deviatoric first strain invariant. 

The 5-term approximation of the Arruda-Boyce is reasonably accurate for small and moderate 

deformations, but will deviate from true solution at large deformations, practically for small 

locking stretch or when actual stretch is larger than locking stretch. It will be shown in the 

following examples.  To improve computation accuracy,  the 5 terms approximation is extended 

to more terms which can be used by Abaqus.  A brief derivation will lead to this. First, by taking 

the derivative of Eq. (20) with respect to stretch and enforcing incompressibility,  which can be 

expressed as 

 
dU

di
=

nk

3
√Nℒ−1 [

chain

√N
]

i

chain
 (22) 

where 

 chain =
1

√3
(1

2 + 2
2 + 3

2)1/2.   

The principal Cauchy stress difference can be obtained as 



 𝑇1 − 𝑇2 = 1
dU

d1
− 2

dU

d2
=

nk

3
√Nℒ−1 [

chain

√N
]
1

2−2
2

chain
. (23) 

Next, the approximation of inverse Langevin function from Section 2 is substituted into Eq. (22),  

and integration can be performed term by term using the Taylor expansion of the inverse Langevin 

function. The first 36 nonzero coefficients of Taylor expansion of the Arruda-Boyce model are 

shown in Table 2. Note that the first five coefficients in Table 2 are identical to those used in 

Abaqus (cf. Eq. (21)). 

Table 1. Taylor series coefficients of the Arruda-Boyce model 

n 𝑪𝒏 n 𝑪𝒏 

1 0.5 3 0.05 

5 0.0105 7 0.0027 

9 7.7032e-4 11 2.281e-4 

13 6.9006e-5 15 2.0979e-5 

17 6.3590e-6 19 1.9101e-6 

21 5.6615e-7 23 1.6515e-7 

25 4.7388e-8 27 1.3412e-8 

29 3.7751e-9 31 1.0744e-9 

33 3.1724e-10 35 1.0004e-10 

37 3.4245e-11 39 1.2605e-11 

41 4.8440e-12 43 1.8803e-12 

45 7.1823e-13 47 2.6505e-13 

49 9.317e-14 51 3.0745e-14 

53 9.3222e-15 55 2.4920e-15 

57 5.2644e-16 59 4.8702e-17 

61 -2.8537e-17 63 -2.1008e-17 

65 -6.2457e-18 67 2.9144e-18 

69 7.4930e-18 71 9.767e-18 

 

 

Arruda-Boyce model is based on a single ideally rotational chain and eight-chain configuration 

assumptions. For each chain, bond between each monomer is assumed to be rigid and free to rotate. 

Chain length is constant. Initial entire chain length is given as √𝑁𝑙. Fully stretched entire chain 

length is 𝑁𝑙. Therefore, the locking stretch is fully stretched entire chain length, e.g., 𝑁𝑙,  divided 

by initial entire chain length, e.g. √𝑁𝑙,  which is √𝑁 . When stretch approaches to this locking 

stretch value, more Taylor series coefficients are needed to capture inverse Langevin function. In 



Fig. 2, we plotted Arruda-Boyce model in uniaxial tension with maximal stretch less than locking 

stretch with different terms Taylor expansion approximation.  

 

 
Fig. 2. Arruda-Boyce model is plotted for uniaxial tensile with nk = 1 for simplicity. Locking 

stretch √𝑁  is set to different numbers a) 1.22, b) 1.73, c) 2.12, d) 2.45. (Nominal strain = 

stretch−1). Large difference is shown in case a where 10 and 20 terms Taylor expansion diverges 

from 5 terms Taylor expansion. But in the other cases, their difference is small and negligible.  

 

Recently, in order to understand polymer fatigue, toughness and fracture [54] [55] [56], the 

constant bond length assumed in Arruda-Boyce model is relaxed. The bonding length between 

monomers can be stretched [57] [58] [59]. This means the stretch can even be larger than the 

locking stretch. Therefore, we need to understand the approximation of the stretch larger than 

locking stretch. In Fig. 3, Arruda-Boyce model is plotted when a single chain is stretched even 

larger than locking length.   With more terms adding into inverse Langevin function, Arruda-Boyce 

model shows a big difference when stretch is larger than locking length. 

 



  
Fig. 3. Arruda-Boyce model is plotted for uniaxial tensile with nk = 1 for simplicity. Locking 

stretch √𝑁 is set to different numbers a) 1.22, b) 1.73, c) 2.12, d) 2.45. But actual maximum stretch 

is set to be a) 2.22, b) 2.73, c) 3.12, d) 3.45. (Nominal strain = stretch−1). 10 and 20 terms Taylor 

expansion models diverge from 5 terms Taylor expansion model when actual stretch is larger than 

locking stretch. 

 

 

4 Comparison of Isotropic Arruda-Boyce Model with Experimental Data  

 

For uniaxial tension of Arruda-Boyce model, nominal stress, 𝑇𝑜1, is related to stretch,  , by  

 

 𝑇𝑜1 =
nk

3

√N

chain
ℒ−1 [

chain

√N
] (− 1/2), (24) 

where 𝑐ℎ𝑎𝑖𝑛 = (2 + 2/)
1/2

/√3. 

For equi-biaxial extension of Arruda-Boyce model, nominal stress can be written as 

 

 
𝑇𝑜1 =

𝑛𝑘

3

√𝑁

𝑐ℎ𝑎𝑖𝑛
ℒ−1 [

𝑐ℎ𝑎𝑖𝑛

√𝑁
] (− 1/5), 

(25) 

where 𝑐ℎ𝑎𝑖𝑛 = (22 + 1/4)
1/2

/√3. 

For pure shear or plane strain tension of Arruda-Boyce model, nominal stress can be written as 

 

 
𝑇𝑜1 =

nk

3

√N

chain
ℒ−1 [

chain

√N
] (− 1/3), 

(26) 

where 𝑐ℎ𝑎𝑖𝑛 = (2 + 1 + 1/2)
1/2

/√3. 

Eq.(24) to Eq.(26) can be plotted against experimental data by Teloar’s classical experimental data 

in uniaxial tension, biaxial extension, and pure shear test data. 5 terms, 10 terms and 20 terms 



Taylor expansions of inverse Langevin function are used in Eq. (24), Eq. (25), and Eq. (26). 

Parameters 𝑁 = 26.5 and 
𝑛𝑘

3
= 0.09 𝑀𝑃𝑎 are used for all uniaxial, shear, and bi-axial models. 

The comparison is shown in Fig. (4). For uniaxial tension test, 5 terms Taylor expansion model is 

accurate when stretch is up to 6. When stretch is larger than 6, more Taylor expansion terms are 

needed. For Biaxial loading case, 5 terms Taylor expansion model is good for stretch is up to 4.5. 

In the large stretch, for example,  > 4.5, 10 or 20 terms of Taylor expansion are needed to match 

the experimental data. Shear model results are like uniaxial tension model results. 

 

 
Fig. 4. Arruda-Boyce model is compared against classical Treloar uniaxial, shear, and biaxial test 

data. Arruda-Boyce model is plotted using 5 terms, 10 terms, and 20 terms Taylor expansion of 

inverse Langevin function. Parameters 𝑁 = 26.5 and 
𝑛𝑘

3
= 0.09 𝑀𝑃𝑎 are used for Arruda-Boyce 

model in uniaxial, shear, and biaxial cases. 

 

 

To test if the 8-chain model can fit the real soft tissue experiment data, the uniaxial, biaxial, and 

pure shear experiments are used to fit the model. There are many available experiments from 

literature, however, we only select two cases to demonstrate the model for experiment data. The 

uniaxial and biaxial experiments are from human linea alba [60], while porcine livers contribute 



the pure shear parameter fit [61]. To find the material model parameter, the optimization method 

is used. The Genetic algorithm [62] is used to find the global solution. It is followed by Nelder–

Mead method, a local optimization method, to refine the solution [29]. The Figure 5 below shows 

good fits between the model response and experiment data.  The material model parameters are 

shown in Table 3.  Those figures (a)-(c) are fitted by 20-term model.  Other terms can also fit the 

experiment data. However, there are many combinations between different terms and experiments.  

 

 

(a)                                                                                (b) 

 
                                            (c) 

 

Fig. 5. The Cauchy stress-stretch response. (a) Uniaxial tension. (b) Biaxial tension. (c) Pure 

shear. 

 

 



 

          Table 3. The material model parameters of uniaxial, biaxial, pure shear test 

Item 𝒏𝒌/3 N 

Uniaxial 1.837344E-1 1.067091 

Biaxial 3.503356E-4 7440155E-1 

Pure shear 4.394207E-5 1.1446898 

                   

 

5 An Anisotropic Model by a Series of 8-Chain Models 

 

Currently, most mathematical structures of anisotropic hyperelastic models are based on 

the fourth invariant, e.g., 𝐼4. If we take a look at anisotropic strain energy functions, additional 

strain energy stored by fibers is added to original isotropic part. After taking derivative with respect 

to strain tensor, an additional force term is added to stress tensor. This additional force term is due 

to fibers, mathematically, which can be modelled by the fourth invariant. Microscopically, these 

reinforced fibers, by themselves, are made of molecular chains. The randomness of these chains is 

not different from the matrix polymers. Therefore, both the matrix and fibers can be modeled by 

8-chain model. The difference between matrix and reinforced fibers comes from their macroscopic 

geometry and microscopic chain density. By using different representative cell geometry, one 

Arruda-Boyce model can be added to another Arruda-Boyce model to find anisotropic properties 

of reinforced soft materials.  In another word, A series of Arruda-Boyce models is used to find 

mechanical properties of reinforced soft materials such as polymers and soft tissues. In the past, 

Arruda-Boyce model was extended to be an orthotropic hyperelastic model [31]. But their idea 

was based on strain energy contribution by individual chains. Their mathematical structure is 

unnecessarily complex. A lot of new assumptions were introduced as well. The purpose of the 

series of 8-chain models is to keep the mathematical structures simple and microscopic physics of 

Arruda-Boyce model intact.  



Idea of the series of 8-chain models is to use different representative cell for matrix 

materials and fibers. For matrix materials, there is no directional orientation. the representative 

cell element is cubic. Original Arruda-Boyce model is used. For fibers, the representative cell 

element is like fiber shape. As shown in Fig. 6, 8-chain structured cell will be used for both matrix 

and fibers. Because the molecular chains in the fiber cell have orientation preference, chain length 

in  𝑎0 direction is much longer than the other two directions, e.g., 𝑎0 > 𝑏0, 𝑐0. Under external 

force, the change of 𝑏0, 𝑐0 can be neglected compared to the change of 𝑎0, as shown in Fig. 7. In 

isotropic 8-chain model, chain =
1

√3
(1

2 + 2
2 + 3

2)1/2 =
1

√3
(𝐼1)1/2. Anisotropic 8-chain model 

can be obtained simply by replacing chain  by fiber_chain =
1

√3
(𝐼4 + 2)1/2   and keep its 

mathematical structure the same as the isotropic 8-chain model. Replacing 𝐼1  by 𝐼4 + 2  is 

physically related to change 8-chain representative cubic cell to 8-chain representative fiber 

slender cell, as shown in Fig. 6. The detail derivation will be demonstrated as below. 

 
Fig. 6. Representative cell elements for matrix and fibers.  Regular representative cell element is 

used for matrix materials. A slender cell element is used for fibers. 

 



 
 

 

 

Fig. 7. A representative cell for fiber before stretch and after stretch. The stretches in 𝑏0 and 𝑐0 

directions are assumed to be one.  

 

Suppose there exist a fiber in an arbitrary direction respect to principal axis of matrix, as 

shown in Fig. 8. The unit vector 𝒂𝟎 is defined in three-dimensional space by two angles 𝜑 and 𝜃. 

.  

Fig. 8. Schematic sketch of fiber direction in 3-dimensional principal coordinate system 

Mathematically the orientation of the fiber can be expressed as 𝒂𝟎 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘⃗⃗ where 𝑥 =

𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜃, 𝑦 = 𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃, 𝑧 = 𝑐𝑜𝑠𝜑.  A tensor matrix of the unit vector can be defined as 𝑎0𝑎0 

which is written explicitly as 

 𝑎0𝑎0 = (

𝑠𝑖𝑛2𝜑𝑐𝑜𝑠2𝜃 𝑠𝑖𝑛2𝜑𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜃

𝑠𝑖𝑛2𝜑𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 𝑠𝑖𝑛2𝜑𝑠𝑖𝑛2𝜃 𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃 𝑐𝑜𝑠2𝜑

). (27) 

If let 𝜑 = 900 and 𝜃 = 00, tensor 𝑎0𝑎0 becomes 



𝑎0𝑎0 = (
1 0 0
0 0 0
0 0 0

), 

which means the fiber direction is parallel to the first principal direction, e.g., 𝑥 direction. The 

fourth invariant, e.g., 𝐼4,  is defined as C ∶  (𝑎0𝑎0). C is the right Cauchy-Green deformation 

tensor which is independent of rigid body rotation. In principal direction, the eigenvalues of matrix 

C is 1
2, 2

2, 3
2
.  It can be written in a matrix form 

𝐂 = (

1
2 0 0

0 2
2 0

0 0 3
2

). 

Therefore, in principal direction,  𝐼4 can be written as  

 𝐼4 = 1
2𝑠𝑖𝑛2𝜑𝑐𝑜𝑠2𝜃 + 2

2𝑠𝑖𝑛2𝜑𝑠𝑖𝑛2𝜃 + 3
2𝑐𝑜𝑠2𝜑. (28) 

If 𝜑 = 900 and 𝜃 = 00 , 𝐼4 = 1
2
. If 𝜑 = 900 and 𝜃 = 900 , 𝐼4 = 2

2
. If 𝜑 = 00 , 𝐼4 = 3

2
. 

Recall 8-chain model, strain energy function is also expressed in the principal direction as a 

function of the first invariant,  𝐼1 = 1
2 + 2

2 + 3
2
. Since a fiber is a one-dimension structure, the 

length change of a fiber will not lead to much change of fiber cross section. For a slender fiber, 

symmetry of 𝐼1 will be broken. Assuming a fiber is aligned in the x direction, 2
2 ≈ 3

2 ≈ 1  and  

𝐼1 ≈ 1
2 + 2. If a fiber is aligned in the y direction, 𝐼1 ≈ 2

2 + 2 . Similarly for z direction, 𝐼1 ≈

3
2 + 2. Inspired by this, adding 2 to Eq. (28), the definition of 𝐼4 , we obtain 

 𝐼4 + 2 = (1
2 + 2)𝑠𝑖𝑛2𝜑𝑐𝑜𝑠2𝜃 + (2

2 + 2)𝑠𝑖𝑛2𝜑𝑠𝑖𝑛2𝜃 + (3
2 + 2)𝑐𝑜𝑠2𝜑, (29) 

where 𝑠𝑖𝑛2𝜑 + 𝑐𝑜𝑠2𝜑=1 and 𝑠𝑖𝑛2𝜃 + 𝑐𝑜𝑠2𝜃=1 are used. If a fiber is in 𝑥 direction, e.g., 𝜑 =

900 and 𝜃 = 00.  Eq. (29) becomes 

 𝐼4 + 2 = (1
2 + 2) ≈ 𝐼1, (30) 



where the right-hand side is 𝐼1 if representative 8 chain slender cell is assumed for fibers, as shown 

Fig.7.  That is why isotropic 8 chain model will become anisotropic 8 chain model if 𝐼1 is replaced 

by 𝐼4 + 2. Physically, representative 8-chain cubic cell is changed to representative 8-chain slender 

cell because molecular chains are dominate in only one direction. 

The total strain energy for matrix and fibers is given as 

 

𝑈𝑡𝑜𝑡𝑎𝑙 = 𝑈𝑚𝑎𝑡𝑟𝑖𝑥+𝑈𝑓𝑖𝑏𝑒𝑟

= nkN (
chain

√𝑁
β + ln

β

sinh β
)

+ n𝑓𝑖𝑏𝑒𝑟kN𝑓𝑖𝑏𝑒𝑟 (
fiber_chain

√𝑁𝑓𝑖𝑏𝑒𝑟

β𝑓𝑖𝑏𝑒𝑟 + ln
β𝑓𝑖𝑏𝑒𝑟

sinh β𝑓𝑖𝑏𝑒𝑟
), 

(31) 

where 𝑛𝑓𝑖𝑏𝑒𝑟 is the fiber chain density,  𝑁𝑓𝑖𝑏𝑒𝑟 is the number of rigid links of equal fiber chain 

length and   β𝑓𝑖𝑏𝑒𝑟 = ℒ−1 [
fiber_chain

√N𝑓𝑖𝑏𝑒𝑟
]. Incompressible Cauchy stress is given as  𝑇𝑖 = 𝑖

dU𝑡𝑜𝑡𝑎𝑙

d𝑖
−

𝑝∗, where no sum on 𝑖 and 𝑝∗ is a constant depending on boundary conditions. Strain energy of 

fibers will depend on fiber orientation. If a fiber is in x-axis direction, it only depends on the 

principal stretch of 1.  Therefore, additional stress term will be added into principal direction of 

x-axis. And stress on y-axis and z-axis direction will remain the same. If fibers are in arbitrary 

direction, strain energy of fibers will depend on orientation angles and principal stretches. 

Mechanical properties in the reinforced directions are usually dominated by the fibers. The 

anisotropic 8 chain model is plotted against two sets of experimental data.  In Fig. 9a, the model 

is used to fit vitro uniaxial tensile tests of rabbit skin with lateral contraction constrained [63].  

More tendons align with 𝑥1  direction make stress in 𝑥1  direction is stronger than stress in 𝑥2 

direction. Nominal stress will reach 17 kPa when stretch in 𝑥1 direction is 1.5. Stretch in  𝑥2 

direction need be 1.9 to get the same stress level. The parameters used in anisotropic 8-chain model 



are shown in table 4a. Numerical nominal stress in 𝑥2 direction is calculated by using parameters 

of matrix. Numerical nominal stress in  𝑥1 direction is summation of stress contributed by matrix 

and fiber. Fig. 9b shows the comparison of model and test results of human linea alba by Cooney 

et al. [60]. The test results are the mean values of 14 samples. Strong stress is along with transverse 

direction. Stress response in longitudinal direction is weak.  Therefore, numerical true stress in 

transverse direction is calculated by using matrix parameters and fiber parameters given in table 

4b.  Only matrix contribute the stress in longitudinal direction. All numerical calculations are 

performed by using Matlab. Numerical results can capture test data in different directions with 

reasonable accuracy.  

 

 

             Table 4a. The material parameters of anisotropic 8 chain model to fit rabbit skin  

 𝒏 (1/𝒎𝟑) N   (K) 𝒌 (J/K) 

Matrix 3.75× 1022 1.6 330 1.38 × 10−23 

fiber 1.2× 1022 1.39 330 1.38 × 10−23 

 

 

 

             Table 4b. The material parameters of anisotropic 8 chain model to fit human linea alba 

 𝒏 (1/𝒎𝟑) N   (K) 𝒌 (J/K) 

Matrix 9.6× 1025 1.2 330 1.38 × 10−23 

fiber 39.2× 1025 1.152 330 1.38 × 10−23 

 



 
Fig. 9 A series of 8-chain models was used to fit test data (a) Test data is from uniaxial tests on 

rabbit skin by Lanir and Fung [63].  (b) Test data is from uniaxial tests on human linea alba by 

Cooney et al. [60] 

 

 

6. Discussion 

 

6.1 Geometric nonlinearity  

 

  Since no additional assumptions other than 8-chain model are used to derive the anisotropic 

8-chain model, implementing it to finite element code such as Abaqus and Ansys has no difficulty. 

In finite element analysis, calculated results will become more understandable if there exist no 

geometric nonlinearity and material nonlinearity. However, both geometric nonlinearity and 

material nonlinearity are unavoidable. Entire continuum mechanics is treating these geometric 

nonlinearity and material nonlinearity. For small deformation problems, geometric nonlinearity is 

usually related to large rigid body rotation. When a new finite deformation constitutive model is 

built, rigid body rotation should be taken out from stress and strain. In the anisotropic 8-chain 

model, representative cell of fiber can be rotated to any direction.  fiber_chain =
1

√3
(I4 + 2)1/2  is 

independent on rigid body rotation. For large deformation materials such as polymers and tissues, 



material nonlinearity need be captured by material models. That is why the force and stretch 

relationship of each molecular chain is highly nonlinear. By affine deformation assumption, 

mechanical behavior of macroscopic soft materials is nonlinear too.  In finite element analysis, the 

computational domain is meshed to be a small size element. A constitutive material model is 

assigned to this small size element. If a local coordinate system is also assigned to the element, all 

initial conditions, boundary conditions and constitutive model need use this local coordinate 

system. For example, external force direction will change with the defined local coordinate system 

since the local coordinate system will rotate with each element.  Principle directions of constitutive 

models will change with the local coordinate system of each element. Geometry nonlinearity due 

to large body rotation can be computed by relationship of local coordinate system and global 

coordinate system. Especially for Hooke’s law which has small stress and strain definition, the 

rigid body rotation is not included in the material model.   

6.2 Material Nonlinearity 

For soft materials such as polymers and soft tissues, material nonlinearity is due to 

molecular chain response under an external force. For 8-chain model, force and displacement of a 

single molecular chain observe inverse Langevin function relationship by assumption of freely 

joint chain.  There are some other mathematical force-displacement relationships such as worm 

like chain or semi-rigid chain model.  Foundation of them is based on freely rotated chain 

assumption and entropic elasticity. However, a real molecular chain cannot be freely rotated. For 

example, Carbon to carbon connection, e.g., C-C bond, can be single bond, double bond and triple 

bond. As shown in Fig. 10, single bond is made up of 𝜎 − 𝑏𝑜𝑛𝑑. Double bond is made up of 𝜎 −

𝑏𝑜𝑛𝑑 and of 𝜋 − 𝑏𝑜𝑛𝑑. The constraint is higher if double bond is forced to rotate. To understand 

the energy of these bond rotations, Femi-Dirac function is necessary [48].  Femi-Dirac function 

describe the probability of occupied covalent electrons in each energy levels. Bond rotation of a 



molecular chain is related to energy level changes of occupied covalent electrons.  Some 

development can be seen in our recent work [48, 39]. 

 

 
Fig.10 a schematic sketch of a polymer chain with different types of bonds. The double bonds 

are made up of 𝜎 − 𝑏𝑜𝑛𝑑 and of 𝜋 − 𝑏𝑜𝑛𝑑. The single bond is only made up of 𝜎 − 𝑏𝑜𝑛𝑑. 

Rotation of single bond and double bond is related to energy level changes of covalent electrons. 

 

7 Conclusion 

 

Soft materials such as polymers and soft tissues are made of random distributed molecular 

chains. The random cross linked molecular chains can be perfectly represented by 8 chain cells. 

Depending on chain orientations, cubic 8 chain cell is used for bulk matrix materials while slender 

8 chain cell is used for fibers. Mathematical structure of 8 chain model is applied to both matrix 

and fiber. Strain energy of matrix is isotropic and strain energy of fibers will depend on fiber 

direction. Fiber will contribute additional force in the fiber direction. Different direction fibers can 

all be modeled as 8-chain model by fiber orientations controlled by two angles. Since no additional 

assumptions except 8 chain mathematical structures are used in the derivation, employment of the 

model for finite element analysis will be easy.  
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