
Spatio-Temporal Graph Convolutional Network combined Large Language
Model: A Deep Learning Framework for Bike Demand Forecasting

Peisen Li
Weiyang College

Tsinghua University
lps20@mails.tsinghua.edu.cn

Yizhe Pang
Weiyang College

Tsinghua University
pangyz20@mails.tsinghua.edu.cn

Junyu Ren
Department of Automation

Tsinghua University
renjy22@mails.tsinghua.edu.cn

Abstract

This study presents a new deep learning framework,
combining Spatio-Temporal Graph Convolutional Network
(STGCN) with a Large Language Model (LLM), for bike
demand forecasting. Addressing challenges in transform-
ing discrete datasets and integrating unstructured language
data, the framework leverages LLMs to extract insights from
Points of Interest (POI) text data. The proposed STGCN-L
model demonstrates competitive performance compared to
existing models, showcasing its potential in predicting bike
demand. Experiments using Philadelphia datasets highlight
the effectiveness of the hybrid model, emphasizing the need
for further exploration and enhancements, such as incor-
porating additional features like weather data for improved
accuracy.

1. Introduction

Bicycle sharing is an important part of the transportation
and life of citizens in the city. Since the flow of people in
the whole city varies greatly in different locations, it has
become an important issue to allocate shared bicycles in the
whole city according to the traffic flow. Specifically, we
need to predict the distribution relationship of shared bicy-
cles in the entire spatio-temporal domain according to the
existing traffic flow of the whole city, so as to help rele-
vant practitioners and staff to carry out the pre-allocation of
shared bicycles[4, 5].

The main problem of the shared bicycle prediction task
is how to convert the discrete dataset into continuous and
highly spatiotemporally dependent data, so as to construct a
deep learning framework with practical application value.

Figure 1: Yelp Business POI data example

According to the available data, the traffic flow of shared
bicycles in cities is often discrete. Traditional structured
mobility models are unable to handle this unstructured lan-
guage data, resulting in poor performance of shared bicycle
prediction tasks.

Contemporary challenges encountered by mobility mod-
els encompass two principal impediments in harnessing lan-
guage data effectively. Firstly, they inadequately exploit
the extensive reservoirs of descriptive text pertaining to
Points of Interest (POI). Secondly, the integration of un-
structured text data into structured mobility models presents
a formidable challenge. Our research endeavors to rec-
tify these deficiencies through the implementation of Large
Language Models (LLMs)[7].

1

ar
X

iv
:2

40
3.

15
73

3v
1

 [
cs

.S
I]

 2
3

M
ar

 2
02

4

For instance as shown in Figure 1, consider the represen-
tation of information on a Yelp business POI depicted on a
card. Previous endeavors predominantly relied on numeric
data, such as latitude, longitude, and star ratings, alongside
the utilization of attributes and categories as dummy vari-
ables. However, the incorporation of comments into mobil-
ity models proved challenging.

LLMs exhibit a proficiency in comprehending natural
language, offering the potential to extract meaningful in-
sights from POI text data. Leveraging this capability, the
derived outputs can be seamlessly assimilated into mobility
models, augmenting their intelligence and contextual rele-
vance.

We conducted an in-depth analysis of select models that
demonstrated strong performance in previous research ef-
forts. Notably, we examined AGCRN, a traffic flow pre-
diction model based on an adjacency matrix, and the Spa-
tiotemporal Graph Convolutional Network (STGCN). In-
tegrating STGCN model with large language models, we
meticulously scrutinized the dataset we collected ourselves,
yielding comprehensive and noteworthy results

2. Related Works
In this section, we discuss the relevant research that has

been carried out in the relevant field.
Regarding the classical spatio-temporal modeling meth-

ods, the spatio-temporal prediction method based on the
deep learning framework has been proposed. This method
can be used to construct a continuous spatio-temporal
prediction framework based on discrete spatio-temporal
data points, which decomposes the spatio-temporal process
through the sum of the product of the basis functions, and
then maps the spatio-temporal data to the regular network,
so as to establish complete spatio-temporal data.

Another way to map discrete variable values to continu-
ous variable values is to employ neural network embedding.
Embedding refers to mapping discrete variables to contin-
uous variables, and the embedding of neural networks can
reduce the dimensionality of data, which is more conducive
to the classification of datasets. The embedding of neural
networks can generally be used as input data for deep learn-
ing frameworks, allowing for a clearer understanding of the
correspondence between data and classification categories.

There is already a graph-based deep learning approach
to demand forecasting for bike-sharing. The model used
in this method is called B-MRGNN. The model consists of
two main parts: a multi-relationship graph model and a con-
volutional neural network for multi-relationship graphs. It
allows cross-modal information sharing and integrates de-
pendencies from the spatiotemporal domain through a net-
work connection between multiple modal plots, and per-
forms well on multiple datasets.

At the same time, another model for the spatiotempo-

Figure 2: Graph-structured traffic data

ral long-term dependence of bike-sharing prediction tasks
has been widely adopted: spatiotemporal convolutional net-
work (STGCN). Instead of using convolutional layers and
recurrent layers to build a more traditional neural network,
it directly builds a complete convolutional neural network
to reduce the number of parameters and improve the speed
of model training.

3. Approach
3.1. Bike Sharing Demand Prediction on Road

Graphs

Bike sharing demand forecasting is one kind of traffic
forecast – a typical time-series prediction problem.

Problem (Bike Sharing Demand Prediction): This re-
search aims to predict the most likely shared bike demand
in the next H time steps given the previous M demand
observations[4] as well as other languages data,

d̂t+1, ..., d̂t+H =

argmax
dt+1,..,vt+H

log P (dt+1, ..., dt+H |dt−M+1, ..., dt,L)
(1)

where dt ∈ Rn is an observation vector of n shared bike
stations at time step t, each element of which records his-
torical observation for a single bike sharing node. And L is
the embedding vector of the languages data for a single bike
sharing node.

In the present study, we establish the traffic network as
a graph, with a specific emphasis on structured traffic time
series analysis. The observation dt is inherently intercon-
nected rather than independent, forming pairwise connec-
tions within the graph structure. Consequently, the data
point dt can be conceptualized as a graph signal defined on
an undirected graph denoted as G, featuring weights wij as
delineated in Figure 2.

At the t-th time step, within the graph Gt =
(Vt,L, ϵ,W), Vt represents a finite set of vertices, cor-
responding to observations from n bike-sharing stations
within the traffic network. Additionally, L is a vector en-

2

Figure 3: Example of Embeddings. Embeddings are nu-
merical representations of concepts converted to number se-
quences, which make it easy for computers to understand
the relationships between those concepts.

capsulating language data associated with Points of Inter-
est (POIs) around bike-sharing stations. The parameter ϵ
denotes a set of edges, elucidating the interconnectedness
between stations, while M ∈ Rn×n signifies the weighted
adjacency matrix of Gt [1].

3.2. Embeddings

An embedding refers to the mapping of a discrete, cat-
egorical variable onto a vector of continuous numbers, as
illustrated in Figure 3. Within the realm of neural networks,
embeddings represent low-dimensional, learned continuous
vector representations of discrete variables. The utility of
neural network embeddings stems from their ability to ef-
fectively reduce the dimensionality of categorical variables,
providing meaningful representations for categories within
the transformed space [3].

These embeddings prove valuable in the context of nat-
ural language and code processing, given their ease of
consumption and comparability by other machine learning
models and algorithms, such as clustering or search func-
tionalities. In this study, we employ the OpenAI GPT-4
Embeddings API to convert text into a 1536-dimensional
vector, utilized as the language data L.

3.3. STGCN

Spatio-temporal graph convolutional networks, is a deep
learning model to do traffic forecasting works. As shown
in the green box of Figure 4, STGCN is composed of sev-
eral spatio-temporal convolutional blocks, each of which is
formed as a ”sandwich” structure with two gated sequen-
tial convolution layers and one spatial graph convolutional
layer in between.[6]

3.4. STGCN-L

In this section, we augment the proposed Spatio-
Temporal Graph Convolutional Network (STGCN) archi-
tecture by introducing a Large Language Model (LLM)
block. As depicted in Figure 4, the LLM block is strate-
gically positioned between the second ST-Conv Block and
the output layer. Within the LLM block, the language data

associated with Points of Interest (POIs) undergoes conver-
sion into 1536-dimensional vectors using the OpenAI GPT-
4 embeddings API, thereby serving as spatial features for
each node.

To evaluate the performance of our model, we employ
the L2 loss metric. Consequently, the loss function of
STGCN-L for bike-sharing demand is formulated as fol-
lows:

L(v̂;Lθ, L) =
∑
t

||v̂(vt−M+1, ..., vt, Lθ, L)− vt+1||2

(2)
where Lθ are all trainable parameters in the model; L are
embeddings in the model; vt+1 is the ground truth and v̂(·)
denotes the model’s predicition.

4. Experiments

4.1. Data sets

a. Map Boundaries
We get the map boundaries from OPEN Philadelphia

2010 Census Block Groups which divides the city into 1336
regions.

b. Bike Sharing Demand Data
We get the Bike Sharing Dataset of Philadelphia From

2019Q1 to 2023Q1. The Figure 6 shows the distribution of
Bike sharing demand of 2019Q1 in City Philadelphia.

c. Yelp Open Data
The Yelp dataset constitutes a subset encompassing Yelp

businesses, reviews, and user data, designed for utilization
in personal, educational, and academic contexts. Presented
in JSON file format, it serves as a valuable resource for
instructing students on database principles, facilitating the
comprehension of Natural Language Processing (NLP), and
offering sample production data for individuals acquiring
skills in mobile application development. In this study,
we specifically extract the Yelp Points of Interest (POI)
data pertaining to the city of Philadelphia, shaping it into
a language dataset. The distribution of business POIs in
Philadelphia, illustrated in Figure 5, is noted for its pro-
nounced imbalance.

4.2. Data Processing

We obtain the reviews and descriptions of each business,
treating them as embeddings that serve as features for each
business Point of Interest (POI). Subsequently, we compute
the average vector of all embeddings within a given region,
considering this as the feature representation for that region.

It is imperative to note that not all regions possess both
Bike Sharing Demand data and Yelp Language data. Con-
sequently, we identify and extract 136 regions that do not
exhibit any missing data. Defining the traffic network graph
of Philadelphia with 136 nodes and 1,536 features for each

3

Figure 4: Architecture of spatio-temporal graph convolutional networks combined with Large Language Model. The frame-
work STGCN-L consists of two spatio-temporal convolutional blocks (ST-Conv blocks), a LLM block as an encoder and a
fully-connected output layer in the end. Each ST-Conv block contains two temporal gated convolution layers and one spatial
graph convolution layer in the middle. The residual connection and bottleneck strategy are applied inside block.

Figure 5: Business POI in
City Philadelphia

Figure 6: Bike Sharing De-
mand of 2019Q1 in City
Philadelphia

node, illustrated in Figure 7, we compute the adjacency ma-
trix for the graph, utilizing the true distance as edge weight.
Nodes beyond a distance of 160 km are designated as un-
connected. Furthermore, we temporally disaggregate the
bike sharing demand data into hourly intervals, resulting in
a time series dataset comprising 43,832 steps.

4.3. Experimental Settings

All experiments are compiled and tested on a Win-
dow PC (CPU: 12th Gen Intel(R) Core(TM) i5-12400 @
2.5GHz, GPU: NVIDIA GeForce RTX 3060 Ti).We mainly
use pytorch as the framework for deep learning.

4.4. Results

4.4.1 STGCN

The GPU usage for the STGCN model is set to True, the in-
put time step is set to 12, the output time step is set to 3, the
epochs are set to 1000, the batch size = 50.Its average MSE

Figure 7: The Bike Sharing Traffic Network Graph

and MAE are 0.516 and 0.615 respectively. The loss curves
and MAE curves of the training and test sets are shown be-
low, and it can be seen that the loss curve of the training set
decreases slowly after 40 epochs, while the loss curve of the
test set basically reaches a relatively stable result within 10
epochs, and thereafter the amplitude of the bands does not
exceed 0.04 within 90 epochs.

4.4.2 STGCN-L

Compared to the STGCN model, the STGCN-L model uti-
lizes the LLM to add new features to each node in hopes of
improving training. Other parameter settings are basically
identical to the STGCN method. Its average MSE and MAE
are 0.506 and 0.595 respectively. the loss curves and MAE

4

(a) AGCRN (b) STGCN (c) STGCN-L

Figure 8: Experiment Training Losses

Models MSE MAE
STGCNL 0.506 0.595
STGCN 0.516 0.615
AGCRN 0.64 0.30

Table 1: Results

curves of the training and test sets are shown in the follow-
ing figure, which shows that the overall trend of the loss is
consistent with that of the STGCN, but MSE and MAE are
smaller when stabilized.

4.4.3 AGCRN

The batch size is set to 64, the lag is set to 12, the ratio of
training set, test set and validation set is set to 6:2:2, and the
initial learning rate is set to 0.003. For other more parame-
ter settings, please see the Feicheng AGCRN.conf file. The
MAE and MSE of the AGCRN method are 0.64 and 0.30
respectively.The loss curves for the training and validation
sets are shown below. We find that the method converges
faster and the loss curve on the validation set is close to
smooth within 5 epochs.

5. Conclusion
In comparing the outcomes of the aforementioned three

methodologies, it is observed that the STGCN-L model ex-
hibits the lowest Mean Squared Error (MSE), whereas the
AGCRN model demonstrates the smallest Mean Absolute
Error (MAE), with the STGCN’s performance falling in be-
tween. Theoretically, AGCRN introduces adaptive graph
convolution and a recurrent network, enhancing its capacity
to capture intricate relationships in spatio-temporal data and
improve the modeling of nonlinear and dynamic changes.
Consequently, one would anticipate AGCRN to outperform
STGCN. However, empirically, the MSE of AGCRN is the
highest among the three methods. This discrepancy may
be attributed to the presence of prominent outliers in the
data, necessitating a more nuanced feature representation to
achieve precise descriptions and predictions.

Additionally, AGCRN is presumed to entail a greater
number of hyperparameters to be fine-tuned compared to

STGCN, potentially rendering it more susceptible to tuning-
induced variations in performance. Subsequent to the incor-
poration of the Large Language Model (LLM) Block, the
performance optimization of STGCN exhibits a more mod-
est improvement. This suggests that the inclusion of mass
evaluation as a new feature contributes somewhat to the un-
derstanding of inter-site traffic dynamics. However, it is ac-
knowledged that other pivotal factors, such as weather con-
ditions, may exert more substantial influences. In forthcom-
ing endeavors, efforts will be directed towards augmenting
prediction accuracy by introducing additional features and
exploring alternative models.

6. Acknowledgement
We would like to express our sincere gratitude to the

MIT Transit Lab, under the guidance of Dr. Jinhua Zhao,
Dr. Shenhao Wang, and the invaluable contributions of PhD
student Dingyi Zhuang and Qingyi Wang. Their expertise,
mentorship, and collaborative efforts have been instrumen-
tal in the success of this research. Their insightful guidance
and support have significantly enriched the depth and qual-
ity of our work. I am truly appreciative of their dedication
and commendable contributions to the advancement of our
research endeavors.

References
[1] Federico Amato, Fabian Guignard, Sylvain Robert, and

Mikhail Kanevski. A novel framework for spatio-temporal
prediction of environmental data using deep learning. Scien-
tific Reports, 10(1):22243, Dec. 2020. 3

[2] Thomas N Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016. 6

[3] Will Koehrsen. Neural Network Embeddings Explained.
https://towardsdatascience.com/neural-network-embeddings-
explained-4d028e6f0526, Oct. 2018. 3

[4] Yuebing Liang, Guan Huang, and Zhan Zhao. Bike Shar-
ing Demand Prediction based on Knowledge Sharing across
Modes: A Graph-based Deep Learning Approach, Mar. 2022.
1, 2

[5] Yuebing Liang, Guan Huang, and Zhan Zhao. Joint De-
mand Prediction for Multimodal Systems: A Multi-task
Multi-relational Spatiotemporal Graph Neural Network Ap-
proach. Transportation Research Part C: Emerging Technolo-
gies, 140:103731, July 2022. 1

[6] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-Temporal
Graph Convolutional Networks: A Deep Learning Frame-
work for Traffic Forecasting. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelli-
gence, pages 3634–3640, July 2018. 3

[7] Xinli Yu, Zheng Chen, Yuan Ling, Shujing Dong, Zongyi Liu,
and Yanbin Lu. Temporal Data Meets LLM – Explainable
Financial Time Series Forecasting, June 2023. 1

5

A. GCN
Currently, most graph neural network models have a

somewhat universal architecture in common. We refer to
these models as Graph Convolutional Networks (GCNs);
convolutional, because filter parameters are typically shared
over all locations in the graph (or a subset thereof as in Du-
venaud et al., NIPS 2015).

For these models, the goal is then to learn a function of
signals/features on a graph G = (V, E) which takes as input:

• A feature description xi for every node i; summarized
in a N ×D feature matrix X(N : number of nodes, D:
number of input features)

• A representative description of the graph structure in
matrix form; typically in the form of an adjacency ma-
trix A (or some function thereof)

and produces a node-level output Z (an N × F feature
matrix, where F is the number of output features per node).
Graph-level outputs can be modeled by introducing some
form of pooling operation (see, e.g. Duvenaud et al., NIPS
2015).

Every neural network layer can then be written as a non-
linear function

H(l+1) = f(H(l), A)

with H(0) = X and H(L) = Z (or z for graph-level out-
puts), L being the number of layers. The specific models
then differ only in how f(·, ·) is chosen and parameterized.

As an example, let’s consider the following very simple
form of a layer-wise propagation rule:

f(H(l), A) = σ(AH(l)W (l))

where W (l) is a weight matrix for the l-th neural network
layer and σ(·) is a non-linear activation function like the
ReLU. Despite its simplicity this model is already quite
powerful (we’ll come to that in a moment).

But first, let us address two limitations of this simple
model: multiplication with A means that, for every node,
we sum up all the feature vectors of all neighboring nodes
but not the node itself (unless there are self-loops in the
graph). We can ”fix” this by enforcing self-loops in the
graph: we simply add the identity matrix to A.

The second major limitation is that A is typically not nor-
malized and therefore the multiplication with A will com-
pletely change the scale of the feature vectors (we can un-
derstand that by looking at the eigenvalues of A). Normal-
izing A such that all rows sum to one, i.e. D−1A, where
D is the diagonal node degree matrix, gets rid of this prob-
lem. Multiplying with D−1A now corresponds to taking
the average of neighboring node features. In practice, dy-
namics get more interesting when we use a symmetric nor-
malization, i.e. D−1/2A−1/2 (as this no longer amounts to

mere averaging of neighboring nodes). Combining these
two tricks, we essentially arrive at the propagation rule in-
troduced in Kipf & Welling (ICLR 2017):

f(H(l), A) = σ(AH(l)W (l)) = σ(D̂−1/2ÂD̂−1/2H(l)W (l))

with Â = A+ I , where I is the identity matrix and D̂ is the
diagonal node degree matrix of Â.[2]

6

