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We introduce CrystalFormer, a transformer-based autoregressive model specifically designed for space
group-controlled generation of crystalline materials. The space group symmetry significantly simplifies the
crystal space, which is crucial for data and compute efficient generative modeling of crystalline materials.
Leveraging the prominent discrete and sequential nature of the Wyckoff positions, CrystalFormer learns to
generate crystals by directly predicting the species and locations of symmetry-inequivalent atoms in the unit
cell. Our results demonstrate that CrystalFormer matches state-of-the-art performance on standard bench-
marks for both validity, novelty, and stability of the generated crystalline materials. Our analysis also shows
that CrystalFormer ingests sensible solid-state chemistry information from data for generative modeling. The
CrystalFormer unifies symmetry-based structure search and generative pre-training in the realm of crystalline
materials. The simplicity, generality, and flexibility of CrystalFormer position it as a promising architecture
to be the foundational model of the entire crystalline materials space, heralding a new era in materials modeling
and discovery.

I. INTRODUCTION

Machine learning methods are playing an increasingly im-
portant role in material discovery, complementing conven-
tional computational approaches [1, 2]. Generative machine
learning, in particular, has been a promising step for matter
inverse design [3, 4] which goes beyond machine learning
accelerated structure search [5] and property screening [6].
Generative models learn the underlying distribution of train-
ing data and generated new samples from the learned distribu-
tion. In addition, the generation process can also be controlled
by prompts such as desired material properties or experiment
observations. Amazing programming abilities of generative
models have been demonstrated in large language model [7],
text-to-image generation [8, 9], and protein design [10].

It is anticipated that generative model-based approaches
will introduce groundbreaking changes to the traditional
workflows of material discovery. A generative pretrained
foundation model for crystalline materials is a key step to-
wards such lofty goal. However, despite of intensive ef-
forts [11–22], the current generative models for crystalline
materials fall short to match the success of other domains.
Simply scaling the compute and model size of the current
crystal generative model may not be enough because the
amount of high-quality data for crystalline materials is much
less than compared to language and image domains. There-
fore, leveraging the inherent inductive biases specific to crys-
talline structures for more data-efficient generative model-
ing is essential, as has been pursued in some of recent
works [12, 23–26].
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P1 world With space group symmetry

(100 × 1003)20 ≈ 10160 (100 × 10 × 100)5 ≈ 1025

TABLE I. A back-of-envelope estimate of the size of the crystalline
material space. In the ”P1 world”, one treats crystals as if they were
in the least symmetric P1 space group. We consider 100 possible
chemical elements and 20 atoms in the unit cell with 100 discretiza-
tions in each direction. While in the case of utilizing the symmetry
of a typical space group, we consider 5 symmetry inequivalent atoms
occupying 10 possible Wyckoff positions. The additional factor of
100 account for the remaining degree of freedoms for the fractional
coordinates. See Refs. [27, 28] for alternate estimates of the materi-
als space in the context of crystal structure prediction.

The space group symmetry is arguably the most important
inductive bias in the modeling of crystalline materials, which
is the joint outcome of the rotational and translational sym-
metry in space. There are in total 230 space groups [29] for
three-dimensional crystal structures. Nature exhibits a pref-
erence for symmetric crystal structures, a tendency that may
be attributed to the symmetry inherent in the interatomic in-
teractions, which, in turn, are governed by the fundamental
forces acting between elementary particles. As a result, the
appearance of crystalline materials in the the first and the least
symmetric space group P1 is rare [30], with many instances
potentially being misclassified. [31].

Space group symmetry imposes significant constraints on a
crystal. At its core, the space group identifies the crystal sys-
tem to which a crystal belongs, thereby limiting the permis-
sible values for the lattice parameters that define the dimen-
sions and angles of the crystal’s unit cell. Moreover, the sym-
metry operations associated with a given space group ensure
that identical atoms are consistently mapped onto each other
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Crystal data of CaCO3

i wi ai xi yi zi

1 1 6 0 0 1
4

2 2 20 0 0 0
3 5 8 0.257 0 1

4

4 0 - - - -

Crystal data of CaCO3

i wi ai xi yi zi

1 a C 0 0 1
4

2 b Ca 0 0 0
3 e O 0.257 0 1

4

4 X - - - -

N a W M X Y Z
1 21 1 6 - - 1/4
2 6 2 6 - - -
3 8 5 18 0.257 - 1/4
4 - - - - - -

Table 1: Your caption here
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FIG. 1. (a) The Wyckoff positions of the R3̄c space group (No. 167). We highlight the occupied Wyckoff positions of calcite CaCO3 crystal
which belongs to this space group. Carbon, calcium, and oxygen atoms occupy the ’6a’, ’6b’, and ’18e’ positions, respectively. (b) The
CrystalFormer and the essential crystal data of CaCO3. The CrystalFormer is a decoder-only autoregressive transformer that models the
space group controlled crystal structures by predicting probabilities of the Wyckoff letter wi, chemical element ai, and fractional coordinates
(xi, yi, zi) of each atom, and finally the lattice parameters L sequentially. In the table, x3 = 0.257 is the only continuous variable that needs to
be predicted. All other fractional coordinates are fixed by discrete data like the space group number and Wyckoff letter. (c) The autoregressive
sampling procedure of the CaCO3 crystal. One first places carbon atoms at the ’6a’ position, then places calcium atoms at ’6b’ position and
finally places oxygen atoms at ’18e’ position. In each step of the sampling procedure, there is a choice of the Wyckoff positions, chemical
element, and the fractional coordinates (if there are any remaining degrees of freedom in the Wyckoff position) of the atom.

across the crystal, preserving its structural integrity. This re-
quirement enforces strict conditions regarding the types of
chemical elements present, their specific locations within the
crystal, and the total number of atoms in each unit cell. A
key concept in understanding these constraints is the Wyck-
off positions, which delineate unique areas within a unit cell
that are defined by the symmetry operations of the crystal’s
space group. These positions are represented as fractional co-
ordinates, enabling precise definition relative to the unit cell’s
axes. For example, Fig. 1(a) shows the Wyckoff positions for
the space group R3̄c (No. 167). The Wyckoff positions are
labeled by letters in the alphabet, starting from special points
in the bottom to general positions in the top. The multiplicity
counts the number of equivalent positions connected by the
space group symmetry operations. All of them should be oc-
cupied by the same type of atoms to uphold the space group
symmetry. For example, the top row of the table in Fig. 1(a)
shows a general position (x, y, z) that can be mapped to 36 po-
sitions under the symmetry operations of the R3̄c space group.

Nature tends to place atoms in those special Wyckoff po-
sitions at the bottom of the table. For example, we highlight
the occupied Wyckoff positions of calcite (CaCO3) crystal in
Fig. 1, associated with the R3̄c space group. One sees that the
Wyckoff letter ’6a’ and ’6b’ deterministicly define the loca-
tions of the carbon and calcium atoms within the unit cell. In
addition, it follows that a = b, and α = β = 90◦, γ = 120◦

as the R3̄c space group belongs to the trigonal crystal sys-
tem. Ultimately, despite having 30 atoms in the unit cell, there

are only three continuous degrees of freedom for the CaCO3
structure: the coordinate of oxygen atom x = 0.257 and the
lattice constants a = b = 4.99Å and c = 17.07Å. All other in-
formation about the crystal structure can be specified via dis-
crete data such as the Wyckoff letters and chemical species.

The prominent discrete and sequential features illustrated in
Figure 1 are ubiquitous in crystalline materials. The Wyckoff
positions not only specify possible locations of atoms in the
unit cell, their associated multiplicities also put strong con-
straints on the number of atoms. Therefore, space group sym-
metry significantly reduces the degrees of freedom of crys-
talline materials. Failing to exploit this information in gen-
erative modeling not only renders learning inefficient, it also
severely impairs the generalization ability of the model. For
example, the performance of the generative model quickly de-
teriorates as the number of atoms increases due to it is chal-
lenging to generate highly symmetric crystal structures [16].

In this paper, we introduce CrystalFormer, an autoregres-
sive transformer for generative modeling of crystalline mate-
rials. CrystalFormer models the joint probability distribu-
tion of Wyckoff positions, chemical species, and lattice pa-
rameters of crystals with a given space group. By treating
the Wyckoff positions as the first class citizen in the model,
CrystalFormer seamlessly integrates the space group sym-
metry into crystal probabilistic modeling. The space group-
informed transformer exploits the fundamental inductive bias
of crystals to greatly constrain and simplify the generation
process. As shown in Table I, explicit modeling of the Wyck-
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FIG. 2. Break up of the training and validation losses for (a) Wyckoff
letters, (b) chemical species, (c) fractional coordinates, and (d) lattice
parameters over training epochs.

off positions greatly reduces the space of crystalline materials.
We benchmark the CrystalFormer model on standard crys-
tal generation tasks and show it exhibits great efficiency and
generalization ability compared to existing models. Finally,
we discuss its potential applications in novel materials dis-
covery. We have released the codes and trained model at [32].

II. CRYSTALFORMER

To exploit the space group symmetry of the crystal, we
focus on the Wyckoff positions of symmetry-inequivalent
atoms. Wyckoff letters follows the alphabetical order, where
”a” stands for the positions with the highest order of symmetry
for the given space group. Later letters in the alphabet indicate
more general positions with reduced site symmetries. Note
that the information of the space group number and Wyckoff
letter fully determine the multiplicities. In cases where the
atom positions are fully fixed by the Wyckoff letter, we will
also consider the remaining fractional coordinates, e.g. the x-
coordinate of the oxygen atoms in the CaCO3 example shown
in Fig. 1, To generate crystals, one samples the Wyckoff letter,
chemical element, and fractional coordinates of each atom se-
quentially. The sampling procedure starts from special higher
symmetry sites with smaller multiplicities and then goes on to
general lower symmetry regions with larger multiplicities.

With these considerations, we define a crystal data as C =
{W, A, X, L}. Here W = [w1,w2, . . . ,wn] are Wyckoff let-
ters and A = [a1, a2, . . . , an] are chemical species. Here, n
stands for the number of symmetrically inequivalent atoms in
the conventional unit cell. For example, as shown in Fig. 1(b)
one has n = 3 for CaCO3. Explicitly including the Wyckoff
letter in the generative modeling is the key of the present work.
Next, X = [(xi, yi, zi)] ∈ Rn×3 are the fractional coordinates of
symmetrically inequivalent atoms. Lastly, L = [a, b, c, α, β, γ]
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FIG. 4. The histogram for total number of atoms in the unit cell for
several space groups in the test dataset and in the generated samples.

denotes the lattice parameters of the conventional unit cell of
the material.

The central quantity to focus on is the conditional probabil-
ity of a crystal C given the space group number g ∈ [1, 230]:
p(C|g). Since the space group is a fundamental characteriza-
tion for crystalline materials, g is a key control variable that
greatly simplifies the distribution over the entire crystal mate-
rials space. In practical applications, the space group can be
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FIG. 5. The heat map for chemical elements and Wyckoff positions of (a) the test dataset and (b) generated samples for the Fm3̄m space group
(No. 225).

considered separately or even predicted [33, 34].
We express the space group conditioned probability distri-

bution of crystals as an autoregressive product of conditional
probabilities

p(C|g) = p(w1|g) ×
p(a1|g,w1) ×
p(x1|g,w1, a1) ×
p(y1|g,w1, a1, x1) ×
p(z1|g,w1, a1, x1, y1) × · · · ×
p(L|g,w1, a1, x1, y1, z1 . . . ,wn, an, xn, yn, zn). (1)

At first sight, it may appear unnatural to employ an autore-
gressive model for crystals since there is no obvious order
for atoms in the unit cell. However, the sequential nature
of Wyckoff positions suggests a natural way to arrange sym-
metrically inequivalent atoms in an alphabetical order of the
Wyckoff letters. During sampling, the autoregressive model
places the atoms one by one into the unit cell, starting from
the special position with high symmetry to the general posi-
tion with the lowest symmetry, see Fig. 1(c).

We model the conditional probability of the Wyckoff letters
W and chemical species A as categorical distributions. A mix-
ture of von-Mises distribution is employed to model the condi-
tional probability of the factional coordinates X. For Wyckoff
positions with multiplicities greater than one, we only con-
sider the first of fractional coordinates that appear in the inter-
national tables for crystallography [35]. Lastly, we model the
conditioned distribution of lattice parameters as a Gaussian
mixture model.

We build CrystalFormer using the vanilla decoder-only
transformer [36] to model the probability distribution of crys-
talline materials Eq. (1). The transformer-based autoregres-
sive model is a favorable choice to capture these prominent
discrete characteristics of crystals. We feed atomistic features
into an autoregressive transformer. The space group num-
ber g is the first input to the transformer. The remaining in-
puts alternate between the Wyckoff letter, chemical species,

and fractional coordinates of each atom. One can go through
the table of Fig. 1(b) in a raster order to collect these atom-
istic features. We feed vector embeddings of the space group
number, Wyckoff letter, and the chemical species input to the
CrystalFormer. In particular, we concatenate the vector em-
bedding of g to all other inputs since it is the key control vari-
able for the crystal generation. In addition, we have also pro-
vided the multiplicity of each Wyckoff position as an addi-
tional feature. The multiplicity can be easily inferred from the
space group and the Wyckoff letters. We feed the fractional
coordinates as Fourier features into the transformer so that
the model preserves the periodicity of the unit cell [13, 37]
We pad the atom sequence up to a maximum length and take
the shifted output as parameters of the conditional probability
distribution Eq. (1), see Fig. 1(b). At the location of the first
padding atom, we predict the lattice parameters.

We implement a number of constraints in the model to fur-
ther reduce the phase space of the model. First, the Wyckoff
letters should be valid for the given space group. For exam-
ple, for the space group number 167 the Wyckoff letters go
from ’a’ up to ’f’. Second, we require that the Wyckoff let-
ters wi follow alphabetical order in the sequence [38]. Lastly,
the Wyckoff positions with no continuous degree of freedom
(such as ’a’, ’b’, and ’d’ positions in the space group 167) can
only be occupied once. Those constraints are implemented by
tuning the logit biases of Wyckoff letters [39, 40].

The design of CrystalFormer focuses mostly on the space
group symmetries since we believe they are the most cru-
cial ones for crystalline materials. This design decision sig-
nificantly impacts the treatment of other symmetries. First,
it is often possible to place the origin of the unit cell at
the inversion center of the specified space group. The cho-
sen origin naturally fixes the continuous translation invari-
ance of fractional coordinates. Second, by only considering
symmetry-inequivalent atoms and labeling them with Wyck-
off letters, one fixes most of the permutation invariance in
the representation. For those Wyckoff positions with contin-
uous degrees of freedom, there may be multiple symmetry-



5

inequivalent atoms with the same Wyckoff letters. We arrange
these atoms according to the lexicographic order of fractional
coordinates [41] in the sequence. Note that in a crystal envi-
ronment, the same type of atoms occupying different Wyckoff
positions could be regarded as distinguished particles as they
generally have different site symmetry. Lastly, the periodicity
of the fractional coordinates is respected since they are treated
as variables under the von-Mises distribution.

The CrystalFormer is trained by minimizing the negative
log-likelihood over training dataset

L = − E
C,g

[
ln p(C|g)

]
. (2)

Writing out p(C|g) according to Eq. (1), the objective func-
tion contains the negative log-likelihood of discrete variables
such as Wyckoff letters W and chemical species A, as well as
continuous variables such as fractional coordinates X and the
lattice parameters L. In the objective function, for continuous
variables X, L we consider only active ones that are not fixed
by the space groups and Wyckoff letters. In this way, those
special fractional coordinates (e.g. 0, 1

4 ) and lattice parame-
ters (e.g. 90◦, 120◦ ) do not contribute to the loss function.

To sample crystals from the CrystalFormer, one needs
to specify a space group number and a number of possible
chemical elements. The CrystalFormer samples the atoms
one by one, starting from more symmetric specific positions
with lower multiplicities till less symmetric general positions
with larger multiplicities. We use the information of the space
group and Wyckoff letter to control the sampling of frac-
tional coordinates. By applying the symmetry projection to
the sampled fractional coordinate, one ensures the generated
fractional coordinates are compatible with the Wyckoff posi-
tions. One can also mask out the logits of chemical species
so that only a number of selected elements will be sampled.
The number of symmetrically inequalivent atoms may fluc-
tuate in the sampling procedure. Once one has sampled a
padding atom, the model predicts the lattice parameters under
the space group constraint. Moreover, we introduce a temper-
ature parameter T in the sample distribution p(C|g)1/T . With
T < 1 we will draw samples from a sharper distribution, while
T > 1 gives more diversity in the generated samples.

III. RESULTS AND EVALUATIONS

We train the CrystalFormer using the MP-20 dataset [11]
which is a popular dataset that represents a majority of exper-
imentally known crystalline materials at ambient conditions
with no more than 20 atoms in the primitive unit cell. The
training dataset contains 27136 crystal structures. The subdi-
vision of the training samples according to the space group has

greatly reduced the number of samples in each space group
category. On top of that, the distribution of training samples
is quite uneven among the space groups, which reflects the
imbalance distribution of crystals over space groups in Na-
ture [30]. In fact, there is no training data in 61 out of 230
space groups as shown in Fig. 6. Nevertheless, we still em-
ploy the MP-20 as the training set so that the performance of
the model can be more easily gauged with the others in the
literature.

Figure 2 shows a breakup of the learning curves for the
Wyckoff position, chemical species, fractional coordinates,
and lattice parameters. Next, we will select the model check-
point with the lowest total validation loss and examine its
learned features. Then, we will use the model to generate
1000 crystal samples for each of the 230 space groups and
evaluate their validity, stability, and novelty. These results
highlight the benefits of built-in space group symmetries in
the model and point to possible future applications of the
CrystalFormer model.

A. Learned features

Figure 3 visualizes the cosine similarity of the learned vec-
tor embedding of the chemical species. Red colors in the fig-
ure indicate similar chemical species identified by the model.
One clearly sees the periodicity shows up as off-diagonal
stripes. Moreover, there are visible clusters for Lanthanide el-
ements (La-Lu). The plot also suggests the similarity between
the lanthanides and other rare-earth elements (Y and Sc). Be-
ing able to learn chemical similarities from data [19, 42–46]
is an encouraging signal that the model is picking up atomic
physics to be able to generate reasonable crystal structures. In
particular, the features shown in Fig. 3 is strikingly similar to
the similarity map constructed purposely based on substitu-
tion pattern [42] which was later used for substitution-based
material discovery [47].

Figure 4 presents the histogram of the total number of
atoms in the conventional unit cell for several space groups.
One sees a nice agreement between the atom number distri-
bution in the test dataset and the generated samples. In ad-
dition, it appears that space group g is the key latent variable
that decomposes the multi-modal atom number distribution of
crystals. This is understandable because the number of atoms
is determined by the sum of the multiplicities of occupied
Wyckoff positions. Therefore, the space group symmetry is a
key control variable for the atom number distribution. Build-
ing Wyckoff positions information into the CrystalFormer
model architecture removes the necessities of querying the
training data to find out the number of atoms for a targeted
space group [16].
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Figure 5 shows heat maps of Wyckoff positions and chem-
ical species for the Fm3̄m space group (No. 225). First of
all, one sees that most atoms occupy those special Wyckoff
positions with high symmetries. Moreover, the heat map re-
veals interesting solid-state chemistry knowledge as it sug-
gests where each atom tends to appear in a crystal. For exam-
ple, there are vertical stripes at the locations of inert elements
(He, Ne, Ar...) as they are rare in crystalline materials. More-
over, one sees that oxygen and halogen elements (F, Cl, Br, I)
appear quite often in the Wyckoff position ”24e”, which is a
consequence of their electronegativities. Overall, we see the
CrystalFormer has learned these key motifs for generating
crystalline materials. On the other hand, one sees that several
Wyckoff locations of the hydrogen are missing in the gener-
ated samples compared to the test dataset. We believe that
is due to that the hydrogen element takes only about 0.4% in
the training data for the Fm3̄m space group. Collecting more
data with better coverage of elements will be crucial to further
boost the performance of the current model.

There has been a long history of summarizing empirical or
statistical chemistry rules encoded in materials data and then
use them to instruct search of crystal structures [42, 48–52].
Our analysis shows that CrystalFormer also ingests a num-
ber of chemical intuitions in the training data for generative
modelling. Since training procedure compresses the chem-
istry knowledge into a neural network model with tractable
likelihoods, it is possible to employ CrystalFormer in the
Monte Carlo or evolution strategy search of crystal structures,
besides as a probabilistic generative model.

B. Validity and novelty of generated samples

Figure 6 illustrates the structure and compositional valid-
ity of generated samples across all 230 space groups. Fol-
lowing the Ref. [53], a structure meets the validity criteria
if the shortest atomic distance exceeds 0.5 Å, a lenient stan-
dard. Composition validity requires charge neutrality as com-
puted by SMACT [54]. This is, however, an overly strin-
gent criterion since the composition validity of the training
set is only around 90% by this measure [11]. Note that the
CrystalFormer is able to generate reasonable samples even
for those space groups without any training data.

Table II reports the validity of generated samples for se-
lected space groups in each of the seven crystal systems. To
ensure the numbers are representative, we chose the space
group to be the one with the most training data for each crys-
tal system. One sees that the model performs better for more
symmetric space groups. This is a nice feature that comple-
ments existing crystal generative models, which mostly have
difficulties in generating highly symmetric structures. As a
reference, we also list the validity of the generated samples
suppose one treats the crystals as if they are all in the P1 space
group (No. 1) with only translational symmetry. One sees
the structure validity scores of P1 space group improves com-
pared to the one shown in Figure 6 due to increased training
samples.

The second part of Table II shows reference results in the

TABLE II. Validity of generated crystal structure for representative
space groups. Training samples count the number of samples in the
training set.

Space group Crystal system Training samples
Validity (%) ↑
Struc. Comp.

2 Triclinic 676 83.10 83.0
12 Monoclinic 1273 87.70 81.80
62 Orthorhombic 1187 95.50 87.20
139 Tetragonal 1233 97.70 83.40
166 Trigonal 1076 98.50 85.0
194 Hexagonal 1129 99.40 89.90
225 Cubic 3960 99.60 93.50

1 Triclinic 27136 91.40 80.20

Autoregressive models
PGSchNet [55] 99.65 75.96
LM-CH (character-level tokenization) [18] 84.81 83.55
LM-AC (atom coordinate-level tokenization) [18] 95.81 88.87
Crystal-LLM [20] 96.5 86.3

Diffusion models
CDVAE [11] 100.0 86.70
DiffCSP [13] 100.0 83.25
DiffCSP++ [26] 99.94 85.12
UniMat-Large [15] 97.2 89.4

literature for the same validity test. In principle, the perfor-
mance of the present model should fall back to the language
model approaches [18, 20]. The remaining gap may be due
to details such as the including the header line in the crystal-
lographic information files (CIF), specific sampling strategy
of language models, or the additional post-selection of sam-
ples [20]. In the table, the DiffCSP++ [26] is the only alterna-
tive model that exploits the space group symmetry in the gen-
eration process. However, different from us, the DiffCSP++
model does not predict Wycokff position as a part of genera-
tion process. Therefore, DiffCSP++ needs to search for tem-
plate structure in the training set for generation, which may
limit its generality. Besides works listed in Table II that re-
ported validity scores in a comparable settings, Ref. [19] has
conditioned the generation of CIF on the space group sym-
bols in a language model setting. Ref. [16] considered space
group conditioned crystal generation using a fine-tuned gen-
erative model with space group labels. Neither approach pro-
vides exact constraints on the space group, which could yield
problematic structures for large systems and highly symmet-
ric space groups. Ref. [23] considered generating symmetric
crystals in their Wyckoff representation. However, the model
does not consider fractional coordinates and lattice parame-
ters, so it requires a subsequent computational search to com-
pletely determine the crystal structure. Sec. IV B contains a
more in-depth discussion of the relationship of the present ap-
proach with related works.

Figure 7(a) shows the validity of generated samples as a
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FIG. 7. (a) Structure and composition validity, (b) novelty and
uniqueness of generated samples evaluated according to [11] for the
Fm3̄m space group.

function of sampling temperature. One clearly sees that re-
duced temperature T < 1 increases the validity of samples
at the cost of reducing the diversity [20]. Figure 7(b) shows
the novelty and uniqueness evaluated on 1000 generated sam-
ples with temperature. Novelty quantifies the proportion of
new structures in the generated samples that were unseen in
the training dataset. Uniqueness represents the percentage of
distinct, non-redundant structures among the generated sam-
ples [56]. One sees that across different temperatures the
uniqueness remains high, indicating the model does not col-
lapse to a mode that produces duplicated samples. On the
other hand, the model produces close to 70% novel material as
temperature increases, which nicely demonstrates modal cov-
ering behavior of the maximum likelihood estimation train-
ing [57]. Having a model distribution broader than the span
of the dataset is crucial for material discovery.

C. Stability of generative samples

Figure 8(a) shows the histogram of the log-likelihood of
generated and test samples show nice agreement. We also vi-
sualize structures of a few generated samples which deems
to be very likely, typical, and unlikely according to their log-
likelihoods. Interestingly, we did not observe a clear correla-
tion between the model likelihood and energy of the structure.

Fig. 8(b) shows the energy above hull based on energies
calculated with density functional theory (DFT). One sees the
distributions of unrelaxed and relaxed structures are very sim-
ilar, suggesting that the generated structures are already very
close to local minima of DFT calculations. For the given com-
putational budget detailed in the Appendix B, we manage to
reach convergence for 973 out of 1000 structures in the DFT
relaxation. All of the structures retains the same space group
symmetry after the DFT relaxation [59]. With its default pa-
rameters, StructureMatcher from pymatgen [60] is able to
match all 973 structures before and after relaxation. The av-
erage root mean squared displacement (RMSD) normalized

by 3√V/N computed for these matched structures is 0.0061,
which confirms the generated samples are indeed very close
to DFT local minima. Figure 8(b) shows a pronounced peak
around Ehull ≈ 0.1eV/atom showing the model indeed gener-
ates a large fraction of candidates of metastable materials [58].
Finally, we found 21 relaxed samples are stable by the crite-
ria Ehull < 0 and summarize them in Table S2 of appendix B.
Most of the found stable materials only have atoms occupying
the first few Wyckoff positions. Among these 21 structures,
we found 10 are new crystalline materials that are not con-
tained in the Materials Project database [61].

IV. DISCUSSIONS

A. Applications

With the abilities demonstrated in Sec. III, we believe that
CrystalFormer is ready to fit into the existing materials dis-
covery workflow in the following two ways.

1. Initialization for structure search

Crystal structure search relies heavily on utilizing space
group symmetries. For example, it is a common practice for
crystal structure prediction software [62–66] and crystal struc-
ture search [67, 68] to place atoms at Wyckoff positions to
prepare symmetric initial states for subsequent optimization.

However, such initialization approach faces combinatorial
difficulty as the number of chemical species and atoms in the
unit cell grow. The CrystalFormer is ready to act as a drop-
in replacement of random structure initialization. In this way,
one bypasses the curse-of-dimensionality of exact enumera-
tion with a data-driven probabilistic approach. Moreover, the
ability of CrystalFormer to generate diverse and close to
metastable structures can greatly reduce computational costs
of downstream ab initio calculations.

2. Mutation of existing structures

Mutatation of known crystals is a prominent approach to
materials discovery. For example, one can employ machine
machine-learned force field to relax crystal structures [5, 69–
71] after element substitutions. In the lens of generative mod-
eling, the machine learning force field can be regarded as
the energy-based model or Boltzmann machines. A potential
drawback of exploring materials space with an energy-based
model is the slow mixing or even ergodicity issue posed by the
rough landscape of the potential energy surface. In this sense,
element substitutions provide a variety of initial seeds, com-
pensating the limitation potential energy surface-based explo-
ration.

Having an alternative measure of crystal likelihood other
than the potential energy surface opens a way to employ the
model likelihood as a guide for structure search. For exam-
ple, with a trained CrystalFormer, one can perform Markov
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FIG. 8. (a) The log-likelihood histogram for 1000 samples in the Fm3̄m space group and the test dataset. (b) The histograms of energy above
the convex hull. The dashed line denotes the metastable criterion because materials with Ehull < 0.1 eV/atom are usually metastable and have
potential utilities in practice [58]. The insets visualize the crystal structure of a few generated samples. Rb2AgBiBr6, LiMg2Cd, and LiCd3 are
in train dataset. ErAs is in the validation dataset. CeAs is in the test dataset. K2YbCeF6, Ba6CoNi(IN3)2, CsGaRb2F6, Li2MnF6, AcBi2K are
not in the MP-20 or Materials Project database.

chain Monte Carlo (MCMC) random walk in the crystalline
materials starting from an existing crystal structure. At each
step of the random walk, one proposes an element substitu-
tion, atom shift, or lattice deformation and accept or reject the
proposal according to the model likelihood. In the long time
limit, one will sample from the model distribution. However,
during the burn-in phase of such MCMC sampling, the gen-
erated samples will be similar to the starting material, which
may be a desired feature in certain cases.

B. Related works

Crystal generative models have been explored using vari-
ational autoencoder [23, 72], generative adversarial net-
works [12, 73], normalizing flows [74–76], diffusion mod-
els [11–16, 21, 22, 26], GFlowNet [24, 25], and autoregressive
models [17–19, 55, 77, 78]. In these autoregressive models,
one either use atomistic features [55, 77, 78] or use pure text
tokens [17–20]. However, with the introduction of specialized

tokens for crystals, the boundary between the two is blurred.

The CrystalFormer is most closely related to the
autoregressvie generative model originally designed for
molecules [55, 77, 78]. However, instead of predicting the
relative distances of atoms, we predict the Wyckoff positions
of atoms in the unit cell. Having the luxury of the space group
symmetry for crystals provides strong hints on where to put
the atoms in the unit cell and greatly simplifies the design
around rotational equivariance. On the other hand, compared
to Refs. [17–20] which treat text descriptions of crystals us-
ing autoregressive language models, we are only dealing with
more concise and essential atomistic representation of crys-
tals, which leads to smaller model size and faster sampling
speed. Fast generation speed is not only a welcoming feature
but also will be crucial for intelligent exploration of materials
space based on combinations of probabilistic generation and
post-selection, backtracking, and searching techniques [79].
More importantly, CrystalFormer guarantees space group
constraints since these symmetries are baked in the model ar-
chitecture rather than learned as statistical correlation from
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text data. In a sense, the present work employs intrinsic math-
ematical (as opposed to natural) language to incorporate the
symmetry principle in the generative modeling of crystals.

As a side remark, the Wyckoff position features have been
used in machine learning models for materials property pre-
diction [80, 81]. Incorporating space group information in the
encoder-only transformer models may also boost their prop-
erty prediction performance [82, 83] as suggested by the re-
lated study [84].

V. OUTLOOK

Crystal structure prediction has long been the dream of
computational material sciences [85]. CrystalFormer in-
tegrates exact symmetry principles from math and empiri-
cal chemical intuitions from data into one framework. Prob-
abilistic generative modeling of crystalline materials using
CrystalFormer opens the way to many future innovations
in materials discovery.

Precisely controlling the space group in the generative
model of crystalline materials is not only a highly desired
feature but also greatly simplifies the task. An obvious fu-
ture direction is to scale up the model as well as the train-
ing dataset, especially curating a dataset with better cover-
age of space groups. Note that the MP-20 dataset has by
no means exhausted all available crystalline material [16, 19].
The transformer-based generative model is ready to be scaled
up with more training data, in the same fashion as large lan-
guage models [86]. Given similar model architectures, the
idea of generative pretraining of a foundational model for ma-
terial generation is appealing. When scaling up the model it
will be interesting to note the possible appearance of neural
scaling law [87] as it has also been showing up in other con-
texts of atomistic modeling [88].

The model architecture is still open to further improvement
to better serve the purpose of material discovery, First of all,
to better facilitate data efficiency learning and structure phase

transitions-related applications, it will be useful to further ex-
ploit the group-subgroup structure [89] in the model architec-
ture. Second, besides chemical elements, it will be useful to
constrain the stoichiometry of generated materials. This may
be achieved by tuning the logit bias or combining the present
probabilistic generation approaches with traditional enumer-
ation approaches [90]. Lastly, it is worth exploring to use
CrystalFormer as the base distribution in the flow model
and employ symmetry-persevering transportation’s to further
adjust the atoms coordinates and unit cells [10, 26], which
mimics a symmetry-constrained relaxation process [91].

Conditioned crystal structure generation based on material
properties [16, 78] and experimental measurements [92] are
both straightforward with CrystalFormer. One can either
extend the space group embedding or employ the full encoder-
decoder transformer architecture [36] for conditioned crystal
generation. The first step of property-guided generation could
take into account of synthesizability and stability of materi-
als. In the future, proposing materials with multiple proper-
ties is a promising direction for material generative models.
To achieve that goal, curating a high-quality material dataset
with either computed or measured properties is crucial. Need-
less to say, to close the loop of material discovery, one will
need to carry out experimental verification for the generated
materials.
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equilibrium molecules with deep neural networks, (2018),
arXiv:1810.11347 [stat.ML].

[78] N. W. A. Gebauer, M. Gastegger, S. S. P. Hessmann, K.-R.
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Appendix A: More details of CrystalFormer

To recap, the space group information plays a key role in the architecture, training, and sampling of CrystalFormer. First
of all, the vector embedding of space group number g controls all subsequent outputs in the transformer that determines the
Wyckoff letters, chemical species, fractional coordinates, and lattice parameters. Second, the information of the space group
and Wyckoff letter are used to select active components in the fractional coordinates and lattice parameters in the loss function
during training. Lastly, the space group determines the concrete meaning of in terms of multiplicities and fractional coordinates.
This information is used to place right amount of atoms to appropriate locations during sampling.

1. Model architectures

Algorithm 1 summarized the model architecture of CrystalFormer. Training the model for 3,800 epochs with the hyperpa-
rameters shown in Table S1 takes about 13 hours on a single A100 GPU.

Algorithm 1 The CrystalFormer architecture
Input: Space group number g, Wyckoff letters W = [wi], chemical elements A = [ai], fractional coordinates X = [(xi, yi, zi))] of each atom in

the unit cell.
Output: Parameters for the conditional probability of Wyckoff letters ωi, chemical element αi, and fractional coordinates χi, υi, ζ i of atoms

and the lattice parameters ℓ.
1: ω1 = Net(g) ▷ the logit of the first Wyckoff position is implemented as a standalone neural network.
2: if W = ∅ then.
3: return ω1

4: end if
5: # multiplicity
6: for i = 1:len(W) do
7: mi = mult table[g,wi]
8: end for
9: # prepare input features into the transformer

10: hW = [Embed(g), Embed(wi),mi].
11: hA = [Embed(g), Embed(ai)].
12: hX = [Embed(g), cos(2πxi), sin(2πxi), . . . , cos(2πxiN f ), sin(2πxiN f )]
13: hY = . . .
14: hZ = . . .
15: # concatenate along particle dimension
16: h = Concatenate(hW , hA, hX, hY , hZ)
17: Project h feature size to dmodel and add position embedding
18: h = MaskedTransformer(h)
19: Project h feature size to desired dimensions
20: # split along particle dimension
21: ωi,αi,χi, υi, ζ i, ℓ = Split(h)
22: Mask ωi to ensure the Wyckoff letters are valid for the given space group g and appears in an alphabetical order.
23: return [ω1,α1,χ1, υ1, ζ1,ω2,α2,χ2, ..., ℓ]
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TABLE S1. A table of hyperparameters used in this work.

Hyperparameters Value Remarks
The length of atom sequence including the padding atoms 21
Number of chemical species 119 ’H’ to ’Og’, plus padding atom
Number of possible Wyckoff letters 28 ’a-z’+’A’, plus padding atom
Number of modes in von-Mises mixture distribution Kx 16
Number of modes in lattice Gaussian mixture distribution Kl 16
Hidden layer dimension for the composite type of the first atom 256
Transformer number of layers 16
Transformer number of heads 16
Transformer key size 64
Transformer model size dmodel 32
Embedding dimension of discrete input 32
Number of Fourier frequency N f 5
Learning rate 0.0001
Learning rate decay 0.0
Weight decay 0.0
Clip grad 1.0
Batch Size 100
Optimizer Adam
Dropout rate 0.5
Total number of parameters: 4840295
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2. Sampling algorithm

Algorithm 2 summarizes the sampling method of CrystalFormer. It takes 520 seconds to generate a batch size 13,000
crystal samples on a single A100 GPU, which translates to a generation speed 40 millisecond per sample.

Algorithm 2 Sample crystals with CrystalFormer
Input: space group number g, a list of chemical elements element list, length n of the atom sequence, sampling temperature T
Output: Wyckoff letters W, chemical species A, fractional coordinates X of atoms, and lattice parameters L of the unit cell.

1: Initialize W = ∅, A = ∅, X = ∅
2: for i = 1 . . . , n do
3: # sample Wyckoff letter w
4: Get the last ω from CrystalFormer(g,W, A, X)
5: w ∼ Categorical(ω)1/T

6: W = [W,w]
7: # sample atom species a
8: Get the last α from CrystalFormer(g,W, A, X)
9: Mask the logits in α according to element list

10: a ∼ Categorical(α)1/T

11: A = [A, a]
12: # sample fractional coordinate x
13: Get the last χ from CrystalFormer(g,W, A, X)
14: x ∼ vonMisesMix(χ)1/T

15: Project x to Wyckoff positions according to the Wyckoff letter w
16: update X with x
17: # sample fractional coordinate y
18: Get the last υ from CrystalFormer(g,W, A, X)
19: ...
20: update X with y
21: # sample fractional coordinate z
22: Get the last ζ from CrystalFormer(g,W, A, X)
23: ...
24: update X with z
25: end for
26: # sample L
27: Get ℓ from CrystalFormer(g,W, A, X)
28: L ∼ GaussianMix(ℓ)1/T

29: Symmetrize L according to space group g
30: return W, A, X, L
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TABLE S2. Stable crystals sampled in the Fm3̄m space group (No. 225) and the lattice constant of the cubic cell. We list the lattice constant
in the bracket if these samples can be found in the MP-20 dataset and are also labelled to be Fm3̄m space group. The materials listed on the
left column can be found in the MP-20 dataset. Among them, CeAs is in the test dataset while others are in the training dataset. EuTl, and
InNd are in the Pm3̄m space group (No. 221). InLiY2 is in the Immm space group (No. 71). The ten materials listed in the right column are
not contained in the Materials Project database [61].

In MP Not in MP

Formula Ehull (eV/atom) Lattice constant (Å) Formula Ehull (eV/atom) Lattice constant (Å)

PdPtTm2 -0.00164 6.90 (6.86) Ac2CuRh -0.14248 7.47

LiPt2Zr -0.01668 6.43 (6.39) Ac2AgSi -0.04364 7.81

CdLi2Pb -0.00313 6.82 (6.79) Ir2LuPm -0.0289 6.89

Li2NdPb -0.05703 7.05 (7.03) InPm2Tl -0.01318 7.73

BeOs2Si -0.00779 5.77 (5.74) PdPm2Zn -0.0843 7.27

CeAs -0.0073 5.99 (6.09) AuInPm2 -0.0568 7.70

Xe -0.00067 7.45 (6.66) AcBi2K -0.20215 8.37

InLiY2 -0.17504 7.54 InTb -0.26278 7.95

InNd -0.21393 8.35 Ac2HgIn -0.40448 8.66

Be2C -0.01227 4.33 (4.32) CaPaRu2 -0.09344 6.80

EuTl -0.1054 7.90

Appendix B: Stable crystal samples

Table S2 list generated samples in the Fm3̄m space group (No. 225) with Ehull < 0. Three of them (InNd, InTb, and EuTl)
actually fall into the Pm3̄m space group (No. 221) due to merging of ”4a” and ”4b” Wyckoff positions that are occupied
by the same elements. Overall, out of 1000 samples generated by CrystalFormer, we found 10 stable materials that are
not contained in the Materials Project database. Extending the search to more recent material databases, we found match of
Ac2CuRh, Ac2HgIn, Ac2AgSi and AuInPm2 in the WBM dataset [93], Ac2HgIn, Ac2AgSi, InPm2Tl, PdPm2Zn, Ir2LuPm and
AuInPm2 in the Alexandria dataset [94, 95]. Neverthless, we did not find AcBi2K, InTb, and CaPaRu2 to be present in any of
these dataset.

To estimate the energy above hull, the DFT calculations were performed with the Perdew-Burke-Ernzerhof (PBE) exchange-
correlation functional [96] and all-electron projector-augmented wave method [97], as implemented in the VASP code [98]. All
parameters of the calculations including settings of PBE functional, Hubbard U corrections, and ferromagnetic initialization
are chosen to be consistent with Materials Project by using of MPRelaxSet function in pymatgen [60] A double relaxation
strategy was employed. The maximum optimization ionic step and the maximum running time were constrained to 150 steps
and 20 hours, respectively. All structures containing Yb element are ignored when calculating energy above hull due to they are
unavailable from the Materials Project at the time of writing.
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