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MONOPOLES AND TRANSVERSE KNOTS

NOBUO IIDA AND MASAKI TANIGUCHI

Abstract. We present a framework for studying transverse knots and symplectic sur-
faces utilizing the Seiberg–Witten monopole equation. Our primary approach involves
investigating an equivariant Seiberg–Witten theory introduced by Baraglia–Hekmati
on branched covers, incorporating invariant contact/symplectic structures.

Within this framework, we introduce a novel slice-torus invariant denoted as qM (K).
This invariant can be viewed as the Seiberg–Witten analog of Hendricks–Lipshitz–
Sarkar ’s qτ invariant, with a signature correction term. One property of the invariant
qM (K) is an adjunction equality for properly embedded connected symplectic surfaces

in the symplectic filling D4#mCP
2
. The proof of this equality utilizes the equivariant

version of the homotopical contact invariant introduced in [IT20], leading to a trans-
verse knot invariant. Another ingredient of the proof involves constructing invariant
symplectic structures on branched covering spaces branched along properly embedded
symplectic surfaces in symplectic fillings. As an application of the invariant qM (K),
we determine the value of any slice-torus invariant within a permissible deviation of
2 for squeezed knots concordant to certain Montesinos knots. Additionally, we pro-

vide an obstruction to realizing second homology classes of D4#mCP
2
as connected

embedded symplectic surfaces with transverse knot boundary or connected embed-
ded Lagrangian surfaces with collarable Legendrian knot boundary. Moreover, we
introduce a new obstruction to certain Montesinos knots being quasipositive, which is
described only in terms of slice genera and their signatures.
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1. Introduction

1.1. Contact Structures and Transverse Knots. A contact structure on a (2n+ 1)-dimensional
oriented manifold M is a codimension-1 distribution ξ = Kerλ ⊂ TM , λ ∈ Ω1(M) satisfying the

1
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2 NOBUO IIDA AND MASAKI TANIGUCHI

contact condition
λ ∧ (dλ)n > 0.

We focus on contact structures on 3-dimensional manifolds, which have intensively interacted with
low-dimensional topology. When a contact structure is given on an oriented 3-manifold, there are two
distinguished kinds of knots: Legendrian knots, which are tangent to the contact plane, and transverse
knots, which are transverse to it. The study of Legendrian knots has utilized the Seiberg–Witten
theory in various ways. For instance, Mrowka–Rollin [MR06] proved a generalization of Bennequin
inequality using Kronheimer–Mrowka’s variant of the Seiberg–Witten invariants for 4-manifolds with
contact boundary.

The purpose of this paper is to give a new framework to study transverse knots and symplec-
tic surfaces using Seiberg–Witten theory. Our method is to develop Baraglia–Hekmati’s equivariant
Seiberg–Witten theory [BH24a] under invariant contact/symplectic structures on branched covers.
For a prime number p and a knot K in S3, Baraglia–Hekmati introduced a formal desuspension of an
S1 × Zp-equivariant pointed homotopy type

SWF (Σp(K), s0)

constructed from Seiberg–Witten equation and whose Zp-action comes from the covering transforma-
tion on the p-th branched covering space Σp(K) along K. Here, s0 is the unique Zp-invariant spin
structure on Σp(K). By applying S1 × Zp-equivariant cohomology to SWF (Σp(K), s0), Baraglia–
Hekmati defined 1

H̃∗
S1×Zp

(SWF (Σp(K), s0);Fp).

One of the main key ingredients in this paper is based on an equivariant version of Seiberg–Witten
Floer homotopy contact invariant introduced in [IT20], formulated as Zp-equivariant map

CZp(Σp(K), ξ̃) : S0 → Σd3(ξ̃)+
1
2 (SWF (−Σp(K), s0)),(1)

where ξ̃ is the natural Zp-invariant contact structure constructed in [Gon87, Pla06a] on the cyclic

p-th branched covering Σp(K) and d3(ξ̃) ∈ Q is the Gompf’s invariant [Gom98a] of the oriented 2-

plane field ξ̃. We conjecture that this invariant recovers the Heegaard Floer transverse knot invariant
defined by Kang [Kan18] based on Hendricks–Lipshitz–Sarkar’s equivariant Heegaard Floer homology
with respect to branched involutions [HLS16]. Before focusing on the theoretical developments in this
paper, we first state applications to symplectic surfaces and Lagrangian surfaces in symplectic fillings.

1.2. Applications to symplectic surfaces. The symplectic surfaces bounded by transverse knots
have been studied as a connection between knot theory and symplectic topology. Closed symplectic
surfaces in closed symplectic 4-manifolds have been studied in various ways. The existence of con-
nected immersed symplectic surfaces realizing a given homology class in a closed symplectic 4-manifold
has been proven under a homotopical necessary condition [Li08]. For higher dimensions, it is proven
in [Li08] that the homotopical condition is known to be enough to show the existence of embedded
connected symplectic surfaces. Hence, the remaining challenge lies in the existence problem of em-
bedded connected closed symplectic surfaces realizing specific homology classes in four dimensions.
For certain homology classes, several transcendental constructions of closed symplectic surfaces have
been known [Don96,Tau00,LL02]. Results on the existence of symplectic surfaces were used to classify
symplectic structures on CP 2 [Tau00] up to symplectomorphisms. 2 In [Ham11], certain obstructions

1More precisely, Baraglia–Hekmati did not define metric-independent Seiberg–Witten Floer stable homotopy type
SWF (−Σp(K), s0). Instead, they defined metric-dependent stable homotopy type and proved that its S1×Zp-equivariant
cohomology including a suitable grading shift is independent of the metric. We use notation as if we have the metric-
independent stable homotopy type SWF (−Σp(K), s0) to simplify the notation, but the metric-dependent one introduced
by Baraglia–Hekmati is sufficient for all the arguments in this paper.

2This technique showing the uniqueness of symplectic structures has been developed to apply other symplectic 4-
manifolds, see [Sal13] for example.
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to the existence of closed symplectic surfaces have been provided for specific homology classes using
Seiberg–Witten theory.

We focus on symplectic surfaces properly embedded with boundaries in symplectic fillings. Re-
garding symplectic surfaces bounded by knots in S3, the existence problem of symplectic surfaces in
symplectic fillings has been resolved [BO01,Rud83] in the following manner: A given knot K in S3 is a
quasipositive knot if and only if there exists a transverse representative of K that bounds a symplectic

surface in (D4#mCP
2
, ωstd), where ωstd denotes the standard symplectic structure on D4 blown up

m times. However, the homology classes that arise as symplectic surfaces are difficult to detect even
for this simple situation. Equivariant Seiberg–Witten theory can be employed to obstruct homology
classes of symplectic surfaces. We will begin by stating a result concerning symplectic surfaces in

D4#mCP
2
.

Theorem 1.1. Let S ⊂ X be a properly embedded connected symplectic surface in a symplectic filling
(X,ω) of (S3, ξstd) with ∂S = K, where ξstd is the standard contact structure on S3 and K is a knot

in S3. Suppose the Ozváth–Szabó’s contact invariant c(Σ2(K), ξ̃) with respect to the contact structure

ξ̃ on Σ2(K) gives a minimum Q-grading element in the Heegaard Floer homology HF+
∗ (−Σ2(K); s0),

where s0 is the unique spin structure on Σ2(K). Suppose

−1

8
[S]2 − 1

2
η([S]/2) >

1

2
〈c1(TX), [S]〉,

where
η(x) := min

c∈H2(X;Z)

{
−(x+ c)2 − b2(X)

∣∣ c ≡ w2(X) mod 2
}
.

Then [S] ∈ H2(X) is not divisible by 2.

As concrete applications, one can give the following sequence of examples.

Corollary 1.2. Let x be an element in 2H2(D
4#mCP

2
, ∂;Z) with an expression

x =
∑

xiei ∈ H2(D
4#mCP

2
, ∂;Z),

where ei is the class represented by the exceptional curve in each summand of CP
2
. If the homology

class admits a properly embedded connected symplectic surface S with

∂S =

{
T (3, 6n± 1)

T (5, 7), T (5, 9)
,

then
xi = 0 or − 2 or − 4,

where T (p, q) denotes the torus knot of type (p, q).

Although most torus knots do not satisfy the assumptions of Theorem 1.1, under a more general
assumption, we see another obstruction again from equivariant Seiberg–Witten theory.

Theorem 1.3. Let K be a transverse knot in (S3, ξstd). Suppose

g4(K) +
1

2
σ(K) > 0

where σ(K) denotes the knot signature with the convention σ(T (2, 3)) = −2 and g4(K) denotes the
smooth four genus of K. Then there is no a properly embedded connected symplectic surface S in a
symplectic filling (X,ω) with ∂S = K such that [S] is divisible by 2 and

g(S)− 1

4
[S]2 +

1

2
σ(K) = 0.
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Corollary 1.4. Let x be an element in 2H2(D
4#mCP

2
, ∂;Z). Suppose

g4(K) +
1

2
σ(K) > 0.

If the homology class x admits a properly embedded symplectic surface S in (D4#mCP
2
, ωstd) with

∂S = K being a transverse knot with repsect to ξstd, we have

−〈c1(ωωstd
), [S]〉+ 1

2
[S]2 + σ(K) + sl(K) + 1 6= 0,

where sl denotes the self-linking number.

For example, most torus knots are known to satisfy g4(K) + 1
2σ(K) > 0. As another class of

examples, one can also treat the positively cusped Whitehead doubles.

Corollary 1.5. Let K be a strongly quasipositive knot such that its positively cusped Whitehead double

is a non-trivial knot. Then there is no properly embedded connected symplectic surface S ⊂ D4#CP
2

with ∂S = Wh(K) such that

[S] = −2[CP 1] ∈ H2(D
4#CP

2
, ∂;Z) ∼= H2(CP

2
;Z).

The same type of results holds for a collarable Lagrangian filling bounded by a Legendrian knot
instead of a symplectic surface bounded by a transverse knot. 3 This follows from the above theo-
rems combined with Cao–Gallup–Hayden–Sabloff’s result [CGHS14, Lemma 4.1], which is based on
Eliashberg’s work [Eli95, Lemma 2.3.A].

Corollary 1.6. The same statements in Corollary 1.2 and Corollary 1.4 hold for connected and
embedded Lagrangian surfaces with collarable Legendrian boundary.

Remark 1.7. In the proof of Theorem 1.1 and Theorem 1.3, we did not use the classification result

of symplectic fillings of (S3, ξstd). Using the classification, one sees X ∼= (D4, ωstd)#mCP
2
[Gro85,

p.311][Eli90, Theorem 5.1][McD90, Theorem 1.7](See also [GZ13, Corollary 3.2]).

Remark 1.8. In the proof of Theorem 1.1 and Theorem 1.3, we actually obstruct not only symplectic
surfaces but more generally smoothly and properly embedded connected surfaces which satisfy the
adjunction equality.

1.3. Quasipositivity of knots. We also give some new obstructions to a knot being quasipositive.
Note that the quasi-positivity is equivalent to bounding a connected symplectic surface in a filling of
(S3, ξstd). Detecting quasipositivity for a given knot remains a challenging problem.

4 In this paper, we focus on Montesinos knots written by

M(b, (a1, b1), · · · , (an, bn)), 5

which is obtained by joining together n rational tangles with slopes a1/b1, · · · , an/bn together with b
half-twists. The link M(b, (a1, b1), · · · , (an, bn)) is a knot if and only if either exactly one of {ai} is
even or all of a1, · · · , an, b+

∑
bi are odd. Quasipositive fibered Montesinos knots have been already

classified in [BM18, Proof of Theorem 2] combined with [Hed10]. However, as posed in [BM18, Question
6], the question remains unanswered for non-fibered Montesinos knots, despite several partial results
have been known ([Ba21], [Sto, Section 5.2]). We give a new obstruction for non-fibered Montesinos
knots.

3For the definition of collarable Lagrangian filling, see [Cha12].
4Since it has already been proven in [Ore20] that if the connected sum K = K1#K2 of knots is quasipositive, then

Ki is quasipositive for i = 1, 2. Thus we only consider irreducible knots.
5Our convention of Montesinos knots is based on [BH24b].
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Theorem 1.9. Let K = M(b, (a1, b1), · · · , (an, bn)) be a Montesinos knot such that exactly one of
{ai} is even. If

g4(K) +
1

2
σ(K) ≥ 2,(2)

then K is not smoothly concordant to any quasipositive knot.

1.4. New concordance invariants and adjunction equalities. Next, we shall discuss the slice
torus invariant derived from Baraglia–Hekmati’s equivariant Seiberg–Witten theory. We define a knot
invariant qM (K) ∈ Z by

qM (K) := min{grQ(x)|x ∈ H̃∗
Z2
(SWF (−Σ2(K));F2) : homogeneous and Qnx 6= 0 for all n ≥ 0}−3

4
σ(K),

where SWF (Σ2(K))) is Z2-equivariant Floer homotopy type introduced by Baraglia–Hekmati. The
invariant qM (K) is a Seiberg–Witten analog of Hendricks–Lipshitz–Sarkar’s qτ -invariant introduced in
[HLS16] with a signature correction. The following are the fundamental properties of qM .

Theorem 1.10. The invariant 2qM is a slice-torus invariant introduced in [Liv04a,Lew14], i.e.

(i) qM is a smooth concordance invariant,

(ii) qM (K1#K2) = qM (K1) + qM (K2),

(iii) qM (K) ≤ g4(K)

(iv) qM (T (p, q)) = 1
2 (p− 1)(q − 1).

For any knot K in S3, we have

m(−K)− 3

4
σ(K) ≤ qM (K),

where

m(K) := min{grQ(x)|0 6= x ∈ ĤF (Σ2(K); s0), x is homogeneous}.(3)

Moreover, if the double-branched cover of K is L-space, then

qM (K) = −1

2
σ(K).

In particular, this holds for quasi-alternating knots.

Baraglia and Hekmati [BH22] use spectral sequences and computations of Heegaard Floer homology
to calculate their invariants θ(p)(K) for torus knots and give an alternative proof of the Milnor conjec-
ture. Instead, we utilize our transverse knot invariant, which is essentially the Z2-equivariant version
of the contact invariant introduced in the authors’ prior work [IT20], to determine qM for torus knots.
In particular, this gives an alternative proof of the Milnor conjecture by Z2-equivariant monopole Floer
homology (rather than S1×Z2 equivariant Floer cohomology). This computation of qM for torus knots
can be regarded as a special case of the result for symplectic surfaces Theorem 1.13 that we will state
later. The invariant qM (K) can be extended to oriented links qM (L) with non-zero determinants and
qM (L) is invariant under oriented χ-concordance introduced in [DO12]. See Subsection 4.4 for more
details.

We also have the following relation with Baraglia’s θ(2)-invariant.

Theorem 1.11. For a knot K in S3, we have

qM (K) ≤ θ(2)(K).

Therefore, qM (K) gives a lower bound of the smooth H-slice genus in a negative definite 4-manifold
with S3 boundary and with H1(X ;Z) = 0.
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Remark 1.12. It is pointed out in [BH24a] that θ(p)(K) has analogous properties with the nu-invariant
in Heegaard knot Floer theory [OS10]. In this viewpoint, qM (K) is formally similar to Ozváth–Szabo’s
τ -invariant τ(K) [OS03]. Similar variants were found in instanton theory [BS21,DIS+22]. Moreover,
many constructions of slice-torus invariants have been known so far from different theories including
Heegaard Floer theory, Khovanov homology theory, and instanton Floer theory. See [OS03,Wu09,
BS21,DIS+22,SS22]. It is interesting to ask which slice-torus invariant coincides with qM (K).

Our invariant qM (K) can be easily computed if there is a symplectic surface bounded by K.

Theorem 1.13. Let (X,ω) be a weak symplectic filling of (S3, ξstd). Suppose a transverse knot K in
(S3, ξstd) bounds a properly embedded connected symplectic surface S in X divisible by 2. Then, one
has

qM (K) = g(S) +
1

2
〈c1(ω), [S]〉 −

1

2
[S]2(4)

and

qM (K) = −d3(Σ2(K), ξ̃)− 1

2
+

3

4
σ(K) =

1

2
sl(K) +

1

2
,(5)

For the last equality, see [Pla06a, Ito17].

Several techniques to calculate slice-torus invariants have been developed (See [Liv04a, Lew14,
FLL22]). Since our concordance invariant qM is a slice-torus invariant, one can make use of such
a result. From such a viewpoint, Feller–Lewark–Lobb [FLL22] recently introduced a notion of squeezed
knots, which are knots in S3 arise as cross-sections of a genus minimizing knot cobordism between
torus knots. This class includes all quasipositive knots and alternating knots and they proved any
slice-torus invariant coincides with the Rasmussen invariant for a squeezed knot. Combined this with
Theorem 1.10, one can give the following computations.

Theorem 1.14. Let K be a squeezed knot. The following hold:

(i) If Σ2(K) is an L-space, then we have

f(K) = −σ(K),

for any slice-torus invariant f : C → Z. (Here, our convention of slice-torus invariants is
f(T (p, q)) = (p− 1)(q − 1) = 2g4(T (p, q)) for coprime positive p, q.)

(ii) If K is smoothly concordant to a Montesinos knot M(b, (a1, b1), · · · , (an, bn)) such that exactly
one of {ai} is even, then we have

|f(K) + σ(K)| ≤ 2

for any slice-torus invariant f .

(iii) For any slice-torus invariant f , we have

2m(−K)− 3

2
σ(K) ≤ f(K),

where m(K) is given in (3).

Since the instanton s̃-invariant introduced in [DIS+22] is a slice-torus invariant and useful to study
the homology cobordism group, we have the following application.

Corollary 1.15. Let K be a squeezed knot satisfying one of the following conditions:

(i) the double branched covering space Σ2(K) is a L-space and σ(K) ≤ −2,
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(ii) K is Montesinos knot M(b, (a1, b1), · · · , (an, bn)) such that exactly one of {ai} is even and
σ(K) ≤ −4,

(iii) K satisfies

0 < 2m(−K)− 3

2
σ(K).

Then, {S3
1/n(K)}n∈Z>0 is linearly independent in the homology cobordism group of homology 3-spheres.

Note that for alternating knots and quasipositive knots, there are similar types of results [BS22,
DIS+22]. Corollary 1.15 extends it to a bigger class of knots. For example, a squeezed non-alternating,
non-quasipositive and Montesinos knot 943 = M(b = 0, (5, 3), (3, 1), (2,−1)) with σ = −4 satisfy the
assumption of Corollary 1.15. See [Sav22] for a survey of the homology cobordism group.

1.5. Several theoretical results. In addition to developing the study of symplectic surfaces using
equivariant Seiberg–Witten theory, we further develop equivariant Seiberg–Witten Floer homology in
several directions. One representative result is described as follows.

Theorem 1.16. For any knot K in S3, we have

rankH∗(BZ2;F2) H̃
∗
Z2
(SWF (Σ2(K));F2) = 1.

The idea of the proof of Theorem 1.16 uses the techniques of calculations of singular Donaldson
invariants for surfaces developed by Kronheimer in [Kro97]. Theorem 1.16 can be seen as a Seiberg–
Witten theoretical analog of a result given by Daemi and Scaduto [DS23, Theorem 10] for singular
instanton Floer theory. Also, Theorem 1.16 can be seen as an analog of Hendricks–Lipshitz–Sarkar’s
result [HLS16, Theorem 1.22] combined with [LT16, Theorem 3] in Heegaard Floer theory. The proof
of Theorem 1.10 relies on Theorem 1.16.

The method to prove Theorem 1.16 can also imply the following structural theorem of Baraglia–
Hekmati’s S1 × Z2-equivariant Floer cohomologies.

Theorem 1.17. Let K ⊂ S3 be a knot. The set of U -torsions in H̃∗
S1×Z2

(SWF (Σ2(K));F2) is finite.

The theorems Theorem 1.16 and Theorem 1.17 are the statements about the equivariant Floer
cohomology. These results are proven by using the following structure theorem for the cobordism
maps for the equivariant Floer cohomologies.

Theorem 1.18. Let S be a connected, oriented, and embedded surface cobordism in a spinc cobordism
(W, s) from a pair of a homology 3-sphere Y and a knot K in Y to another pair (Y ′,K ′) whose homology
class is divisible by 2. Then, the Q-localized cohomological Bauer–Furuta invariant for the pull-backed
spinc structure6

BF ∗,Q-loc

(W,S) : Q−1H̃∗
S1×Z2

(SWF (Σ2(K
′))) → Q−1H̃∗

S1×Z2
(SWF (Σ2(K)))

depends only on the homotopy class of S, precisely, for a pair of homotopic surfaces S and S′ rel
boundary, we have

BF ∗,Q-loc

(W,S) = BF ∗,Q-loc

(W,S′) .

Here Q is the variable corresponding to the module structure of H̃∗
S1×Z2

(SWF (Σ2(K))) over H∗(B(S1×
Z2);F2) ∼= H∗(BS1;F2)⊗H∗(BZ2;F2) ∼= F2[U ]⊗F2[Q] ∼= F2[U,Q]. In addition, the S1×Zp-equivariant
stable homotopy Bauer–Furuta invariant for 2-knot in S4

BF(S4,S) : S
V → SV

is stably S1×Zp homotopic to the identity map up to sign, where V is a suitable S1×Zp-representation
space.

6We need Zp-invariant spinc structure on the p-th cyclic branched cover branched along S in order to define the
equivariant Bauer–Furuta invariant. See Subsection 3.4 for the precise meaning of the pull-backed spinc structure.
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There are analogous results in singular Donaldson invariants [Kro97] and Khovanv homology theory
[Ras05,Tan06].

One of the main tools to prove Theorem 1.3 is a homological invariant

c(2)(Y, ξ,K) ∈ H̃S1×Z2
∗ (SWF (−Σ2(K));F2)

obtained by applying equivariant homology and the Borel construction to (1) for a given transverse
knot K in a contact homology 3-sphere (Y, ξ). The following is a basic property of the invariant
c(2)(S

3, ξ,K) used in the proof of Theorem 1.3:

Theorem 1.19. For any transverse knot K in S3 with any contact structure ξ, the equivariant trans-
verse knot invariant c(2)(S

3, ξ,K) lies in the U†-tower, i.e.

c(2)(S
3, ξ,K) ∈

⋂

i≥0

ImU i
†,(6)

where U† is the induced degree-(−2) module structure comes from the S1-action on SWF (−Σ2(K)).

In the standard (non-equivariant) contact invariant within monopole Floer homology or Heegaard
Floer homology, the phenomenon described by (6) appears to be rare. For instance, refer to [MT22,
Theorem 5.1] for computations concerning Seifert homology 3-spheres.

Let us also provide some results on Baraglia’s knot concordance invariant

θ(p)(K) ∈ 1

p− 1
Z≥0

for each prime number p. These invariants give a lower bound of the slice genus [Bar22a] and it was
used to give an alternative proof of the Milnor conjecture [BH22]. We prove a Bennquin-type inequality
for θ(p) which helps us calculating the invariants θ(p).

We state a Bennequin-type inequality for transverse knots in the standard contact 3-sphere.

Theorem 1.20. Let p be a prime number. Let K be a transverse knot (S3, ξstd). Then, we have

sl(K) ≤ 2θ(p)(K)− 1,

where sl(K) denotes the self-linking number of K. Moreover, the equality holds if K is quasipositive.

Remark 1.21. By the standard technique of Legendrian push-off, the above inequality implies the
Bennequin-type inequality for Legendrian knots. See Corollary 9.4.

For quasipositive knots, our lower bound for θ(p) and upper bound given by the 4-ball genus coincide.
Thus we can determine the value of θ(p) for quasipositive knots:

Corollary 1.22. For any quasipositive knot K, we have

θ(p)(K) = g4(K).

for any prime number p. �

1.6. Symplectic filling structure on cyclic branched covers. As the final result in the in-
troduction, we state a result purely described in symplectic topology. In the computations of our
transverse knot invariant, we shall make use of invariant symplectic structures on the branched cov-
ers. For this purpose, we prove a result on the existence of invariant symplectic structures on the
branched covering spaces when the covering spaces are branched along properly embedded symplectic
surfaces in symplectic fillings. For closed surfaces, this kind of result has been already known. See
[Gom98b,Wan97,Aur00,Aur05].
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Theorem 1.23. Let n ≥ 2 be an integer. Let (Y, ξ) be a contact integer homology 3-sphare and
let (X,ω) be a weak symplectic filling of (Y, ξ) with H1(X ;Z) = 0. Let S ⊂ (X,ω) be a properly
embedded connected symplectic surface satisfying PD[S] ∈ nH2(X ;Z) and K := ∂S is non-empty
and connected. Let π : Σn(S) → X be the Zn-branched covering space along S. Then there exists a
Zn-invariant symplectic form ω̃ on Σn(S) with [ω̃] = π∗[ω] ∈ H2(Σn(S);R) and

c1(ω̃) = π∗c1(ω) + (1 − n)PD[π−1(S)] ∈ H2(Σn(S)).

such that (Σn(S), ω̃) is a weak symplectic filling of (Σn(K), ξ̃).
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also would like to thank David Baraglia for pointing out several errors in an earlier draft. Our
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2. Symplectic/contact structures on branched covering spaces

We first treat Zn-invariant symplectic structures on the cyclic n-th branched covering spaces along
symplectic surfaces in symplectic fillings.

2.1. Preliminaries. We state a fundamental result about surfaces in strong symplectic fillings.

Lemma 2.1. Let (Y, ξ) be a closed contact 3-manifold and (X,ω) be a strong symplectic filling of
(Y, ξ). Let S ⊂ (X,ω) be a properly embedded symplectic surface. Then if we suitably deform ω near
Y up to isotopy, K := ∂S becomes a transverse link.

Proof. From [EG20, Lemma 2.1], by deforming the symplectic form up to isotopy, one can suppose
there is a Liouvile vector field v of ω near Y such that v|S is also a Liouvile vector field with respect

to ω|S . The result follows because vp and K̇ := Tp(∂S) are linearly independent at each point p ∈ K
and thus

(ιv(ω|S))(K̇) > 0.

�

2.2. Contact structures on Σn(K). In this paper, we mainly treat knots in S3, but the construction
of contact structures on branched covering spaces works for every null-homologous knot in 3-manifolds.
Therefore, we record a general argument here. Also, we work with p-th branched covering spaces for
primes but the argument can be done with any n-th branched covering space for any given integer
n ≥ 2. We also note the link case is completely the same as the knot case.

Let (Y, ξ) be a contact closed 3-manifold and K be a null-homologous transverse knot in (Y, ξ) and λ
be a positive contact form for ξ. Let n ≥ 2 be an integer. (Later, in order to ensure that the branched
covering is a rational homology 3-sphere, we assume n is prime.)

We denote by
π : Σn(K) → Y

the n-fold branched cover along K. We have the standard covering Zn-action

τ : Σn(K) → Σn(K), τn = id.
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We shall do this construction taking into account the contact structure. The following construction of
the contact structure on the branched cover Σn(K) is standard. See [Gon87,Pla06b,HKP09,Kan18].

Since a transverse knot is a contact submanifold, we can apply the contact neighborhood theorem
to take a tubular neighborhood NK = S1 ×D2 of Y such that we have a contact morphism

ξ|S1×D2
∼= Kerλ = Ker(dφ + r2dθ),

where φ and (r, θ) denote the coordinate of S1 and the polar coordinate of D2 respectively. Define

ÑK := π−1(NK) = S1 ×D2. Then, the projection π|ÑK
: S1 ×D2 = ÑK → NK = S1 ×D2 can be

written as
π : (φ, r, θ) 7→ (φ, rn, nθ).

(Strictly speaking, we should say that the branched cover is constructed using these coordinates.)
Then one has

π∗λ = dφ+ n · r2ndθ.
Now we define the global 1-form λf on Σn(K) by the following way:

λf :=

{
dφ+ f(r)dθ on ÑK = S1 ×D2

π∗λ on Σn(K) \ ÑK ,
(7)

where f : [0, 1] → [0,∞) is a strictly increasing smooth function such that f(r) = r2 near r = 0 and
f(r) = n · r2n near r = 1. Then, the isotopy class of λf does not depend on the choices of f . See

[Pla06b] for more details on uniqueness. We denote this contact structure by ξ̃. Note that we can take
a generator of the branched covering transformations τ so that

τ |ÑK
: S1 ×D2 → S1 ×D2

is written by

τ(φ, r, θ) =

(
φ, r, θ +

2π

n

)
.

Note that τ preserves the 1-form λf on ÑK . Therefore, one has an isotopy class of a contact structure

ξ̃ on Σ(K) satisfying the following conditions:

(i) τ∗ξ̃ = ξ̃;

(ii) π∗(ξ̃|π−1(Y \K)) ∼= ξ|Y \K .

Moreover, we have the following invariance:

Lemma 2.2 ([Pla06a]). Let K and K ′ be transverse knots in (Y, ξ). Suppose K and K ′ are transverse
isotopic. Then as Zn-equivariant contact manifolds, we have

(Σn(K), ξ̃) ∼= (Σn(K
′), ξ̃′).

The following computation of d3-invariants is confirmed in [Ito17]:

d3(Σ(K), ξ̃) = −3

4

∑

w:wn=1

σw(K)− n− 1

2
sl(K)− 1

2
n(8)

for every transverse knot in (S3, ξstd). We shall use it in the computation of the grading of our
equivariant contact invariant.

Also, we observe which kinds of spinc structures appear as ξ̃ on the branched covering spaces. Recall
that for an oriented 2-plane field ξ on a closed oriented 3-manifold Y , an isomorphism class of spinc

structure sξ = (Sξ, ρξ) is determined. The spinor bundle Sξ is given by

Sξ = C⊕ ξ
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and thus
c1(sξ) = c1(ξ) ∈ H2(Y ;Z)

holds, where we regard ξ as a complex line bundle on Y . The following observation is a generalization
of [Pla06b, Lemma 1] for the case of general cyclic n-th branched coverings.

Proposition 2.3. Let n be an integer greater than 1 (not necessarily a power of a prime number)
and Y be an oriented homology 3-sphere. We also fix a knot K in Y . The induced spinc structure sξ̃

satisfies the following equality
c1(sξ̃) = 0 ∈ H2(Σn(K);Z),

where K̃ = π−1(K). In particular, sξ̃ is spin and invariant under Zn-action.

Proof. Let E = Y \
◦

N(K) be the knot exterior and En → E be the Zn covering. We write the n-th
branched covering space Σn(K) as the union En ∪S1×S1 S1 ×D2. First, we can check H1(En;Z) = Z,
by decomposing En into n pieces along n copies of Seifert surfaces and applying the Mayer-Veitoris
long exact sequence inductively. For example, when n = 2, let us denote by

E2 = E(0) ∪ E(1)

a decomposition along two copies of Seifert surfaces. Now the Mayer-Veitoris long exact sequence

0 → H0(E2) = Z → H0(E(0)∐E(1)) = Z⊕Z → H0(F ∐F ) = Z⊕Z → H1(E2) → H1(E(0)∐E(1)) = 0

shows H1(E2;Z) ∼= Z. The general n case is similar.
Next, we will show that the restriction map

H2(Σn(K)) → H2(En)

is injective, using the Mayer-Vietoris long exact sequence of Σn(K) = En ∪D2 × S1. This injectivity
implies c1(sξ̃) = π∗c1(sξ) = 0 ∈ H2(Σn(K)), since its restriction to H2(En) is the same. The Mayer-

Vietoris long exact sequence of Σn(K) = En ∪D2 × S1 :

→ H1(En)⊕H1(D2 × S1)
∼=−→ H1(S1 × S1) → H2(Σn(K)) → H2(En)⊕H2(D2 × S1) →

can be computed as

→ Z⊕ Z → Z⊕ Z
0−→ H2(Σn(K))) → H2(En)⊕ 0 → .

This implies the injectivity that we wanted to show. �

2.3. Symplectic structures on branched covering spaces. In this section, we will prove the
following:

Theorem 2.4 (Theorem 1.23). Let n ≥ 2 be an integer. Let (Y, ξ) be a contact integer homology
3-sphare and let (X,ω) be a weak symplectic filling of (Y, ξ) with H1(X ;Z) = 0. Let S ⊂ (X,ω)
be a properly embedded symplectic surface in a compact symplectic 4-manifold satisfying PD[S] ∈
nH2(X ;Z) and K := ∂S is non-empty and connected, where PD denotes the Poincaré duality. Let
Σn(S) → X be the Zn branched covering.

Then there exists a Zn invariant symplectic form ω̃ on Σn(S) with [ω̃] = π∗[ω] ∈ H2(Σp(S);R) and

c1(ω̃) = π∗c1(ω) + (1− n)PD[S̃] ∈ H2(Σn(S))

such that (Σn(S), ω̃) is a weak symplectic filling of (Σn(K), ξ̃), where S̃ is the inverse image of S under
the covering projection π.
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Again it is not hard to generalize this theorem to the link case without any change.
We use the following symplectic neighborhood theorem adapted to the surface with a boundary.

Lemma 2.5. Let (Y, ξ) be a contact integer homology 3-sphere and let (X,ω) be a weak symplectic
filling of (Y, ξ). Let S ⊂ (X,ω) be a properly embedded connected symplectic surface in a compact
symplectic 4-manifold, and K := ∂S is non-empty. Then there exist a tubular neighborhood NS, its
trivialization NS

∼= S ×D2 and a symplectomorphism

(NS , ω) ∼= (S ×D2, ω|S + ω|fiber).

Proof. This is a simple adaptation of the usual proof of the symplectic neighborhood theorem using
the Moser method. See [MS17, Theorem 3.4.10], for example. �

Now let us prove Theorem 1.23

Proof of Theorem 1.23. The following proof is based on Gompf’s construction for closed symplectic
manifolds [Gom98b]. In our case, we need to deal with the boundaries of the symplectic 4-manifold X
and the symplectic surface S in addition. The assumption ∂ 6= ∅ makes the argument simpler since this
ensures that the normal bundle of S is trivial. See also related constructions [Wan97,Aur00,Aur05].

First, without loss of generality, using isotopy, we may assume ω is a strong symplectic filling of

ξ̃ [OO99]. Moreover, from Lemma 2.1, again using isotopy, we can assume ∂S = K is a transverse
knot in (Y, ξ). In the rest of the proof, we assume these two facts. As in Subsection 2.2, we equip a

Zn-invariant contact structure ξ̃ on Σn(K).
We first fix the following data:

• A tubular neighborhood NK = S1 ×D2 of K in Y such that

ξ|S1×D2
∼= Kerλ = Ker(dφ + r2dθ),

where φ, r, θ are the same coordinates as before.

• A tubular neighborhood NS of S in X and its identification with normal bundle νS of S ⊂ X .
Since we assume ∂S is nonempty, we can take a trivialization of the normal bundle.

• A coordinate of the cyclic n-th branched cover so that the covering projection π : S ×D2 =
NS̃ → NS = S ×D2 is described as

π : (b, z) 7→ (b, zn),

for b ∈ S and (r, θ) = z ∈ D2. Now the Zn-action can be identified with Zn ⊂ S1 ⊂ C× action
on the fiber of the unit disk bundle of the normal bundle C → νS → S.

Moreover, by symplectic neighborhood theorem Lemma 2.5 above, we can identify

(NS , S, ω) ∼= (S ×D2, S × {0}, ω|S +
i

2
dz ∧ dz̄)

by a symplectomorphsim and an isotopy. By composing the contactomorphism obtained as
the restriction of this symplectomorphism to the boundary, we furthermore have a contacto-
morphism

ξ|S1×D2 ∼= Kerλ = Ker(dφ + r2dθ).

• Fix a smooth non-negative function β(r) (r ≥ 0) which is 1 on r > 1/3 and 0 near r = 0. Regard
this as a function on both X and Σn(S) near the neighborhoods of S in X and π−1S in Σn(S)
respectively under the identification above and extend it by 1 outside of the neighborhoods.
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• Fix a smaller tublar neighborhood N ′
S̃
= S̃ ×D2(12 ) ⊂ π−1(NS) of S̃ on Σn(S), and its open

covering
N ′

S̃
= Uint ∪ U∂

where D2(12 ) is the two dimensional disk of radius 1
2 and

U∂ = S1
φ × (1, 2]s ×D2

(
1

2

)
⊂ S̃ ×D2

(
1

2

)
= N ′

S̃

is a neighborhood of ∂S in N ′
S̃
and (1, 2]s is a coordinate of normal direction to the boundary

∂Σn(S). The another open set Uint is chosen so that {Uint, U∂} is an open covering of N ′
S̃
and

Uint ∩ ∂Σn(S) = ∅.
By taking the intersection with S̃, the covering above gives an open cover

S̃ = (S̃ ∩ Uint) ∪ (S̃ ∩ U∂).

Fix a smooth partition of unity ρint, ρ∂ for this covering {S̃ ∩ Uint, S̃ ∩ U∂} and, by pull-back

by the projection S̃ ×D2 → D2 and multiplying 1 − β(r), extend ρint, ρ∂ as the functions to
Σn(S).

Define several differential forms as follows:

Λ = β(r)dθ on NS̃

τ = dΛ = β′(r)dr ∧ dθ on Σn(S)

δint =
1

2
r2dθ − Λ on Uint

δ∂ =
1

2
s2λf − Λ on U∂

η = τ + d(ρintδint) + d(ρ∂δ∂),

where λf is a contact form introduced in (7). Finally, for t ∈ R, set

ω̃t = π∗ω + tη.

We will see that for a sufficiently small t > 0 this gives a desired symplectic form. Notice that this is
obviously a closed 2-form and Zn-invariant. Thus it is enough to show

(1)
ω̃t ∧ ω̃t > 0

(2)
ω̃t|ξ̃ > 0

for all sufficiently small t > 0.

First, let us show
ω̃t ∧ ω̃t > 0.

Since ω̃t = π∗ω outside NS̃ , it is enough to check ω̃t ∧ ω̃t > 0 on NS̃ . On NS̃ we have

ω̃t ∧ ω̃t = π∗ω ∧ π∗ω + 2t(π∗ω) ∧ η + t2η ∧ η.

For sufficiently small t > 0, it is enough to check (π∗ω) ∧ η > 0 on S̃ since the term t2η ∧ η has

order t2 as t → 0. Since π∗ω|S̃ = 0 on S̃, it is enough to show η|(νS̃)b=(NS̃)b
> 0 for every b ∈ S̃. Near

∂S, we have η = 1
2d(s

2λf ) so it is clear.
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Now let us denote by ι : D2 = (NS̃)b → NS̃ an inclusion of a fiber. Outside the neighborhood of
∂S, we have

ι∗η = ι∗[τ + d(ρintδint)) + d(ρ∂δ∂)]

= ρintι
∗(τ + dδint) + ρ∂ι

∗(τ + dδ∂) > 0

= ρintι
∗(
1

2
d(r2dθ)) + ρ∂ι

∗(
1

2
d(s2λf )) > 0.

Here we use the fact that ρint, ρ∂ is constant along the fiber direction near S̃ and thus ι∗dρint = ι∗dρ∂ =
0.

Second, let us check
ω̃t|ξ̃ > 0.

On Σn(K) \NK̃ , we have
ω̃t = π∗ω

λ̃ = π∗λ

and thus this follows from the assumption that ω is a weak filling of λ. So it is enough to show ω̃t|ξ̃ > 0

on NK̃ . Recall that we wrote

ξ̃ = Ker(dφ + f(r)dθ)

= Ker(dφ + r−2f(r)(xdy − ydx))

= Span{e1, e2},

where (x, y) denotes the coordinate of D2 of S1 ×D2 = NK̃ . Here we set

e1 = ∂x + r−2f(r)y∂φ, e2 = ∂y − r−2f(r)x∂φ

It is enough to show ω̃t(e1, e2) > 0. On NS̃ ∩NΣn(K), we have

η = τ + d(ρ∂δ∂)

= τ + (dρ∂) ∧ δ∂ + ρ∂dδ∂

= (1− ρ∂)τ + (dρ∂) ∧ δ∂ +
ρ∂
2
d(s2λ̃)

= Ω +
ρ∂
2
d(s2λ̃).

Here we set the positive basis of the plane field as

Ω = (1 − ρ∂)τ + (dρ∂) ∧ δ∂ .

Now we have

ω̃t(e1, e2) = (π∗ω)(e1, e2) + tΩ(e1, e2) +
tρ∂
2

d(s2λ̃)(e1, e2)

= n2r2(n−1) + tΩ(e1, e2) + 2tρ∂

Here we use s = 2 on ∂S and

(π∗ω)(e1, e2)

= [π∗ω|S + n2r2(n−1)dx ∧ dy](e1, e2)

= n2r2(n−1)dx ∧ dy(∂x + r−2f(r)y∂φ, ∂y − r−2f(r)x∂φ)

= n2r2(n−1).
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For sufficiently small t > 0, we have ω̃t|ξ̃ > 0 outside the region with ρ∂ = 1. On the region with

ρ∂ = 1, we have Ω = 0, thus we have seen ω̃t|ξ̃ > 0.

Finally, our construction of the symplectic forms on the branched covering spaces is analogous to
[Gom98b, Lemma 1], and c1(ω̃) = π∗c1(ω) + (1 − n)PD[Σ] is proven there. So, the same proof can
work. This completes the proof. �

3. Rank theorem for equivariant Floer homology

In this section, we recall the construction of Manolescu’s Seiberg–Witten Floer stable homotopy
type [Man03], and its equivariant version due to Baraglia–Hekmati [BH24a]. Let p be a prime number

and Ỹ be a rational homology 3-sphere. Suppose Ỹ is equipped with a Spinc structure s and a smooth
orientation preserving Zp-action τ and the isomorphism class of s such that

τ∗s ∼= s.

Let us call such a pair (Ỹ , s) a Zp-Spin
c rational homology 3-sphere. For a Zp-Spin

c rational homology

3-sphere (Ỹ , s), we have a H∗(B(S1 × Zp);Fp) module

H̃∗
S1×Zp

(SWF (Ỹ , s);Fp)

and a H∗(BZp;Fp) module

H̃∗
Zp
(SWF (Ỹ , s);Fp).

By applying this to a cyclic branched covering along a knot, we obtain Seiberg–Witten Floer sta-
ble homotopy type for a knot in the 3-sphere. When we consider the cyclic p-th branched coverings
for a prime number p, this homotopy type has S1 × Zp-action. Its S1 × Zp-equivariant cohomology
group was studied by Baraglia and Hekmati [BH24a, Bar22b, BH22], using a spectral sequence re-
lating this S1 × Zp equivariant Floer cohomology group with the S1-equivariant Floer cohomology
group, and the latter can be computed by using techniques from Heegaard Floer homology and the
isomorphism between S1-equivariant Seiberg–Witten Floer cohomology group and Heegaard Floer
homology. See [KLT10a, KLT10b, KLT10c, KLT11, KLT12, Tau10a, Tau10b, Tau10c, Tau10d, Tau10e,
CGH12b,CGH12c,CGH12a,LM18].

What is noteworthy here is that we will restrict ourselves to p = 2 and study the simpler Z2

equivariant cohomology group. We will prove that for any knot, this Z2-equivariant Floer cohomology
group is a rank 1 module over H∗(BZ2;F2) = F2[Q]. This is shown by adapting a technique used in
singular instanton theory, due to Daemi–Scaduto [DS23] based on Kronheimer’s argument [Kro97].

3.1. Review of equivariant Seiberg–Witten Floer stable homotopy type. Let p be a prime

number and (Ỹ , s) be a Zp Spinc rational homology 3-sphere. In [BH24a], we review Baraglia–
Hekmati’s equivariant Seiberg–Witten Floer cohomology

HSW ∗
Zp
(Ỹ , s) = H̃∗

S1×Zp
(SWF (Ỹ , s);Fp),

as an equivariant version of Manolescu’s construction of Seiberg–Witten Floer stable homotopy type
[Man03]. They discussed more general group action and coefficients (See [BH24a, Section 3.1]) but we
concentrate on Zp-action and Fp coefficient for a prime p, and eventually on p = 2. In this subsection,
we briefly review the construction of this invariant following [BH24a, Section 3]. We fix a Zp-invariant
Riemann metric g.

First, choose a reference Spinc connection A0 such that the associated connection on the determinant
line bundle is flat. As shown in [BH24a, Section 3.2], for τ ∈ Zp, we can choose a lift of it to the spinor
bundle which preserves A0. Here we use the assumption that the Zp-action preserves the isomorphism

class of s and b1(Ỹ ) = 0. Let Gs be the set of unitary automorphisms u : S → S on the spinor bundle

S preserving A0 and lifting the Zp-action on Ỹ . Then we have an extension

1 → S1 → Gs → Zp → 1.
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Note that this extension is always trivial in this case as shown in [BH24a, Section 5]. Therefore, we
take a section and identify Gs

∼= S1 × Zp.
Now, we have an action of Gs on the global Coulomb slice

V = Ker d∗ ⊕ Γ(S) ⊂ iΩ1(Ỹ )⊕ Γ(S)

and a formally self-adjoint elliptic operator

l : V → V defined as l(a, φ) = (∗da,DA0),

where ∗ is the Hodge star operator with respect to the metric g and DA0 is the spinc Dirac operator
with respect to A0. As usual, we take a finite-dimensional approximation V µ

λ (g) obtained as the direct
sum of all eigenspaces of l in the range (λ, µ], again which as acted by Gs.

By finite-dimensional approximation of the Seiberg–Witten equation, we obtain a Gs-equivareiant
Conley index Iµλ (g) for sufficiently large real numbers µ,−λ. For the details of the construction, see
[Man03,BH24a]. Now, a metric-dependent equivariant Floer homotopy type is defined as

SWF (Ỹ , s, g) := Σ−V 0
λ (g)Iµλ (g).

Notice that Iµλ (g) can be taken as a finite S1×Zp CW complex. Therefore, equivariant (co)homologies
with respect to any subgroup H ⊂ S1 × Zp are finitely generated over H∗

H(pt) by the existence of
spectral sequence. Now we can define a version of an equivariant Floer cohomology:

H̃∗
S1×Zp

(SWF (Ỹ , s)) := H̃
∗+2n(Ỹ ,s,g)
S1×Zp

(SWF (Ỹ , s, g);Fp) = H̃
∗+2n(Ỹ ,s,g)
Gs

(SWF (Ỹ , s, g);Fp),

where n(Ỹ , s, g) is the correction term introduced in [Man03]. This is a module over the ring

H∗
S1×Zp

= H∗
S1×Zp

(pt;Fp) =

{
F2[U,Q] p is 2

Fp[U,R, S]/(R2) otherwise
,

where deg(U) = 2, deg(Q) = 1, deg(R) = 1, and deg(S) = 2.
We also use

H̃
S1×Zp
∗ (SWF (Ỹ , s)) := H̃

S1×Zp

∗+2n(Ỹ ,s,g)
(SWF (Ỹ , s, g);Fp)

This is a module over the ring

HS1×Zp
:= H∗(B(S1 × Zp);Fp) ∼=

{
F2[U†, Q†] p is 2

Fp[U†, R†, S†]/(R
2
†) otherwise

,

where deg(U†) = −2, deg(Q†) = −1, deg(R†) = −1, and deg(S†) = −2.
We also forget the S1-action and consider

H̃∗
Z2
(SWF (Ỹ , s);F2) := H̃

∗+2n(Ỹ ,s,g)
Z2

(SWF (Ỹ , s, g);Fp).

This is a module over the ring
H∗

Z2
:= H∗(BZ2;F2) = F2[Q],

where deg(Q) = 1.

Remark 3.1. In order to define Z2-equivariant Floer cohomology or to define our concordance invariant
qM , we will fix a splitting of

1 → S1 → Gs → Z2 → 1.

and via the splitting Z2 → Gs, we obtain a Z2-action on the Floer homotopy type. However, if we fix
a splitting s : Z2 → Gs, we also have another splitting −s : Z2 → Gs. (Notice that the actions of s and
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−s on spinc connections are the same.) Note that s and −s are the only possible choices of splittings
[BH24a, Remark 3.8]. If s is spin structure, we claim

H∗
Z2,s(SWF (Ỹ , s);F2) ∼= H∗

Z2,−s(SWF (Ỹ , s);F2)(9)

as F2[Q]-modules, where H∗
Z2,s

(SWF (Ỹ , s);F2) denotes the Z2-equivariant cohomology with respect
to the action comes from the splitting s. Now, we realize s and −s as follows. Since the involution
τ preserved the isomorphism class of the spin structure s and the fixed point set is connected and
codimension 2, there are exactly two order four lifts of τ :

±τ̃ : Ps → Ps

as a morphism of principal bundles. See [AB68, Kat22] for the construction of such lifts. We also
denote the action of τ̃ on the spinor bundle S of s as the same notion τ̃ . Then, we define the complex
linear order two lift of τ by

τ̃I := τ̃ · i
on S. We see these two actions ±τ̃I are the same as the actions come from s and −s. Now, we observe

j · τ̃I = −τ̃I · j

since τ̃ is H-linear and i and j anticomute. Therefore, an isomorphism (9) is given by j-action

j : SWF (Ỹ , s) → SWF (Ỹ , s),

which is a self-homeomorphism of the Conley index commuting with s and −s. 7

3.2. Equivariant relative Bauer–Furuta invariant. In this section, we review the cobordism maps
in equivariant Seiberg–Witten Floer homotopy theory.

Let p be a prime number. Let (Ỹ , s), (Ỹ ′, s′) be two Zp-Spin
c rational homology 3-spheres. The

notion of Zp-spin
c cobordism between them is defined in a similar way to the case of 3-manifolds. For

a smooth Zp-spin
c cobordism

(W̃ , s
W̃
) : (Ỹ , s) → (Ỹ ′, s′)

with b1(W̃ ) = 0, Baraglia–Hekmati gave an S1 × Zp-equivariant stable homotopy class

BF(W̃ ,s
W̃

) : SWF (Ỹ , s) ∧ (C
1
8 (c1(sW̃ )2−σ(W̃ )))+ → (Rb+(W̃ ))+ ∧ SWF (Ỹ ′, s′).

Here we have not specified the Zp-actions of the domain and the codomain of the map BF
(W̃ ,s

W̃
)

in our notation. However, there are some representation spaces corresponding to them. The map
BF

(W̃ ,s
W̃

)
is obtained as a finite-dimensional approximation of the Seiberg–Witten map on W with

some Atiyah–Patodi–Singer type spectral boundary conditions. Again for the precise construction of
it, see [Man03,BH24a]. It induces a module map called the cobordism map

BF ∗
(W̃ ,s

W̃
)
: H̃∗

S1×Zp
(SWF (Ỹ ′, s);Fp) → H̃∗

S1×Zp
(SWF (Ỹ , s);Fp).

This is a H∗
S1×Zp

-module map and its grading shift is given by

c1(sW̃ )2 − σ(W̃ )

4
+ b+(W̃ ).

Moreover, Baraglia–Hekmati computed the cobordism map induced on the S1-fixed point part of :

(BFS1

(W̃ ,s
W̃

)
)∗ = Qb+(W̃ )Um : H̃∗

S1×Zp
(SWF (Ỹ ′, s)S

1

;Fp) → H̃∗
S1×Zp

(SWF (Ỹ , s)S
1

;Fp)

7The authors thank David Baraglia for pointing out this issue on the choice of splittings.
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for some m when (H+(W̃ ))Zp = 0 and p = 2. In our construction, we forget the S1-action and just
use the Zp-action. Forgetting the S1-action, we still have H∗

Zp
= H∗(BZp;Fp) module map

BF ∗
(W̃ ,s

W̃
)
: H̃∗

Zp
(SWF (Ỹ ′, s);Fp) → H̃∗

Zp
(SWF (Ỹ , s);Fp)

with the same grading shift as the one for S1 × Zp equivariant cohomology.
We also use the composition law of this equivariant Bauer–Furuta invariant.

Lemma 3.2. Let (W̃1, s0, τ0) : (Ỹ0, s0, τ0) → (Ỹ1, s1, τ1), (W̃1, s1, τ1) : (Ỹ1, s1, τ1) → (Ỹ2, s2, τ2) be
two Zp equivariant cobordism between Spinc rational homology 3-spheres. Then we have the following
equality as a Zp equivariant stable homotopy class:

BF
W̃1,s1,τ1

◦BF
W̃0,s0,τ0

= BF
W̃1◦W̃0,s1◦s0,τ1◦τ0

.

Proof. The proof of this composition law is parallel to that of the usual relative Bauer-Furuta invariants
[Man07,KLS18], so we omit the proof. �

We shall put Ỹ as the Zp-covering space along a given knot K ⊂ S3 and s as the (unique) Zp-
invariant spin structure on Σp(K). Also, we consider an oriented connected surface cobordism S
embedded into a compact 4-manifold cobordism W with b1(W ) = 0 = b+(W ) from S3 to itself.
Suppose S is properly and smoothly embedded and K = S ∩ −S3 and K ′ = S ∩ S3 are knots in S3

respectively. In order to take the unique Zp-branched covering space, we suppose the homology class

of S is divisible by p. Then, we put W̃ as the p-th branched covering space Σp(S). We also take an
Zp invariant spinc structure sS on Σp(S) which are spin on the boundaries Σp(K) and Σp(K

′). Then,
we have the induced cobordism map

BF ∗
(S,sS) = BF ∗

(Σp(S),sS) : H̃
∗
S1×Zp

(SWF (Σ(K ′), s′);Fp) → H̃∗
S1×Zp

(SWF (Σ(K), s);Fp)

and its Zp-equivariant version

BF ∗
(S,sS) = BF ∗

(Σp(S),sS) : H̃
∗
Zp
(SWF (Σ(K ′), s′);Fp) → H̃∗

Zp
(SWF (Σ(K), s);Fp).

We often abbreviate these map as BF ∗
S . They have the same grading shifts as before

c1(sS)
2 − σ(Σp(S))

4
+ b+(Σp(S))

=
c1(sS)

2

4
+

p

4
b2(W ) +

p2 − 1

12p
[S]2 − 1

4
(σ(p)(K ′)− σ(p)(K)) + (p− 1)g(S)− p2 − 1

6p
[S]2+

1

2
(σ(p)(K ′)− σ(p)(K))

=
c1(sS)

2

4
+

p

4
b2(W ) + (p− 1)g(S)− p2 − 1

12
[S]2 +

1

4
(σ(p)(K ′)− σ(p)(K)).

Here we used the formulas

• b+(Σp(S)) = (p− 1)g(S)− p2−1
6p [S]2 + 1

2 (σ
(p)(K ′)− σ(p)(K)) and

• σ(Σp(S)) = −pb2(W )− p2−1
3p [S]2 + σ(p)(K ′)− σ(p)(K)

which are proven in [BH24a].
Moreover, the induced map on the S1-fixed point part can be computed as

(BFS1

(Σp(S),sS))
∗ = Qg(S)− 1

4 [S]2+ 1
2 (σ(K

′)−σ(K))Um

for some m and p = 2.
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3.3. Bauer–Furuta invariant for product cobordisms. We will use the following result for prod-
uct cobordisms:

Theorem 3.3. Let p be a prime number and let (Ỹ , s, g) be a Zp spinc rational homology 3-sphere
with a fixed Zp invariant metric. Then Zp×S1-equivariant relative Bauer–Furuta map for the product
cobordism

BF([0,1]×Ỹ ,[0,1]×s,[0,1]×g) : SWF (Ỹ , s, g) → SWF (Ỹ , s, g).

is S1 × Zp-equivariant stably homotopic to the identity. �

The authors heard that a version of this result is known to J. Lin. For an S1-equivariant version, the
corresponding result is proven in the upcoming paper [SS]. We can easily see that their all homotopies
can be taken as Zp-equivariant as well.

3.4. Pull-back of spinc structures. Let p be a prime number. Let X be a compact oriented 4-
manifold with boundary and with H1(X ;Z) = 0 and S be a properly and smoothly embedded oriented
surface whose homology class is divisible by p. Suppose ∂X = Y is a homology 3-sphere. We will see
there is an injective map

π∗ : Spinc(X) → Spinc(Σp(S))

whose image is Spinc(Σp(S))
Zp , which is the set of isomorphism classes of Zp-invariant spin

c structures.
We first define a map

φ
s,s̃ : Spin

c(X) → Spinc(Σp(S))

by putting

s⊗ L 7→ s̃⊗ π∗L

where s̃ is the Zp-invariant spin
c structure on Σp(S) constructed in [Bar22a, Proposition 2.3], which

coincides with π∗
s outside the branched locus. Also, π∗L is a corresponding complex line bundle whose

first Chern class is π∗c1(L).

Lemma 3.4. The map φ
s,s̃ is injective and surjective to Spinc(Σp(S))

Zp .

Proof. This follows from [Bar22a, Lemma 2.4] and the fact that Spinc(X) is a H2(X ;Z)-torsor and
Spinc(Σp(S))

Zp is a H2(Σp(S);Z)
Zp -torsor. �

The injectivity implies if we take another choice of s̃′ for s by [Bar22a, Proposition 2.3], we have

s̃ ∼= s̃
′.

This implies the map φ
s,s̃ does not depend on the choices of s̃. We also see φ

s,s̃ does not depend
on s as follows. If we take two spinc structures s, s′ on X , there is a line bundle L on X such that
s ∼= s

′ ⊗ L. From the definition of φ
s,s̃, we have

φ
s,s̃(s) = s̃ and φ

s
′,s̃′(s) = s̃

′ ⊗ π∗L.

Therefore it is sufficient to take a lift of s by s̃
′ ⊗ π∗L and indeed it is a lift since it coincides with

π∗
s ∼= π∗(s′ ⊗ L) = π∗

s
′ ⊗ π∗L outside the branched locus. Then we just define

π∗ := φ
s,s̃ : Spin

c(X) → Spinc(Σp(S)).
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3.5. On Baraglia–Hekmati’s invariants for 2-knots. We shall prove equivariant Bauer–Furuta
invariants for 2-knots in S4 do not depend on the choices of 2-knots.

Theorem 3.5 (The second part of Theorem 1.18). The S1 × Zp-equivariant stable homotopy Bauer–
Furuta invariant for a 2-knot in S4

BF(S4,S) : S
V → SV

is stably S1 × Zp homotopic to the identity up to sign, where V is a suitable S1 × Zp-representation
space.

Note that for a smoothly embedded 2-knot S ⊂ S4, the p-th branched cover Σp(S) is a rational
homology S4.

Here we list of real/complex irreducible Zp-reprentations:

• all of the complex irreducible representations are given by the complex representation C(j)

defined by
z 7→ e2πij/pz.

• when p = 2 we have the unqiue real 1-dimensional non-trivial representation R̃

• when p > 2, forgetting the complex structure of C(j), we have an irreducible 2-dimensional

representation R2
(j) which gives all of real irreducible representations.

Note the S1 × Zp equivariant Bauer–Furuta invariant for a 2-knot (with pull-backed spinc structure)
defines

BFS⊂S4 : (VR ⊕WC)
+ → (V ′

R ⊕W ′
C)

+.

Here VR, V
′
R are real representation spaces of Zp andWC,W

′
C are complex representations of Zp. In order

to use equivariant homotopy theory, we need to determine the numbers of irreducible representations
that appeared in VR ⊕WC and V ′

R ⊕W ′
C. For the real parts VR and V ′

R, since b+(Σp(S)) = 0, one can
see all equivariant indeces are zero. It implies VR

∼= V ′
R. For the Dirac operator, we use the equivariant

Atiyah–Singer index theorem stated in [BGVO95, Theorem 6.16] which is decribed as

Tr(e2πij/p; KerD+
A)− Tr(e2πij/p; CokerD+

A) = Lefe2πij/p∈Zp
(D+

A) = − 1

2π

∫

π−1(S)

e2πij/p · FA

for a spin connection A. Then the right-hand side is zero. Therefore, one can see Lefe2πij/p∈Zp
(D+

A) = 0
for all j. This again implies WC

∼= WC′ as complex Zp representations.
We use the following two results in equivariant homotopy theory:

Proposition 3.6 ([tD79]). Let f : (Rn ⊕ Cm)+ → (Rn ⊕ Cm)+ be an S1 × Zp-equivariant map. The
following are equivalent:

• f is a S1 × Zp homotopy equivalent.

• For any subgroup H in S1 × Zp, f
H is a homotopy equivalence.

Lemma 3.7 ([tD79]). f : (Rn ⊕ Cm)+ → (Rn ⊕ Cm)+ be an S1-equivariant map. Then we have

deg(f) = deg(fS1

).

Proof of Theorem 3.5. All subgroups of S1 × Zp:

(1) a subgroup H ⊂ S1 × Zp such that H ∩ (S1 × {e}) 6= {e},

(2) {e} × Zp.

(3) {e} ⊂ S1 × Zp
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Let BF(S4,S) : SV → SV be the S1 × Zp equivariant Bauer–Furuta invariant for a given 2-knot.

Since BFH
(S4,S) comes from the linearized Seiberg–Witten equation, the mapping degree is ±1. For

BF
{e}×Zp

(S4,S) and BF
{e}
(S4,S), one can apply Lemma 3.7, so it is enough to show that BF

S1×Zp

(S4,S) and BFS1

(S4,S)

has mapping degree ±1, but it is true because it comes from the linear isomorphism. Therefore, it is
a homotopy equivalence. �

3.6. Statements and proofs of rank theorems. In this subsection, we prove that for any knot K

in S3, the equivariant Floer homology of the double branched cover H̃∗
Z2
(SWF (Σ2(K), s0)) is a rank

1 module over F2[Q], where s0 is the unique spin structure on the branched double cover Σ2(K). Note
that from Remark 3.1, we see the Z2-equivariant Fleor cohomology does not depend on the choices of
splittings. We also give a remark to extend this argument to knots in general homology 3-spheres.

Theorem 3.8 (Theorem 1.16). For any knot K in S3, we have

rankF2[Q] H̃
∗
Z2
(SWF (Σ2(K));F2) = 1

Moreover,

rankF2[Q] Ker(U i : H̃∗
S1×Z2

(SWF (Σ2(K));F2) → H̃∗
S1×Z2

(SWF (Σ2(K)));F2) = i.

We first take a sequence of crossing changes from K to the unknot U0 and regard it as a normally
and smoothly immersed annulus S from K to U0 in [0, 1]× S3.

By the use of S, we will define a cobordism map

BF ∗
S : H̃∗

Z2
(SWF (Σ2(U0))) → H̃∗

Z2
(SWF (Σ2(K)))

with a certain grading shift.

Definition 3.9. The cobordism maps for a normally immersed cobordism S from K to K ′ in [0, 1]×S3

are defined to be equivariant cobordism maps for the embedded surface Sb obtained as the proper
transform of S in the blow-up with respect to all immersed points of S;

Sb ⊂ ([0, 1]× S3)#s++s−CP
2
,

where s+ and s− are numbers of positive and negative immersed points. 8 In this case, the homology
class of Sb is represented as

[Sb] = (−2, · · · ,−2, 0, · · · , 0) ∈ H2(#s++s−CP
2
;Z).

Since [Sb] is divisible by 2, we have the double branched covering space along Sb. We take a spinc

structure sb corresponding to the sum of the generators of H2(#s++s−CP
2
) and ”pullback” it to the

double-branched covering space: First, we consider the spinc structure sb on ([0, 1]×S3)#s++s−CP
2
is

given by

c1(sb) = (1, . . . , 1) ∈ H2(I × S3#s++s−CP
2
).

The Z2-invariant spin
c structure on the branched cover is chosen such that the condition

c1(̃s) = π∗(c1(sb) +
1

2
[Sb])

is satisfied. See [Bar22a, Proposition 2.5] for the existence of such spinc structures.
We denote by

BF ∗
Sb

: H̃∗
Z2
(SWF (Σ2(K

′)) → H̃∗
Z2
(SWF (Σ2(K))

the cobordism map with respect to the above spinc structures.

8We only use the existence of certain cobordism maps. Therefore, we do not need to care about the dependence of
Sb with respect to additional data for the proper transform.
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Remark 3.10. This is an analogous construction of invariants for immersed surfaces given in [Kro97].

Also, the normally immersed cobordism −S : U0 → K obtained by reversing the orientation of S.
Thus, we also have

BF ∗
−S : H̃∗

Z2
(SWF (Σ2(K))) → H̃∗

Z2
(SWF (Σ2(U0)))

again with some grading shifts.

Proposition 3.11. With respect to the above cobordism maps, if we consider the localization with Q,
we have

(BF ∗
S ◦BF ∗

−S)
loc = Qi

(BF ∗
−S ◦BF ∗

S)
loc = Qi

for some i, where, for a F2[U ]-module map f : A → B, f loc denotes the induced map on the localization

f loc : Q−1A → Q−1B.

Remark 3.12. We can also consider variants of the cobordism maps by just replacing the unknot U0

with #− 1
2σ(K)T (2, 3). We call such a cobordism Sgr. In this case, the cobordism maps BF ∗

Sgr
and

BF ∗
−Sgr

are grading preserving maps. In this case, we have

(BF ∗
Sgr

◦BF ∗
−Sgr

)loc = 1

(BF ∗
−Sgr

◦BF ∗
Sgr

)loc = 1.

Proof of Theorem 3.8. Theorem 3.8 just follows from the existence of module maps BF ∗
S and BF ∗

−S

satisfying the conditions written in Proposition 3.11. �

For the proof of Proposition 3.11, we prove the following general result:

Theorem 3.13. Let S be a properly connected embedded smooth surface cobordism in a cobordism W
from a pair of a homology 3-sphere Y and a knot K in Y to another pair (Y ′,K ′) whose homology
class is divisible by 2. Then, the Q-localized cohomological Bauer–Furuta invariant

BF ∗ loc
(W,S) : Q

−1H̃∗
Z2
(SWF (Σ2(K

′))) → Q−1H̃∗
Z2
(SWF (Σ2(K)))

depends only on the homotopy class of S, precisely, for two choices homotopic S and S′ rel boundary,
we have

BF ∗ loc
(W,S) = BF ∗ loc

(W,S′).

Proof. The argument is similar to that of Daemi–Scaduto [DS23] for singular instantons, which is
based on arguments by Kronheimer [Kro97]. Let

S, S′ ⊂ I × S3

be two homotopic normally immersed surface cobordims (S3,K) → (S3,K ′) with the same genus. It
is known that there is a sequence of moves from S to S′ listed below:

(0) an ambient isotopy T → T ′ of the image in I × S3 rel ∂I × S3.

(i) positive twist move T → T ′ (T ′ has one more positive immersed point than T )

(ii) negative twist move T → T ′, (T ′ has one more negative immersed point than T ) and

(iii) finger move T → T ′ (T ′ has one more positive double point and one more negative double
point than T )
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or inverse of one of these. The relation of the Z2-equivariant cohomological cobordism maps under
these moves can be written as

(0) BF ∗
T = BF ∗

T ′

(i) QBF ∗
T = BF ∗

T ′ ,

(ii) BF ∗
T = BF ∗

T ′ and

(iii) QBF ∗
T = BF ∗

T ′ .

Similar arguments are used by Kronheimer [Kro97] for instantons.
For (0), BF ∗

T is a diffeomorphism invariant, so this is invariant under ambient isotopy.
For (i), from the construction of the blow-up, one can see

(Σ2(T
′
b), ιT ′

b
) ∼= (Σ2(Tb)#S2 × S2, ιT#ι)

as Z2-equivariant manifolds. Note that the induced spinc structure on the S2 ×S2-component is spin.
Therefore, the connected sum formula of equivariant Bauer–Furuta invariants, we see

BF(Σ2(T ′
b),ιT ′

b
) = BF(Σ(T ),ιT ) ∧BF(S2×S2,ι).

From the equivariant index theorem and equivariant Hopf theorem written in [Tom–Dieck Trans Group
Chapter II 4, Theorem 4.11(iv)], one can see

BF ∗
(S2×S2,ι) = Q

with respect to the spin structure on S2 × S2. This computation is still true for S1 × Z2 case. This
completes the proof of (i).

For (ii), one can see

(Σ2(T
′
b), ιT ′

b
) ∼= (Σ(Tb)#CP

2
#CP

2
, ιT#ι)

as Z2-equivariant manifolds. Here, ι is given by the equivariant connected sum along two points of the

flipping involution on CP
2 ∪ CP

2
and the involution on S4 arises as the double branched cover long

trivial 2-knot in S4, From the connected sum formula of equivariant Bauer–Furuta invariants, we see

BF(Σ2(T ′
b
),ιT ′

b
) = BF(Σ(T ),ιT ) ∧BF

(CP
2
#CP

2
,ι)
.

Note that the induced spinc structure on CP
2
#CP

2
is corresponding to the sum of generators of the

Poincaré duals of exceptional curves. Again from the equivariant Hopf theorem written in [Tom–Dieck
Trans Group Chapter II 4, Theorem 4.11(iv)], one can easily see

BF ∗

(CP
2
#CP

2
,ι)

= ± Id

up to S1 × Z2-stable homotopy. This completes the proof of (ii).
Since (iii) is a combination of (i) and (ii), this completes the proof of (0)-(iii).
So, using it and since there is a sequence of moves from S to S′, we can write down

BFS = QjBFS′ in localization by Q

for some integer j. This completes the proof. �

Now we give a proof of Proposition 3.11:
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Proof of Proposition 3.11. We first consider Z2-equivariant cohomologies. The composition S ◦ (−S)
is an immersed genus 0 cobordism from U0 to itself. Note that U0 × [0, 1] is also a cobordism from U0

to itself with genus 0. So, using it and since there is a sequence of three kinds of moves from S ◦ −S
to U0 × [0, 1], we can write down

BF ∗
S◦−S = QjBF ∗

U0×[0,1] = Qj in localization by Q

for some integer j. Here we used BF ∗
U0×[0,1] = Id which will be proven in Subsection 3.3. We can do

completely the same discussion for −S ◦ S to see

BF ∗
−S◦S = QiBF ∗

K×[0,1] = Qj in localization by Q.

Here again we used BF ∗
K×[0,1] = Id. From the grading reason, we see i = j. Moreover if we take S as

Sgr, then i = j = 0 holds.
Next, we consider S1 × Z2 case. Note that BFS and BF−S are U -module maps. Therefore, they

induce maps on KerU i and the relations

BF ∗
−S◦S = QiBF ∗

K×[0,1] = Qi in localization by Q

are still true as maps on KerU i. This completes the proof. �

We show some finiteness properties of Baraglia–Hekmati’s S1 ×Z2 equivariant Floer homology and
cohomology of double branched covers using Theorem 3.8.

Theorem 1.17 is a special case of the following general theorem:

Theorem 3.14. Let K ⊂ S3 be a knot.

(1) (a) For n ≥ 1, we have

rankF[Q†] Ker(Un
† : H̃S1×Z2

∗ (SWF (Σ2(K))) → H̃S1×Z2
∗ (SWF (Σ2(K)))) = n

for the Floer homology group.

(b) For n ≥ 1, we have

rankF[Q] Cok(U
n : H̃∗

S1×Z2
(SWF (Σ2(K))) → H̃∗

S1×Z2
(SWF (Σ2(K)))) = n.

for the Floer cohomology group.

(2) (a) For n ≥ 1,

Cok(Un
† : H̃S1×Z2

∗ (SWF (Σ2(K))) → H̃S1×Z2
∗ (SWF (Σ2(K))))

is a torsion F[Q†] module.

(b) For n ≥ 1,

Ker(Un : H̃∗
S1×Z2

(SWF (Σ2(K))) → H̃∗
S1×Z2

(SWF (Σ2(K))))

is a torsion F[Q] module.

(3) (a) The quotient

H̃S1×Z2
∗ (SWF (Σ2(K)))/

∞⋂

n=1

ImUn
†

is finite. Thus, for all but finite elements, their U†-divitibility is infinite.
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(b) The number of U -torsion elements in the Floer cohomology group H̃∗
S1×Z2

(SWF (Σ2(K)))

is finite. In particular, for sufficiently large j ∈ Z≥0, ImQj ⊂ H̃∗
S1×Z2

(SWF (Σ2(K)))

does not contain any U -torsions and thus the quotient ImQj/ ImQj+1 is a free F[U ]
module.

Proof. We only prove the claim for the cohomology group. The claim for the homology group can be
straightforwardly obtained by considering the dual. In the proof of this theorem, we abbreviate

H̃∗
Z2

= H̃∗
Z2
((SWF (Σ2(K)))).

H̃∗
Z2×S1 = H̃∗

Z2×S1((SWF (Σ2(K)))).

to simplify the notation.
(1) This is proved in Theorem 3.8.
(2) We prove this by induction on n.
First let us consider n = 1. By the Thom-Gysin exact sequence

· · · → H̃∗
Z2

δ−→ H̃∗−1
Z2×S1

U−→ H̃∗+1
Z2×S1

π∗

−→ H̃∗+1
Z2

→ · · ·

we have
KerU = Im δ ∼= H̃∗

Z2
/ Imπ∗.

Since rankF[Q] H̃
∗
Z2

= 1 by Theorem 3.8, it is enough to show rankF[Q] Imπ∗ = 1. By using the
Thom-Gysin exact sequence again, we have

Imπ∗ ∼= H̃∗
Z2×S1/Kerπ∗ = CokU.

This has rank 1 over F[Q] by (1). This proves the claim for n = 1.
Now assume KerUn is finite and we will show KerUn+1 is also finite. Suppose on the contrary

that KerUn+1 is infinite. Then there exists at least one x ∈ KerUn such that there exist infinitely
many y1, y2, · · · ∈ KerUn+1 such that Uyi = x for all i. Then we have infinitely many elements
yi − y1 ∈ KerUn so this contradicts the assumption that KerUn is finite. This proves (2).

(3) Suppose on the contrary that we have infinitely many U -torsions

x1, x2, · · · ∈ H̃∗
Z2×S1 .

For an element x ∈ H̃∗
Z2×S1 define its U -torsion order by

ordU (x) = inf{n ∈ Z≥0|Unx = 0}.

Now we can see that {ordU (xi)} is unbounded. This is because if there exists some n0 with

ordU (xi) ≤ n0

for all i, then {xi} are infinitely many elements of Ker(Un0) and this contradicts (2). Thus, we have xi

with arbitrary large ordU (xi). Now, since KerU is finite by (2), grQ(KerU) is finite. We always have
UordU (x)−1x ∈ KerU , and U increases the grading by 2, so we have xi with arbitrary small rational

grading. This contradicts the fact that grQ is bounded below on the whole cohomology group H̃∗
Z2×S1 .

This completes the proof. �

4. New concordance invariant qM (K)

4.1. Construction of qM (K). In this subsection, we will introduce a new concrdance invariant qM (K)
and several fundamental properties written in Theorem 1.10.
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LetK ⊂ S3 be a knot. In this section, we define an integer-valued concordance invariant qM (K) ∈ Z.
We also prove that it is a slice-torus invariant. This invariant is defined as follows. Set

q†M (K) := min{grQ(x)|Qnx 6= 0, for all n ≥ 0, x ∈ H∗
Z2
(SWF (Σ2(K); s0))}

where we assume x is homogeneous and set

qM (K) = q†M (−K)− 3

4
σ(K)

and s0 is the unique spin structure, where −K means the concordance inverse of K. Note that we see
the invariant qM is independent of the choices of splittings given in Remark 3.1.

Lemma 4.1. For any knot K in S3,

grQ +
3

4
σ(K).

is Z-valued on H̃∗
Z2
(SWF (Σ2(K))). Thus qM (K) is an integer-valued invariant.

Proof. Let us recall that H̃∗
Z2
(SWF (Σ2(K))) is defined as

H̃∗
Z2
(SWF (Σ2(K))) = H̃∗+dimR V 0

λ+2n(Σ2(K),s0,g)(Iµλ (g)).

Since dimR V 0
λ is an integer, this can be notrivial only when

∗+ 2n(Σ2(K), s0, g) ∈ Z,

where n(Σ2(K), s0, g) is the correction term introduced in [Man03]. Therefore grQ +2n(Σ2(K), s0, g)
is Z-valued. Now 2n(Σ2(K), s0, g) can be computed as

2n(Σ2(K), s0, g) = 2 indAPS
C D+

Σ2(S) +
σ(Σ2(S))

4

= 2 indAPS
C D+

Σ2(S) +
σ(K)

4

where S ⊂ D4 is a properly embedded surface obtained by pushing off a Seifert surface of K. The

Atiyah–Patodi–Singer index term is an integer, so grQ +σ(K)
4 is Z-valued. For any knot K in S3, the

knot signature σ(K) is an even number. Thus grQ + 3
4σ(K) is Z-valued. This completes the proof �

First, we will prove that, for any knot K in S3 and its inverse −K in the concordance group, we

have −qM (K) = qM (−K). This follows from the corresponding formula for q†M , which is a consequence
of a duality of the Floer cohomology groups.

Proposition 4.2. For a knot K in S3, we have

qM (−K) = −qM (K),

where −K denotes the concordance inverse, i.e. its mirror with the opposite orientation.

Proof of Proposition 4.2. By Theorem 3.8 and the definition of q†M , we have

H̃∗
Z2
(SWF (Σ2(K))/(Q-torsions) ∼= F2[Q](q†M (K)).

and
H̃∗

Z2
(SWF (Σ2(−K))/(Q-torsions) ∼= F2[Q](q†M (−K)).

Thus, by the duality for orientations of Σ2(K) and the universal coefficient theorem, we have q†M (−K) =

−q†M (K). By combining this with σ(−K) = −σ(K), we have the desired relation qM (−K) =
−qM (K). �
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The following gives the general genus bound:

Theorem 4.3. Let S be a smoothly, properly and normally immersed connected oriented embedded
surface cobordism in [0, 1]× S3 from a knot K in S3 to a knot K ′ in S3. Then, we have the following
genus bound:

qM (K ′) ≤ g(S) + s+(S) + qM (K).

Proof. We consider the cobordism map

BF ∗
S : H̃∗

Z2
(SWF (Σ2(K

′))) → H̃∗
Z2
(SWF (Σ2(K)))

defined by using proper transformations along immersed points and taking a certain Z2-invariant spin
c

structure on it. We first prove that BF ∗,loc
S is isomorphism as a homomorphism

Q−1H̃∗
Z2
(SWF (Σ2(K

′))) → Q−1H̃∗
Z2
(SWF (Σ2(K))).

The composition S ◦ (−S) is an immersed genus 2g(S) cobordism from K to itself. Note that K ×
[0, 1]#2g(S)T

2 is also a cobordism from K to itself with genus 2g(S). These two cobordisms are

homotopic rel boundaries. This can be checked as follows: Regard S3 as R3 ∪ {∞}. Then I × {∞}
does not intersect with the surface cobordisms in general position in [0, 1] × S3, so one can assume
the surface cobordism is in [0, 1] × R3. Now we have the linear homotopy connecting two surface
cobordisms.

From Theorem 3.13, we can write down

BF ∗
S◦−S = QjBF ∗

U0×[0,1]#2g(S)T 2 = QjBF ∗
U0×[0,1] ·BF ∗

#2g(S)T 2 = Qj+2g(S)

for some integer j. Here we used the following:

• equivariant connected sum formula of equivariant Bauer–Furuta invariants,

• BF ∗
T 2⊂S4 = Q which can be proven by combining the equivariant index theorem and the

equivariant Hopf theorem, and

• BF ∗
U0×[0,1] = Id which will be proven in Subsection 3.3.

This implies BF ∗,loc
S is non-zero. Thus the free part of the cobordism map

BF ∗,free
S : H̃∗

Z2
(SWF (Σ2(K

′)))/Q-Torsion → H̃∗
Z2
(SWF (Σ2(K)))/Q-Torsion

is also non-trivial. When we regard this as a map

BF ∗,free
S : F2[Q]q†(K′) → F2[Q]q†(K),

it is given as

BF ∗,free
S = Qq†(K′)−q†(K)+b+(Σ2(Sb))−

1
4 (c1(s̃)

2−σ(Σ2(Sb)))

by the computation of grading. Since BF ∗,free
S 6= 0, the power of Q is non-negative, so we have

−q†M (K ′) ≤ b+(Σ(S))− 1

4
(c1(̃s)

2 − σ(Σ(S))) − q†M (K).

Then, we do the following computations:

− q†M (K ′)

≤ b+(Σ(Sb))−
1

4
(c1 (̃s)

2 − σ(Σ(Sb)))− q†M (K)

≤ g(Sb)−
1

4
[Sb]

2 +
1

2
σ(K ′ −K)− 1

4
(π∗(c1(s)−

1

2
[Sb])

2 − 2σ(X) +
1

2
[Sb]

2 − σ(K ′ −K))− q†M (K)

= g(S) +
1

2
(〈c1(s), [Sb]〉 − [Sb]

2) +
3

4
σ(K ′ −K)− q†M (K).
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Note that for the blow-up of S in [0, 1]× S3##m − CP 2, one can see

1

2
(〈c1(s), [Sb]〉 − [Sb]

2) = s+(S).

This completes the proof. �

Remark 4.4. Even for an odd prime p, we can still define a similar invariant as

q
(p)
M (K) :=

1

p− 1
min{grQ(x)|x ∈ H∗

Zp
(SWF (−Σp(K));Fp) :

homogeneous and Snx 6= 0 for all n ≥ 0} − 3

4(p− 1)
σ(p)(K),

where
σ(p)(K) :=

∑

16=ω∈U(1),ωp=1

σω(K)

and σω(K) denotes the Tristram–Levine signature with respect to ω ∈ U(1).

4.2. Basic properties of qM (K). In this section, we prove the fundamental properties of the invariant
qM (K) including relations with L-spaces, the duality, and the connected sum formula.

Theorem 4.5. If the double-branched cover of K is L-space, then we have

H̃∗
Z2
(SWF (Σ2(K); s0);F2) ∼= F2[Q]

d=−σ(K)
4

,

where the subscript is the minimal grading and s0 is the unique spin structure. Thus,

qM (K) = −1

2
σ(K).

In particular, this holds for quasi-alternating knots.

Proof. Let us abbriviate F = F2 in this proof. The assumption that Σ2(K) is an L-space implies

H̃∗(SWF (Σ2(K), s0;F) ∼= F(d),

where the grading

d = d(Σ2(K); s0) = 2δ(Σ2(K); s0) = −σ(K)

2

is the monopole Frøyshov invariant [Frø10] of the double-branched covering space along K. For the
last equality, see [BH24a, Corollary 6.3] (we follow their convention). We omit s0 from now on. By
the mod 2 Thom-Gysin exact sequence for the following S0 = Z2-bundle

Z2 → SWF (Σ2(K)) ∧ (EZ2)+
π−→ SWF (Σ2(K)) ∧Z2 (EZ2)+,

we have

H̃i
Z2
(SWF (Σ2(K)))

Q−→
∼=

H̃i+1
Z2

(SWF (Σ2(K))), i 6= d− 1, d

and an exact sequence

0 → H̃d−1
Z2

(SWF (Σ2(K)))
Q−→ H̃d

Z2
(SWF (Σ2(K)))

π∗
d−→ F → H̃d

Z2
(SWF (Σ2(K)))

Q−→ H̃d+1
Z2

(SWF (Σ2(K))) → 0.

We can see π∗
d 6= 0. Suppose on the contrary π∗

d = 0. Then we have H̃≤d
Z2

(SWF (Σ2(K))) = 0 but this
contradicts the resulting exact sequence

0 → F → H̃d
Z2
(SWF (Σ2(K)))

Q−→ H̃d+1
Z2

(SWF (Σ2(K))) → 0.
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Thus we have π∗
d 6= 0 and thus we obtain

H̃i
Z2
(SWF (Σ2(K)))

Q−→
∼=

H̃i+1
Z2

(SWF (Σ2(K))), i 6= d.

and

0 → H̃d−1
Z2

(SWF (Σ2(K)))
Q−→ H̃d

Z2
(SWF (Σ2(K)))

π∗
d−→ F → 0

Therefore we have
H̃∗

Z2
(SWF (Σ2(K))) ∼= F[Q]d

and in particular q†M (K) = d = −σ(K)
4 . This implies

qM (K) = −q†M (K)− 3

4
σ(K) = −σ(K)

2
.

The fact that the branched double cover of the quasi-alternating knots are L-spaces is due to Ozsváth–
Szabó [OS05, Proposition 3.3]. This completes the proof. �

Theorem 4.6. For two oriented knots K and K ′ in S3,

qM (K#K ′) = qM (K) + qM (K ′)

We use the following two lemmas in the proof of this theorem.
The first lemma claims that the cohomological relative Bauer-Furuta invariant for (S0×D4, S0×D2)

and that of (D1 × S3, D1 × S1) are the same Floer cohomology classes of (S0 × S3, S0 × S1).

Lemma 4.7. We have

BF ∗
(S0×D4,S0×D2)(1) = BF ∗

(D1×S3,D1×S1)(1) ∈ H̃∗
Z2
(SWF ((S0 × S3, S0 × S1))).

Proof. A similar gluing argument has been used in [DSS23, Subsection 3.7]. Computation ofBF ∗
S0×D4,S0,D2

can be done by the proof of Theorem 3.5. �

The second lemma is a localization theorem for Z2-action.

Lemma 4.8. The inclusion
SWF (Σ2(K))Z2 → SWF (Σ2(K))

induces an isomorphism

Q−1H̃∗
Z2
(SWF (Σ2(K))) → H̃∗(SWF (Σ2(K))Z2)⊗ F[Q,Q−1].

Proof. Note that SWF (Σ2(K)) is a formal desuspension of a finite Z2-CW complex. Therefore, one can
use a general localization theorem for Z2-action. See [MD98, Theorem 2.1, page 44], for example. �

Now, we prove Theorem 4.6.

Proof of Theorem 4.6. We use the following knot cobordisms:

• (W#, S#) : (S
3,K) ∪ (S3,K ′) → (S3,K#K ′),

• (−W#,−S#) : (S
3,K#K ′) → (S3,K) ∪ (S3,K ′),

where W# is a (4-dimensional) 1-handle cobordism from S3∪S3 → S3 and S# is also a (2-dimensional)
1-handle cobordism from K ∪ K ′ → K#K ′. Associated with these cobordisms, we have (metric
dependent) Z2-equivariant cohomological Bauer–Furuta invariants

BF(W#,S#) : SWF (Σ(K)) ∧ SWF (Σ(K ′)) → SWF (Σ(K#K ′))
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and

BF(−W#,−S#) : SWF (Σ(K#K ′)) → SWF (Σ(K)) ∧ SWF (Σ(K ′)).

We claim the Q-localized induced maps BF ∗,Q-loc
(W#,S#) and BF ∗,Q-loc

(−W#,−S#) are isomorphisms. In order to

see this, we consider the composition:

(W#, S#) ◦ (−W#,−S#).

One can find an embedding of (S0×D4, S0×D2) into (−W#,−S#)◦(W#, S#) such that the surgery
along it is pairwisely diffeomorphic to ([0, 1]× S3, [0, 1]×K) ∪ ([0, 1]× S3, [0, 1]×K ′). Again using a
connected sum gluing theorem based on Lemma 4.7,

BF(−W#,−S#)◦(W#,S#) = BF([0,1]×S3,[0,1]×K)∪([0,1]×S3,[0,1]×K′)

and we know BF ∗
([0,1]×S3,[0,1]×K)∪([0,1]×S3,[0,1]×K′) is isomorphism from Subsection 3.3.

Therefore,

qM (K ∪K ′) := qM (SWF (Σ(K)) ∧ SWF (Σ(K ′))),

here we define qM (SWF (Σ(K))∧SWF (Σ(K ′))) similar to the knot case and use natural homological
grading comes from the gradings of K and K ′. Moreover, since the above two cobordisms give both
directions of maps, we have

qM (K ∪K ′) = qM (K#K ′).

On the other hand, we see

qM (K) + qM (K ′) ≤ qM (K ∪K ′)

since we have a homomorphism

H∗
Z2
(SWF (ΣK) ∧ SWF (ΣK ′)) → H∗

Z2
(SWF (ΣK))⊗H∗

Z2
(SWF (ΣK ′))

which induces the isomorphism on the localizations

Q−1H∗
Z2
(SWF (ΣK) ∧ SWF (ΣK ′)) → Q−1H∗

Z2
(SWF (ΣK))⊗H∗

Z2
(SWF (ΣK ′)).

This property follows from the naturality of the localization maps

H∗
Z2
(SWF (ΣK) ∧ SWF (ΣK ′)) −−−−→ H∗

Z2
(SWF (ΣK))⊗H∗

Z2
(SWF (ΣK ′))

y
y

F2[Q
±1]⊗H∗(SWF (ΣK) ∧ SWF (ΣK ′))

∼=−−−−→ F2[Q
±1]⊗H∗(SWF (ΣK))⊗H∗(SWF (ΣK ′))

and non-equivariant Kunneth isomorphism.
Therefore, we have

qM (K∗) + qM ((K ′)∗) ≤ qM ((K ∪K ′)∗).

Using the mirroring formula Proposition 4.2, we have opposite inequality. This gives the conclusion. �

4.3. A lower bound for qM (K). Let K ⊂ S3 be a knot. In this subsection, we give a lower bound
for qM (K) in terms of the Heegaard Floer homology group of the double-branched cover. Set

m(K) := min{grQ(x)|0 6= x ∈ ĤF (Σ2(K); s0), x is homogeneous}.

Theorem 4.9. For any knot K ⊂ S3, we have

qM (K) ≥ m(−K)− 3

4
σ(K).
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Proof. In this proof, we abbreviate

H̃∗ = H̃∗(SWF (Σ2(K); s0))) and H̃∗
Z2

= H̃∗
Z2
(SWF (Σ2(K); s0))).

We have the isomorphism due to HF = HM [KLT10a, KLT10b, KLT10c, KLT11, KLT12, Tau10a,
Tau10b,Tau10c,Tau10d,Tau10e,CGH12b,CGH12c,CGH12a] and Lidman–Manolescu [LM18],

ĤF (Σ2(K); s0) ∼= H̃∗

the invariant m(K) can be rewritten in terms of Seiberg–Witten Floer stable homotopy type:

m(K) = min{grQ(x)|0 6= x ∈ H̃∗, x is homogeneous}.

The fibration

Z2 → SWF (Σ2(K); s0)) ∧ (EZ2)+ → SWF (Σ2(K); s0)) ∧Z2 (EZ2)+

gives the Thom–Gysin exact sequence

· · · → H̃∗−1
Z2

Q−→ H̃∗
Z2

π∗

−→ H̃∗ → · · · .

and we have
CokQ ∼= Imπ∗ ⊂ H̃∗.

Thus, we have

q†M (K) ≥ min{grQ(x)|0 6= x ∈ H̃∗
Z2
, x is homogeneous}

= min{grQ(x)|0 6= x ∈ CokQ, x is homogeneous}
≥ min{grQ(x)|0 6= x ∈ H̃∗, x is homogeneous} = m(K).

Thus we obtain
−q†M (K) = q†M (−K) ≥ m(−K).

This gives

qM (K) = −q†M (K)− 3

4
σ(K)

≥ m(−K)− 3

4
σ(K),

which is the desired inequality. �

4.4. qM (K) for links. In this section, we observe our invariant qM (K) has a natural extension to
invariants of oriented links with non-zero determinants. For a link L in S3 with non-zero determinant,
the following one-to-one correspondence is known

{ orientations on L}/{±1} ∼= {isomorphism classes of spin structures on Σ(L)}.

Moreover, it is checked in [KMT23] that any spin structure on Σ(L) is preserved by the covering
involution. Therefore, depending on an orientation, we have a correspondence

(L, o) 7→ SWF (Σ(L); so),

where o is an orientation of L and so is the corresponding spin structure.
Then we can repeat the construction of qM : Set

q†M (L, o) := min{grQ(x)|Qnx 6= 0, for all n ≥ 0, x ∈ H∗
Z2
(SWF (Σ2(L); so);F2)}
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where we assume x is homogeneous and set

qM (L, o) = q†M (−L,−o)− 3

4
σ(L, o).

From now on, we abbreviate the notations for the orientations o. In order to state the invariance
of qM (L), it is convenient to use the notion of oriented χ-concordance introduced in [DO12]. Let us
first review the definition of χ-concordance. A marked link is a link in S3 equipped with a marked
component. For given oriented marked links L0 and L1, we call L0 and L1 are χ-concordant if −L∗

0#L1

bounds a smoothly properly embedded oriented surface F in D4 such that

(i) F is a disjoint union of one disk together with annuli;

(ii) the boundary of the disk component of F is the marked component of −L∗
0#L1.

where L∗ means the mirror image of L and −L∗ is the one with the opposite orientation to L∗. the
connected sum −L∗

0#L1 is taken along marked components. In [DO12], it is proven that the set L̃ of
all χ-concordant classes of oriented marked links forms an abelian group with respect to the connected
sum along marked components. The group L̃ is called the link concordance group. In this paper, we
focus on the subgroup F̃ of L̃ generated by oriented marked links whose determinants are non-zero.

Theorem 4.10. The invariant qM (L) descends to a homomorphism

qM : F̃ → Z.

Proof. It is proven in [DO12] that if L0 and L1 are χ-concordant, then the double branched cover of
−L∗

0#L1 bounds a spin rational homology ball (W, s). Moreover, the restrictions of the spin structure
to the boundary Σ2(−L∗

0#L1) = −Σ2(L0)#Σ2(L1) coincide with the spin structure comes as the
connected sum of spin structures on −Σ2(L0) and Σ2(L1), which correspond to orientations of L0 and
L1 respectively. Moreover, if we write the χ concordance as F , W is obtained as the branched cover
along F in D4. Moreover, it is proven that isomorphism classes of spin structures on W = Σ2(F ) have
one to one correspondence with quasi-orientations of F . Moreover, it is not difficult to check these
spin structures are invariant under the covering involutions. Therefore, the spin structure s is also
preserved by the involution. So, the induced Z2-equivariant Bauer–Furuta invariant is described as

BFF : V + → SWF (−L∗
0#L1).

This shows 0 ≤ qM (−L∗
0#L1). From the duality and the connected sum formula, we see qM (L0) ≤

qM (L1). The opposite inequality is obtained by considering the opposite orientation of W . Therefore,

qM defines a map from F̃ to Z. The proof of the homomorphism property of qM for marked oriented
links is completely similar to the knot case. So, we omit it. �

5. Equivariant stable homomotopical invariants from contact structures

In this section, we construct two kinds of new invariants for equivariant spinc 4-manifolds with
contact boundary and for equivariant closed contact 3-manifolds using invariant almost Kälher cones
and Seiberg–Witten equation on them.

5.1. Equivariant Bauer-Furuta type invariant for 4-manifold with contact boundary. Let

G be a compact Lie group. Let (X̃, s̃) be a compact oriented Spinc 4-manifold with a smooth G-action
preserving the orientation and the Spinc structure. We also fix a lift of G-action to the principal spinc

bundle. Assume b3(X̃) = 0 as in [Iid19]. Notice that this condition on b3 implies that the boundary

Ỹ = ∂X̃ is also connected. Suppose that we have a G-invariant positive cooriented contact structure
on the boundary and an G equivariant isomorphism s|∂X̃ ∼= sξ̃. In this section, we will define a

G-equivariant Bauer–Furuta refinements of Kronheimer–Mrowka invariants

ΨG(X̃, ξ̃, s̃) : S〈e(S+,Φ̃0),[X̃,∂X̃]〉 → S0
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as a G-equivariant stable homotopy class. Here, the relative Euler number 〈e(S+, Φ̃0), [X̃, ∂X̃]〉 will
be explained later and this is equal to the virtual dimension of the Seiberg–Witten moduli space for
4-manifolds with contact boundary given by Kronheimer–Mrowka [KM97]. By applying it to branched
covering spaces along embedded surfaces, we shall also consider the invariants of surfaces. Recall also
that for G-representations V,W, V ′,W ′, we say two maps f : V + → W+ and f ′ : V + → W+ are G-
stably homotopic if there exists a G-representation space U such that f ∧ IdU : V + ∧U+ → W+ ∧U+

are G-equivariantly homotopic, where V and W are some G-representation spaces.

5.2. Almost Kähler cone and G-action. In order to write a setup for the equivariant stable homo-
topy version of Kronheimer–Mrowka’s invariants, we need to treat invariant almost Kähler structures
on the open cone of the given contact 3-manifolds.

Let G be a compact Lie group and Ỹ be an oriented rational homology 3-sphere with G-action and

ξ̃ be a G-invariant positive cooriented contact structure on Ỹ .

Take a G-invariant contact 1-form λ which is positive on the positively oriented normal field to ξ̃ and

a G-invariant complex structure J on ξ̃ compatible with the orientation. Note that we can always take

a G-invariant contact 1-form λ̃ for a G-invariant contact structure ξ̃ compatible with the coorientation
by fixing an orbitrary contact form compatible with the coorientation and taking the average over G.

We can take a G invariant compatible complex structure J̃ for the symplectic vector bundle (ξ, dλ).
This is because there is a standard deformation retract

r : {Euclid metric on ξ} → { compactible complex structure for (ξ, dλ)},

which is G-equivariant (See for example [MS17, Proof of Lemma 2.5.5]). Thus if we take a Euclid

metric g on ξ̃ and denote by g̃ its average over G, then

J̃ = r(g̃)

is a desired G-invariant complex structure.

Then we can define the G-invariant Riemann metric g̃1 = λ̃⊗ λ̃+ 1
2dλ̃(·, J ·)|ξ on Y . On R≥1 × Ỹ ,

we consider the G-invariant Riemannian metric

g̃0 := ds2 + s2g̃1,

and the G-invariant symplectic form

ω̃0 :=
1

2
d(s2λ̃),

where s is the coordinate of R≥1. This gives an almost Kähler structure on R≥1 × Ỹ .

Then a pair (g̃0, ω̃0) determines an almost complex structure J̃ on R≥1 × Ỹ . This defines a Spinc

structure

s̃0 := (S+

R≥1×Ỹ
= Λ0,0

R≥1×Ỹ
⊕ Λ0,2

R≥1×Ỹ
, S−

R≥1×Ỹ
= Λ

R≥1×Ỹ 0,1 ,

ρ̃ : T ∗(R≥1 × Ỹ ) → Hom(S+

R≥1×Ỹ
, S−

R≥1×Ỹ
))

with natural lifts of the G-action, where ρ̃ =
√
2 Symbol(∂ + ∂

∗
). Let Φ̃0 be the positive spinor given

by

Φ̃0 = (1, 0) ∈ Ω0,0

R≥1×Ỹ
⊕ Ω0,2

R≥1×Ỹ
= Γ(S̃+|

R≥1×Ỹ ).

The canonical Spinc connection Ã0 on s is defined by the equation D+

Ã0
Φ̃0 = 0 on R≥1× Ỹ . Note that

(Ã0, Φ̃0) is invariant under G.
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5.3. Construction of invariants. Now let (X̃, ξ̃, s̃) be as in the introduction of this section. In this
subsection, we will construct a G-equivariant pointed stable homotopy class up to sign

ΨG(X̃, ξ̃, s̃) : S〈e(S+,Φ̃0),[X̃,∂X̃]〉 → S0.

of degree d(X̃, ξ̃, s̃) = 〈e(S+,Φ0), [X̃, Ỹ ]〉.
Define a non-compact 4-manifold X̃+ with conical end

X̃+ := X̃ ∪Ỹ (R≥1 × Ỹ ).

Pick a G-invariant Riemann metric gX̃+ on X̃+ such that gX̃+ |R≥1×Y = g0. Fix a G-invariant Spinc

structure sX̃+ = (S±

X̃+
, ρX̃+) on X̃+ equipped with an isomorphism sX̃+ → s̃0 on X̃+ \ X̃. We also

fix lifts of the G-action on spinor bundles on sX̃+ which coincide with the lifts taken in the previous
section. We will omit this isomorphism in our notation.

Fix a smooth G-invariant extension of (Ã0, Φ̃0) on X̃+. We also fix a nowhere zero proper extension

σ of s ∈ R≥1 coordinate to all of X̃+ which is 0 on X̃ \ ν(∂X̃), where ν(∂X̃) is a small collar

neighborhood of ∂X̃ in X̃.

On X̃+, weighted Sobolev spaces

ÛX̃+ = L2
k,α,A0

(iΛ1
X̃+ ⊕ S+

X̃+
) and

V̂X̃+ = L2
k−1,α,A0

(iΛ0
X̃+ ⊕ iΛ+

X̃+
⊕ S−

X̃+
)

are defined using σ for a positive real number α ∈ R and k ≥ 4, where S+

X̃+
and S−

X̃+
are positive

and negative spinor bundles and the Sobolev spaces are given as completions of the following inner
products:

〈s1, s2〉L2
k,α,A

:=

k∑

i=0

∫

X̃+

e2ασ〈∇i
As1,∇i

As2〉dvolX̃+ ,(10)

where the connection ∇i
A is the induced connection from A and the Levi-Civita connection. Note that

G also acts on the spaces ÛX̃+ and V̂X̃+ .

Fix a sufficiently small positive real number α. The invariant ΨG(X̃, ξ̃) is obtained as a G-invariant
finite-dimensional approximation of the Seiberg–Witten map

F̂X̃+ : ÛX̃+ → V̂X̃+

(a, φ) 7→ (d∗αa, d+a− ρ̃−1(φΦ̃∗
0 + Φ̃0φ

∗)0 − ρ̃−1(φφ∗)0, D
+

Ã0
φ+ ρ̃(a)Φ̃0 + ρ̃(a)φ),

(11)

where d∗α is the L2
α formal adjoint of d. By construction, the map F̂X̃+ is G-equivariant.

The finite-dimensional approximation goes as follows. We decompose F̂X̃+ as L̂X̃+ + ĈX̃+ where

L̂X̃+(a, φ) = (d∗αa, d+a− ρ̃−1(φΦ̃∗
0 + Φ̃0φ

∗)0, D
+

Ã0
φ+ ρ(a)Φ̃0)

and

ĈX̃+(a, φ) = (0,−ρ̃−1(φφ∗)0, ρ̃(a)φ).

Then L̂X̃+ is a linear Fredholm G-equivariant operator and ĈX̃+ is quadratic, compact and G-
equivariant. (Here we used α > 0. )

Pick an increasing sequence of G-invariant finite-dimensional subspaces V̂X̃+,n ⊂ VX̃+ (n ∈ Z≥1)

such that
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• For any γ ∈ V̂X̃+ ,

‖prV̂
X̃+,n

(γ)− γ‖V̂
X̃+

→ 0 as n → ∞

and

• Coker L̂X̃+ := (Im L̂X̃+)
⊥

L2
k−1,α ⊂ V̂X̃+,1.

Let

ÛX̃+,n = L̂−1(V̂X̃+,n) ⊂ ÛX̃+ ,

and

FX̃+,n := prV̂
X̃+,n

◦ FX̃+ : ÛX̃+,n → V̂X̃+,n.

We can show that for a large R > 0, a small ε and a large n, we have a well-defined G-equivariant map

FX̃+,n : B(ÛX̃+,n, R)/S(ÛX̃+,n, R) → B(V̂X̃+,n, ε)/S(V̂X̃+,n, ε).

The stable homotopy class of FX̃+,n defines the Bauer–Furuta version of Kronheimer–Mrowka’s in-
variant

ΨG(X̃, ξ̃, s̃) : S〈e(S+,Φ0),[X̃,∂X̃]〉 → S0,

where e(S+

X̃
,Φ0) ∈ H4(X̃, ∂X̃) is the relative Euler class of S+

X̃
with respect to the section Φ0|Ỹ . It is

not hard to see that the stable homotopy class of ΨG(X̃, ξ̃, s̃) is independent of additional data.
Moreover, we have a diffeomorphism invariance:

Lemma 5.1. Let (X̃, ξ̃, s̃) and (X̃ ′, ξ̃′, s̃′) be pairs of G-equivariant Spinc 4-manifolds with contact

boundary. Suppose there is a G-equivariant diffeomorphism f : X̃ → X̃ ′ so that f∗ξ̃ = ξ̃′ and f∗
s̃ = s

′.
Then, we have

ΨG(X̃, ξ̃, s̃) = ±ΨG(X̃
′, ξ̃′, s̃′)

up to G-equivariant stable homotopy.

Proof. The pull-back by f induces a commutative diagram of G-equivariant maps:

S〈e(S+,Φ0),[X̃,∂X̃]〉 ΨG(X̃,ξ̃,s̃)−−−−−−−→ S0

f∗

y f∗

y

S〈e(S+,Φ0),[X̃
′,∂X̃′]〉 ΨG(X̃′,s̃′,ξ̃′)−−−−−−−−→ S0.

Note that f∗ is Zp-euqivariant homeomorphism. This implies the conclusion. �

Now we restrict ourselves to G = Zp for a prime p. In this case, let us write ΨG=Zp(X̃, ξ̃, s̃) =

Ψ(p)(X̃, ξ̃, s̃). We have the following non-vanishing theorem:

Proposition 5.2. Let p be a prime number. For a 4-dimensional Zp-equivariant weak symplectic

filling (X̃, ω̃) of a Zp-equivariant contact 3-manifold (Ỹ , ξ), then Ψ(p)(X̃, ξ̃, sω̃) is Zp-stably homotopy
equivalence, where sω̃ is the induced Zp-invariant spin

c structure.

Proof. By [JS78, tD79], it is enough to prove the map Ψ(p)(X̃, s̃, ξ̃)Zp induced on Zp fixed points has

mapping degree ±1 and Ψ(p)(X̃, s̃, ξ̃) is a homotopy equivalence as non-equivariant spaces. The latter
follows from [Iid19, Corollary 4.3], so it is enough to show the former claim. When we perturb the
Seiberg–Witten equation as in [KM97], the moduli space of the Seiberg–Witten solutions satisfies

MZp ⊂ M = {pt},
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and since the canonical solution is Zp invariant by our construction of the almost Kähler structure, we
have

MZp = {pt}.

Furthermore, this solution is cut out transversally because the linearization L of the Seiberg–Witten
equation with local slice satisfies

KerLZp ⊂ KerL = 0

(KerL∗)Zp ⊂ KerL∗ = 0,

when we perturb the equation as above. The mapping degree of the map Ψ(p)(X̃, s̃, ξ̃)Zp agrees with

#MZp = ±1 by the argment of [Iid19, Theorem 4.1]. This completes the proof.
�

We now define invariants of properly embedded surfaces in 4-manifolds with contact boundaries.
Let X be a 4-manifold with contact homology 3-sphere boundary (Y, ξ) and S be a properly em-

bedded surface in X such that K = S ∩ Y is a transverse knot in Y . Suppose the homology class of S
is divisible by p. Suppose b3(Σp(S)) = 0. We also fix a spinc structure s̃ on Σp(S) such that

τ∗s̃ ∼= s̃ and s̃|Σp(K)
∼= sξ̃,

where sξ̃ is the Zp-invariant spin
c structure on Σp(K) induced from the Plamanevskaya’s Zp-invariant

contact structure. Depending on these data, we have Zp-invariant spin
c 4-manifold X̃ = Σp(S) with

Zp-invaeriant contact boundary. Now, we define

ΨZp(X,S, ξ, s̃) := ΨZp(X̃, ξ̃, s̃).

Next, we observe non-vanishing results on Ψ(X,S, ξ, s̃), which is a corollary of Proposition 5.2
combined with Theorem 1.23.

Proposition 5.3. Let (X, ξ, S) be a tuple of Spinc 4-manifold X with contact boundary (Y, ξ) and a
properly embedded surface S in X such that ∂S ⊂ (Y, ξ) is a transverse knot and [S] is divisible by p.
Suppose S is isotoped rel boundary into a symplectic surface, then

ΨZp(X,S, ξ, s̃) = ±1

up to Zp-equivariant stable homotopy for a Zp-invariant spin
c structure s̃ obtained as the induced spinc

structure arises as the Zp-invariant symplectic structure on Σp(S).

5.4. Construction of stable homotopy transverse knot invariants. Let p be a prime number.
Let (Y, ξ) be a rational homology 3-sphere, equipped with a positive cooriented contact structure and
let K ⊂ (Y, ξ) be a transverse knot. In this section, we will construct a transverse knot invariant as a
stable homotopy class ̂

C(Y, ξ,K) : Σd3(Σ(K),ξ̃)+ 1
2SWF (Σ(K), s) → S0

for a transverse knot for each prime number p. using the construction given in [IT20].
We can define a cohomological transverse knot invariant for any Zp equivariant homology theory

and in particular, we will introduce the invariant for Zp equivariant ordinary homology

c(p)(Y, ξ,K) ∈ HSW
Zp
∗ (Y,K;Zp) = H̃

Zp
∗ (SWF (Σp(K); s0))

using

̂
C(Y, ξ,K), where s0 is the unique Zp-invariant spin structure on Σp(K). For a related construc-

tion, see [Ros23].
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5.5. Construction of the equivariant contact invariant. The transverse knot invariant above
is nothing but a Zp equivariant version of the contact invariant introduced by the authors [IT20],
applied to cyclic p-th brahcned coverings along a transverse knot. In this section, we will review the
construction in [IT20] and see that it can be straightforwardly adapted to equivariant setting.

Let G be a compact Lie group. Let Ỹ be a rational homology 3-sphere with G-action and ξ̃ be a

G-invariant contact structure. As in the construction of ΨG(X̃, ξ̃, s̃), we consider a G-invariant metric

on N+ := R≥0 × Ỹ which is a G-invariant extension of g̃0 and product on [0, 1
2 ] × Ỹ . We also call

this metric g̃0. The Riemannian manifold Ñ+ is what we mainly consider to define our invariant. We

extend ω̃0 to a self-dual 2-form with |ω̃0(s, y)| =
√
2 which is translation invariant on [0, 12 ]× Ỹ .

We first fix the following data and notations:

• A G-invariant contact form λ̃ and a G-invariant complex structure J on ξ̃.

• Denote by the almost Kähler structure on R≥1 × Ỹ by

g0 = ds2 + s2g1, ω0 =
1

2
d(s2λ̃).

• An G-invariant extension of ω0 to N+ which is translation invariant on [0, 1
2 ]× Ỹ .

• A G-invariant metric on N+ which is an extension of g̃0 and product on [0, 12 ] × Ỹ . We also
call this metric g̃0.

• Denote by S± the spinor bundles constructed as in the previous section.

• A G-invariant canonical configuration (Ã0, Φ̃0) on [1,∞) × Ỹ constructed as in the previous

section and a smooth extension of it to N+ so that (Ã0, Φ̃0) is translation invariant in [0, 1
2 ]×Ỹ .

For small positive real number α, we define the double Coulomb slice by

Uk,α(N
+) := L2

k,α(iΛ
1
N+)CC ⊕ L2

k,α(S
+
N+),

where L2
k,α(iΛ

1
N+) and L2

k,α(S
+
N+) are the completions of the inner products with respect to L2

k,α,∇LC
(iΛ1

N+)

and L2
k,α,A0

(S+
N+) and

L2
k,α(iΛ

1
N+)CC := {a ∈ L2

k,α(iΛ
1
N+)|d∗αa = 0, d∗ta = 0}.

Here t is the restriction of 1-forms as differential forms and d∗α is the formal adjoint of d with respect
to L2

α.
On N+, we have the Seiberg–Witten map

FN+ : Ck,α(N+) → L2
k−1,α(iΛ

+
N+ ⊕ S−

N+) by

FN+(A,Φ) :=

(
1

2
F+
At − ρ̃−1(ΦΦ∗)0 − (

1

2
F+

Ãt
0

− ρ−1(Φ̃0Φ̃
∗
0)0), D

+
AΦ

)
,

which is G-equivariant. Again, we can write FN+ as the sum of the linearization LN+ at (Ã0, Φ̃0) and
the remaining part CN+ . We carry out a finite-dimensional approximation of the map

FN+ : Uk,α → Vk−1,α ⊕ V (∂N+),

where Uk,α = L2
k,α(iΛ

1
N+)CC ⊕L2

k,α(S
+
N+) and Vk−1,α = L2

k−1,α(iΛ
0
N+ ⊕ iΛ+

N+)⊕L2
k−1,α(S

−
N+). In this

section, we fix a small weight α ∈ (0,∞) as in [IT20]. Take sequences of G-invariant subspaces

V1 ⊂ V2 ⊂ · · · ⊂ Vk−1,α and V λ1

−λ1
⊂ V λ2

−λ2
⊂ · · · ⊂ V (∂N+)

such that
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(i) (ImLN+ + p0−∞ ◦ r)⊥Vk−1,α⊕V (∂N+) ⊂ Vn ⊕ V λn

−λn
(∂N+) for any n

(ii) the L2-projection Pn : Vk−1,α ⊕ V (∂N+) → Vn ⊕ V λn

−λn
(∂N+) satisfies

lim
n→∞

Pn(v) = v

for any v ∈ Vk−1,α ⊕ V (∂N+).

Then we define a sequence of subspaces

Un := (LN+ + pλn

−λn
◦ r)−1(Vn ⊕ V λn

−λn
).

This gives a family of the approximated Seiberg-Witten map is given by

{Fn := Pn(LN+ + CN+ , pλn

−λn
◦ r) : Un → Vn ⊕ V λn

−λn
(∂N+)},

which is a sequence of G-invariant maps. By combining compactness result ensured in [IT20], we can
associate G-equivariant map

B(Un;R)/S(Un;R) → (Vn/
◦

B(Vn, εn)
c) ∧ (Nn/Ln).

Then, by applying the formal (de)suspension

Σ( 1
2−d3(−Ỹ ,[ξ])−2n(−Ỹ ,gỸ ,s))R⊕(−V 0

−λn
)⊕(−Vn)

to

B(Un;R)/S(Un;R) → (Vn/
◦

B(Vn, εn)
c) ∧ (Nn/Ln),

we obtain a map stably written by

CG(Ỹ , ξ̃) : S0 → Σ( 1
2−d3(−Ỹ ,[ξ̃]))RSWF (−Ỹ , sξ̃).(12)

The G-equivariant stable homotopy class of (12) is called equivariant Floer homotopy contact invari-

ant. When we put G = Zp, we write CG(Ỹ , ξ̃) by C(p)(Ỹ , ξ̃). Moreover, for a given transverse knot K

in a contact homology 3-sphere, we can associate the Zp-invariant contact structure ξ̃ on Ỹ = Σp(K)

described in Subsection 2.2. In this case, we denote C(p)(Ỹ , ξ̃) by C(p)(Y, ξ,K), which is called the
stable homotopy transverse knot invariant.

5.6. Equivariant Spaniel–Whitehead duality map. For a rational homology 3-sphere Ỹ with a
spinc structure s̃. Manolescu constructed the duality map ǫ [Man03]:

ǫ : SWF (Ỹ , s̃) ∧ SWF (−Ỹ , s̃) → S0.

Suppose a compact Lie group G acts on Ỹ preserving the spinc structure s̃. Also, fix a lift of the
G-action to the principal spinc bundle. In this case, is not so hard to construct ǫ equivariantly. We
write this equivariant version by

ǫG : SWF (Ỹ , s̃) ∧ SWF (−Ỹ , s̃) → S0,

where we are implicitly fixing a G-representation of S0. This map satisfies the definition of G-V -dual.
See [BH24a].
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5.7. Definition of cohomological invariants c(p)(Y, ξ,K). Let Ỹ be a rational homology 3-sphere

with G-action, where G is a compact Lie group. Let ξ̃ be a contact structure on Ỹ preserved by G.
By using the duality map ǫG, we often regard (12) as

Σ− 1
2−d3(Y,[ξ̃])SWF (Ỹ , sξ̃)

CG(Ỹ ,ξ̃)∧Id−−−−−−−→ Σ
1
2−d3(−Ỹ ,[ξ̃])SWF (−Ỹ , sξ̃) ∧ Σ− 1

2−d3(Ỹ ,[ξ̃])SWF (Ỹ , sξ̃)
ǫG−→ S0.

We write this composition bŷ
CG(Ỹ , ξ̃) : Σ− 1

2−d3(Ỹ ,[ξ])SWF (Ỹ , sξ) → S0.

Now we define homological invariants cG(Y,K, ξ) as follows.

Definition 5.4. Considering a G-equvariant map

CG(Ỹ , ξ̃) : S0 → Σ( 1
2−d3(−Ỹ ,[ξ]))RSWF (−Ỹ , s)

and applying the Borel construction, we have the fiber bundle

S0 ∧G (EG)+ → Σ( 1
2−d3(−Y,[ξ]))RSWF (−Ỹ , s) ∧G (EG)+.

Then, by applying the homology, we obtain a H∗(BG)-module homomorphism

CG(Ỹ , ξ̃)∗ : H̃G
0 (S0) → H̃G

− 1
2−d3(Ỹ ,[ξ])

(SWF (−Ỹ )).

We define
cG(Ỹ , ξ̃) := CG(Ỹ , ξ̃)∗(1) ∈ H̃G

− 1
2−d3(Ỹ ,[ξ])

(SWF (−Ỹ , sξ̃)).

When G = Zp, we write it by c(p)(Ỹ , ξ̃). Now let us assume G = Zp, so that we have the action of the

trivial extension S1 × Zp on configurations. Consider

S0 ∧Zp (EZp)+ → Σ( 1
2−d3(−Y,[ξ]))RSWF (−Ỹ , s) ∧Zp (EZp)+ ∧ (ES1)+

→ Σ( 1
2−d3(−Ỹ ,[ξ]))RSWF (−Ỹ , s) ∧Zp×S1 (E(Zp × S1))+.

Then, by applying the homology, we obtain a H∗
S1×Zp

-module homomorphism

C(p)(Ỹ , ξ̃)∗ : H̃
S1×Zp

0 (S0) → H̃
S1×Zp

− 1
2−d3(Ỹ ,[ξ])

(SWF (−Ỹ )).

For a contact homology 3-sphere (Y, ξ) with a transverse knot K in (Y, ξ) and a prime number p,

we put Ỹ = Σp(K) with the Zp invariant contact structure ξ̃ given in Subsection 2.2.
We define

cS1×Zp
(Y, ξ,K) := C(p)(Ỹ , ξ̃)∗(1) ∈ H̃

S1×Zp

− 1
2−d3(Ỹ ,[ξ])

(SWF (−Σp(K), sξ̃)),

where sξ̃ is the induced Zp-invariant spin
c structure on Σp(K), which is spin. We also put

c(p)(Y, ξ,K) := c(p)(Σp(K), ξ̃).

When p = 2, we will also use the sequence of invariants

cj(2)(Y, ξ,K) := CZ2(Ỹ , ξ̃)∗(Q−j) ∈ H̃
S1×Zp

− 1
2−d3(Ỹ ,[ξ])−j

(SWF (−Σ2(K))).

From the constructions, we have

Qcj(2)(Y, ξ,K) = cj−1
(2) (Y, ξ,K)

if j ≥ 1 and Qc0(2)(Y, ξ,K) = 0.
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We call {cS1×Zp
(Y, ξ,K)} the homological (equivariant) transverse knot invariants. The Thom

isomorphism implies the following well-definedness.

Proposition 5.5. The element cG(Ỹ , ξ̃) does not depend on the choices of representatives of maps

CG(Ỹ , ξ̃) : S0 → Σ( 1
2−d3(−Ỹ ,[ξ̃]))RSWF (−Ỹ , s).

In particular, c(p)(Y, ξ,K) and cj(2)(Y, ξ,K) depend only on the transverse isotopy class of K.

5.8. Thom–Gysin exact sequence. We use Thom–Gysin exact sequence to see that our transverse
knot invariants lie in the U -towers in equivariant homology. In this section, we put G = Zp.

We consider the following S1-bundle:

Σ( 1
2−d3(−Ỹ ,[ξ]))RSWF (−Ỹ , s) ∧Zp (E(Zp × S1))+ → Σ( 1

2−d3(−Ỹ ,[ξ]))RSWF (−Ỹ , s) ∧Zp×S1 (E(Zp × S1))+.

(13)

Then we consider the Thom–Gysin exact sequence associated to the S1-bundle (13):

· · · → H̃
Zp
∗ (Σ

1
2−d3(−Ỹ ,[ξ])SWF (−Ỹ , sξ̃))) → H̃

Zp×S1

∗−1 (Σ
1
2−d3(−Ỹ ,[ξ])SWF (−Ỹ , sξ̃)))

U−→ H̃
S1×Zp

∗+1 (Σ
1
2−d3(−Ỹ ,[ξ̃])SWF (−Ỹ , sξ̃))) → H̃

Zp

∗+1(Σ
1
2−d3(−Ỹ ,[ξ̃])SWF (−Ỹ , sξ̃))) → · · · .

This exact sequence implies the following vanishing property of UQmcS1×Z2
(Y, ξ,K).

Lemma 5.6. Let (Y, ξ) be a contact homology 3-sphere and K a transverse knot in (Y, ξ). Fix a prime
number p. We have

U†c
j
S1×Z2

(Y, ξ,K) = 0

for j ≥ 0 for p = 2. For a odd prime p, we have

U†cS1×Zp
(Y, ξ,K) = 0.

for m ≥ 0 and m′ ≥ 0.

Proof. From the constructions of cjS1×Z2
(Y, ξ,K) or cS1×Zp

(Y, ξ,K), these are the images of the ho-
momorphisms:

H̃
Zp
∗ (Σ

1
2−d3(−Ỹ ,[ξ̃])SWF (−Ỹ , sξ̃))) → H̃

Zp×S1

∗−1 (Σ
1
2−d3(−Ỹ ,[ξ̃])SWF (−Ỹ , sξ̃))).

Therefore, from the Thom–Gysin sequence above, we have the desired results.
�

Combined with the rank one theorem Theorem 3.8, we see that our transverse invariants lie in the
U -towers for knots in S3.

Theorem 5.7 (Theorem 1.19). For any transverse knot K in S3, the equivariant contact invariant
lies in the U -tower, i.e.

cjS1×Z2
(S3, ξstd,K) = cjS1×Z2

(K) ∈
⋂

i≥0

ImU i
†

for any j.

Proof. It is sufficient to see

cj0S1×Z2
(K) ∈

⋂

i≥0

ImU i
†

for a sufficiently large j0 since U† and Q† commute. The claim follows from Theorem 1.17, which says

that all but finite elements of H̃S1×Zp(−Σp(K)) can be divided by U† infinitely many times. �
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6. Gluing theorem and a non-vanishing result for contact invariant

In order to verify the non-triviality of our transverse invariants, it is important to have certain
gluing theorems, which are the main topics in this section.

6.1. Statement of the gluing theorem. In this section, we claim the gluing result among equi-
variant Kronheimer–Mrokwa’s invariant, the transvese knot invariant and the equivariant relative
Bauer–Furuta invariant.

Theorem 6.1. Let G be a compact Lie group. Let X̃ be a compact oriented G-Spinc 4-manifold

with connected contact boundary (Ỹ , ξ̃) and sX̃ a Spinc structure whose restriction on the boundary is

compatible with the Spinc structure induced by ξ̃. Suppose G-action preserves ξ̃ and lifts to a G-action

on the principal spinc bundle. Suppose b1(X̃) = 0. Then

ǫG ◦ (BFG(X̃, sX) ∧ CG(Ỹ , ξ̃)) = ΨG(X̃, sX̃,ξ̃, ξ̃)

holds as G-equivariant stable maps for the following maps:

• BFG(X̃, sX̃) : (C
c21(s)−σ(X̃)

4 )+ → (Rb+(X̃))+∧SWF (Ỹ ) is the equivariant relative Bauer–Furuta

invariant defined in [BH24a, page 36] forgetting S1-action,

• ǫG : SWF (Ỹ , s̃, g) ∧ SWF (−Ỹ , s̃, g) → V + is the G-equivariant Spaniel–Whitehead duality
map defined in the previous section,

• CG(Ỹ , ξ̃) : S0 → Σ( 1
2−d3(−Ỹ ,[ξ]))RSWF (−Ỹ , s) is the G-equivariant contact invariant,

• ΨG(X̃, sX̃,ξ̃, ξ̃) : S
〈e(S+,Φ0),[X̃,∂X̃]〉 → S0 is the G-equivariant Bauer–Furuta type invariant for

4-manifold with contact boundary.

Proof. The proof of Theorem 6.1 is essentially the same as the proof of the gluing theorem proven in
[IT20]. We only need to prove all homotopies given in [IT20] are G-equivariant, and indeed, every
homotopy is given as some concrete linear homotopy which is obviously G-equivariant. Thus, we have
an equivariant homotopy between them. �

6.2. Consequences from Theorem 6.1. As a consequence of the gluing theorem Theorem 6.1, we
have the following pairing formula:

Theorem 6.2. Let p be a prime number, (X,ω) a compact symplectic filling bounded by an oriented
homology 3-sphere Y with a contact structure ξ, and S a properly embedded and connected smooth
symplectic surface in X. Suppose homology class [S] ∈ H2(X, ∂X) is divisible by p and H1(X ;Z) = 0
so that the cyclic p-th branched cover Σp(S) is uniquely determined. We also assume K = ∂S = S∩X
is a transverse knot in (Y, ξ). Then, we have

〈c(p)(Y, ξ,K), BF ∗
Zp
(1)〉 = 1,

where the pairing is given by the usual homological pairing

H̃
Zp
∗ (SWF (−Σp(K), s0))⊗ H̃∗

Zp
(SWF (−Σp(K), s0)) → Fp.

Remark 6.3. We do not know whether a similar pairing formula for S1 × Zp-equivariant theory.

Suppose G = Zp for a prime p. Let X̃ be a compact oriented G-Spinc 4-manifold with connected

contact boundary (Ỹ , ξ̃) and sX̃ a Spinc structure whose restriction on the boundary is compatible

with the Spinc structure induced by ξ̃. Suppose G-action preserves ξ̃. Suppose b1(X̃) = 0.
Under the assumptions, from Theorem 6.1, we have the following equality:

ǫG ◦ (BFG(X̃, sX) ∧ CG(Ỹ , ξ̃)) = ΨG(X̃, sX̃,ξ̃, ξ̃)
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up to Zp-equivariant stable homotopy. By applying H̃∗
Zp
(−;Zp), we have

〈c(p)(Y, ξ,K), BF ∗
Zp
(1)〉 = ΨZp(X̃, sX̃,ξ̃, ξ̃)∗(1).(14)

Now we put X̃ as the cyclic p-th branched covering space Σp(S) along S. From Theorem 1.23,
we can equip a Zp-invariant weak symplectic filling structure ω̃ on Σp(S) of the induced Zp-invariant

contact structure ξ̃ introduced in Subsection 2.2. Put sX̃ = sω̃ and Ỹ = Σp(K). Then, we have seen the

equivariant homotopical refinement of Kronheimer–Mrokwa’s invariant ΨZp(X̃, sX̃,ξ̃, ξ̃) is homotopic

to ± Id when it admits a Zp-invariant weak symplectic structure. Thus, we have

ΨZp(X̃, sX̃,ξ̃, ξ̃)∗(1) = 1.

This proves the first half of Theorem 6.2. The second half is almost the same as the first case.
Theorem 6.2 implies the following property of the transverse knot invariant:

Corollary 6.4. If (Y, ξ) has a weak symplectic filling (X,ω) with b1 = 0 and K bounds a properly
embedded symplectic surface S in X with 0 = [S] ∈ H2(X ;Z2), then

Ql · c(2)(Y, ξ,K) 6= 0

for l ≥ 0.

7. Proof of adjunction formula Theorem 1.13

We now state our adjunction formula stated in Theorem 1.13.

Theorem 7.1 (Theorem 1.13). Let (X,ω) be a weak symplectic filling of (S3, ξstd) with b1(X) = 0 =
b+(X) and K bounds a properly embedded and connected symplectic surface S in X divisible by 2.
Then, one has

qM (K) = g(S) +
1

2
(〈c1(s), [S]〉 − [S]2)(15)

and

qM (K) = −d3(Σ2(K), ξ̃)− 1

2
+

3

4
σ(K) =

1

2
sl(K) +

1

2
.(16)

Remark 7.2. The same result is true even for normally immersed symplectic surfaces with only positive
double points. In this case, it is proven in [EG20] in the symplectic category, we can replace one positive
double point with one genus.

Remark 7.3. Let (X,ω) be a symplectic cobordisms from the contact manifold (Y0, ξ0) to (Y1, ξ1), K0

a transverse knot in (Y0, ξ0), and K1 a transverse knot in (Y1, ξ1). Further, assume that Y0 and Y1

are homology spheres. The following is proven in [EG20, Lemma 2.13]: If S is any normally immersed
symplectic surface with transverse double points in (X,ω) with boundary −K0 ∪K1, then

〈c1(X,ω), [S]〉 = χ(S)− sl(K0) + sl(K1) + [S] · [S]− 2D,

where [S] is the homology class of the closed surface S, g(S) is the genus of S and D be the number
of double points of S counted with sign.

We apply it to

X = (D4, ωstd)#nCP
2
, Y0 = K0 = ∅, Y1 = S3, ξ1 = ξstd, and K1 = K.

Then, we obtain

〈c1(X,ω), [S]〉 = 1− 2g(S) + sl(K) + [S] · [S]− 2D.(17)

The above two equalities imply (17).
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Thus we proved that symplectic surfaces have minimal genus in their relative homology class under
the assumption of the theorem. In particular, this implies the Milnor conjecture).

Proof of Theorem 7.1. By removing a small ball, regards S as a cobordism from the unknot:

(W,S) : (S3, U) → (S3,K).

By taking the upside-down cobordism, this can be regarded as

(W,S) : (S3,−K) → (S3, U).

We consider the cobordism maps satisfying the commutativity of the diagram:

H̃∗
Z2
(S0)

BF∗
Z2−−−−→ H̃∗

Z2
(SWF (Σ2(−K)))

ι

y ι

y

Q−1F2[Q]
6=0−−−−→ Q−1H̃∗

Z2
(SWF (Σ2(−K)))

.

We can see that
QjBF ∗(W,S)(1U ) 6= 0

for any j ≥ 0 and

BF ∗(W,S)(1U ) 6∈ QH̃∗
Z2
(SWF (Σ2(−K))).

Indeed, these follow from the gluing result and the non-vanishing result:

CK ◦BFS ∼Z2 ± Id .

Indeed, the injectivity of F2[Q] → H̃∗
Z2
(SWF (Σ2(−K))) implies the former claim and the surjectivity

of C∗
K : H̃∗

Z2
(SWF (Σ2(−K))) → F2[Q] implies the latter claim. Therefore we obtain BF ∗(W,S)(1U )

minimizes the qM invariant from the rank one theorem Theorem 3.8.
Therefore from the computation done in the proof of Theorem 4.3, we have

qM (K) = g(S) +
1

2
(〈c1(s), [S]〉 − [S]2)

This completes the proof. �

7.1. On Baraglia’s invariants. In this section, we compare our concordance invariant qM (K) with
the Baraglia invariant θ(2)(K).

7.1.1. The definition of dZp,j via cohomology. First, we review the construction of θ(2)(K).
Put G = Zp in Baraglia and Hekmati’s setting. LetX be a space of type Zp-SWF [BH24a, Definition

3.6] i.e. X is a pointed finite (S1 × Zp)-CW complex such that the followings hold:

(i) The fixed point set XS1

is Zp-homotopy equivalent to a sphere V +, where V is a real repre-
sentation of Zp.

(ii) The action of S1 is free on X \XS1

.

It is confirmed that the S1 × Zp-equivariant Seiberg–Witten Floer homotopy type SWF (Ỹ , s, g) is
a space of type Zp-SWF type.

The inclusion from the fixed point set ι : XS1 → X induces a map

ι∗ : U−1H∗
S1×Zp

(X ;Fp) → U−1H̃∗
S1×Zp

(XS1

) ∼= U−1H∗
S1×Zp

.
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Note that we have

H∗
S1×Zp

= H∗
S1×Zp

(pt;Fp) =

{
F2[U,Q] p is 2

Fp[U,R, S]/(R2) otherwise
.

The localization theorem implies U−1H∗
S1×Zp

(X ;Fp) is a free rank-1 U−1H∗
S1×Zp

-module. Let τ denote

a generator of U−1H∗
S1×Zp

. Now we recall a sequence of invariants {dZp,j(X)}j≥0.

(i) Suppose p = 2.

dG,j(X) := min{i|∃x ∈ H̃i
S1×Z2

(X ;F2), ι∗x ≡ UkQjτ modQj+1 for some k ≥ 0} − j.

(ii) Suppose p is odd prime.

dG,j(X) := min{i|∃x ∈ H̃i
S1×Zp

(X ;Fp), ι∗x ≡ SjUkτ modSj+1, RSj+1 for some k ≥ 0} − 2j.

This is not the original definition but an alternative description given in [BH24a, Proposition 3.14].

7.1.2. The invariants δG,j for 3-manifolds with Zp-action. Let G = Zp act on an oriented rational

homology 3-sphere Ỹ and s be a G-invariant spinc structure. Then, the invariant dG,j(Ỹ , s) is defined
as

dG,j(Ỹ , s) := dG,j(SWF (Ỹ , s, g))− 2n(Ỹ , s, g),

where n(Ỹ , s, g) is the correction term introduced in [Man03] and SWF (Ỹ , s, g) denotes the S1 × Zp-
equivariant Seiberg–Witten Floer stable homotopy type for a given Zp-invariant Riemann metric. Now
we define

δG,j(Ỹ , s) :=
1

2
dG,j(Ỹ , s).

It is confirmed δG,j(Ỹ , s) is constant when j is sufficiently large.
Define

jG(Ỹ , s) := min
{
j ≥ 0

∣∣∣ δG,j(Ỹ ) = δG,∞(Ỹ )
}
.

7.2. Baraglia–Hekmati’s knot concordace invariant δ
(p)
j (K). Since we will also consider knots

in general homology 3-spheres, we consider a generalization of Baraglia–Hekmati’s knot concordance
invariants of knots in other 3-manifolds. Let us review Baraglia–Hekmati’s knot concordance invariant

δ
(p)
j (K).

7.3. The invariants δ
(p)
j (K) for a pair (Y,K). For a given knot K in S3 and a prime number p,

Baraglia–Hekmati defined

δ
(p)
j (K) := 4δZp,j(Σp(K), s),

where s is the unique spin structure on Σp(K). Obviously, this definition can be generalized to a knot

in any oriented homology 3-sphere Y , which we shall write δ
(p)
j (Y,K).

We also define the invariants j(p)(Y,K) are defined to be the smallest j such that

δ
(p)
j (Y,K) = δ(p)∞ (Y,K).

The followings are fundamental properties of the invariants δ
(p)
j (Y,K) and j(p)(Y,K).

Lemma 7.4. The invariants δ
(p)
j (Y,K) and j(p)(Y,K) are homology concordance invariant, i.e. if

there are a homology cobordism W from Y to Y ′ and there is a smoothly and properly embedded
annulus S in W such that ∂S = K ∪K ′, then one has

δ
(p)
j (Y,K) = δ

(p)
j (Y ′,K ′) and j(p)(Y,K) = j(p)(Y ′,K ′).
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Proof. We take the p-th branched covering space along the annulus S and obtain Zp-equivariant Z2-
homology cobordism and apply the inequality proven in [BH24a]. �

Therefore, if we write the homology concordance group by Θ
(3,1)
Z , we have the invariants

δ
(p)
j : Θ

(3,1)
Z → Q, j(p) : Θ

(3,1)
Z → Z≥0.

For a knot K in S3, we recall

θ(2)(K) := max{0, j(2)(S3,K∗)− 1

2
σ(K)}.

We sometimes denote θ(2)(K) as θ(K).

7.3.1. qM (K) ≤ θ(2). In this section, we prove the following inequality.

Theorem 7.5 (Theorem 1.11). For any knot K ⊂ S3, we have

qM (K) ≤ θ(2)(K).

Proof. By definition, it is enough to prove

q†M (−K)− 3

4
σ(K) ≤ j(2)(−K)− σ(K)

2
.

By replacing K with −K, it is sufficient to prove

q†M (K) ≤ j(2)(K)− 1

4
σ(K).

By the definition of j(2)(K), we can take

x ∈ H̃i
S1×Z2

(SWF (Σ2(K)))

satisfying

i− j(2)(K) = −σ(K)

4
,

and

(18) ιx = Qj(2)(K)Ukτ mod Qj(2)(K)+1

for some k ∈ Z≥0. Now the Thom–Gysin exact sequence for the S1-bundle

S1 → SWF (Σ2(K)) ∧Z2 E(Z2 × S1)+
π−→ SWF (Σ2(K)) ∧Z2×S1 E(Z2 × S1)+

is

· · · → H̃∗
Z2×S1(SWF (Σ2(K)))

U−→ H̃∗
Z2×S1(SWF (Σ2(K)))

π∗

−→ H̃∗
Z2
(SWF (Σ2(K))) → · · · .

In order to prove the desired inequality, it is sufficient to see

Qnπ∗(x) 6= 0

for all n ∈ Z≥0. This follows from the Thom–Gysin exact sequence above. Indeed, suppose Qnπ∗(x) =
0 for some n > 0. Then by the exactness of Thom–Gysin exact sequence, there exists some z ∈
H̃i−2

Z2×S1(SWF (Σ2(K))) such that

Uz = Qnx.
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By multiplying Qn, we obtain from (18) the relation

ιUz = Qj(2)(K)+nUkτ mod Qj(2)(K)+n+1

Thus
ιz = Qj(2)(K)+nUk−1τ mod Qj(2)(K)+n+1.

Since grQ(z) = i− 2, this implies
δj(2)(K)+n(K) < δ∞(K).

this contradicts the decreasing property of the sequence δ
(2)
j . �

8. Constraints on homology classes

We next give constraints on homology classes represented by symplectic surfaces in symplectic
fillings using Theorem 3.8.

8.1. Homological constraints from θ(K,m). We next give constraints on homology classes repre-
sented by symplectic surfaces in symplectic fillings using Baraglia’s θ(K,m)-invariant combined with
adjunction equality. For the purpose, we introduce a sequence of invariants l(p)(K):

Definition 8.1. For a given knot K in S3 and a prime number p, we define

l(p)(K) := min{i|HF+
i (Σp(K), s0) 6= 0} ∈ Q,

where s0 is the unique spin structure which is invariant under Zp-action.

The following is the most general result in this section.

Theorem 8.2. Let (X,ω) be a symplectic filling of (S3, ξstd) and S ⊂ X be a properly embedded
symplectic surface bounded by K.

(i) Suppose

l(2)(−K)− 3σ(K)

4
+

3

8
[S]2 − 1

2
η([S]/2) >

1

2
sl(K) +

1

2
+

1

2
〈c1(TX), [S]〉+ 1

2
[S]2,

where
η(x) := min

c∈H2(X;Z)

{
−(x+ c)2 − b2(X)

∣∣ c ≡ w2(X) mod 2
}

for x ∈ H2(X, ∂X ;Z) and σ(K) denotes the knot signature. Then [S] ∈ H2(X, ∂X ;Z) is not
divisible by 2.

(ii) Let p be an odd prime. Suppose

l(p)(−K)

p− 1
− 3σ(p)(K)

4(p− 1)
+

p+ 1

4p
[S]2 >

1

2
sl(K) +

1

2
+

1

2
〈c1(TX), [S]〉+ 1

2
[S]2,

where σ(p)(K) is the following sum of the Levine–Trsitram signature

σ(p)(K) :=
∑

ωp=1, ω 6=1

σω(K).

Then [S] ∈ H2(X, ∂X ;Z) is not divisible by p.

For i = 0, 1, let (Yi, ξi) be two contact integer homology 3-spheres and Ki ⊂ (Yi, ξi) be transverse
knots. Let (X,ω) : (Y0, ξ0) → (Y1, ξ1) be a symplectic cobordisms.

The following is proven in [EG20, Lemma 2.13], which is called the adjunction equality.
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Proposition 8.3. If S is any immersed connected symplectic surface with transverse double points in
(X,ω) with boundary −K0 ∪K1, then

〈c1(X,ω), [S]〉 = χ(S)− sl(K0) + sl(K1) + [S] · [S]− 2D,

where [S] is the homology class of the closed surface S, g(S) is the genus of S and D be the number of
double points of S counted with sign.

We apply it to

X = (D4, ωstd)#mCP
2
, Y0 = K0 = ∅, Y1 = S3, ξ1 = ξstd, and K1 = K.

Then, we obtain

〈c1(X,ω), [S]〉 = 1− 2g(S) + sl(K) + [S] · [S].(19)

Next, we recall the following inequality due to Baraglia [Bar22a, Corollary 6.5].

Theorem 8.4 ([Bar22a]). Let X be a compact negative definite 4-manifold with ∂X = S3 and
H1(X ;Z) = 0 and S be a properly and smoothly embedded surface in X bound by a knot K in S3.

• If [S] is divisible by p, then

g(S) ≥ l(p)(−K)

p− 1
− 3σ(p)(K)

4(p− 1)
+

p+ 1

4p
[S]2

• If p = 2,

g(S) ≥ l(2)(−K)− 3σ(K)

4
+

3

8
[S]2 − 1

2
η([S]/2).

Proof of Theorem 8.2. We just combine Theorem 8.4 with (17). �

Proof of Theorem 1.1. If c(Σp(K), ξ̃) minimizes the Q-grading of all elements in HF+
∗ (−Σp(K)), we

can see

l(p)(−K) = grQ(c(Σp(K), ξ̃)) = −d3(Σp(K), ξ̃)− 1

2
.

From Theorem 1.23, (Σp(K), ξ̃) has a symplectic filling. Therefore, the contact invariant c(Σp(K), ξ̃)
(in Heegaard Floer homology) is non-trivial. Now we have Itoh’s formula [Ito17, Theorem 1.1]

d3(Σp(K), ξ̃) = −3

4
σ(p)(K)− p− 1

2
sl(K)− 1

2
p.

So, by combining two equations, we get

l(p)(−K) =
3

4
σ(p)(K) +

p− 1

2
sl(K) +

1

2
p− 1

2
.

By using the above two equations, we see the assumptions of Theorem 8.2

l(2)(−K)− 3σ(K)

4
+

3

8
[S]2 − 1

2
η([S]/2) >

1

2
sl(K) +

1

2
− 1

2
〈c1(TX), [S]〉+ 1

2
[S]2

l(p)(−K)

p− 1
− 3σ(p)(K)

4(p− 1)
+

p+ 1

4p
[S]2 >

1

2
sl(K) +

1

2
− 1

2
〈c1(TX), [S]〉+ 1

2
[S]2

are equivalent to

−1

8
[S]2 − 1

2
η([S]/2) > −1

2
〈c1(TX), [S]〉 if p = 2

−p+ 1

4p
[S]2 > −1

2
〈c1(TX), [S]〉 if p 6= 2.

This completes the proof. �
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Proof of Corollary 1.2. We need to check the examples of knots in the list satisfy the assumption
Corollary 1.2. It is proven that the Heegaard Floer homology HF+

∗ for −Σ(2, 3, 6n± 1), −Σ(2, 5, 7)
and −Σ(2, 5, 9) have minimum gradings as follows :

• the minimum gradings of −Σ(2, 3, 6n− 1) are −2,

• the minimum gradings of −Σ(2, 3, 6n+ 1) are 0,

• the minimum gradings of −Σ(2, 5, 7) and −Σ(2, 5, 9) are 0 and −2 respectively.

For example, see [Twe13]. On the other hand, one can easily see the grading of the contact ele-
ment for the Z2 invariant contact structure for double-branched covering of corresponding torus knots
coincide with the minimum degrees above. Now, we use Corollary 1.2. Let x be an element in

2H2(D
4#mCP

2
;Z) with an expression

x =
∑

xiei ∈ H2(D
4#mCP

2
;Z).

Suppose
1

8

∑
x2
i −

1

2
η(x/2) ≤ −1

2

∑
xi,

where

η(x/2) = min
(y1,··· ,yn)=c∈H2(X;Z)

{ ∑
(xi/2 + yi)

2 −m
∣∣∣ c ≡ w2(X) mod 2

}
.

This shows

∑
x2
i + 4

∑
xi ≤

∑
x2
i − 4

∑
xi − 4η(x/2) ≤ 0.

Therefore, we have ∑
(xi + 2)2 ≤ 4m

which implies xi = 0,−2,−4 for any i. This completes the proof.
�

8.2. Proof of Theorem 1.3. Let us recall the statement of Theorem 1.3.

Theorem 8.5 (Theorem 1.3). Let K be a transverse knot in (S3, ξstd). Suppose

g4(K) +
1

2
σ(K) > 0.

Then there is no a properly embedded connected symplectic surface S in D4#n − CP 2 with ∂S = K
and [S] is divisible by 2 such that

g(S)− 1

4
[S]2 +

1

2
σ(K) = 0.

Proof of Theorem 8.5. Since K is the boundary of symplectic surface S in D4#nCP 2, one can see K
has a quasi-positive representation. It implies we can take a symplectic surface S′ in (D4, ωstd) bounded
by K. Now, we consider the (up-side-down) S1×Z2-equivariant cohomological Bauer–Furuta invariant

x = BF ∗
S(1), y = BF ∗

S′(1) ∈ H̃∗
S1×Zp

(SWF (−Σp(K));Fp).

From the results about localizations with S1-action, we see

ι∗x = Qb+(Σp(S))Um = Qg(S)− 1
4 [S]2+ 1

2σ(K)Um and ι∗y = Qb+(Σp(S
′))Um′

= Qg(S′)+ 1
2σ(K)Um′
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for some m and m′, where ι∗ : H∗
S1×Zp

(SWF (−Σp(K)), s0;Fp) → H∗
S1×Zp

(SWF (−Σp(K))S
1

, s0;Fp)

induced from the inclusion ι : SWF (−Σp(K))S
1 → SWF (−Σp(K)). Thus, we conclude Qj′U jx 6=

U jQj′y for any j and j′.
On the other hand, the Thom–Gysin exact sequence with respect to

Z2 → SWF (Σ2(−K)) ∧ E(S1 × Z2)+ → SWF (Σ2(−K)) ∧S1 ES1
+

implies CokQ in S1 × Z2-equivariant cohomologies are rank 1-module as F2[U ]-modules and we have

CokQ ∼= Imπ∗ ⊂ H∗
S1(SWF (−Σ2(K), s0)) ∼= HF+

∗ (−Σ2(K), s0)

Note that

{U jx, U jy} ⊂ CokQ

are giving non-trivial elements. We see U jx = U jy in CokQ for some j since it has only one non-trivial
element in a sufficiently large degree. This implies

U jx− U jy = Qz.

This implies U jι∗x− U jι∗y is divisible by Q. It implies

Qg(S)− 1
4 [S]2+ 1

2σ(K)Um+j −Qg(S′)+ 1
2σ(K)Um′+j

is divisible by Q. But we are assuming that

g(S′) +
1

2
σ(K) > 0 and g(S)− 1

4
[S]2 +

1

2
σ(K) = 0

which contradict each other. �

Note that, from (8), we have

−d3(Σ2(K))− 1

2
=

3

4
σ(K) +

1

2
sl(K) +

1

2
.

Proof of Corollary 1.4. This follows from Theorem 1.3 combined with the adjunction equality. �

Proof of Corollary 1.5. It is proven in [Rud93] that the positively cusped Whitehead double of a
strongly quasipositive knot is again strongly quasipositive. Since Wh(K) is not isotopic to the unknot,
we see

g4(Wh(K)) = g3(Wh(K)) = 1 =
1

2
sl(Wh(K)) +

1

2
.

On the other hand, it is easy to see σ(Wh(K)) = 0. Therefore, one can use Corollary 1.4 and obtain

−〈c1(ωstd), [S]〉+
1

2
[S]2 + σ(K) 6= −2.

This implies

[S] 6= −2[CP 1].

�
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9. Proof of Theorem 1.20

Let L and T be a Legendrian knot and a transverse knot in the standard contact 3-sphere. Let
p be a prime and denote by θ(p) the concordance invariant introduced by Baraglia [Bar22a]. The
Bennequin-type inequalities

sl(T ) ≤ 2θ(p)(T )− 1

tb(L) + |rot(L)| ≤ 2θ(p)(L)− 1

for p = 2 follows from a well-known result of slice-torus invariants, the fact that qM is a slice-torus
invariant, and our inequality qM ≤ θ(2). In this section, we prove these inequalities for odd prime p by
modifying the argument known for slice-torus invariants.

Theorem 9.1. Let p be prime. Let K ⊂ (S3, ξstd = Kerλstd) be a (quasi-positive) transverse knot, and
suppose there is a connected embedded symplectic surface S ⊂ (D4, ωstd) such that ∂S = K. Suppose
moreover that there is a symplectic cobordism

S′ ⊂ ([0, 1]× S3, d(etλstd))

from K to T (a, b) for some positive coprime (a, b). Let p be a prime not dividing ab. Then

θ(p)(K) = g(S)

and
θ(p)(T (a, b))− θ(p)(K) = g(S′)

hold.

Proof. For S ∪ S′, by applying Baraglia–Hekmati’s inequality, we obtain

θ(p)(T (a, b)) ≤ g(S ∪ S′).

By deforming the symplectic structure suitably, one can suppose S ∪ S′ is a symplectic surface again
in (D4, ωstd). On the other hand, the slice-Bennequin equality implies

g(S ∪ S′) =
1

2
sl(T (a, b)) +

1

2
,

for a transverse representation of T (a, b) with a maximal self-linking number. Also, Baraglia–Hekmati
proved

θ(p)(T (a, b)) = g4(T (a, b)) =
1

2
sl(T (a, b)) +

1

2
.

Thus, the inequality is an equality. Baraglia–Hekmati’s cobordism inequality implies

θ(p)(K) ≤ g(S)

θ(p)(T (a, b))− θ(p)(K) ≤ g(S′).

The equality for the torus knot above implies that in fact both of them are equalities. Indeed, if either
inequality is strict we have

θ(p)(K) + θ(p)(T (a, b))− θ(p)(K) < g(S) + g(S′) = g(S ∪ S′)

and this contradicts the equality for torus knots.
This completes the proof. �

Theorem 9.2 (Theorem 1.20). Let K be a transverse knot (S3, ξstd). Then, we have

sl(K) ≤ 2θ(p)(K)− 1,

where sl(K) denotes the self-linking number of K.
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Proof. We follow the standard strategy for slice-torus invariants, though θ(p) are not additive under
connected sum, so are not slice-torus invariants. See [Shu07, Liv04b, Lew13, Iid23] for example. We
will treat two cases:

• K has a braid representation with no negative crossings

• The general case.

The first case follows from Theorem 9.1 using the following lemma

Lemma 9.3. Let β be a positive braid. Denote by n the number of strands of β and by k the number
of crossings. Let p be a prime. Then there exists a symplectic cobordism

S′ ⊂ ([0, 1]× S3, d(etλstd))

from the braid closure β̂ to T (a, b) with b = n and a is coprime to n and p (For example take a to be
a sufficiently large prime number). In particular, for any prime p we can choose a, b so that p is not
dividing ab.

Proof of Lemma 9.3. We follow the proof of [Lew13, Lemma 1.5] combined with [EG20, Lemma 2.8].
�

Therefore, we consider the second case. Take a braid representation β of K. Let us denote the
number of positive and negative crossings by x+ and x− respectively and denote the number of strands
by n.

Let us denote β+ be the braid obtained from β by crossing changes for all negative crossings. Now
β+ is a positive braid, so we can apply the first case and obtain

2θ(p)(β̂+)− 1 = sl(β̂+)

for the braid closure β̂+ of β+.
Bennequin’s formula implies

sl(K) = x+ − x− − n

sl(β̂+) = x+ + x− − n,

thus
sl(K) = sl(β̂+)− 2x−.

There is the following crossing change formula for θ(p) [Bar22a]

|θ(p)(K)− θ(p)(K ′)| ≤ 1,

if there is a crossing change from K to K ′. Thus

2θ(p)(K)− 1 ≥ 2θ(p)(β̂+)− 2x− − 1 = sl(K).

�

By the standard push-off argument (See [Gei08, Proposition 3.5.36]), the following result follows
from the result for transverse knots above.

Corollary 9.4. Let p be a prime. Let K be a Legendrian knot in (S3, ξstd). Then, we have

tb(K) + | rot(K)| ≤ 2θ(p)(K)− 1

where tb(K) denotes the Thurston-Bennequin number of K and rot(K) is the rotation number of
K. �
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9.1. Proof of Theorem 1.9. We prove Theorem 1.9 in this section. The main tools of the proof are
Corollary 1.22 and [BH24b, Theorem 1.8].

Proof of Theorem 1.9. Let K be a Montesinos knot as in the assumption in Theorem 1.9. Then
[BH24b, Theorem 1.8] implies

θ(2)(K) +
1

2
σ(K) = 0 or 1

under the assumption. If K is smoothly concordant to a quasipositive knot, we have

θ(K) = g4(K)

from Corollary 1.22 combined with concordance invariance of θ and g4. But this contradicts with

g4(K) +
1

2
σ(K) ≥ 2.

This completes the proof. �

9.2. Proof of Theorem 1.14.

Proof of Theorem 1.14. Note that 2qM is a slice torus invariant and it has been proven in [FLL22]
that, for any squeezed knot K, the values of slice torus invariants coincide. Moreover, Theorem 1.10
implies 2qM (K) = −σ(K) for a knot K if Σ2(K) is a L-space.

Next, we prove (ii). Let K be a Montesinos knot satisfying the assumption. Then, in [BH24b], it is
proven that

θ(K) +
1

2
σ(K) = 0 or 1.

Since −K is also a Montesinos knot satisfying the same assumption, we also see

θ(−K)− 1

2
σ(K) = 0 or 1.

Now, we use the inequalities

qM (K) ≤ θ(K), qM (−K) ≤ θ(−K)

to obtain

−1− 1

2
σ(K) ≤ qM (K) ≤ −1

2
σ(K) + 1.

Thus, we have

|qM (K) +
1

2
σ(K)| ≤ 1.

Again for a squeezed knot, any slice-torus invariant coincides with each other. Thus obtain the con-
clusion. The proof of (iii) is similar. �

Proof of Corollary 1.15. We first prove (i). For a squeezed knot K satisfying the assumption, we have

qM (K) = −1

2
σ(K) = s̃(K).

Thus we have

s̃(K) > 0

from the assumption. Now, using [DIS+22, Theorem 1.5], we have

h(S3
1(K)) < 0,
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where h is the Frøyshov invariant for the instanton Floer homology. Therefore, we can apply [NST19,
Theorem 1.8] to see {S3

1/n(K)} is a linearly independent sequence.

Let us prove (ii) next. For a squeezed Montesinos knot satisfying the assumption, we have

qM (K) = s̃(K),

where s̃ is a slice-torus invariant introduced in equivariant singular instanton Floer theory [DIS+22].
From the assumption combined with −1− 1

2σ(K) ≤ qM (K), we have

s̃(K) > 0.

The latter proof is the same as that of (i). The proof of (iii) is similar. So we omit it. �

Remark 9.5. Since the double-branched covers of quasi-alternating knots are L-spaces [OS05], one can
treat squeezed quasi-alternating knots in Corollary 1.15(i). However since Heegaard Floer tau invariant
is determined by its signature [MO08], one can also derive a similar result for squeezed quasi-alternating
knots from Heegaard knot Floer theory. On the other hand, examples of non-quasi-alternating knots
whose double branched covering spaces are L-spaces have been known, see [Gre10,Mot17]. Thus, we
hope Corollary 1.15(i) can also prove linear independence of 1/n-surgeries for more large class of knots.

10. Conjectures

We conjecture that our invariant qM and Hendricks–Lipshitz-Sarkar’s invariant qτ from the equi-
variant Heegaard Floer homology are related as follows.

Conjecture 10.1. For any knot K in S3, the relation

qτ (K) = 2q†M (K),

or equivalently

qτ (K) = −2qM (K)− 3

2
σ(K)

holds.

In [Kan18], using equivariant Heegaard Floer homology, Kang defined an equivariant contact in-
variant

cZ2(ξ̃) ∈ HF Z2
∗ (−Σ2(K), s;F2),(20)

where HF Z2
∗ (−Σ(K);F2) is the equivariant Heegaard Floer homology based on Hendricks–Lipshitz–

Sarkar’s construction for the covering involution of the double branched covering space Σ2(K) and s

is the unique spin structure on −Σ2(K). There is a F2[Q]-module structure on HF Z2
∗ (−Σ2(K);F2).

Note that Roso [Ros23] constructed an equivariant Floer cohomology class from transverse knots
using his formulation of equivariant contact class. We also conjecture his class coincides with ours. As
a counterpart of (20), we also defined the invariants

c(p)(Y, ξ,K) ∈ H̃
Zp
∗ (SWF (−Σp(K));Fp).

The following is an expected relation with Kang’s equivariant contact invariant.

Conjecture 10.2. There is a functorial isomorphism

Ψ : H̃Z2
∗ (SWF (Σ2(K));F2) → HF Z2

∗ (Σ(K);F2)

as Z2[Q]-modules such that

Ψ(c2(S
3, ξstd,K)) = cZ2(ξ̃).
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A kind of naturality is proven in [Kan18] for a certain class of symplectic cobordisms. Such a
naturality should be true for our invariant as well. Related to the above conjecture, we expect

c(2)(Y, ξ, S(K)) = Qc(2)(Y, ξ,K),

where S(K) denotes the stabilization of the transverse knot K.

Question 10.3. If qM (K) > 0, do we have δ(S3
1 (K)) < 0? Here δ(Y ) is the monopole Frøyshov

invariant introduced in [Frø10].

Note that if we consider τ(K) and s̃ instead of qM (K), the corresponding statement has been already
proven for Heegaard Floer d-invariant in [HW16] (see also [Sat18]) and instanton Frøyshov invariant
[Frø02] in [DIS+22] respectively.
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8 (2004), no. 2, 735–742. ↑5, 6
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