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DIFFEOMORPHISMS AND HOMEOMORPHISMS ON SURFACES
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Abstract. In this paper, we present a C0-fragmentation property for Hamiltonian diffeomor-
phisms. More precisely, it is known that for a given open covering U of a compact symplectic

surface we can write each C0-small enough Hamiltonian diffeomorphism as the composition of

Hamiltonian diffeomorphisms compactly supported inside the open sets of the covering U. We
show that such a decomposition can be done with a Lipschitz estimate on the C0-norm of the

fragments. We also show the same property for the kernel of θ, the mass-flow homomorphism for
homeomorphisms. This answers a question from Buhovsky and Seyfaddini.
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1. Introduction and main results

1.1. The C0-fragmentation property on surfaces.

1.1.1. The C0-fragmentation for the group of Hamiltonian diffeomorphisms. The fragmentation
property on a given manifold M allows to decompose diffeomorphisms (or homeomorphisms) of
various kinds into a composition of diffeomorphisms supported in small balls. The more refined C0-
fragmentation property provides a control on the size of the fragments. We will be interested
in fragmenting elements of the group of Hamiltonian diffeomorphisms on a surface Σ. We de-
note Ham(X,ω) the group of Hamiltonian diffeomorphisms on a symplectic manifold (X,ω). We
also denote Hamc(X,ω) the group of compactly supported Hamiltonian diffeomorphisms on (X,ω).
We will sometimes drop the symplectic form ω in the notation if it is clear which symplectic form is
used.

One motivation for having C0-fragmentation is the following corollary:

Corollary 1. Let (Σ, ω) be a closed symplectic surface and d a distance induced by some Rie-
mannian metric. There exists a constant C > 0, such that for all ϕ in the group of Hamiltonian
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diffeomorphisms, there exists {ϕt} a Hamiltonian isotopy such that ϕ0 = Id, ϕ1 = ϕ, that satisfies
the following estimate for all t ∈ [0, 1]:

∥ϕt∥C0 ≤ C∥ϕ∥C0 .

The fragmentation property has been introduced in [Thu], [Ban78] and [Ban97] by Thurston
and Banyaga in order to study the simplicity and perfectness of the groups of diffeomorphisms
preserving a symplectic form or preserving a volume form. Later, in his study of the structure
of the group of homeomorphisms preserving a full nonatomic measure, Fathi proved in [Fa80] a
similar fragmentation property for measure-preserving homeomorphisms. This led to the proof of
the simplicity of the group of compactly supported measure-preserving homeomorphism of the ball of
dimension n whenever n ≥ 3. The case of the dimension 2 turns out to be much harder. Only recently
Cristofaro-Gardiner, Humilière and Seyfaddini proved that there exists a normal subgroup of the
group of area-preserving homeomorphisms of the disk in [CHS]. In earlier work ([LeR10]), Le Roux
showed that the simplicity of the group of area-preserving homeomorphism of the disk is equivalent
to the existence of some fragmentation property for homeomorphisms. After Le Roux’s work Entov,
Polterovich and Py and then Seyfaddini proved quantitative versions of the fragmentation property
of C0-small Hamiltonian diffeomorphisms preserving a volume form in the 2 dimensional case, see
[EPP12, Section 1.6.2] and [Sey13, Proposition 3.1]. On the one hand, the goal in [EPP12] was to
construct quasi-morphisms on the group of diffeomorphisms, thus understanding better the algebraic
properties of this group and on the other hand, Seyfaddini gave a Hölder-type bound on the C0-
norm of the fragments in order to show the C0-continuity of the Oh-Swharz spectral invariants. In
the present paper we adapt their proof to show the sharpest C0-fragmentation possible, that is a
Lipschitz bound on the C0-norm of the fragments. This is the content of our first theorem.

Theorem 1. Let (Σ, ω) be a closed surface equipped with an area form ω and let d be a distance
induced by some Riemannian metric. Let W = (Wi)

m
i=1 be a finite open covering of the surface Σ by

disks. Then there exists a C0-neighborhood N of the identity in the group Ham(Σ) of Hamiltonian
diffeomorphisms such that for each ϕ ∈ N , we can decompose ϕ as:

ϕ = ϕ1 ◦ ϕ2 ◦ · · · ◦ ϕm,

where for all 1 ≤ i ≤ m, ϕi belongs to Hamc(Wi). Moreover, we have the following estimate for
all 1 ≤ i ≤ m,

∥ϕi∥C0 ≤ C∥ϕ∥C0 ,

for some constant C > 0 independent of ϕ.

Remark 1.1. Since any symplectic diffeomorphism supported inside a disk is a Hamiltonian diffeo-
morphism, the fragmentation property for elements in Symp0(Σ) cannot be true.

Remark 1.2. The result proved by Seyfaddini in [Sey13, Proposition 3.1] is, for a very specific
covering given by the handle decomposition of the surface, the estimate:

∥ϕi∥C0 ≤ C ∥ϕ∥2
1−N

C0 ,

where N = 2g + 2 depends on the genus g of the surface.

The fragmentation property stated in Theorem 1 relies on Lemma 1.3, which is an improvement
of the extension lemma in [Sey13, Section 3.4.2].

In the following lemma and for the rest of the paper we will denote by Ay the annulus S1× [−y, y]
for y a positive real number and we will also denote Ay,y′ := S1 × ([−y′,−y] ∪ [y, y′]) if y′ > y. We
recall that for a subset C of a manifold M ,the notation Op(C) means any open neighborhood of C
in M .

Lemma 1.3 (Area-preserving extension lemma for the annulus). Consider the annulus A2 with a
symplectic form ω. Let E be the set of smooth area-preserving embeddings ϕ : Op(A1) → A2 which
are homotopic to the inclusion and such that for some y ∈ (−1, 1), and hence for all, the signed area
in A2 bounded by S1 × y and ϕ(S1 × y) is zero.
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Then there exists δ,D,C > 0, such that for all ϕ ∈ E with ∥ϕ∥C0 ≤ δ, there exists ψ ∈ Ham(A2)
such that ψ|A1−D∥ϕ∥

C0
= ϕ|A1−D∥ϕ∥

C0
and

∥ψ∥C0 ≤ C∥ϕ∥C0 .

Moreover, if for some arc I ⊂ S1 we have that ϕ = Id outside a quadrilateral I× [−1, 1] and ϕ(I×
[−1, 1]) ⊂ I × [−2, 2], then the extension ψ can be chosen to be the identity outside of I × [−2, 2].

Remark 1.4. In [Sey13], Seyfaddini expended the method developed by Entov, Polterovich and Py
to show the bound

∥ψ∥C0 ≤ C (∥ϕ∥C0)
1
2

for some constant C > 0. The method employed then cannot give a better estimate than the one he
obtained.

1.1.2. The C0-fragmentation for the kernel of the mass-flow homomorphism. As in [Fa80], it is
sensible to ask whether the C0-fragmentation holds also for homeomorphisms preserving a “good”
measure. It is necessary then to restrict our study to a continuous analogue of Hamiltonian dif-
feomorphisms, that is the group Ham(Σ) is replaced by the group Ker(θ). Where θ denotes the
mass-flow homomorphism as defined in [Sch57]. Under this assumption the fragmentation property
still holds. We need to define the notion of Oxtoby-Ulam measure: an Oxtoby-Ulam measure µ on
a compact manifold M is a measure that is nonatomic, of full support and is zero on the boundary.

Theorem 2. Let (Σ, µ) be a closed surface equipped with an Oxtoby-Ulam measure µ and d be a
distance induced by a Riemannian metric. Let W = (Wi)

m
i=1 be a finite open covering of the surface

by disks. Then there exists a C0-neighborhood N of the identity in the group Ker(θ) such that for
each ϕ ∈ N , we can decompose ϕ as:

ϕ = ϕ1 ◦ ϕ2 ◦ · · · ◦ ϕm,

where for all 1 ≤ i ≤ m, ϕi belongs to Homeoc(Wi, µ), the group of compactly supported homeomor-
phisms preserving the area in Wi. Moreover, we have the following estimate for all 1 ≤ i ≤ m,

∥ϕi∥C0 ≤ C∥ϕ∥C0 ,

for some constant C > 0 independent of ϕ.

In the same spirit as for Corollary 1, we show that for all homeomorphisms ϕ in Ker(θ) there
exists a C0-small isotopy in Ker(θ) between Id and ϕ.

Corollary 2. Let (Σ, ω) be a closed symplectic surface and d be a distance induced by some Rie-
mannian metric. There exists a constant C > 0, such that for all ϕ in Ker(θ), there exists an
isotopy {ϕt} of area-preserving homeomorphisms in Ker(θ) such that ϕ0 = Id, ϕ1 = ϕ, that satisfies
the following estimate for all t ∈ [0, 1]:

sup
t
∥ϕt∥C0 ≤ C∥ϕ∥C0 .

We will prove Theorem 2 by using an analog of Lemma 1.3 for homeomorphisms.

Lemma 1.5. Consider A2 with an Oxtoby-Ulam measure µ. Let E′ be the set of continuous measure-
preserving embeddings ϕ : Op(A1) → A2 which are homotopic to the inclusion and such that for
some y ∈ (−1, 1), and hence for all, the signed area in A2 bounded by S1 × y and ϕ(S1 × y) is zero.

Then there exists δ,D,C > 0, such that for all ϕ ∈ E′ with ∥ϕ∥C0 ≤ δ, there exists ψ ∈ ker(θ)
such that ψ|A1−D∥ϕ∥

C0
= ϕ|A1−D∥ϕ∥

C0
and

∥ψ∥C0 ≤ C∥ϕ∥C0 .

Moreover, if for some arc I ⊂ S1 we have that ϕ = Id outside a quadrilateral I × [−1, 1] and ϕ(I ×
[−1, 1]) ⊂ I × [−2, 2], then the extension ψ can be chosen to be the identity outside of I × [−2, 2].
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1.2. Organization of the paper. We review briefly the content of each section. In Section 3
we prove Corollary 1 and 2 assuming the we know the C0-fragmentation property (Theorem 1
and Theorem 2). In Section 4 we show that the area-preserving extension lemmas yield the C0-
fragmentation property for diffeomorphisms and for homeomorphisms. In Section 5 we prove the
area-preserving extension lemmas and in Section 6 we prove an extension lemma that we use in
Section 5.

1.3. Acknowledgments. I would like to warmly thank Lev Buhovsky for asking me this question
and hosting me in Tel-Aviv University. I would also like to thank him for introducing me to this
beautiful field that symplectic geometry is. I also thank Lev Buhovsky, Emmanuel Giroux, Sobhan
Seyfaddini and Maksim Stokić for giving me great advice related to the redaction of this paper and
even reading some parts of the paper with me. I want to thank the members of the student lab of
Tel-Aviv University and Menashe for their hospitality that made my stay very pleasant.

2. Some definitions and notations

In this section we go through some definitions and notations that will be used later on and describe
geometrical interpretations of the flux homomorphism and the mass-flow homomorphism.

Let (M,ω) be a connected symplectic manifold. If M is closed, let Symp(M,ω) be the set
of smooth diffeomorphisms of M that preserve ω. We then let Symp0(M,ω) be the connected
component of Id in Symp(M,ω), i.e. ϕ ∈ Symp0(M,ω) if and only if there exists a smooth family
of symplectic diffeomorphisms (ϕt)t∈[0,1] such that ϕ0 = Id and ϕ1 = ϕ.

A Hamiltonian H is a smooth function H : [0, 1]×M → R compactly supported in [0, 1]×M . A
Hamiltonian H induces the Hamiltonian flow

ϕtH :M →M, (0 ≤ t ≤ 1),

by integrating the unique time-dependent vector field XH satisfying ιXH
ω = dHt, the isotopy

ϕtH is a symplectic isotopy. A Hamiltonian diffeomorphism is a diffeomorphism obtained as the
time-1 map of a Hamiltonian flow. We will denote Ham(M,ω) ⊂ Symp0(M,ω) the set of such
diffeomorphisms. We will eliminate the symplectic form ω from the above notation when no confusion
is possible. We recall that if H and G are two Hamiltonians with flows ϕtH and ϕtG, then the
Hamiltonian H#G(t, x) = H(t, x) +G(t, (ϕtH)−1(x)) generates the Hamiltonian flow ϕtH ◦ ϕtG.

We will now give an alternative definition of Ham(M) using the Flux, we will need this definition
later on, for a proof of the properties stated below we refer the reader to [McS98, Chapter 10]. We
define first the homomorphism

F̃lux : S̃ymp0(M,ω) → H1(M,R),
where S̃ymp0(M,ω) is the covering space of Symp0(M,ω) in the following way. Let {ϕt} be a
symplectic isotopy from Id to ϕ1 and let Xt be the time-dependent vector field defined via the
relation

d

dt
ϕt = Xt ◦ ϕt.

Since {ϕt} is a symplectic isotopy, the 1-form ιXtω is a closed form. We then define:

F̃lux(ϕt) :=

∫ 1

0

[ιXtω] dt ∈ H1(M,R).

This 1-form depends only on the choice of the homotopy class of the isotopy ϕt with fixed
endpoints so F̃lux is well-defined. Also one can see by the natural identification of H1(M,R)
and Hom(π1(M),R) that F̃lux({ϕt}) acts on π1(M), and roughly speaking this action describes
how much “mass” goes through a loop γ in M during the isotopy. If {ϕt} is a Hamiltonian iso-
topy, then the 1-form ιXt

ω is exact and thus F̃lux(ϕt) = 0, moreover one can show that if ϕt is such
that F̃lux(ϕt) = 0 then ϕ is a Hamiltonian diffeomorphism. A proof of this non-trivial fact can again
be found in [McS98, Chapter 10].

We would like to define a reciprocal statement to define Hamiltonian diffeomorphisms and not
having to take care of the choice of the isotopy {ϕt}, this is why we want to define the Flux
on Symp0(M,ω) in such a way that Ker(Flux) = Ham(Σ). In order to define the Flux we will
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take the quotient by the space of loops based at Id inside the group Symp0(M,ω). If we denote
by Γ the image under F̃lux of the loops based at Id in Symp0(M,ω), then the homomorphism
F̃lux descends to Flux : Symp0(M) → H1(M,R)/Γ. Then we have our reciprocal statement, a
symplectomorphism ϕ is in Ham(M) if and only if for any isotopy {ϕt} with ϕ0 = Id and ϕ1 = ϕ,
we have Flux({ϕt}) = 0.

On a symplectic manifold (M,ω) endowed with a distance d induced by a Riemannian metric,
the C0-norm (or uniform norm) is defined by

∥ϕ∥C0 := max
x

d (Id, ϕ(x)) .

Similarly, given a symplectic isotopy {ϕt}, we define its C0-norm by

∥{ϕt}∥pathC0 := max
x,t

d(Id, ϕt(x)) = sup
t
∥ϕt∥C0 .

This norm induces what is called the C0-topology. We denote

Ham(Σ, ω) ⊂ Homeo(Σ, ω)

the closure for the C0-norm of the group of Hamiltonian diffeomorphisms. Note that every diffeo-
morphism of Ham(Σ, ω) is in Ham(Σ, ω).

In this paragraph we focus on the case of a closed surface (Σ, µ) equipped with a measure µ. We de-
fine Homeo(Σ, µ) as the set of homeomorphisms of Σ that preserve the measure µ and Homeo0(Σ, µ)
the identity component of Homeo(Σ, µ). We will describe first the mass-flow homomorphism for
homeomorphisms in the case of surfaces as it was introduced by Schwartzman in [Sch57]. For the
definition of the mass-flow homomorphism on general compact metric spaces we refer to [Fa80]. Let
H̃omeo0(Σ, µ) be the set of paths starting at the identity in Homeo0(Σ, µ). We would like to define θ,
in order to do that we will define first θ̃ : H̃omeo0(Σ, µ) → H1(Σ,R).

Let γ be a loop in Σ, and let {ϕt} a path in Homeo0(Σ, µ) connecting the identity to ϕ. We

define θ̃({ϕt})(γ) =
∫
σ
µ, where σ is the 2-chain

σ : [0, 1]× [0, 1] → Σ, (s, t) 7→ ϕs(γ(t)).

One can show that this definition descends to homology and that θ̃(ϕt) defines a cohomology class,

moreover one can check that θ̃ is a homomorphism. Denote by Γ the image under θ̃ of the subset

of loops based at Id in Homeo(Σ), then θ̃ descends naturally to θ : Homeo(Σ, µ) → H1(Σ,R)/Γ. It
is proved in [Lef] that if µ is induced by an symplectic form, then Ham(Σ, µ) = Ker(θ). Theorem 2
can thus be rewritten in terms of Ham(Σ, µ) whenever µ is given by a symplectic form.

3. Proof of some consequences of the C0-fragmentation property

In this section we prove the Corollary 1 and 2 of Theorem 1 and 2. In order to prove Corollary 1
we will use the case where Σ is a disk, the following result is proved by Seyfaddini in [Sey13, Lemma
3.2], the proof relies on an ingenious use of Alexander’s trick.

Lemma 3.1. Suppose ψ ∈ Hamc(B
2n
r ), then there exists a Hamiltonian H : [0, 1]× B2n

r → R such
that ψ = ϕ1H and sup

t
∥ϕtH∥C0 ≤ ∥ψ∥C0 .

With the help of Lemma 3.1, one can prove Corollary 1.

Proof of Corollary 1. Assume that we know that the statement of Corollary 1 is true on a C0-
neighborhood of Id in Ham(Σ). That is, there exists ε > 0 and a constant C > 0, such that for

all ∥ϕ∥C0 ≤ ε, there exists a Hamiltonian Ht such that ∥ϕtH∥pathC0 ≤ C∥ϕ∥C0 . We note D := Diam(Σ)

the diameter of the surface, it is well-defined by compacity. Then ∥ϕtH∥pathC0 ≤ D for any Hamiltonian

isotopy ϕtH with ϕ1H = ϕ. We can compute that if ∥ϕ∥C0 ≥ ε,

∥ϕtH∥pathC0 ≤ D =
D

ε
ε ≤ D

ε
∥ϕ∥C0 .
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We can combine the two cases ∥ϕ∥C0 ≤ ε and ∥ϕ∥C0 ≥ ε to finally obtain that, for all ϕ ∈ Ham(Σ)
there exists a Hamiltonian H such that

∥ϕtH∥pathC0 ≤ max

(
D

ε
,C

)
∥ϕ∥C0 .

Which is exactly the result we wanted.
It remains to prove the property of Corollary 1 on a well-chosen C0-neighborhood of the identity.

Take any finite covering U = (Ui)
m
i=1 of Σ by disks Ui. We will take N and C > 0 respectively

the neighborhood and the constant given by Theorem 1. Let ϕ ∈ Ham(Σ), the C0-fragmentation
property tells us that it is possible to decompose ϕ = ϕ1 ◦ϕ2 ◦ · · · ◦ϕm, where each ϕi is a compactly
supported Hamiltonian diffeomorphism of the disk Ui and ∥ϕi∥C0 ≤ C∥ϕ∥C0 . We now use Lemma
3.1, so there exists compactly supported Hamiltonian Hi : [0, 1]× Ui → R such that

ϕ1Hi
= ϕi, ∥ϕtHi

∥pathC0 ≤ ∥ϕi∥C0 .

Let H := H1#H2# · · ·#Hm, then H generates ϕtH a Hamiltonian isotopy such that ϕtH =
ϕtH1

◦ ϕtH2
◦ · · ·ϕtHm

, in particular ϕ = ϕ1H . Also, by the property of the C0-norm and the previous
estimates,

∥ϕtH∥pathC0 = ∥ϕtH1
◦ ϕtH2

◦ · · · ◦ ϕtHm
∥pathC0

≤ ∥ϕt1∥
path
C0 + ∥ϕt2∥

path
C0 + · · ·+ ∥ϕtm∥pathC0

≤ ∥ϕ1∥C0 + ∥ϕ2∥C0 + · · ·+ ∥ϕm∥C0

≤ Cm∥ϕ∥C0 .

Which is the result we intended to prove. □

We also prove the Corollary 2 by using the same method we just need to adapt Seyfaddini’s
method to show the following lemma.

Lemma 3.2. Suppose that ψ ∈ Hamc(B
2n
r ), then there exists a family ϕt of homeomorphism

in Hamc(B
2n
r ) such that ψ = ϕ0, ψ = ϕ1 and sup

t
∥ϕt∥C0 ≤ ∥ψ∥C0 .

Proof. This lemma is actually easier to prove than Lemma 3.1 since we do not have to take care of
the smoothness of the family ϕt. We assume first that r = 1. We want to show that the family

ϕs(x) =

{
sψ(xs ) if |x| ≤ s,

x otherwise

satisfies the conclusion of Lemma 3.2. It is easily seen that ∥ϕt∥ ≤ s∥ψ∥C0 we now only need to
check that at all time ψt is indeed in the group Hamc(B

2n
r ).

Let (ψk)k∈N be a family of Hamiltonian diffeomorphisms generated by the Hamiltonians (Hk)k
approximating ψ for the C0-norm. Then, ϕs can be approximated by ψs

k, where ψ
s
k is defined as

ψs
k(x) =

{
sψk(

x
s ) if |x| ≤ s,

x otherwise.

However, for all s > 0, ψs
k is generated by the Hamiltonian

Hk,s(t, x) =

{
s2Hk(t,

x
s ) if |x| ≤ s,

0 otherwise.

Hence, proving that ϕs is indeed approximated by Hamiltonian diffeomorphisms and thus finishing
the proof of the lemma. □
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4. Proof of the C0-fragmentation property

In this section we prove Theorem 1 and Theorem 2. In order to prove the C0-fragmentation
property it will be easier to work on a refinement of the given open covering W, we will first
prove the C0-fragmentation property for this refinement and then go back to the initial covering by
applying a trick that allows us to switch places of diffeomorphisms in the decomposition despite the
lack of commutativity a priori. The refinement of the covering is obtained by associating an open
set to each vertex, edge and face of a given triangulation T , if the triangulation is taken thin enough
the resulting covering will indeed be a refinement. This construction is described in Section 4.1 and
is due to Thurston and Banyaga. In Section 4.4 we will decompose any C0-small diffeomorphism
according to the new covering by defining the fragments we need in this order: around the vertices,
the edges and then the faces. The construction of the fragments is where Lemma 1.3 will be useful.
More precisely in Section 4.2 we will describe two slight modifications of the extension lemma,
namely the area-preserving extension lemma for disks and the area-preserving extension lemma for
rectangles. It is however not possible to apply naively the two extension lemmas, there is some
obstruction to it given by the area between a curve and the image of it (see. the area condition in
Lemma 1.3), this area represents an obstruction to the extension, we will take care of it in Section
4.3.

4.1. Covering associated to a triangulation. In this section we associate to a triangulation T =
(∆k

i )i∈Ik , k = 0, 1, 2 three open coverings V = (V k
i )i∈Ik , V

′ = (V
′k
i )i∈Ik and U = (Uk

i )i∈Ik , following
the construction of Thurston and Banyaga [Ban78]. The covering V verify the fact that for each k =
0, 1, 2 the elements of the subset (Vi)

k
Ik

are pairwise disjoint, U and V′ are obtained by successively
thickening V and will also verify the same condition as V.

We build the covering V by induction on the skeletons of the triangulation, an example is shown
in Figure 1. The base case is easy, the disks V 0

i are balls containing ∆0
i and such that V 0

i ∩ V 0
j ̸= ∅

whenever i ̸= j, they are colored in red in Figure 1.
For the inductive step, let us assume that we already constructed the disks (V ℓ

i )i∈Iℓ , ℓ = 0, 1, . . . , k − 1
such that

∆̃k
i := ∆k

i −
⋃

ℓ≤k−1

V ℓ

is a contraction of ∆1
i , where V

ℓ =
⋃

j∈Iℓ
V ℓ
j . Let ∆̂

k
i a small thickening of ∆̃k

i . Then V
k
i is defined

as a tubular neighborhood of ∆̂k
i . If this tubular neighborhood is small enough the open sets will

verify V k
i ∩ V k

j = ∅ for all i ̸= j. This finishes the proof by induction.

Now that V is defined we define V′ = (V
′k
i )i∈Ik and U = (Uk

i )i∈Ik two other open coverings ob-
tained by thickening the V k

i such that the following conditions hold:

∀k ≤ 2, i ∈ Ik, V k
i ⊂ V

′k
i ⊂ V

′k
i ⊂ Uk

i and V
′k
i ∩ V

′k
j = Uk

i ∩ Uk
j = ∅,

whenever i ̸= j.
Furthermore, if T is chosen such that for any simplex σ in T , its star (the union of the simplex

touching σ) is inside an open set of the covering W, then the open coverings V, V′ and U are
refinement of W. We fix now, and for the rest of the paper, T = (∆k

i )i∈Ik a triangulation with

the above property along with V = (V k
i )i∈Ik , V

′ = (V
′k
i )i∈Ik and U = (Uk

i )i∈Ik the open coverings
associated to T .

4.2. Two corollaries of the area-preserving extension lemma for the annulus. As an-
nounced before, in this section we will prove two corollaries of Lemma 1.3 that will suit better
our needs for the proof of the C0-fragmentation property. The corollaries are improved versions of
Lemmas 2 and 3 in [EPP12, section 1.6.1] and we will mimic their proof.

Corollary 3 (Area-preserving extension lemma for disks). Let D1 ⊂ D2 ⊂ D3 ⊂ R2 be closed disks
such that D1 ⊂ Interior(D2) ⊂ D2 ⊂ Interior(D3). Let ϕ : D2 → D3 be a smooth area-preserving
embedding. If ϕ is sufficiently C0-small, then there exists ψ ∈ Ham(D3) such that

ψ|D1
= ϕ|D1

and ∥ψ∥C0 ≤ C∥ϕ∥C0 ,
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∆0
0

∆0
1

∆0
2

Figure 1. The triangulation T is represented in black, the boundary of the open
sets of the form V 0

i are painted in red, the boundary of the open sets of the form V 1
i

are painted in green and the boundary of the open sets of the form V 2
i are painted

in blue.

for some constant C > 0.

Remark 4.1. The Corollary 3 can be completely adapted in the continuous setting if we ask to
extend ϕ, a continuous measure-preserving embedding, by ψ, an element of Ker(θ). We can then
prove it by adapting the proof and using Lemma 1.5 instead of Lemma 1.3.

Proof. We mimic the proof in [EPP12], adding only the sharper estimate of Lemma 1.3.
Up to replacing D2 by a slightly smaller disk, we can assume that ϕ is defined in a neighborhood

of D2. Identify some small neighborhood of ∂D2 with A2 so that ∂D2 is identified with S1 ×
0 ⊂ A1 ⊂ A2. If ϕ is C0-small enough, we have ϕ(A1) ⊂ Interior(A2) ⊂ Interior(D3)\ϕ(D1).
Denote δ := ∥ϕ∥C0 .

Apply Lemma 1.3 and find h ∈ Hamc(A2),

∥h∥C0 ≤ C∥ϕ∥C0 ,

for some constant C > 0 and so that h|A1−Dδ
= ϕ. Set ϕ1 := h−1◦ϕ ∈ Hamc(D3). Note that ϕ1|D1

=
ϕ and ϕ1 is the identity on A1−Dδ. Therefore we can extend ϕ1|D2∪A1

to D3 by the identity and get
the required ψ. □

Corollary 4 (Area-preserving extension lemma for rectangles). Let Π3 = [0, R] × [−c3, c3] be a
rectangle and let Π1 ⊂ Π2 ⊂ Π3 be two smaller rectangles of the form Πi = [0, R] × [−ci, ci], (i =
1, 2), 0 < c1 < c2 < c3. Let ϕ : Π2 → Π3 be a smooth area-preserving embedding such that

• ϕ is the identity near 0× [−c2, c2] and R× [−c2, c2],
• The area in Π3 bounded by the curve [0, R]× y and its image under ϕ is zero for some (and
hence for all) y ∈ [−c2, c2].

If ϕ is sufficiently C0-small, then there exists ψ ∈ Ham(Π3) such that
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Figure 2. The obstruction O is the signed area between the red curve and the blue curve.

ψ|D1 = ϕ|D1 and ∥ψ∥C0 ≤ C∥ϕ∥C0 ,

for some constant C > 0.

Remark 4.2. Again Corollary 4 transposes completely in the continuous setting by taking ϕ being
a continuous measure-preserving embedding and extending it by ψ ∈ Ker(θ).

Proof. The proof relies on the last assumption of Lemma 1.3, indeed we can identify the rectangle Π3

with the subset I × [−2, 2] ⊂ A2. □

4.3. Definition of two obstructions. In this section we fix (Σ, ω) a symplectic surface and T , U, V
and V′ a triangulation and 3 open coverings associated to it as defined in Section 4.1. We will define
the flux for an annulus, we call this quantity

O : Symp0,c(A1) → R.
Thus, O represents the obstruction for a diffeomorphism ϕ ∈ Sympc(A1) to belong to Hamc(A1).
We also define Ai1,i2(ϕ) for i1 and i2 in I0 which will represent the obstruction of the extension of

a certain embedding of V 1
j in V

′1
j if the two vertices ∆0

i1
and ∆0

i2
are joined by an edge ∆1

j (see
Corollary 4). The obstruction A can be seen as a way to define O on a general symplectic surface.

Definition 4.3 (Definition of O). Let ϕ ∈ Symp0,c(A1), A ∈ S1×{−1} and B ∈ S1×{1} two points
on the boundary of A1 as in Figure 2 and γ = [0, 1] → A1, t 7→ γ(t) an arc with endpoints γ(0) = A
and γ(1) = B. Then let h : [0, 1]s × [0, 1]t → A1 be a smooth homotopy from γ to ϕ(γ) such
that h0,t = γ(t) and h1,t = ϕ(γ(t)). We can then define the quantity:

O(ϕ) :=

∫ 1

0

∫ 1

0

ω(∂shs,t, ∂ths,t) ds dt.

Remark 4.4. We can also define O in a more general setting by defining it as the area of a 2-
cell defined by a continuous homotopy h and consider ω as a measure, and even replace it by any
Oxtoby-Ulam measure (see Section 1.1.2). This will be useful for Theorem 2.

The next proposition gives some properties of O, those properties can also be proven in a contin-
uous setting. This proposition is classic and we do note give a proof.

Proposition 4.5. O is well-defined, i.e. it does not depend on the choices of h, γ nor on the choice
of the points A and B.

Moreover, O is exactly the obstruction for ϕ ∈ Symp0,c(A1) to be in Ham(A1), that is ϕ ∈
Ham(A1) if and only if O(ϕ) = 0.

We now state Lemma 4.6, it proves the surjectivity of this obstruction. We also give a bound on
the norm of a well-chosen antecedent of a real number (it will be useful in the proof of Lemma 4.10
for example). We will prove Lemma 4.6 at the end of this proof.
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Lemma 4.6 (Surjectivity of O and an estimate on the norm of a pre-image). With the previous
definitions, the obstruction O : Sympc(A1) → R, ψ 7→ O(ψ) is a surjective function.

Moreover, there exists a constant C > 0 such that for all ε ∈ R, there exists ψε ∈ Sympc(A1)
such that O(ψε) = ε and

∥ψε∥C0 ≤ C|ε|.

Proof of Lemma 4.6. Let ε ∈ R and define Hε
s (x, y) = χ(y)ε a Hamiltonian-like function, where χ

is a smooth function in [−1, 1], satisfying χ(−1) = 0 and χ(1) = 1 and χ′ is compactly supported
in [−1, 1]. We let C = ∥χ′∥0. We then define ϕs as the flow generated by this Hamiltonian-like
function. That is, define the vector field Xs by the equation

ιXs
ω = dHε

s = χ′(y)ε dy.

So Xs = χ′(y)ε ∂
∂x and ϕs(x, y) = (x + εχ′(y)s, y), where x is in R/Z and x + εχ′(y)s is taken

in R/Z. Then ∥ϕ∥C0 ≤ C|ε| and O(ϕ) =
∫ 1

0
Hs(1) ds = ε as wanted. □

A seen in Remark 4.4 there is an analogous definition of O in the continuous setting, it is not hard
to see that Proposition 4.5 transposes in the continuous setting once we work with Ker(θ) instead
of Ham(A1).

Definition 4.7 (Definition of A). Let T , U and V be as in Section 4.1. Let ϕ ∈ Symp0(Σ) be
such that for all i ∈ I0, ϕ|V 0

i
= Id. Given ∆0

i1
and ∆0

i2
two vertices in T linked by an edge ∆1

j

parameterized by an arc γ with γ(0) = ∆0
i1

and γ(1) = ∆0
i2
, we define:

Ai1,i2(ϕ) =

∫ 1

0

∫ 1

0

ω(∂shs,t, ∂ths,t),

where h : [0, 1]× [0, 1] → U1
j is an isotopy with fixed endpoints from γ to ϕ(γ).

Remark 4.8. We can also define A via integration on 2-cells instead. Again it allows us to define A

on the continuous case.

We prove now several properties of this obstruction A.

Proposition 4.9. Let T , U and V given as in Section 4.1. We assume, as before, that i1 and i2
are two indices in I0 such that ∆0

i1
and ∆0

i2
are linked in T by an edge ∆1

j , then if ϕ is C0-small
enough and verifies that, for all i ∈ I0, ϕ|V 0

i
= Id. We have the following four properties:

(i) Ai1,i2(ϕ) is well defined, i.e. it does not depends on the choice made in its definition.
(ii) The following identity holds:

Ai1,i2(ϕ) = −Ai2,i1(ϕ).

(iii) There exists a constant C > 0 that does not depend on ϕ such that,

|Ai1,i2(ϕ)| ≤ C∥ϕ∥C0 .

(iv) If ϕ ∈ Ham(Σ), then for a loop of the triangulation i.e. a set of indices i1, i2, . . . , im such
that ip and ip+1 are linked by an edge in T (with the convention that im+1 = i1), we have:

m∑
p=1

Aip,ip+1
(ϕ) = 0.

Proof. We are going to prove the claims in the order they appear.

(i) The proof here is the same as for Proposition 4.5.
(ii) If hs,t is an isotopy from γ to ϕ(γ(t)), then hs,1−t is an isotopy from γ(1− t) to ϕ(γ(1− t)),

so after a change of variable in the integral we have the identity:

Ai1,i2(ϕ) =

∫ 1

0

∫ 1

0

ω(∂shs,t, ∂ths,t) = −Ai2,i1(ϕ).
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(iii) This claim is immediate since Ai1,i2(ϕ) measures the area between ∆1
j and ϕ(∆1

j ) in U1
j (if

we do not work in U1
j then the area would not be well-defined) and ϕ(∆1

j ) is stuck in the

tubular neighborhood of ∆1
j of radius ∥ϕ∥C0 , hence we indeed have:

|Ai1,i2(ϕ)| ≤ C∥ϕ∥C0 ,

for some constant C > 0.
(iv) Let γ be the piece-wise smooth path going through ∆1

j1
,∆1

j2
, . . . ,∆1

jm
, where ∆1

jp
links

∆0
ip

to ∆0
ip+1

, the path should not go twice through the same vertex. Let ϕt be a Hamiltonian

isotopy from Id to ϕ, then F̃lux(ϕt) = 0, this means that the area of the cylinder ϕt(γ) is
zero. However, nothing tells us a priori that the area of the cylinder of ϕt(γ) is the same as
the sum

∑m
p=1 Aip,ip+1(ϕ), obtained also as the area of some cylinder between γ and ϕ ◦ γ

but with support in
⋃
U1
jp
. However, we can glue those two cylinders to obtain one closed

2-cycle σ2 so ∫
σ2

ω = F̃lux(ϕt) +

m∑
p=1

Aip,ip+1(ϕ) =

m∑
p=1

Aip,ip+1(ϕ)

has value in ω · H2(Σ,Z) ≃< ω, [Σ] > Z ⊂ R. If ϕ is C0-small enough then by the third
point of the proposition, |

∑m
p=1 Aip,ip+1

(ϕ)| ≤ mC∥ϕ∥C0 ≤ |Ik|∥ϕ∥C0 is inside this subgroup

so must be 0 for ∥ϕ∥C0 small enough. This finishes the proof of Proposition 4.9.

□

4.4. Proof of Theorems 1 and 2. We have now all the tools to prove Theorem 1 and Theorem 2.

Proof of Theorem 1. Let T be a triangulation such that the star of every vertices of T are included
in one of the open sets of the subcovering of W, we will say that such triangulation is good. We
will consider the open coverings V, V′ and U associated to T . Then the three coverings V, V′ and U

are finer than W. We will prove the fragmentation theorem on U which will imply it for W by a
simple argument described at the end of the proof. We recall that for all k = 0, 1, 2 and i ∈ Ik,
V k
i ⊂ V ′k

i ⊂ Uk
i .

Let us describe briefly an outline of the proof. In order to fragment a diffeomorphism ϕ we will
proceed in 3 steps.

In Lemma 4.10 and Lemma 4.11 we will start the fragmentation by finding Hamiltonian diffeo-
morphisms compactly supported in (U0

i ), agreeing with ϕ on V 0
i and some additional condition that

will be needed in order to prove Lemma 4.12. We will then define ϕ′ as the Hamiltonian diffeomor-
phism ϕ were we pre-composed by the inverses of the diffeomorphisms we just constructed. Thus, ϕ′

is a Hamiltonian diffeomorphism which is the identity on the sets (U0
i ).

In Lemma 4.12 we find Hamiltonian diffeomorphisms compactly supported in U1
i and agreeing

with ϕ′ on V 1
i . with the same construction as above we define ϕ′′.

In Lemma 4.13 we will finish the fragmentation without any difficulty since ϕ′′ is actually naturally
fragmented.

Lemma 4.10 (Fragmentation on the 0-skeleton). Let T = (∆k
i )i∈Ik be a good triangulation U, V

and V′ open coverings associated with T as described in Section 4.1. Let ϕ ∈ Ham(Σ) be a C0-small
diffeomorphism. Then we can find the following C0-fragmentation:

ϕ = ϕ
(0)
1 ◦ ϕ(0)2 · · · ◦ ϕ(0)ℓ ◦ ϕ′,

where ℓ := |I0|, for all i ∈ I0, ϕ
(0)
i ∈ Ham(U0

i ), verifies ϕ
(0)
i |V 0

i
= ϕ and satisfies the estimate

∥ϕ(0)p ∥C0 ≤ C∥ϕ∥C0 ,

where C > 0 is a constant.
Moreover, Ai,j(ϕ

′) = 0 for all i, j ∈ I0 linked by an edge in T .

The first step in order to prove Lemma 4.10 is to prove Lemma 4.11, it is a fragmentation on the
open sets on the vertices but we do not ask for the obstruction A to be 0.
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Lemma 4.11. Let T = (∆k
i )i∈Ik be a good triangulation U, V and V′ open coverings associated with

T as described in Section 4.1. Let ϕ ∈ Hamc(Σ) a C0-small diffeomorphism, then we can find the
following C0-fragmentation:

ϕ = ϕ
(−1)
1 ◦ ϕ(−1)

2 · · · ◦ ϕ(−1)
ℓ ◦ ϕ̃,

where ℓ = |I0|, for all i ∈ I0, ϕ
(−1)
i ∈ Ham(U0

i ), verifies ϕ
(−1)
i |V 0

i
= ϕ and satisfies the estimate

∥ϕ(−1)
i ∥C0 ≤ C∥ϕ∥C0 ,

where C > 0 is a constant depending on the choice of T and the open coverings associated to it. The
Hamiltonian diffeomorphism ϕ̃ is then supported in Σ\V 0 and its C0-norm satisfy a Lipschitz bound
in the norm ∥ϕ∥C0 .

Proof. Let i ∈ I0, by Corollary 3 and since ϕ is a C0-small diffeomorphism and an area-preserving

embedding of V ′0
i in U0

i , there exists ϕ
(−1)
i ∈ Ham(U0

i ) such that ϕ
(−1)
i |Vi

= ϕ. Moreover, there

exists a constant D > 0 such that ∥ϕ(−1)
i ∥C0 ≤ D∥ϕ∥C0 . Then there exists a diffeomorphism ϕ̃ such

that

ϕ = ⃝i∈Ikϕi ◦ ϕ̃
(there is no issue with the composition since the supports of the ϕi are disjoint). We then have

that ϕ̃ is supported in Σ\V 0 and is a Hamiltonian diffeomorphism of Σ. Also, ∥ϕ̃∥C0 ≤ ∥ϕ∥C0 +∑
∥ϕ(−1)

i ∥C0 ≤ C∥ϕ∥C0 , for C > 0 a constant. □

It is time now to prove Lemma 4.10.

Proof of Lemma 4.10. We apply first Lemma 4.11 and we now want to do slight modifications on

the diffeomorphisms ϕ
(−1)
p in order to vanish the obstruction A on each edge.

In order to do this, we first take a fixed index i ∈ I0 and its corresponding vertex ∆0
i . We will

define for a vertex j ∈ I0 the real number C(j) by

C(j) :=

m−1∑
p=0

Aip,ip+1
((ϕ̃)),

where i0 = i, i1, . . . , im = j is a sequence of indices such that they are all linked by an edge in T .
Using property (iv) of Proposition 4.9 we see that this value does not depend on the sequence (ip)

we take. We define now ϕ
(0)
j = ρj ◦ ϕ(−1)

j where ρj is a compactly supported diffeomorphism from

the annulus U0
j \V 0

j to itself, and such that O(ρj) = C(j) (we identify ∂V 0
j with S1×{−1} to match

Definition 4.3), note that Lemma 4.6 allows us to take ρj with a Lipschitz estimate. Then the

diffeomorphisms ϕ
(0)
j are the fragments needed in Lemma 4.10, and

ϕ′ = ⃝j(ρ
(−1)
j )−1ϕ̃

satisfy all the conditions of the conclusion of Lemma 4.10.
□

We now work on ϕ′ and fragment it in Lemma 4.12.

Lemma 4.12 (Fragmentation on the 1-skeleton). Let ϕ′ be the resulting Hamiltonian diffeomorphism
after applying Lemma 4.10, then there exists a fragmentation of ϕ′,

ϕ′ = ϕ
(1)
1 ◦ ϕ(1)2 · · · ◦ ϕ(1)m ◦ ϕ′′,

where m = |I1|, for all i ∈ I1, ϕ
(1)
i ∈ Ham(U1

i ), ϕ
(1)
i |V 1

i
= ϕ′ and the following estimate is true

∥ϕ(1)i ∥C0 ≤ C∥ϕ′∥C0 ,

where C > 0 is a constant (that depends on T ). The resulting ϕ′′ is then supported in Σ\(V 0 ∪ V 1)
and satisfy a Lipschitz estimate with respect to ∥ϕ′∥C0 and thus with respect to ∥ϕ∥C0 .
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Proof. Let i ∈ I1, and i1 and i2 are the vertices of the edge ∆1
i . Then, since ϕ′ is C0-small ϕ′ is

an area-preserving embedding of V ′1
i in U1

i being equal to the identity on V 1
i ∩ V 0

i1
and V 1

i ∩ V 0
i2
,

also the condition Ai1,i2(ϕ
′) = 0 is exactly the condition we need to apply Corollary 4. We have

now ϕ
(1)
i ∈ Ham(U1

i ) such that ϕ
(1)
i |V 1

i
= ϕ′ and ∥ϕ(1)i ∥C0 ≤ D∥ϕ′∥C0 . So there exists a diffeomor-

phism ϕ′′ such that ϕ′ = ⃝i∈I1ϕ
(1)
i ◦ ϕ′′. Then ϕ′′ is a Hamiltonian diffeomorphism of Σ itself, it is

compactly supported in Σ\(V0 ∪ V1) and satisfy ∥ϕ′′∥C0 ≤ ∥ϕ′∥C0 +
∑

i∈I1
∥ϕ(1)i ∥C0 ≤ C∥ϕ∥C0 . □

Lemma 4.13 (Fragmentation on the 2-skeleton). Let ϕ′′ be the resulting Hamiltonian diffeomor-
phism from Lemma 4.12, we can fragment it

ϕ′′ = ϕ
(2)
1 ◦ ϕ(2)2 · · · ◦ ϕ(2)n ,

where n = |I2|, for all i ∈ I2, ϕ
(2)
i ∈ Ham(U2

i ) and

∥ϕ(2)i ∥C0 ≤ C∥ϕ′′∥C0 ,

where C > 0 is a constant.

Proof. ϕ′′ has now support in Σ\(V 0 ∪ V 1) ⊂
⋃
U2
i . So it can be decomposed in Hamiltonian

diffeomorphism with support in the U2
i (pairwise disjoint) and the bound is also immediate. □

Combining Lemmas 4.10, 4.12 and 4.13 we obtain a fragmentation with a finitely bounded number
of fragments. We describe now the procedure to give the result in the shape of Theorem 1.

We want to swap the support of the diffeomorphisms, let ψ = fg for two diffeomorphisms f and g
such that supp(f) ⊂ B′

1 ⊂ B1 and supp(g) ⊂ B2. Then ψ = g(g−1fg) and we want to show now
that g−1fg is supported inside B′′

1 the set of points whose distance to B′
1 is smaller than ∥g∥C0 if f

and g have a small C0-norm. Indeed, if d(x,B′
1) ≥ ∥g∥C0 then g−1(f(g(x))) = g−1(g(x)) = x. This

procedure is the kind of commutation we needed

ψ = f︸︷︷︸
support in B1

g︸︷︷︸
support in B2

= g︸︷︷︸
support in B2

g−1fg︸ ︷︷ ︸
support in B1

.

We need to show that we can apply this procedure repeatedly. Note that one needs to apply it
only a finite number of time since there are at most N := ℓ+m+n fragments in the fragmentation we
have for now and one can obtain any permutation with N elements with at most N ! transpositions.
If we have ∥ϕ∥C0 small enough, then the successive thickenings of B′

1 in the operation described
above will stay inside B1. We thus obtain a fragmentation ϕ = ϕ1ϕ2 · · ·ϕm with ϕi ∈ Ham(Wi)
and ∥ϕi∥C0 ≤ C∥ϕ∥C0 for some constant C > 0.

□

Proof of Theorem 2. The proof transposes for Ker(θ) by adapting directly Corollaries 3 and 4, then
the obstruction O and A and finally Lemma 4.10, 4.11, 4.12 and 4.13. □

5. Proof of the area-preserving extension lemma

5.1. Preliminaries. We need to state three propositions about the area forms on a surface in order
to carry out the proof of Lemma 1.3. The two first propositions are already well-known. The third
one is new and is the key piece that allows us to go from a Hölder estimate for the area-preserving
extension lemma to the Lipschitz estimate of Lemma 1.3.

We recall that a Borel measure µ on a compact manifold X is said to be an OU (Oxtoby-Ulam)
measure if it is nonatomic, of full support and is zero on the boundary. The first proposition is
proven in [OU41].

Proposition 5.1. Let µ and ν be two OU measures on a rectangular r-cell R such that µ(R) = ν(R),
then there exists a homeomorphism h which restricts to the identity on the boundary of B such
that h∗ν = µ.

We recall here some consequences of Moser’s trick [Mos65] as described in [Sey13, Section 3.4.1].
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Proposition 5.2 (Moser’s trick). Let M be a compact connected oriented manifold of dimension n,
possibly with a non-empty boundary ∂M , and let ω1, ω2 be two volume forms on M . Assume
that

∫
M
ω1 =

∫
M
ω2. If ∂M ̸= 0, we also assume that the forms ω1 and ω2 coincide on ∂M .

Then there exists a diffeomorphism f : M → M , isotopic to the identity, such that f∗ω2 = ω1.
Moreover, f can be chosen to satisfy the following properties:

(i) If ∂M ̸= ∅, then f is the identity on ∂M , and if ω1 and ω2 coincide near ∂M , then f is the
identity near ∂M .

(ii) If M is partitioned into polyhedra (with piece-wise smooth boundaries), so that ω1−ω2 is zero
on the (n− 1)-skeleton Γ of the partition and the integral of ω1 and ω2 on each of the polyhedra are
equal, then f can be chosen to be the identity on Γ.

(iii) Suppose that ω2 = χω1 for a function χ, then the diffeomorphism f can be chosen to satisfy
the following estimate:

∥f∥C0 ≤ C∥χ− 1∥C0 ,

for some C > 0. Here, ∥·∥C0 denotes the standard sup norm on functions.

We describe now a lemma which allow us to adjust two volume forms by a C0-small diffeomorphism
if they disagree on a small strip only. This is the new idea that allowed us to improve the continuity
property for the extension lemma.

Proposition 5.3. Let C ∈ R be a constant and Mn−1 a compact manifold equipped with a volume
form ω′ and a distance d′, we also define d the product distance on Mn−1 × [−1, 1]. Let ω = ω′ ∧ dz
and Ω two volume forms on Mn−1 × [−1, 1], where z denote the coordinate on [−1, 1]. Let χ be the
function such that ω = (1 + χ)Ω. We assume that:

•
∫
Mn−1×[−1,1]

ω =
∫
Mn−1×[−1,1]

Ω.

• ∥χ∥C0 ≤ C.
• There exists δ > 0 such that Supp(χ) ⊂Mn−1 × [0, δ].

Then, there exists a constant D ∈ R independent of δ such that we can find f ∈ Diffc(M
n−1 ×

[−1, 1]), f ≡ Id on Mn−1 × [−1, 0], f∗Ω = ω and ∥f∥C0 ≤ Dδ.

Proof. We will denote by z the last coordinate of the manifold Mn−1 × [−1, 1] and x the coordinate
on Mn−1. Let Nn := Mn−1 × R we will describe two diffeomorphisms on Nn that will combine to
give what we want on Mn−1 × [−1, 1].

Define ρδ : R → R, x 7→ 2δx. We can then define two functions from Nn to Nn by:

Ψ1(x, z) :=

(
x,

∫ z

0

(1 + χ(x, t)) dt

)
and

Ψ2(x, z) :=

(
x,

∫ z

0

(1 + ρ′δ(t)χ(x, ρδ(t))) dt

)
.

We can then compute

dΨ1(x, z) :=

(
Id ∗
0 1 + χ(x, z)

)
,

and

dΨ2(x, z) :=

(
Id ∗
0 1 + ρ′δχ(x, ρδ(z))

)
.

Since 1 + χ > 0 the function Ψ1 is a diffeomorphism, in the same manner Ψ2 is also a diffeo-
morphism. A simple computation also shows that (Ψ1)

∗ω = det(dΨ1)ω = (1 + χ(x, z))ω = Ω and
also (Ψ2)

∗ω = (1 + ρ′δχ(x, ρδ(z)))ω which gives(
((Ψ1)

−1 ◦Ψ2)
∗Ω

)
(x,z)

= (1 + ρ′δ(z)χ(x, ρδ(z)))ω(x,z).

Moreover,

d ((x, z),Ψ1(x, z)) =

∣∣∣∣∫ z

0

χ(x, ρδ(t)) dt

∣∣∣∣ ≤ ∥χ∥C0δ ≤ Cδ

so ∥Ψ1∥C0 ≤ Cδ and similarly ∥Ψ2∥C0 ≤ Cδ.
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If z > δ, since χ has support in a strip we have Ψ1(x, z) = (x, z + c(x)), where c(x) is a function

independent of z and whose value is c(x) =
∫ δ

0
χ(x, t) dt. If z > 0.5, we have, by the same argument,

that Ψ2(x, z) = (x, z + d(x)), where d(x) =
∫ 0.5

0
ρ′δ(t)χ(x, ρδ(t)) dt.

It follows that those two diffeomorphisms aren’t compactly supported in Mn−1× [−1, 1], however
since c(x) = d(x) (simple change of variable in the integral), Ψ := (Ψ1)

−1 ◦ Ψ2 can be restricted
on Mn−1 × [−1, 1] to a compactly supported diffeomorphism. Moreover,

(Ψ∗Ω)(x,z) =
(
((Ψ1)

−1 ◦Ψ2)
∗Ω

)
(x,z)

= (1 + ρ′δ(z)χ(x, ρδ(z)))ω(x,z)

and
∥Ψ∥C0 ≤ ∥Ψ1∥C0 + ∥Ψ2∥C0 ≤ 2Cδ.

By Proposition 5.2 one can find a function h ∈ Diffc(M
n−1×[−1, 1]) such that h∗(Ψ∗(Ω)) = ω and

there exists a constant C ′ independent of ω and Ω such that ∥h∥C0 ≤ C ′∥ρ′δχ(·, ρδ(·))∥C0 ≤ 2C ′Cδ.
It then follows that Ψh is the diffeomorphism we needed.

□

5.2. Proof of Lemma 1.3 and Lemma 1.5. The proof of Lemma 1.3 (resp. Lemma 1.5) will
go as follows we first extend the area-preserving embedding ϕ to a C0-small diffeomorphism (resp.
homeomorphism) f not necessarily preserving the area form (in the continuous case we still need
that f∗ω is an area-form). The diffeomorphism (resp. homeomorphism) f will verify that its C0-
norm is smaller than C1δ for some constant C1 > 0 independent of δ. Then working on the area
form f∗ω, one can find g such that:

• the C0-norm of g is bounded by C2δ for some constant C2 > 0 independent of δ;
• we have g ∈ Diff0,c(A1+D2δ) for some constant D2 independent of δ;
• if χ is such that g∗ω = (1 + χ)ω, then ∥χ∥C0 ≤ E1 for some constant E1 > 0 independent

of δ.

We will then be able to apply Proposition 5.3 in order to finish the proof.

Proof of Lemma 1.3. In what follows, the Ci’s, Di’s and Ei’s are going to be positive constants
independent of δ, the letter C will be used for a control of the C0-norm, the letter D for a control
of the support and the letter E for a control on an area-form. We can assume without loss of
generality that the area form ω is dx ∧ dy, where x denote the angular coordinate on S1 and y the
radius along A3. We start the proof as in [EPP12] by using a non area-preserving diffeomorphism f
extending ϕ as stated in Lemma 5.4, we will discuss this lemma in Section 6.

Lemma 5.4. Let ϕ be a smooth embedding of an open neighborhood of A1 into A2, isotopic to the
identity, such that ∥ϕ∥C0 ≤ δ for some δ > 0 small enough. Then there exists constants C1 > 0
and D1 > 0 that do not depend of δ and f ∈ Diff0,c (A2) such that f is supported in A1+D1δ, satisfies

f |A1−D1δ
= ϕ|A1−D1δ

and
∥f∥C0 ≤ C1δ.

Moreover, if ϕ = Id outside a quadrilateral I × [−1, 1] and f(I × [−1, 1]) ⊂ I × [−2, 2] for some
arc I ⊂ S1, then f can be chosen to be the identity outside I × [−2, 2].

Denote Ω := f∗ω and define A− := S1 × [−2, 0] and A+ := S1 × [0, 2]. By the condition on the
area between the curves S1 × y and ϕ(S1 × y) the following equalities hold:∫

A−

ω =

∫
A−

Ω,

∫
A+

ω =

∫
A+

Ω.

We are going to adjust f by constructing h ∈ Diff0,c(A2) such that h|A1−D3δ
= Id, h∗Ω = ω

and ∥h∥C0 ≤ C3∥ϕ∥C0 , for some D3, C3 > 0. To do so we just need to provide an extension on A+.
Indeed, by symmetry, it would also give an extension on A−. Now define a symplectomorphism Ψ
by gluing the two extension along A1−D3δ. The symplectomorphism Ψ might not be a Hamiltonian
diffeomorphism but after a Lipschitz C0-adjustment (given in Lemma 4.6), we can make sure that
the resulting symplectomorphism is a Hamiltonian diffeomorphism. This would finish the proof of
the extension lemma.
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Adjusting the area of the squares

Divide the annulus S1 × [1 − (1 + C1 + D1)δ, 1 + (1 + C1 + D1)δ] in N squares R1, . . . , RN for
some integer N such that the squares have side length 2(1+C1 +D1)δ. We denote Γ the 1-skeleton
of the partition by squares. Then we can find h1 ∈ Diffc(A2) a C0-small diffeomorphism, which
has C0-norm as small as we want such that h∗1Ω is equal to ω on Γ (for the construction of h1 we
refer to the paragraph Adjusting Ω on Γ in [EPP12]). Denote

Ω′ := h∗1Ω,

and assume that ∥fh1∥C0 ≤ (1 + C1)δ by asking ∥h1∥C0 ≤ δ. Note that here we have∫
A+

Ω′ =

∫
A+

ω.

We will use the same method as in the paragraph Adjusting the areas of the squares of
[EPP12] but modify it in order to apply Proposition 5.3 as we wish. On a square Ri we obtain the
following inequality by considering the fact that ∥fh1∥C0 ≤ (1 + C1)δ so the image of Ri by fh1 is
inside a square of side length (4 + 4C1 + 2D1)δ and also such that the square of side length 2D1δ is
inside of the image of Ri, this gives the following estimates

4(D1)
2δ2

4(1 + C1 +D1)2δ2
≤

∫
Ri

Ω′∫
Ri
ω

≤ 4(2 + 2C1 +D1)
2δ2

4(1 + C1 +D1)2δ2

and after simplification,

(D1)
2

(1 + C1 +D1)2
≤

∫
Ri

Ω′∫
Ri
ω

≤ (2 + 2C1 +D1)
2

(1 + C1 +D1)2
.

By renaming the constant on the left-hand side and right-hand side of the inequality, and set-
ting si :=

∫
Ri

Ω′, ri :=
∫
Ri
ω we can eventually rewrite this as:

(1) 0 < 1−A ≤ si
ri

≤ 1 +A,

for some constant 1 > A > 0 independent of δ. Set ti :=
si
ri

− 1. By (1),

(2) |ti| ≤ A < 1.

For each i choose a non-negative function ρi supported in the interior of Ri such that
∫
Ri
ρiω = ri

and

(3) ∥ρi∥C0 ≤ E2 <
1

A
,

for some constant E2 independent of δ. Define a function ϱ on A1+C1+D1 by

ϱ = 1 +
∑
i

tiρi.

We denote D2 := 1 + C1 + D1. By (2) and (3), we see that ϱ is positive. Moreover, ϱ is equal
to 1 over Γ and the two area forms ϱω and Ω′ have the same integral on each square Ri. We can
thus apply part (iii) of Proposition 5.2 to the forms Ω′ and ϱω on S1 × [1 −D2δ, 1 +D2δ] and the
skeleton Γ: these forms coincides near the boundary of S1 × [1 − D2δ, 1 + D2δ], therefore there
exists a diffeomorphism h2 with compact support in S1 × [1 − D2δ, 1 + D2δ] such that h∗2Ω = ϱω
and ∥h2∥C0 ≤ 2

√
2D2δ.

Note that ∫
A+

ϱω =

∫
A+

Ω′ =

∫
A+

ω.

In conclusion, we constructed a diffeomorphism fh1h2 := g ∈ Diffc(A1+D2δ) such that:

• the C0-norm is bounded, d(fh1h2, Id) ≤ (1 + C1 + 2
√
2D2)δ =: C2δ,

• the support is controlled, fh1h2|A1−D2δ
= ϕ,

• the pullback of the area form is controlled by ϱω = (fh1h2)
∗ω = (1+χ)ω and ∥χ∥C0 ≤ E1 :=

E2A.
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We define

Ω′′ := g∗ω.

We can now apply Proposition 5.3 with M = S1 and the two area forms ω and Ω′′ in order to find h
and finish the proof. □

To adapt the extension lemma in the continuous case, we will only describe the changes in the
previous proof. The overall idea stays the same in both proofs.

Proof of Lemma 1.5. We use Proposition 5.1 in order find first a homeomorphism that allows us
to restrict to the case where µ is a symplectic form ω. We extend the continuous area-preserving
embedding ϕ to a global homeomorphism of A2 with the help of Lemma 5.5 (analogue of Lemma
5.4).

Lemma 5.5. Let ϕ be a continuous area-preserving embedding of an open neighborhood of A1

into A2, isotopic to the identity, such that ∥ϕ∥C0 ≤ δ for some δ > 0 small enough. Then there
exists constants C1 > 0 and D1 > 0 that do not depend on δ and f ∈ Homeo0,c (A2) such that f is
supported in A1+D1δ, satisfies

f |A1−D1δ
= ϕ|A1−D1δ

and

∥f∥C0 ≤ C1δ.

Moreover, if f = Id outside a quadrilateral I × [−1, 1] and f(I × [−1, 1]) ⊂ I × [−2, 2] for some
arc I ⊂ S1, then f can be chosen to be the identity outside I × [−2, 2].

Denote ν := f∗ω (ν is then an OU measure) then, by the condition on nullity of the area
between S1 × y and ϕ(S1 × y) in Lemma 1.5, the following equalities hold:

ω(A−) = ν(A−), ω(A+) = ν(A+).

We proceed as before and we claim that the paragraph Modifying the area form Ω to find a
constant estimate is actually now easier. Indeed everything transpose at one exception, since it
is not mandatory to obtain a diffeomorphism we do not have to adjust the Ω on the skeleton Γ. We
just have to apply Proposition 5.1 directly on squares R1, . . . , Rn alongside the neighborhood of A1.
The resulting C0-small homeomorphism h1 is such that h∗1ν = ϱω is now an area-form, this means
that we can apply Proposition 5.3 and finish the proof of Lemma 1.5. □

6. Proof of the extension lemmas

The proof of Lemma 5.4 can be found, after some small adjustment, in [EPP12]. We present
instead a proof of Lemma 5.5, the proof is an adaptation to the continuous case of Lemma 5 in
[EPP12, section 1.6.3]. For this we will need an adaptation of the appendix of Michael Khanevsky
from the same paper.

Lemma 6.1. Set L := S×0 in A1. Assume that ϕ is a continuous embedding of an open neighborhood
of L in A1, so that L is homotopic to ϕ(L) and ∥ϕ∥C0 ≤ ε for some ε small enough.

Then there exists a homeomorphism ψ of ADε such that ψ = ϕ on L and ∥ψ∥C0 ≤ Cε for
some D,C > 0 independent on ε.

Moreover, if ϕ = Id outside some arc I ⊂ L and ϕ(I) ⊂ I × [−1, 1], then we can also chose ψ
with ψ being the identity outside I × [−1, 1].

Remark 6.2. We added an extra result on the support of ψ that was not made by Michael Khanevsky
but does not require more effort and is needed in the proof of the sharp area-preserving extension
lemma.

We recall the following corollary of the Jordan-Schönflies Theorem presented in [Tho92].

Corollary 5. Let Γ and Γ′ be two 2-connected plane graphs (planar graphs embedded in R2) and g
a homeomorphism and plane-homeomorphism (i.e. g is an isomorphism such that a cycle in Γ is a
face boundary of Γ if and only if the corresponding is a face boundary of Γ′) of Γ onto Γ′. Then g
can be extended to a homeomorphism of the whole plane.
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Figure 3. Illustration of the proof of the extension lemma.

Proof of Lemma 6.1. We start by defining some notations and preliminary results, let K := ϕ(L),
and let K be parameterized by γ : S1 → A1, t 7→ ϕ(t, 0). Thus γ can be viewed as a map from L
to K and this map has a C0-norm smaller than ε.

Let (x1, 0), (x2, 0), . . . , (x2n, 0) points on L in trigonometric order around L such that the distance
between two consecutive points is 8ε (more precisely the distance is 8ε + O(ε)). We denote Sk the
square whose vertices are (xk,−4ε), (xk, 4ε), (xk+1, 4ε) and (xk+1,−4ε). We also denote Rk the
rectangle whose vertices are (xk − 3ε,−4ε), (xk − 3ε, 4ε), (xk+1 + 3ε, 4ε) and (xk+1 + 3ε,−4ε). The
first observation is that since ∥ϕ∥C0 ≤ ε, the curve K is strictly inscribed inside the union of the
squares Sk.

We define yk := sup{y ∈ R, (xk, y) ∈ K}, that is (xk, yk) is the highest point on the side of the
square Rk that is also in K. Let rk the line segment joining (xk, yk) and (xk+1, yk+1). Our goal
is to find ψ a C0-small homeomorphism such that ψ(K) is the union of the segments rk. We also
define tk := γ−1(xk, yk). The second observation we make is that γ|[tk,tk+1] lies inside Rk, indeed
we must have [tk, tk+1] ⊂ [xk − ε, xk+1 + ε], and πx(γ([tk, tk+1])) ⊂ [xk − 2ε, xk+1 + 2ε], where πx
denotes the projection onto S1 × {0}.

Step 1. We define now, for k odd, Γk the 2-connected graph whose vertices are the points (xk, 4ε)
and (xk+1, 4ε) and whose edges are [(xk, 4ε)(xk, yk)] ∪ γ|[tk,tk+1] ∪ [(xk+1, yk+1)(xk+1, 4ε)] and Rk,
this is indeed a plane graph since γ|[tk,tk+1] lies strictly inside Rk. We also define Γ′

k the graph with
the same edges except for γ|[tk,tk+1] that is replaced by rk. Now we define a homeomorphism gk
between Γk and Γ′

k by letting g be the identity on their common edges and any homeomorphism
between γ|[tk,tk+1] and rk. We can then apply the Corollary 5 of the Jordan-Schönflies Theorem.
We obtain the homeomorphism ψk, since the extension is made connected component by connected
component we can ask for ψk to be the identity on the unbounded connected component of Γk

and Γ′
k. Since the support of ψk is inside Rk we have then ∥ψk∥C0 ≤ 17ε. Now ψ′ := Πk oddψk has

good properties, namely, ∥ψ′∥C0 ≤ 17ε, and ψ′(K) coincides with rk for k odd.

Step 2. We have to do the same thing for k even. We define Mk := ((xk + xk+1)/2, (yk + yk+1)/2)
and Nk := ((xk + xk+1)/2,−4ε).

For this we split each segments rk in two parts in the middle, pk := [(xk, yk)Mk] and q+1 :=
[Mk, (xk+1, yk+1)]. For k odd we link Mk and Nk by a polygonal line segment sk inside Rk and
not crossing γ|[tk−1,tk] nor γ|[tk,tk+1] (this can be done by the mean of Lemma 2.1 of [Tho92] for
example). We define now, for k even, R′

k the polygon whose sides are the same side as of Rk

but we replace the segment [(xk, yk)(xk,−4ε)] by qk ∪ sk−1 ∪ [Nk−1(xk,−4ε)] and the line seg-
ment [(xk+1, yk+1)(xk+1,−4ε)] by pk+1 ∪ sk+1 ∪ [Nk+1(xk+1,−4ε)].

We can now apply the Corollary 5 to the 2-connected plane graphs Γk := R′
k∪γ|[tk,tk+1] and Γ′

k :=
R′

k ∪ rk and the homeomorphism g being the identity on R′
k, we obtain ψk a homeomorphism such

that ψk(γ|[tk,tk+1]) = rk and ψk is the identity outside R′
k. We denote ψ′′ = Πk even, since the

diameter of R′
k is smaller than Cε for C a positive real number we have ∥ψk∥C0 ≤ Cε and ∥ψ′∥C0 ≤

Cε and ψ′′(ψ′(K)) is now the union of the segments rk.
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Step 3. Once we have the union of the segments rk it is easier to finish, by taking for example
the flow of an appropriate vector field (the cut-off of a constant vector field on the fibers (x, ·) for
example). We denote ψ′′′ the last homeomorphism we obtain.

Step 4. There is one last thing to do is a small perturbation of ψ′′′ ◦ ψ′′ ◦ ψ′ such that it coincides
on L with the homeomorphism ϕ. This finishes the proof.

□

This is the tool we needed to prove Lemma 5.5. Notice here that in contrary of the proof of Lemma
6.6 in [EPP12] the proof is very short, indeed we do not need to care more about the extension since
we care about obtaining a diffeomorphism and not only a homeomorphism.

Proof of Lemma 5.5. We apply Lemma 6.1 to the curves S1×{±1} in A2 and their images under ϕ.
We can find ψ ∈ Homeo0,c(A2) supported in A1−D1δ,1+D1δ and agreeing with ϕ−1 on ϕ(S × {±1}).
Now when we extend ψ′ = ψϕ by the identity outside of A1 we get the required result. □
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Math. Helv. 53 (1978), 174–227.
[Ban97] A. Banyaga, The structure of classical diffeomorphism groups, Mathematics and its applications 400, Kluwer

Academic Publishers Group, Dordrecht, 1997.

[CHS] D. Cristofaro-Gardiner, V. Humilière, S. Seyfaddini, Proof of the symplicity conjecture, Preprint
arXiv:2001.01792v2 [maths.SG], 2020.

[EPP12] M. Entov, L. Polterovich, P. Py, On continuity of quasimorphisms for symplectic maps, Progress in

Math. 296 (2012), 169–197.
[Fa80] A. Fathi, Structure of the group of homeomorphisms preserving a good measure on a compact manifold,
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