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The optical response of quasi-one-dimensional systems is often dominated by tightly bound ex-
citons, that significantly influence their basic electronic properties. Despite their importance for
device performance, accurately predicting their excitonic effects typically requires computationally
demanding many-body approaches. Here, we present a simplified model to describe the static macro-
scopic dielectric function, which depends only on the width of the quasi-one-dimensional system
and its polarizability per unit length. We show that at certain interaction distances, the screened
Coulomb potential is greater than its bare counterpart, which results from the enhanced repulsive
electron-electron interactions. As a test case, we study fourteen different nanoribbons, twelve of
them armchair graphene nanoribbons of different families. Initially, we devised a simplified equa-
tion to estimate the exciton binding energy and extension that provides results comparable to those
from the full Bethe-Salpeter equation, albeit for a specific nanoribbon family. Then, we used our
proposed screening potential to solve the 1D Wannier-Mott equation, which turn out to be broad
approach, that is able to predict binding energies that match quite well the ones obtained with the
Bethe-Salpeter equation, irrespective of the nanoribbon family.

I. INTRODUCTION

Atom-thick quasi-one-dimensional (Q1D) semicon-
ducting systems hold promise as platforms for electronic
and optoelectronic applications owing to their tunable
band gaps and optical responses that cover a broad range
of the electromagnetic spectrum. According to previous
theoretical works, it is now well established that Coulomb
interactions play a key role in the transport and optical
properties of Q1D semiconductors [1–3]. More recently,
these predictions have also been observed experimentally
[4, 5].

Coulomb screening plays a fundamental role in deter-
mining a wide range of physical properties in solids and
molecular systems [6, 7]. In particular, screened Coulomb
interactions are critical for the formation of excitonic
states. In conventional three-dimensional bulk semicon-
ductors, excitons are weakly bound (a few to tens of meV)
due to the large environmental screening [8, 9]. How-
ever, systems of reduced dimensionality (2D and 1D) ex-
hibit strongly bound excitons as a consequence of the re-
duced dielectric screening they experience, resulting from
significant changes in the dielectric environment [4, 10].
Theoretically, the exciton binding energy can be accu-
rately determined by solving the Bethe-Salpeter equation
(BSE) within a framework of first-principles methods
based on many-body perturbation theory [11, 12]. How-
ever, this is very computationally demanding and can
only be calculated for relatively small systems. Since the
enhanced electron-hole interactions in low-dimensional
semiconductors considerably impact their optical prop-
erties, simplified models for the screened Coulomb po-
tential that are able to predict exciton binding energies
and radii for realistic materials are highly desirable. Ad-
ditionally, these models may provide useful insights that
might be hidden by more complex calculations.

In this regard, the simple soft-Coulomb and modi-
fied Kratzer potentials have been used as an alternative
to include effects of screening in some 2D semiconduc-
tors [13], yielding reasonable binding energies for exci-
tons [14, 15], and interlayer excitons [16]. Moreover, the
Rytova-Keldysh potential [17, 18], and its extended form
for truly 2D semiconductors [19], which depends on the
polarizability of the material, has also been successfully
used to account for the electron-hole interaction.

While considerable theoretical advances have been
made in modeling screened potentials in 2D semicon-
ductors, describing electron-hole interactions in quasi-
one-dimensional (Q1D) semiconducting systems has typ-
ically relied on cusp-type [20], Yukawa-like [21], and
soft-Coulomb potentials [22–24]. Accurate models for
electron-hole interaction in carbon nanotubes (CNTs)
have been proposed, utilizing either fitted parameters
from first principles calculations or two-band models for
the dielectric function [25, 26]. However, the counterpart
for atom-thick 1D semiconducting ribbons is still lacking.
This is particularly critical given modern synthesis tech-
niques that have enabled the realization of novel atom-
thick quasi-one-dimensional (Q1D) nanostructures [27],
where excitonic effects dominate.

In this work, we propose a simple model to describe the
static dielectric response and screened Coulomb poten-
tial energy of any atom-thick Q1D semiconducting sys-
tem. These physical quantities are used to solve the 1D-
Wannier-Mott equation and study the excitonic effects of
fourteen semiconducting nanoribbons, including 12 arm-
chair graphene nanoribbons of different families, whose
exciton extension and binding energies, for the lowest-
excitonic state, compares well with calculations based on
the solution of the Bethe-Salpeter equation.
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II. MODELING AND DISCUSSION

The screening is modeled starting from the proposal
by Cudazzo et al. for 2D dielectrics [19]. Our model
initially considers an infinitely long narrow dielectric rod
that extends along the x-direction with width L (along
the y-direction) and thickness b (along the z-direction),
fully surrounded by vacuum. Then, a point charge with
charge density ρext(r) = eδ(r) is placed at the origin
of the dielectric, causing a redistribution of charges in
its surroundings, which is characterized by the induced
charge density ρind(r) = −∇ · P1D(rx). The induced
charge is restricted to the dielectric rod, and it is evalu-
ated at a point rx = (x, |y| ≤ L

2 , |z| ≤ b
2 ). The polariza-

tion is assumed to be proportional to the induced elec-
tric field P1D = α1DElocal, which enables us to rewrite
the induced density in terms of the total electrostatic
potential, ρind(rx) = −α1Dδ( L

2 − |y|)δ( b
2 − |z|)∇2ϕ(rx),

where α1D represents the 1D internal polarizability per
unit length of the system. Here, the delta functions
centered at the edges of the rod are mathematical ar-
tifacts chosen to avoid indeterminacy in certain definite
integrals that arise during the Fourier transform proce-
dure. Hence, in the limit of small L and b going to
zero, the induced charge density is effectively localized
on the surface of the Q1D system. The screened po-
tential is thus obtained by solving the Poisson equation,
∇2ϕ(r) = −4π[ρext(r) + ρind(r)], which, after some al-
gebra, allows us to write down the screened electrostatic
potential in reciprocal space,

ϕ̃1D(qx) =
2eK0( L

2 |qx|)
1 + 8α1Dq2

xK0( L
2 |qx|)

. (1)

Here K0 represent the zeroth-order modified Bessel func-
tion of the second kind. From the latter expression, one
can immediately define the 1D microscopic dielectric re-
sponse function

ε1D(qx) = 1 + 8α1Dq2
xK0

(
L|qx|

2

)
, (2)

which is clearly qx-dependent, reflecting its nonlocal na-
ture in real space. This expression bears similarity to the
dielectric function of single-wall carbon nanotubes ob-
tained within the random phase approximation (RPA),
with the exception of a factor that inherently describes
the cylindrical geometry of CNTs [28]. The reader is re-
ferred to Appendix A, which contains the full derivation
of equations (1) and (2).

In order to assess the validity of our dielectric screen-
ing model, we compare it with many-body quasiparticle
calculations obtained from first principles, for a variety
of semiconducting armchair graphene nanoribbons (AG-
NRs) with different lateral confinement sizes (widths).
Depending on the number of atoms N that define the
lateral width (see Fig. 1a), AGNRs can be classified into
three different families named N=3p, 3p+1, and 3p+2,
where p is an integer. Now it is well established, both
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FIG. 1. (a) Schematic representation of an armchair rib-
bon indicating the number of dimmer lines across the rib-
bon width. The ribbon is periodic along the x-direction. (b)
RPA ab initio static dielectric response function for a 4-AGNR
(solid blue line). The green line represents the fit to the func-
tion ε1D(qx) ≈ 1 − 8α1Dq2

x ln(qxL/4). The ribbon width and
polarizability per unit length are L = 5.54 Å and α1D = 2.59
Å2, respectively. The inset shows the dependence of α1D with
the quasiparticle band gap of fourteen different armchair rib-
bons. The dot, triangle, and diamond symbols differentiate
the different nanoribbon families, while the indices next to the
symbols indicate the nanoribbon index. The orange symbols
correspond to selected armchair boron nitride nanoribbons
(ABNR) [29]. The gray dashed line represents a fitted recip-
rocal function used as guide to the eyes.

theoretically and experimentally, that the three AGNR
families are semiconductors and that the band gap is re-
duced as the lateral width increases, following an inverse
relationship [30]. Hereafter, we used the nomenclature
N -AGNR to refer to the systems used in this work.

Figure 1b presents the ab-initio calculated q-dependent
dielectric function of a 4-AGNR obtained within the RPA
including local field effects. As expected, in the limit q
→ 0, the dielectric function is unity which indicates the
absence of long-range screening. For finite momentum
transfer, the dielectric function smoothly varies above the
unity value, reaching a maximum of approximately 1.2.
This indicates that microscopic effects, such as scattering
processes are indeed relevant. Since our semi-classical
approach is expected to be valid for small momentum
transfer, we can approximate Eq. (2) as ε1D(qx) ≈ 1 −
8α1Dq2

x ln(qxL/4) and easily extract α1D by performing
a fitting procedure using the ab initio calculations. The
result of this procedure is also shown in Fig. (1b) by the
green line. In practice, the 1D polarizability of any Q1D
system can be roughly estimated by the finite difference



3

0 1 2 3 4
x / L

-0.03

0

0.03

ρin
d
(x

) 4-AGNR

2 4 6 8 10
x / L

0

1

2

3

4

5
| W

(x
) 

| (
eV

)

4-AGNR Bare
4-AGNR Screened

0.5 1
x / L

0

0.05 14-AGNR

0

0.03

ρin
d
(x

)

5-AGNR

FIG. 2. Comparison between the screened and bare energy
potential energy for a 4-AGNR. The bare energy potential is
obtained by setting α1D = 0 in Eq. (4). The insets shows the
induced charge density distribution around a point charge at
x = 0. The polarizabilities per unit length for the 5- and 14-
AGNR are α1D=32.4 Å2, and α1D=183.6 Å2, respectively.

relation

α1D = 1 − ε(q1)
8q2

1 ln(q1L/4) , (3)

where q1 is a finite but small wave vector that in this
work is obtained from a fine uniform k-grid sample of
200 × 1 × 1. This procedure has already been employed
for estimating the polarizability per unit area of 2D sys-
tems, yielding reliable results [31]. It is also important
to analyze the dependence of the 1D polarizability per
unit length with the electronic quasiparticle band gap.
The inset of Fig. (1b) shows α1D for 14 nanoribbons
of different widths. The 1D polarizability is roughly in-
versely proportional to the QP band gap except for some
deviations occurring for wide band gap systems. This
result suggest that Q1D systems may host a universal
linear scaling law between the band gap and the exciton
binding energy as already observed in 2D systems [32].

Now, by inverse Fourier transforming Eq. (1) we ob-
tain the real space screened potential energy, W1D(x) =
eϕ1D(x),

W1D(x) = e2

2π

∫ ∞

−∞
dqxeiqxx 2K0( L

2 |qx|)
1 + 8α1Dq2

xK0( L
2 |qx|)

. (4)

This is the main result of this work, as it provides a single
particle potential for Q1D dielectrics that can be solved
numerically with relative care. In Fig. (2) we compare
the screened Coulomb potential energy of a 4-AGNR with
its bare counterpart (α1D = 0). As expected, at short
distances the effective Coulomb potential is considerably
reduced by screening effects, which results from attrac-
tive interactions between the induced and injected point
charge. At large distances, the system is unscreened
and follows the characteristic 1/x law. This asymptotic

trend can be easily demonstrated by analyzing the case
of a weakly screened system α1D → 0). Indeed, in this
limit, the quasi-1D screened potential presents an ana-
lytical solution of the form W1D(r) = e2[x2 + (L/2)2]− 1

2 ,
which shows that for long range interactions it follows
the characteristic Coulomb potential. Note that this
analytical form for the potential energy resembles the
widely used potential to describe electron-hole interac-
tions in polymers [23]. This particular behavior of our
screening model suggest that it can be potentially used
to describe polymeric systems more accurately. Interest-
ingly, at intermediate distances, the screened potential
slightly rises above the bare one, giving rise to an anti-
screening region, which has also been previously seen in
molecular systems [33] and carbon nanotubes [25, 26].
The origin of this phenomenon is related to the en-
hancement of repulsive interactions in the system. In
the supplemental material we show a comparison of the
effective electron-electron force for AGNRs of different
widths [34]. Given its Q1D nature, we argue that, in
principle, super Coulombic electron-electron interaction
may also play a crucial role in graphene-based electronic
waveguides[35–38].

In order to understand this phenomenon, in the up-
per panel of the inset, we plot the induced charge
density around the injected point charge ρind(x) =
e

2π

∫
dqx[ε(qx)−1−1]eiqxx, which exhibits a change of sign

and approaches zero at large distances. Hence, when the
interaction between the induced charge and the injected
charge is sufficiently attractive, this anti-screening effect
occurs.

We also investigate the effect of reducing the electronic
band gap (or, equivalently, increasing α1D) on the in-
duced charge density. The bottom panels of the inset in
Fig. (2) present ρind(x) for 5-AGNR and 14-AGNRs,
whose quasi-particle band gaps are 1.57 eV and 0.71
eV, respectively. These values are significantly smaller
than the 4-AGNR quasi-particle band gap (5.3 eV). As
in the previous case, the total induced charge density
integrates to zero; however, the small band gap semi-
conductors exhibit Friedel-like oscillations, which become
more pronounced with decreasing band gap and are ex-
pected to dominate in the semimetallic limit [39]. In
contrast to metallic systems, where Friedel oscillations
arise from the singularities of the integrand that deter-
mines ρind(x) and its derivatives [40], the physical origin
of the charge density oscillation in our semiconducting
systems is rather different and can be ascribed to the
enhancement of bound charges in the dielectric system
(increased polarizability) as the band gap is reduced (see
inset of Fig. 1b). This, in turn, originates from a strong
repulsion between bound charges and the impurity charge
that eventually produces rapidly damped oscillations.

We now proceed to study of the excitonic properties in
Q1D systems. Since in practice, one would desire a sim-
ple expression that roughly predicts the exciton binding
energy with only few electronic structure parameters, we
first tackle the problem considering the Wannier-Mott
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model for a 1D system subject to a bare Coulomb po-
tential that is screened by a constant dielectric function
that is dependent on the exciton quantum number n.
This yields the Rydberg equation (expressed in Hartree
units)

En
b = − µ

2ε2
nn2 , (5)

where n is the exciton quantum number. Following the
model proposed by Olsen et al. [31] for 2D semicon-
ductors, we assume the n-dependent dielectric to be an
average in reciprocal space,

εn = 2an

π

∫ 1/an

0
ε̃1D(qx)dqx, (6)

where an is the average n-dependent effective exciton
extension. For simplicity, we employ the model di-
electric function in the long wavelength limit (qx→0),
ε̃1D(qx) = 1−8α1Dq2

x ln(qxL/4). This corresponds to the
situation from Eq. (2) in which the electron wavelength
is much larger than the characteristic lateral confinement
of the Q1D system. Within this approximation, the di-
electric function neglects the microscopic effects occur-
ring at short distances. Nevertheless, we should mention
that the long wave limit is usually a good starting point
to describe many electron-electron interactions in solids
and quantum systems, and is widely used as it enables
one to deal with rather more simple analytical expres-
sions [41, 42]. Moreover, the average dielectric function
can be related to the 1D exciton extension via the ex-
pression

an = ⟨|x|⟩ = 3n2εn

2µ
. (7)

This relation is obtained by calculating the expectation
value of the absolute value of the position operator, tak-
ing into account the wave functions of a 1D hydrogen
atom (see Appendix for details). This definition en-
ables us to account for the enhanced exciton extension
of higher excitonic levels. After integrating Eq. (6), and
using Eq. (7) we obtain a simple transcendental equation

ε3
n − 2

π
ε2

n − 64α1Dµ2

81πn2

[
1 + 3 ln

(
6n2εn

µL

)]
= 0, (8)

that combined with Eq. (5), provides the exciton binding
energy of any Q1D atom-thick semiconducting system.

Fig. (3a) presents the n-dependent average dielec-
tric constant for three AGNRs that monotonically de-
cays with the exciton quantum number. For all cases,
ε1 yields a value close to unity, which is expected as we
are dealing with atom-thick systems surrounded mostly
by vacuum. Additionally, one can notice that the fac-
tor n2ε2

n should rapidly enhances with n, ensuring the
decrease of the binding energy for high level excitonic
states (see Eq. (5)). This result translates to enhanced
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FIG. 3. a) n-dependent static dielectric function versus the
exciton state number n for the 3-, 4-, and 5-AGNRs. The
dielectric function is computed by solving Eq. (8). The inset
shows the average exciton extension varying with the exci-
ton state number for the 4-AGNR, which is obtained with
Eq. (7). (b) Binding energy for the lowest-energy bright ex-
citons in twelve different AGNRs as a function of the expec-
tation value of their exciton extension. The labels represent
the index of each AGNR. The symbols represent the different
AGNR families. The horizontal (vertical) axis is normalized
to results obtained by solving the full Bethe-Salpeter equa-
tion binding energy (width of the N-AGNR). The inset shows
the dependence of the logarithmic factor in Eq. (8) with the
reduced mass.

values for the expectation value of the exciton radius for
higher n, as seen in the inset of Fig.(3a).

The validity of Eq. (8) is clearly limited by the behav-
ior of the logarithmic function, which strongly depends
on the width and reduced effective mass of the Q1D sys-
tem. Our simulations show that Eq. (8) yields real values
for εn as long as ln(6n2/µL) ≥ 0. In Fig. (3b), we present
the exciton binding energy for n = 1, obtained with the
simplified model and normalized to results obtained by
solving the full Bethe-Salpeter equation as a function of
the normalized exciton extension. The binding energies
computed within the BSE approach are listed in the sup-
plemental material [34] (see also references [29, 55–63]
therein). For a1/L < 1, the simplified screened hydrogen
model reproduces the BSE results fairly well. Interest-
ingly, the best agreement occurs for GNRs of the family
3p+1. This is due to equilibrium between the numerator
and denominator of the logarithmic function, which pre-
vent its rapid growth in Eq. (8). This behavior is shown
in the inset of Fig. (3b) for the three GNR families. For
larger values of a1/L, however, the model underestimates
the exciton binding energies by up to a factor of two for
GNRs in the 3p + 2 family. Based on these trends, we
expect the analytical screened hydrogen model to repro-
duce the BSE results for n = 1 in semiconducting systems
where the term ln(6n2εn/µL) in Eq. (8) smoothly varies
around unity. It is worth mentioning that the ability of
the analytical model to accurately estimate binding ener-
gies for different systems may be, in principle, improved
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dots) approaches, for the 4-AGNR. The right-handed figure
presents a comparison of the normalized electron distribution
along the ribbon axis for (b) the first , (c) second, and (d)
third bright exciton state of a 4-AGNR.

by considering explicitly the odd and even parity solu-
tions for the eigenfunctions of the 1D Hydrogen atom
Hamiltonian, considering a cut-off potential of the form
V (x) = e2

|x|+γz0
. Indeed, in this case, the binding energy

is proportional to 1/(n+δ)2, where delta depends on the
cut-off γz0 and the eigenfunctions [20, 43]. However, this
procedure precludes one from attaining an analytical ex-
pression for the binding energy and will not be addressed
in this work.

Although we have shown that using the binding ener-
gies obtained from Eq. (8) we are able to predict rea-
sonably well the BSE results under some constraints, we
now turn to a still simple yet more accurate description
to predict the exciton binding energy of Q1D semicon-
ductors.

Now we consider the Wannier model for excitons [43,
44], which relies on the effective mass approximation for
an electron-hole pair. The exciton binding energy of a
quasi-one dimensional system can be obtained by solving
the one-dimensional Schrödinger equation,[

−ℏ2

2µ

∂2

∂2x
+ W1D(x)

]
Ψ(x) = En

b Ψ(x), (9)

where µ = memh/(me+mh) is the reduced effective mass
of the electron-hole pair, and W1D(x) represents the real-
space screened electron-hole potential defined in Eq. (4).

In Fig. (4a), we compare the lowest-energy exci-
tonic state obtained by fully ab initio solving the Bethe-
Salpeter equation with the results obtained via the nu-
merical solution of Eq. (9) for 14 different nanoribbons

[34]. Overall a very good agreement is observed for the
entire range of energies for the twelve AGNRS. We also
tested our model in two armchair hexagonal boron nitride
nanoribbons (ABNR), namely 6-ABNR and 8-ABNR,
identified in Fig. (4a) by the orange symbols and avail-
able in literature [29]. This result suggests that our model
may be potentially used in different planar Q1D semi-
conducting systems. To explore the predictability of our
model for excited states, in the inset of Fig. (4a) we
compare the 10 lowest excitonic states obtained with our
model with those obtained from BSE calculations for the
4-AGNR. From this comparison we noted that the model
can also describe excited states binding energies.

In order to quantitatively assess the extending range
of excitons, in Fig. (4b-d), we present the projected elec-
tron density along the ribbon obtained from the solution
of the BSE and compare it with the envelope wave func-
tion obtained from Eq. (9). For the two lowest excitonic
states, the model of Eq. (9) is in accordance with the
BSE results, and for n = 3, the model is in qualita-
tive agreement but slightly underestimates the exciton
extension by approximately 15 %. These results suggest
that the proposed screening model is able to fairly re-
produce the BSE results for the lowest excitonic states
based solely on the reduced effective mass and the mate-
rial dependent 1D polarizability per unit length. These
two quantities can be accurately calculated at a mod-
est computational cost using standard density functional
theory methods.

At this point, we would like to highlight that our re-
sults for the real-space screened potential share some
striking similarities with those of semiconducting carbon
nanotubes. In these systems, for instance, it has been
theoretically predicted that the strength of the Coulomb
interactions is considerably enhanced for carrier separa-
tion distances larger than the nanotube diameter [26, 45].
This gives rise to the so-called super-Coulombic interac-
tions, a term coined to refer to the force between two
carriers at a given distance, which is stronger than the
force associated with Coulomb’s law for two electrons
in vacuum. Interestingly, our results for semiconduct-
ing AGNRs point in a similar direction, suggesting that
super-Coulombic interactions may also be observed in
graphene nanoribbons. Although the experimental verifi-
cation of super-Coulombic interactions is challenging, as
it requires ultra-clean samples and the design of poten-
tial traps based on multiple gates, experimental measure-
ments have confirmed the existence of enhanced forces
between electrons in carbon nanotubes. These measure-
ments have shown that in certain regions of space, the
measured force can be up to 5 times greater than the force
predicted by Coulomb’s law [46]. Indeed, this experi-
mental verification opens new avenues for understanding
the role of elementary charged interactions in Q1D sys-
tems, which may have significant implications for future
research in this field.

Another important aspect that our model can address
with modest computational cost is the characterization
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of the width and reduced mass dependence of binding en-
ergies for nanoribbons. While this characterization has
already been done for AGNRs [47], we argue that our
model may be employed to perform similar characteriza-
tions in other atom-thick nanoribbons, such as boron ni-
tride, silicene, and others. For instance, previous studies
conducted on CNTs have characterized the chirality and
diameter dependence of exciton binding energies, shed-
ding light on the crucial role of screening effects in ex-
citonic properties [45, 48]. We argue that characterizing
these properties can serve as a valuable guide for inter-
preting future experimental measurements.

Finally, we stress that in our study we have con-
sidered free-standing systems, although real quasi-one-
dimensional (Q1D) semiconductors are typically sur-
rounded by polarized environments such as metal or
semiconducting substrates. While the effect of substrates
has not been addressed in detail in our study, it is ex-
pected that surrounding dielectric materials will consid-
erably reduce the binding energies [30, 49]. In this re-
gard, we mention that our model can be extended to con-
sider substrate effects following the procedure recently
proposed by Riis-Jensen et al. [50].

III. CONCLUSIONS

In Summary, we proposed a simple dielectric screening
model for Q1D semiconductors that yield an analytical
expression for the macroscopic dielectric function in re-
ciprocal space which solely depends on the effective re-
duced mass, the system width, and the polarizability per
unit length. Based on a screened hydrogen model, we ob-
tained a simple equation for the level dependent dielectric
function εn and expectation value of the exciton radius
an which describes the excitonic effects of nanoribbons
of the 3p + 1 family. Moreover, the real space screening
potential is used to solve a 1D Schrödinger equation to
obtain exciton binding energies and wavefunctions, whose
values are in good agreement with those obtained from
the solution of an ab initio-based Bethe-Salpeter equa-
tion. We expect that this work stimulate future studies
on the characterization of excitonic effects in emergent
Q1D semiconducting systems, and may serve as a toy
model for interpreting future experimental measurements
where Coulomb interactions are crucial.
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FIG. 5. Schematic representation of the quasi-one-
dimensional system for modelling the screening. Here, we
consider an electron (-) and hole (+) in a ribbon, extending
along the x-direction, of width L and thickness b.

V. APPENDIX

A. Dielectric screening model for
quasi-one-dimensional dielectrics

Let’s consider the effect of inserting an impurity point
charge into a Q1D dielectric system represented in Fig.
(5). In response to the electric field associated with the
impurity, the local electrical charges slightly reorganize,
leading to the polarization of the system. Therefore,
one can distinguish between the impurity charge density
ρext(r) and the induced charge density ρind(r).

The screening is modeled by considering an effective
charge density of the form [51],

ρ(r) = ρext(r) + ρind(r). (10)

Within the linear response regime, the dielectric func-
tion is defined as the ratio of the Fourier transformed
displacement and electric fields, ε(q) = D̃(q)/Ẽ(q) along
the q-direction. From this definition and considering the
relation between scalar potentials and the fields, we ob-
tain:

ϕ̃(q) = ϕ̃ext(q)
ϵ(q) , (11)

Here, ϕ̃(q) and ϕ̃ext(q) are the Fourier transforms of
the screened and impurity scalar potentials, respectively.
Hereafter, we adopt Gaussian units, unless otherwise
stated. Now we solve Poisson’s equation,

∇2ϕ(r) = −4πρ(r) = −4π
[
ρext(r) + ρind(r)

]
, (12)

where the impurity charge density is placed at the origin
and expressed as,

ρext(r) = eδ(r). (13)

Here, we assume that the induced charge density is
ρind(r) = −∇ · P(r), while the polarization is propor-
tional to the local electric field P1D = α1DElocal. The
system is initially modeled as a narrow dielectric rod
extending in the x-direction with width L along the y-
direction, and thickness b along the z-direction. The in-
duced charge density is rewritten in terms of the screened



7

potential as:

ρind(rx) = α1Dδ(L

2 − |y|)δ( b

2 − |z|)∇2
xϕ(rx), (14)

here, α1D represents the dielectric’s polarizability per
unit length. It’s important to note that the induced
charge density is confined to the dielectric rod and eval-
uated at a point rx = (x, |y| ≤ L

2 , |z| ≤ b
2 ). The delta

functions centered at the edges of the rod serve as math-
ematical tools to avoid indeterminacy in certain definite
integrals encountered during the Fourier transform pro-
cedure. It’s noteworthy that in the limit of small L and b
approaching zero, the induced charge density effectively
localizes at the center of the Q1D system.

By introducing Eq. (13) and Eq. (14) into Poisson’s
equation, we arrive at the following expression,

∇2ϕ = −4πeδ(r) − 4πα1Dδ( b

2 − |z|)δ(L

2 − |y|)∂2ϕ

∂2x
,

(15)

which after applying the Fourier transform (F), can be
written as

F [∇2ϕ)] = −4πeF [δ(r)] − 4πα1DF
[
δ( b

2 − |z|)δ(L

2 − |y|)×

∂2ϕ

∂2x

]
.

(16)

The last term on the right-hand side of Eq. (16) can be
worked out separately

F
[
δ( b

2 − |z|)δ(L

2 − |y|)∂2ϕ

∂2x

]
= −q2

x

{
e−qz

b
2 e−qy

L
2 × Fx[ϕ(x, L/2, b/2)] + e−qz

b
2 eqy

L
2 Fx[ϕ(x, −L/2, b/2)]+

eqz
b
2 e−qy

L
2 Fx[ϕ(x, L/2, −b/2)] + eqz

b
2 eqy

L
2 Fx[ϕ(x, −L/2, −b/2)]

}
.

(17)

This expression can be simplified further by recogniz-
ing that a symmetric charge distribution (as assumed in
this model) corresponds to a symmetric potential. This
allows us to employ the relationships: ϕ(x, L/2, b/2) =
ϕ(x, −L/2, −b/2) = ϕ(x, −L/2, b/2) = ϕ(x, L/2, −b/2).
Hence, Eq.(16) can be expressed as

F [∇2ϕ)] = −4πeFδ(r)] + 16πα1D cos(qy
L

2 ) cos(qz
b

2)×

F
[
ϕ(x,

L

2 ,
b

2)
]
.

(18)

For very narrow and atom-thick systems, we consider
the limit as L and b approach zero. Therefore, we perform
a Taylor expansion of the sinusoidal terms and retain only
the lowest-order term, which yields:

F [∇2ϕ)] = −4πeF [δ(r)] + 16πα1Dq2
xFx

[
ϕ(x,

L

2 ,
b

2)
]
.

(19)

By now performing the Fourier transform of Eq. (19),

(q2
x + q2

y + q2
z)ϕ̃(q) ≈ 4π[e − 4α1Dq2

xϕ̃1D(qx)], (20)

where the one-dimensional Fourier transform of the
screened potential, appearing on the left-hand side of Eq.
(20) adopts the form,

ϕ̃1D(qx) = 1
(2π)2

∫ ∞

−∞
dqzdqyei L

2 qy ei b
2 qz ϕ̃(q). (21)

Following a similar procedure as in the 2D case [19], one
can isolate ϕ̃(q) from Eq. (20) to get,

ϕ̃(q) ≈ A(qx) + 4πe

q2
x + q2

y + q2
z

, (22)

where A(qx) = −16πα1Dq2
xϕ̃1D(qx) is defined as a func-

tion that depends exclusively on the momentum trans-
ferred along the wire. By introducing equation (22) into
Eq. (21) and keeping only the integrals that provide fi-
nite values, i.e, those containing odd functions, we obtain
an expression for the 1D Fourier transform potential

ϕ̃1D(qx) = A(qx)
4π2

∫ ∞

0
4 cos(L

2 qy)dqy

∫ ∞

0

cos( b
2 qz)

q2
x + q2

y + q2
z

dqz + e

π

∫ ∞

0
4 cos(L

2 qy)dqy

∫ ∞

0

cos( b
2 qz)

q2
x + q2

y + q2
z

dqz. (23)

Considering the following identity∫ ∞

0

cos( b
2 qz)

q2
x + q2

y + q2
z

dqz = π

2
√

q2
x + q2

y

e
b
2
√

q2
x+q2

y ≈ π

2
√

q2
x + q2

y

,

(24)

which is valid in the limit of atom-thick systems (b → 0).
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Then equation (23) adopts the form

ϕ̃1D(qx) = A(qx)
2π

∫ ∞

0

cos( L
2 qy)dqy√

q2
x + q2

y

dqy + 2e

∫ ∞

0

cos( L
2 qy)dqy√

q2
x + q2

y

ϕ̃1D(qx) ≈ A(qx)
2π

K0(L

2 |qx|) + 2eK0(L

2 |qx|) = −16πα1Dq2
xϕ̃1D(qx)

2π
K0(L

2 |qx|) + 2eK0(L

2 |qx|).

(25)

Now solving for ϕ̃1D(qx), we arrive to the expression for
the one-dimensional screened potential

ϕ̃1D(qx) =
2eK0( L

2 |qx|)
1 + 8α1Dq2

xK0( L
2 |qx|)

. (26)

Here L is the effective length scale that characterizes
the lateral confinement of a Q1D system and K0 is the
zeroth-order modified Bessel function of the second kind.
From Eq. (26), we notice that the term in the numerator
is the quasi-1D Fourier transform of the impurity point
charge potential [41, 52]. Thus, a direct comparison of
Eq. (26) with Eq. (11) allows us to identify the dielectric
function of a Q1D system,

ϵ1D(qx) = 1 + 8α1Dq2
xK0(L

2 |qx|), (27)

as presented in the main text.

B. Expectation value of the position operator

Consider the Schrödinger equation for an electron in
a one-dimensional singular Coulomb potential expressed
in atomic units [53]

−1
2

d2

dx2 Ψ(x) − 1
|x|

Ψ(x) = EΨ(x), (28)

whose general solution can be written as [54],

Ψn(x) =
√

2
n3 |x|(sgnx) exp(−|x|

n
)1F1(1 − n, 2,

2|x|
n

)
(29)

where 1F1 is the confluent hyper-geometric function.
The expectation value of the absolute value of the po-

sition operator ⟨|x|⟩ is the key quantity to characterize
the extension of the wavefunction. This can be computed
as,

⟨|x|⟩ = ⟨Ψn(x)||x||Ψn(x)⟩ =
∫ ∞

−∞
Ψn(x)|x|Ψ∗

n(x)dx.

(30)
Note that we do not compute ⟨x⟩ as it is formally zero
for any odd or even function. Considering Eq. (29) into
Eq. (30), we obtain the following expression

⟨|x|⟩ = 3n2

2 , (31)
which is expressed in Bohr radius units.If one is inter-
ested in considering the interaction between an electron
and hole with reduced mass µ in a dielectric environment
of permittivity ϵ then, Eq. (28) should be solved by per-
forming the following changes, me → µ, and e2

|x| → e2

ϵ|x| .
Under this considerations, the expression for the norm of
the expectation value of the position yields,

⟨|x|⟩ = 3n2ϵ

2µ
. (32)

This expression will be used to quantify the expectation
value of the exciton extension in Q1D systems.
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