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Bilinear magnetoresistance has been studied theoretically in 2D systems with isotropic cubic form
of Rashba spin-orbit interaction. We have derived the effective spin-orbital field due to current-
induced spin polarization and discussed its contribution to the unidirectional system response. The
analysed model can be applied to the semiconductor quantum wells as well as 2DEG at the surfaces
and interfaces of perovskite oxides.

I. INTRODUCTION

The magnetotransport is a phenomenon that is know
in condensed matter physics for more than hundred
years [1–3]. The associated magnetoresistance is cur-
rently also a hallmark of spin electronics, that was de-
veloped after the discovery of giant magnetoresistance in
metallic multilayers at the end of 80’s [4–6]. Nowadays
spintronics takes advantage of spin-to-charge intercon-
version effects [7–10] that lead to new magnetoresistance
phenomena such as spin magnetoresistance and various
unidirectional magnetotransport effects [11–16].

The magnetoresistance (MR) is typically a quadratic
function of the magnetic field (or magnetization)
amplitude. The linear scaling with magnetic
field/magnetization is rather unique and dictated
by specific symmetry requirements. Recently, the linear
dependence on the magnetic field has been reported in
single crystals of antiferromagnetic metals (i.e., TmB4),
where MR can be tuned from quadratic to linear one
depending on the orientation of magnetic field [17, 18].
It has been shown in recent years, that the spin-orbit
interaction can lead to spin-currents and non-equilibrium
spin polarization, that can coupled to the external mag-
netic field or equilibrium magnetization of the system
leading to unidirectional magnetotransport [19–23].
The unidirectional spin magnetoresistance in general
is a consequence of non-equilibrium spin polarization
at the interface of the hybrid structures consisting of
a ferromagnetic thin film and a layer of heavy metal
or topological insulator (TI). Interestingly, it has been
shown that the unidirectional magnetoresistance also
appears in nonmagnetic materials. This effect is called
bilinear magnetoresistance, BMR, as it scales linearly
with the charge current density and external magnetic
field. The BMR effect can be a consequence of the
strong spin-orbit interaction in systems with highly
anisotropic Fermi contours. This is for example a case
of TIs with strong hexagonal warping [19, 20]. In this
case the nonlinear spin currents appear in the system,
which in the presence of external magnetic field are
partially converted to the nonlinear charge current.
Another mechanism was proposed to explain the bilinear
magnetoresistance in systems with isotropic Fermi con-
tours. This mechanism is related to the non-equilibrium
spin-polarization (also known as inverse spin-galvanic

effect or Edelstein effect) that appears in the system
under external electric field and leads to the effective
spin-orbital field that couples to the electron spin. [22].
The Berry curvature dipole can also give contribution to
the unidirectional magnetotransport.

In this work we analyze the BMR in the 2D system
with isotropic cubic form of Rashba spin-orbit coupling
(SOC). Such a form of Rashba SOC can be found in
2DEG emerging in the semiconductor quantum wells as
well as 2DEG at the surfaces and interfaces of perovskite
oxides [22, 24–32]. The detailed description of the model
of 2DEG electron gas in the presence of isotropic cubic
Rashba SOC can be found, e.g., in [33, 34].

The paper is organised as follows. In sec. II we will
present the effective Hamiltonian describing 2DEG with
isotropic cubic Rashba coupling and formalism that will
be used to describe transport characteristics. Next, in the
sec. III, we will derive analytical expressions for charge
current density and non-equilibrium spin polarization in
the absence of external magnetic field. The main re-
sults will be presented in Sec. IV, where we will present
derived analytical expressions for bilinear magnetoresis-
tance. Next, we will present numerical results. The gen-
eral conclusions and summary will be provided in Sec. V.

II. MODEL AND METHOD

A. Effective Hamiltonian

We consider the effective Hamiltonian, obtained upon
two canonical transformations from 8 × 8 Luttinger
Hamiltonian for p-doped semiconductor quantum wells
with structural inversion assymmetry [35, 36], and takes
form [33]:

Ĥ =
ℏ2k2

2m∗ σ0 + iα(k3−σ+ − k3+σ−) + B · ŝ + Bso · ŝ, (1)

where k =
√
k2x + k2y is the wavevector amplitude, m∗

is the effective mass. The second therm describes the ef-
fect of cubic Rashba SOI [33] and is expressed by Rashba
coupling parameter, α, and k± = (kx± iky). In addition,
σ± = 1

2 (σx ± iσy), where σn (n = x, y, z) denotes n-th
Pauli matrix. Note that, mast and α are material pa-
rameters and are defined in A. The effect of the external
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in-plane magnetic field, B, is taken into account by the
Zeeman term, where B = {Bx, By, 0} is in the energy
units, that is B = gµBb (g - g-factor, µB - Bohr magne-
ton, b - magnetic field in Tesla), and spin operators are
2×2 matrices that can be written by the identity matrix
and Pauli matrices as:

ŝα =
∑

β=0,x,y,z

sαβσβ , (2)

where the coefficients sαβ are provided in A.
Finally, the last term in the Hamiltonian describes the
coupling of electron spins to the effective spin-orbital
field, Bso, that can be expressed by the non-equilibrium
spin polarization emerging due to the inverse spin-
galvanic effect and proportional to the charge current
density (and thus to the external electric field), i.e,
Bso ∼ S ∼ j. As the effective cubic Rashba model con-
sidered here is defined by much more complex spin opera-
tors, the coupling between spin polarization and electron
spin is defined by the two coupling constants: J0 that
couples non-equilibrium spin polarization to the part of
the spin operator proportional to the identity matrix σ0,
and coupling constant J1 that couples spin polarization
to the part of spin operator proportional to Pauli matri-
ces σx,y,

Bso · ŝ = J0Sαs
α
0σ0 + J1Sα(sαxσx + sαyσy) (3)

where Sα is α-th component of the non-equilibrium spin
polarization. The coupling constants J0,1 have been
derived and presented in B. Here we stress that non-
equilibrium spin polarization induced by the charge cur-
rent in 2DEG with isotropic cubic Rashba SOC has been
studied recently in detail by Karwacki et al. [34]. Here,
we will use the general results for current-induced spin
polarization presented in [34], and adapt them to derive
the theoretical description of BMR.

B. Model assumptions

Without losing the generality in our further analysis
the external electric field is applied in the x-direction.
This means that current-induced spin polarization, under
zero magnetic field, has only y-component. We focus on
the (unidirectional) bilinear correction to the magnetore-
sistance, i.e., we characterize the term in magnetoresis-
tance that is proportional to the in-plane magnetic field
and simultaneously to the charge current density (elec-
tric field). The higher order terms with respect to B
and j, that can eventually appear and lead to additional
corrections in magnetoresistance (e.g., in strong magnetic
fields) are not considered here. Accordingly, we treat per-
turbatively the terms proportional to the in-plane mag-
netic field and spin-orbital field in Hamiltonian (1), i.e.,
H = H0 +Hpert, where:

H0 =
ℏ2k2

2m∗ σ0 + iα(k3−σ+ − k3+σ−), (4)

and the perturbation is defined as:

Hpert =
∑

β=0,x,y

beffβ σβ (5)

where

beff 0 = Bxs
x
0 + (By + J0Sy)sy0 (6)

beff x = Bxs
x
x + (By + J1Sy)syx (7)

beff y = Bxs
x
y + (By + J1Sy)syy (8)

Thus, the Hpert has a form of Zeeman-like term acting
in the pseudospin space.

Note, that the effective spin-orbital field is approxi-
mated in our calculations by the non-equilibrium spin
polarization under zero magnetic field. This simplifi-
cation is justified as the additional components of spin
polarization that appear in the presence of an external
magnetic field are a few orders of magnitude smaller than
the component which survives under zero magnetic field.
The magnetic field contribution to the leading term of
spin polarization results in higher order terms in magne-
toresistance that are neglected here.

C. Method

To obtain magnetotransport characteristics, we have
used Matsubara-Green’s function formalism within linear
response theory [37] and used the following formula for
the quantum-mechanical average value of the observable,
On corresponding to the operator Ôn:

Oα = − lim
ω→0

eEβℏ
(2π)3ω

∫
d2k

∫
dεf(ε)Tr

{
ÔαG

R
k (ε+ ω)v̂β∆RA

k (ε)

+ Ôα∆RA
k (ε)v̂βG

A
k (ε− ω)

}
(9)

where ∆RA
k (ε) =

[
GR

k (ε) −GA
k (ε)

]
and G

R/A
k (ε) is the

retarded/advanced Green function related to the Hamil-

tonian Ĥ0. Derivation of this formula can be found, e.g.,
in [34, 37, 38]. The operator corresponding to n-th com-
ponent of the charge current density is

ĵα = ev̂α =
e

ℏ
∂Ĥ0

∂kα
, (10)

and spin-polarization should be derived using the spin
operators given by Eq. (2).

III. SPIN-TO-CHARGE INTERCONVERSION:
LIMIT OF ZERO MAGNETIC FIELD

In the first step we consider 2DEG with cubic Rashba
SOC under zero magnetic field. Based on Eq. (9) the
general relation between dc charge current density and
spin polarization can be derived. This relation is starting
point for our further consideration of nonlinear magne-
totransport.
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A. Charge current density

In the dc limit, the charge current density, calculated
based on Eq. (9), takes the following form:

jx = − e2ℏEx

4πΓ0

∫
dk

{
3αk4

m
[f ′(E+) − f ′(E−)]

+
k3ℏ2

2m2
[f ′(E+) + f ′(E−)]

+
9α2k5

2ℏ2

(
1 +

1

(αk3/Γ)
2

+ 1

)
[f ′(E+) + f ′(E−)]

}
(11)

In the low-temperature limit, the above expression leads
to:

jx =
e2ℏEx

4πΓ

{
9α2

2ℏ2
(
k4F−ν− + k4F+ν+

)
+

3α

m

(
k3F+ν+ − k3F−ν−

)
+

ℏ2

2m2

(
k2F−ν− + k2F+ν+

)
+

9α2

2ℏ2

(
k4F−ν−(

αk3F−/Γ
)2

+ 1
+

k4F+ν+(
αk3F+/Γ

)2
+ 1

)}
(12)

where kF± are the Fermi wavevectors [39]:

kF± = ∓1

2

ℏ2

2mα

(
1 −

√
1 − 4πn

(
2mα

ℏ2

))

+

[
−1

2

(
ℏ2

2mα

)2
(

1 −

√
1 − 4πn

(
2mα

ℏ2

))
+ 3πn

]1/2
(13)

with n denoting the charge carrier density and ν± having
sense of density of states:

ν± =
m

ℏ2
(
1 ± 3αm

ℏ2 kF±
) (14)

In the presence of randomly distributed point-like impu-
rities, the relaxation rate, Γ = ℏ

2τ (τ is the relaxation

time), takes the form Γ = niV
2
0 (ν+ + ν−) /4 where ni

is the concentration of impurities and V0 is the impurity
potential.

B. Current-induced spin polarization

The non-equilibrium spin polarization, Sy, in dc limit
takes the form:

Sy = − eℏEx

4π
s0

∫
dk

{
3αk4

2Γ
[f ′(E+) − f ′(E−)]

+
k3ℏ2

2mΓ
[f ′(E+) + f ′(E−)]

}

− eℏEx

4π
s1

∫
dk

{
k4ℏ2

2mΓ
[f ′(E+) − f ′(E−)]

+
3α

2
k5

(
1

Γ
+

1

(k6α2 + Γ2)

)
[f ′(E+) + f ′(E−)]

}
,

(15)
that in the low-temperature limit can be written as:

Sy =
eℏEx

8πΓ
s0

{
ℏ2

m

(
k2F+ν+ + k2F−ν−

)
+ 3α

(
k3F+ν+ − k3F−ν−

)}

+
eℏEx

8πΓ
s1

{
3α

(
k4F+ν+ − k4F−ν−

)
+

ℏ2

m

(
k3F+ν+ + k3F−ν−

)
+3α

[
k4F+ν+(

αk3F+/Γ
)2

+ 1
+

k4F−ν−(
αk3F−/Γ

)2
+ 1

]}
. (16)

Note that in the above expressions s0,1 are material pa-
rameters, that characterize the material and define the
spin operators. Their explicit forms are provided in A.
Combining (12) and (16) it is possible to express the spin
polarization by the charge current density:

Sy =
s0Ss0 − s1Ss1

eξ
jx (17)

where ξ = 3α
ℏ2

(
k3F+ − k3F−

)
+ 1

m

(
k2F+ + k2F−

)
.

In the limit of γ1 ≫ γ2 one finds:

Sy = s0
m

e
jx, (18)

where

jx =
e2

4π
ξτEx. (19)

with τ denoting relaxation time linked to the relaxation
rate, Γ, through the simple relation Γ = ℏ/(2τ).

IV. MAGNETORESISTANCE

A. Longitudinal charge conductivity in the
presence of magnetic field

The current-induced spin polarization determines the
spin-orbital field. Treating the effective field beff as a
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FIG. 1. Feynman diagrams for diagonal conductivity up to
the second order perturbation due to beff .

perturbation the diagonal conductivity can be expressed
as:

σxx =
jx
Ex

=
e2ℏ
2π

∫
d2k

(2π)2
Tr{v̂xḠR

k v̂xḠ
A
k } (20)

where Ḡ
A/R
k are impurity-averaged advanced and

retarded Greens’ functions in the weak magnetic

field limit: Ḡ
R/A
k = G

R/A
k + G

R/A
k HpertG

R/A
k +

G
R/A
k HpertG

R/A
k HpertG

R/A
k . Note that contributions re-

lated to two retarded and two advanced Green’s functions
(see Eq. (9)) have been neglected, as they do not affect
the final results.

Based on Eq. (20) and diagrammatic theory one finds
six diagrams, depicted in Fig. 1, that can be grouped into
three terms, according to the order of perturbation:

σxx =
e2ℏ
8π3

(D1 + D2,3 + D4−6) (21)

The first diagram, related to the expression D1 describes
the conductivity in the absence of beff , and is given by:

D1 = π2

[
ξ

Γ
+

9α2Γ

ℏ2

(
k4−ν−

Γ2 + α2k6−
+

k4+ν+

Γ2 + α2k6+

)]
,

(22)
which in the low-impurity concentration limit, Γ → 0,
leads to:

D1 = π2 ξ

Γ
. (23)

The second and the third diagrams do not contribute,
as D2,3 = 0. The diagrams (4) − (6) lead to D4−6 that
contains B-linear and B-quadratic terms:

D4−6 =
[
B2
(
FB2

1 + FB2

2 cos(2ψ)
)

+B sin(ψ)SyFjB
]
,

(24)
with Fs being rather cumbersome functions of k±, ν±
and α, thus not shown here.

B. Bilinear magnetoresistance

The magnetoresistance can be expressed in a standard
form BMR = (ρxx − ρ0

xx)/ρ0
xx, where ρ0

xx = 1/σ(1)
xx is the

diagonal resistance in the absence of magnetic field and
ρxx = 1/(σ(1)

xx + σ(4−6)
xx ). Note that the transverse conduc-

tivity, σxy, (planar Hall effect) is much smaller than σxx
and has been neglected here.

The unidirectional (bilinear) contribution to magne-
toresistance is defined as:

BMR =
1

2
[MR(jx = j) − MR(jx = −j)] . (25)

Since the effect of in-plane magnetic field is assumed
to be small, i.e., D1 ≫ D4−6, the diagonal resis-
tance can be written as ρxx = ρ0

xx(1 −D4−6/D1),
and BMR can be described as BMR =
− [D4−6(jx = +j) −D4−6(jx = −j)] /(2D1). Finally, the
BMR can be written in the form:

BMR = −jxB sin(ψ)

eξ2
(s0Ss0 − s1Ss1)

×
[
J0s

2
0Cs0 + (J0 + J1)s0s1Cs0s1 + J1s

2
1Cs1)

]
,

(26)
where

Cs0 =

[
15

2ℏ2
(ν+ + ν−) − 3ℏ2

2m2

(
ν3+ + ν3−

)
− 9α

4m

(
k+ν

3
+ − k−ν

3
−
)]

(27a)

Cs0s1 =

[
− 6

αℏ2
− 9α

4m

(
k2−ν

3
− + k2+ν

3
+

)
+

9

4m

(
k+ν

2
+ − k−ν

2
−
)

+
3

αm
(ν− + ν+)

]
(27b)

Cs1 =

[
9α

4m

(
k3+ν

3
+ − k3−ν

3
−
)
− 3

m

(
k2−ν

2
− + k2+ν

2
+

)
+

2

αℏ2
(k+ − k−) +

29

4αm
(k−ν− − k+ν+)

]
(27c)

Eq. (26) is the main result of this article.

C. The limit: γ1 ≫ γ2

When γ1 ≫ γ2, the coefficients s0 ≫ s1 and J0 ≫ J1.
In such a case the spin polarization and charge current
density are given by Eqs. (18), (19), whereas the spin-
orbital field Bso ≈ J0Sy. The expression describing bi-
linear magnetoresistance simplifies to

BMR = −jxB sin(ψ)

eξ2
J0s

3
0Ss0Cs0. (28)

Taking explicit forms of J0, Ss0, Cs0 we finally get the
following formula:

BMR =
3

4
πs0

ℏ
e

η

ξ2
jxB sin(ψ) (29)

where η = ℏ2

m

(
10(ν− + ν+) + ℏ2

m (ν2− + ν2+) − ℏ4

m2 (ν3− + ν3+)
)

.
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FIG. 2. Bilinear magnetoresistance, BMR, as a function of the angle ψ (the angle between the in-plane magnetic field and
x̂-axis) for different values of magnetic field, b, (a,b). The amplitude of BMR, ABMR = BMR(ψ = 3π/2), as a function of
carrier density, n, for the indicated values of magnetic field, b (c) and for the indicated values of the quantum well potential,
eF/eF0, (d). ABMR as a function of the external electric field, eEx, for the indicated values of magnetic field, b, and for the
carrier density n = 1 · 1012 cm−2 (e) and n = {1, 7.5} · 1012 cm−2 (g). ABMR as a function of the in-plane magnetic field, b, for
the indicated values of electric field, eEx, and for the carrier density n = 1 · 1012 cm−2 (f) and n = {1, 7.5} · 1012 cm−2 (h).
The solid lines represent the total formula on BMR, Eq. (26), while the light dashed lines correspond to the formula in the
limit γ1 ≫ γ2, Eq. (28), i.e., for s1 = 0 and J1 = 0. Other parameters are taken from Refs. [26, 34] for an STO-surface, i.e.,:
eF0 = 450 · 106 eV/m, γ1 = 0.66, γ2 = 0.003, Lz = 100 · 10−10 m, m = 1.5m0 and J1/J0 ∼= −0.23.

D. Numerical results

Figure 2 collects numerical results, obtained based on
formula (26). Figures 2 (a),(b) present the BMR as a
function of the angle ψ defining the relative orientation
of charge current density and external in-plane magnetic
field (i.e., ψ defines the orientation of in-plane magnetic
field with respect to the x̂-axis). Linear dependencies of
the BMR signal amplitude, ABMR, as a function of the
amplitude of magnetic field, b, and electric field, eEx, are
presented in Figs. 2(e)-(h). Finally Fig. 2(c) shows ABMR

as a function of the carrier concentration, n, for the
fixed amplitude of the in-plane magnetic field b, whereas
Fig. 2(d) presents ABMR as a function of n for the fixed
strength of quantum well potential, eF . The presented
results reflect the linear dependence of BMR with re-
spect to both electric and magnetic fields. Moreover, for
the low carrier density, the simplified expressions (29),
(30) and (39) are sufficient to describe the charge cur-
rent, spin polarization, and BMR. In Fig. 2, the results
obtained from the simplified expressions are indicated by
the dashed lines, whereas the solid lines present the BMR
described by the full expression (37). For higher charge
carrier concentrations, one can note a deviation of the re-
sults obtained form the simplified expression from those
based on the full formula. In turn, the BMR signal de-
creases with increasing n. Accordingly, the simplified

expression is sufficient in the carrier concentration range
for which one can expect the strongest BMR signal.

V. SUMMARY

We have studied theoretically the unidirectional mag-
netoresistance in a 2D electron gas with the isotropic
cubic form of Rashba spin-orbit coupling under external
in-plane magnetic field. The mechanism leading to the
unidirectional magnetoresistance response is here based
on the effective spin-orbital field originated from non-
equilibrium spin polarization. The obtained analytical
results indicate that BMR can be of an order of a few
percent in a range of low carrier densities. The results
presented in the manuscript have been derived for the
model Hamiltonian that may be used for the descrip-
tion of electronic properties of p-doped semiconductor
quantum wells as well as for the description of electron
gas emerging at surfaces or interfaces of perovskite ox-
ides (for a certain energy window). Thus, these results
may be useful for interpretation of experimental data of
a relatively large group of materials. For example, the
bilinear magnetoresistance has been measured recently
in LAO/STO [22], where a new scheme for determining
the linear Rashba parameter has been proposed. The
theoretical model provided in our article allows deter-
mining the cubic form of Rashba coupling parameter
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in such structures, with chemical potential gated above
the Lifshitz point, where energy subbands reveal strong
anisotropy due to cubic Rashba term.
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Appendix A: Linking the effective Hamiltonian (1)
to the materials parameters

This appendix collects explicit forms of the parameters
and spin operators corresponding to Hamiltonian (1).
Accordingly, the effective mass takes the form:

m∗ = m0

(
γ1 + γ2 −

256γ22
3π2(3γ1 + 10γ2)

)−1

, (A1)

with the electron rest mass m0, and γ1,2 denoting
phenomenological parameters of the Luttinger Hamilto-
nian [35, 36].

The Rashba coupling parameter, α is defined by the
following expression:

α =
512eFL4

zγ
2
2

9π6(3γ1 + 10γ2)(γ1 − 2γ2)
(A2)

where Lz and eF are the width and potential of the quan-
tum well, respectively.

Hamiltonian (1) has been obtained perturbatively
based on 8 × 8 Luttinger Hamiltonian and mapping into
the lowest heavy-hole subbands [33], thus, spin opera-
tors are no longer simply expressed by Pauli matrices
σn. To obtain proper spin operators one needs to per-
form the same unitary transformations as that made to
obtain Hamiltonian (1) [33]. The explicit forms of spin
operators are listed below:

ŝα =
∑

β=0,x,y,z

sαβσβ , (A3)

sx0 = −s0ky, sy0 = s0kx, sxx = syy = s1(k2x − k2y),
sxy = 2s1kxky, syx = −sxy , sz0 = szx = szy = 0, szz = 3ℏ/2.
The parameters s0,1 are material parameters defined as
follows:

s0 =
512eFL4

zγ2m0

9π6ℏ2(3γ1 + 10γ2)(γ1 − 2γ2)
(A4)

s1 =

(
3

4π2
− 256γ22

3π4(3γ1 + 10γ2)2

)
L2
z. (A5)

It should be stressed that in the energy window for
which the considered model Hamiltonian is applicable

(i.e., small carriers concentration) one finds γ1 ≫ γ2 and
contribution to the spin-dependent transport properties
proportional to s1 is rather small, and can be negligible
(see for example data collected in Tab. I in [34]). In such
a case:

ŝx ≈ −s0kyσ0, ŝy ≈ s0kxσ0, ŝz =
3

2
σz (A6)

Hpert = beff 0 σ0 (A7)

In this paper, we consider magnetoresistance for the gen-
eral effective Hamiltonian, as well as for the simplified
model that leads to simpler analytical expressions appli-
cable in the limit γ1 ≫ γ2.

Appendix B: Estimation of J0,1 parameter

Under an external electric field, the Fermi contour is
shifted in the momentum space by ∆kx = − eτ

ℏ Ex. In
turn, the diagonal charge current density is given by
eq. (19) (the leading term), thus one finds the relation
between ∆kx and jx in the form ∆kx = − 4π

eℏξ jx.

Due to the correction originating from the non-
equilibrium shift in the momentum space, the Hamil-
tonian H0, Eq. (4), takes the form H0(kx + ∆kx) =
H0 +H∆kx , where:

H∆kx =
ℏ2

2m
kx∆kxσ0 + 6αkxky∆kxσx

−3α(k2x − k2y)∆kxσy + O((∆kx )
2

). (B1)

In turn, the effective spin-orbital field introduced to our
theory in (1) is defined as:

Bso y ŝy = JSy ŝy = JSys0kxσ0 − JSy2s1kxkyσx

+JSys1(k2x − k2y)σy (B2)

By the comparison of terms standing in front of the same
Pauli matrices in Eq. (B1) and Eq. (B2) one finds:

JSys0 =
ℏ2

2m
∆kx (B3)

−s1JSy = 3α∆kx (B4)

s1JSy = −3α∆kx (B5)

Accordingly, the above relations indicate that two cou-
pling constants should be introduced. From the first
equality, one finds J = J0, whereas the second and third
equalities are identical and result in J = J1. Thus the
parameters J0,1 reads

J0 = − 2πℏ
ms0

(s0Ss0 − s1Ss1)−1 (B6)

J1 =
4π

ℏ
3α

s1
(s0Ss0 − s1Ss1)−1 (B7)
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where

Ss0 = 3α
(
k3F−ν− + k3F+ν+

)
+

ℏ2

m

(
k2F−ν− + k2F+ν+

)
= k2F+ + k2F− (B8a)

Ss1 = 3α
(
k4F−ν− + k4F+ν+

)
+

ℏ2

m

(
k3F−ν− + k3F+ν+

)
= k3F+ − k3F− (B8b)
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M. Opel, S. Takahashi, R. Gross, G. E. W. Bauer, S. T. B.
Goennenwein, and E. Saitoh, Spin hall magnetoresistance
induced by a nonequilibrium proximity effect, Phys. Rev.
Lett. 110, 206601 (2013).

[13] J. Kim, P. Sheng, S. Takahashi, S. Mitani, and
M. Hayashi, Spin hall magnetoresistance in metallic bi-
layers, Phys. Rev. Lett. 116, 097201 (2016).

[14] C. Avci and A. e. a. Garello, K.and Ghosh, Unidirectional
spin hall magnetoresistance in ferromagnet/normal metal
bilayers, Nature Phys. 11, 570–575 (2015).

[15] Y. Lv, J. Kally, D. Zhang, J. S. Lee, M. Jamali,

N. Samarth, and J.-P. Wang, Unidirectional spin-Hall
and Rashba-Edelstein magnetoresistance in topological
insulator-ferromagnet layer heterostructures, Nat. Com-
mun. 9, 1 (2018).

[16] Y. Tokura and N. Nagaosa, Nonreciprocal responses from
non-centrosymmetric quantum materials, Nature Com-
mun. 9, 3740 (2018).

[17] S. Mitra, J. G. S. Kang, J. Shin, J. Q. Ng, S. S. Sunku,
T. Kong, P. C. Canfield, B. S. Shastry, P. Sengupta, and
C. Panagopoulos, Quadratic to linear magnetoresistance
tuning in TmB4, Phys. Rev. B 99, 045119 (2019).

[18] Y. Feng, Y. Wang, D. M. Silevitch, J.-Q. Yan,
R. Kobayashi, M. Hedo, T. Nakama, Y. Ōnuki, A. V.
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G. Singh, S. McKeown-Walker, F. Trier, L. M. Vicente-
Arche, A. Sander, S. Valencia, P. Bruneel, M. Vivek,
M. Gabay, N. Bergeal, F. Baumberger, H. Okuno,
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