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We investigated the behavior of fractional quantum Hall (FQH) states in a two-dimensional elec-
tron system with layer thickness and an in-plane magnetic field. Our comparisons across various
filling factors within the first Landau level revealed a crucial observation. A slight in-plane magnetic
field specifically enhances the nematic order of the ν = 7/3 FQH state. For this particular filling,
through calculating the energy gap, the Ising nematic order parameter, the pair-correlation function,
and the static structure factor, we observed that as the in-plane magnetic field increases, the system
first enters into an anisotropic FQH phase without closing the spectrum gap, then the FQH nematic
(FQHN) phase after neutral gap closing. The system eventually enters a gapless one-dimensional
charge density wave (CDW) phase for a large in-plane field. We thus provide a full phase diagram
of the ν = 7/3 state in a tilted magnetic field, demonstrating the existence of the FQHN, which
aligns with recent resonant inelastic light scattering (RILS) experimental observations.

PACS numbers: 73.43.Lp, 71.10.Pm

I. INTRODUCTION

The fractional quantum Hall effect (FQHE) remains
one of the most interesting strongly correlated systems
for electrons moving in an effective two-dimensional man-
ifold.1,2 Generally speaking, the ground states of the
FQH liquid are incompressible with topological order,
that is, order without dependence on any symmetries.3

Additionally, spontaneous breaking of symmetry within
the FQH liquid can potentially give rise to electronic liq-
uid crystal phases, such as nematic, smectic, and stripe
order.4–12 A particular area of interest arises when these
distinct phases coexist, leading to quantum liquid crys-
tal phases like fractional quantum Hall nematic phases.
The concept of fractional quantum Hall nematic effect
(FQHN) was originally proposed by Balents13 which was
recently discovered in experiments.14,15 These phases
have been experimentally observed in transport measure-
ments.16 By manipulating factors such as the in-plane
magnetic field,17,18 valley occupancy through the appli-
cation of in-plane strain19–21 or magnetoresistance mea-
surements under hydrostatic pressure22–24 researchers
have observed systems exhibiting anisotropic longitudi-
nal resistivity that is enhanced at low temperatures,
along with a robust Hall conductivity plateau. The ne-
matic state is fully translationally invariant but lacks ro-
tational invariance. It can be visualized as stripes that
fluctuate strongly and are riddled with dislocation de-
fects but retain a preferential alignment in one direction.
To definitively confirm the existence of a nematic phase,
it is crucial to simultaneously investigate both rotational
symmetry and translational invariance. However, previ-
ous studies have mainly focused on the breaking of ro-
tational symmetry without achieving long-range transla-
tional invariance. Only recently, with the work reported
in Ref. 25, there has been simultaneous evidence of bro-
ken rotational symmetry and translational invariance, al-
lowing the identification of nematic phases.

Theoretical investigations, including the Hartree-Fock
approximation and effective field theories, have predicted
a range of phases in addition to the expected Wigner
crystals. These include stripe phases, bubble phases,
and other crystalline states.26–31 These predictions have
been further elaborated upon by various field theory
approaches, which describe the incompressible nematic
phase using an effective gauge theory32,33 or by assum-
ing the softening of the magnetoroton mode.34,35 These
theories aim to capture the topological order and the ne-
matic order resulting from spontaneous symmetry break-
ing. Microscopic theories, on the other hand, focus on an-
alyzing the microscopic properties of FQHN in the ther-
modynamic limit, providing the necessary conditions for
the robustness of the nematic fractional quantum Hall
effect in microscopic Hamiltonians.36 Recent numerical
studies have further supported the existence of FQHN
phases in both bosonic and fermionic systems, with the
tuning of pseudopotential coefficients in a model Hamil-
tonian.37,38,66

The FQH states within the first Landau level (1LL) ex-
hibit smaller energy gaps and are generally more prone to
perturbations compared to those found in the lowest Lan-
dau level (LLL), as documented in various studies.39–43

Consequently, the spontaneous emergence of nematic or-
der, which involves the spontaneous breaking of rota-
tional symmetry without a preferred direction, may be
more feasible in higher LLs due to the reduced energetic
barrier required for its stabilization. Fractional quan-
tum Hall (FQH) states exhibit inconsistent responses de-
pending on the filling factor. In half-filling ν = 5/2, the
ground state is described as a p-wave paired superfluid,
as supported by numerous studies.44–47 However, in the
presence of a sufficiently large in-plane magnetic field,
the 5/2 FQH state transitions into a compressible ne-
matic phase.16,41,48–50 On the other hand, at ν = 7/3,
the application of even small in-plane magnetic fields
leads to a pronounced transport anisotropy that coex-
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ists with the quantized Hall plateau.14 To investigate the
FQH nematic phase at various filling factors within the
first Landau level (1LL), we chose to utilize the torus
geometry with translational invariance. The introduc-
tion of an in-plane magnetic field to the electrons intro-
duces anisotropy, thereby disrupting the rotational sym-
metry of the system. Recently, one of us generalized the
description of pseudopotentials to incorporate non-zero
non-diagonal pseudopotentials cm,n (where m ̸= n) that
do not conserve angular momentum. This generalization
enables the representation of system anisotropy in the
absence of rotational invariance.51,52

In this paper, we present a microscopic study in a real-
istic model examining the influence of in-plane magnetic
field and layer thickness on FQH states within the 1LL,
across different filling factors, especially at ν = 7/3. The
analysis is grounded in the pseudopotential description of
electron-electron interaction within an in-plane magnetic
field, accounting for finite layer thickness. The paper
is organized as follows. Section II reviews the single-
electron solution, delves into the pseudopotentials, and
analyzes their behavior with varying parameters. Section
III provides evidence for the existence of FQH states by
calculating the energy spectrum at the filling factor 7/3,
evaluating the magnitude of the correlation function, and
exploring the nematic phase within a specific parameter
range. We obtain the nematic phase for different filling
factors, findings that align with experimental results. Fi-
nally, Section IV concludes the article with a summary
of our findings.

II. MODEL AND METHOD

We explore the impacts of a magnetic field that pos-
sesses both a component perpendicular to the plane (B⊥)
and a component within the plane (B∥). Without loss
of generality, we assume that the in-plane field B∥ is
oriented along the x axis. In particular, the in-plane
magnetic field B∥ influences the system only when the
thickness of the two-dimensional electron gases (2DEG)
is significant. For simplicity, we consider the electrons
to be confined in the z-direction by a parabolic quantum
well potential represented by 1

2mω̃0z
2. The thickness of

the system is related to the characteristic width of the
harmonic well, defined as w0 = 1/

√
mω̃0, in which m

denotes the effective mass of the electrons and ω̃0 is the
angular frequency associated with the confinement po-
tential in the z direction. This assumption allows us to
simplify the problem by focusing solely on the electron
motion within the plane, while incorporating the finite
thickness of the system through the parameter w0. The
Hamiltonian for a single particle is then expressed as

H =
1

2m

∑
i=x,y,z

(pi + eAi)
2
+

1

2
mω̃2

0z
2 (1)

FIG. 1: (color online) When w0 = 1.25, the ratio of effective
interaction in two directions as a function of the circular ra-
dius q under different parallel magnetic fields. The inset is
the 2D distribution of Veff(q⃗) at ωx = 3.0.

Similar to the special case where B∥ is absent, the Hamil-
tonian can be expressed in a diagonal form as

H = ω1X
†X + ω2Y

†Y + constant. (2)

where (X,X†) and (Y, Y †) are two sets of decoupled
bosonic operators obeying the canonical commutation
relation [X,X†] = [Y, Y †] = 1 and [X,Y ] = 0. They
are linear combinations of the canonical momentums
πi = pi + eAi and π4 = mω̃0z. The details of the di-
agonalization procedure can be found in Ref. 53. The
quasi-particle eigenenergy is given by ω2

1 = 1
2 (ω̃

2
0 + ω2

x +

ω2
z −

√
−4ω̃2

0ω
2
z + (ω̃2

0 + ω2
x + ω2

z)
2), ω2

2 = 1
2 (ω̃

2
0 + ω2

x +

ω2
z+

√
−4ω̃2

0ω
2
z + (ω̃2

0 + ω2
x + ω2

z)
2). Here, ωx and ωz rep-

resent the cyclotron frequencies corresponding to eB∥/m
and eB⊥/m, respectively. As a result, the single particle
Landau wave functions are now indexed by two quantum
numbers |m,n⟩ = 1√

m!n!
(X†)m(Y †)n |0⟩, where |0⟩ is the

vacuum state. In the limit of ωx → 0, when ω̃0 > ωz, the
operator (X,X†) raises and lowers the in-plane Landau
levels (LLs), while the operator (Y, Y †) raises and lowers
the harmonic modes along the z axis (or the subbands).
The roles of X and Y are reversed for ω̃0 < ωz.
The three-dimensional Coulomb interaction has the

Fourier form Vk⃗ = 1/k2 = 1/(|q⃗|2 + q23) where q⃗ is the
two-dimensional vector. Its LLL projected Hamiltonian
is

HC =

∫
d3kVk⃗|Fmn(q⃗, q3)|2ρ̂qρ̂−qe

−q2/2 (3)

where ρ̂q =
∑

i e
iq⃗·ri is the guiding center density and

Fm,n(q⃗, q3) is the form factor from the LLL projection.
The lowest LL is defined as m = n = 0 and the 1LL is
for m = 0, n = 1 or m = 1, n = 0. After integrating
the z component q3, we thus obtain the effective two-
dimensional interaction.43,53

Veff(q⃗) =

∫ ∞

−∞
dq3

1

|q⃗|2 + q23
|Fmn(q⃗, q3)|2 (4)
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FIG. 2: (color online) The ratio between the first two pseu-
dopotential coefficients c1/c3 in 2D plot parameterized by ωx

and w0. It exhibits a peak value at finite in-plane magnetic
field. The value at the peak is approximately c1/c3 ∼ 1.5,
exceeding the Coulomb value of 1.32, suggesting an increase
in the gap at that point.

For a two-body interaction without rotational symme-
try, it was found52 that a generalized pseudopotential
description can be used to describe it.

V +
m,n(k) = λnNmn(L

n
m(|k|2)e−|k|2/2kn + c.c)

V −
m,n(k) = −iNmn(L

n
m(|k|2)e−|k|2/2kn − c.c) (5)

where Nmn is the normalization factors. The effective
two-body interaction including the anisotropic one can
be expanded as Veff(k) =

∑∞
m,n,σ c

σ
m,nV

σ
m,n(k) with coef-

ficient cσm,n =
∫
d2kVeff(k)V

σ
m,n(k).

In Fig. 1, we display the ratio of the effective interac-
tions along the qx and qy axes on a circle with a radius
of q, considering various strengths of the parallel mag-
netic field with a fixed layer thickness of w0 = 1.25. In
particular, when ωx is nonzero, the strength of the effec-
tive interaction exhibits anisotropy, with a ratio different
from one. This anisotropy leads to a break of the rota-
tional symmetry. Furthermore, as ωx increases, the ratio
changes from being greater than one to smaller than one,
indicating a potential change in the orientation of the ef-
fective interaction anisotropy. Such anisotropies can be
experimentally probed through measurements related to
the ground-state structure factor and the neutral exci-
tation gap, providing valuable insight into the physics of
the system. Fig. 2(a) illustrates the pseudopotential coef-
ficients c1/c3 on a two-dimensional graph while changing
the values of ωx and w0. It is known that c1 plays a cru-
cial role in the Laughlin state which is the zero energy
eigenstate of the model Hamiltonian with only c1 ̸= 0.
We can see c1/c3 exhibits a peak value (c1/c3 ∼ 1.5 com-
paring to the Coulomb value 1.32) at a finite ωx, indicat-
ing that a finite in-plane magnetic field tends to stabilize
the Laughlin state at ν = 7/3. This phenomenon is also
evident in the energy gap as shown below. It has pre-

viously been verified by experiment54 in which a strong
enhancement of the gap was observed in a wide 2D quan-
tum well.

III. NUMERICAL RESULTS

We consider a system with Ne electrons in the torus
geometry. The number of quantum fluxes Nϕ fixes the
filling factor ν = Ne/Nϕ. The torus is spanned by the

vectors L̂x and L̂y in two principle directions. Unless
otherwise specified, we consider a rectangle torus with
90 degrees angle between L̂x and L̂y. The aspect ratio
Lx/Ly = 1 is set mainly at unity. For Ne = pN particles
in Nϕ = qN orbits with a maximum common divisor N ,
the filling factor is ν = p/q. The many-body center-of-

mass magnetic translation operator T̄ (a) =
∏Ne

i=1 Ti(a) in
which Ti(a) is the magnetic translation operator for each
electron. In Landau gauge, we have two good quantum

numbers t =
∑Ne

i=1mi mod Nϕ, the total momentum in
the y direction in units of 2π/Ly, and s, the center of
mass translational momentum in units of 2π/Lx which
contributes the q-fold degeneracy in energy spectrum.
That is, they obey the relation T̄ (Lx/N) = ei2πs/N and
T̄ (Ly/N) = ei2πt/N .

A. Ising nematic order

FIG. 3: The numerical calculation of the Ising nematic or-
der parameters Nx2−y2 for 7 − 16 electrons at various filling
factors in the 1LL is represented by the empty blue squares.
The experimentally observed plasmon coherence length L in
Ref. 25 is represented by the empty red circles.

Once the FQH liquid enters the FQHN phase, the orig-
inal full SO(2) rotation symmetry is reduced to a discrete
C4 rotation symmetry as a result of the periodic bound-
ary conditions in the torus geometry. To quantitatively
measure the nematic order after breaking the rotational
symmetry, for a given ground state |ψ⟩, we calculate the
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Ising nematic order parameter characterized by dx2−y2

symmetry,37,55,56

Nx2−y2 =
1

Ne(Ne − 1)

∑
q

(cos qx − cos qy)⟨ψ|ρ̄qρ̄−q|ψ⟩

(6)
where ρ̄q is the LLL projected guiding center density op-
erator. This order parameter captures the anisotropy in
the system, which is a hallmark of the nematic phase.
By measuring this order parameter, we can gain insight
into the nature of the nematic order and its evolution as
a function of various parameters, such as the strength of
the magnetic field or the layer thickness. In experiments,
breaking the rotational symmetry leads to anisotropic
transport properties. Recently, Du et al.25 observed a
pronounced plasmon intensity in the 1LL of the nematic
phase, particularly at ν = 7/3, through measurements
of long-wavelength spin-wave excitations using resonant
inelastic light scattering (RILS) methods in a tilted mag-
netic field. The plasmon intensity is proportional to the
square of the plasmon coherence length L. The signif-
icant value of L at ν = 7/3 indicates the presence of
long-range correlations that favor translational symme-
try, providing important evidence for the FQHN. Mean-
while, a marked minimum intensity in the plasmon spec-
trum at ν = 5/2 strongly suggests that the paired state
overwhelms the competing nematic phases. Motivated
by these findings, we conducted numerical investigations
of the FQHN in the 1LL, specifically targeting the fill-
ing fraction ν = 7/3 where the strongest nematic order
is experimentally observed. Our aim is to gain a deeper
understanding of the nematic phase and its properties in
this regime, in the hope of providing further insights into
the experimental observations and the underlying physics
of the FQH nematic states.

In numerical calculations, for simplicity, we set the fre-
quency in the z-direction, ωz to unity. To obtain the
ground state of the system, we employed exact diagonal-
ization for tens of electrons. In Fig. 3, the Ising nematic
order parameters for fixed tilted magnetic field and the
layer thickness (ωx = 26.5, w0 = 1.25) at different fill-
ing factors in the 1LL are calculated. Here, we consider
only the pure Coulomb interaction and neglect the influ-
ence of the effects from Landau-level mixing and disorder
for simplicity. The number of electrons varies between 7
and 16, depending on the filling factor. For compari-
son, we also extracted experimental data from Ref. 25
for the dependence of plasmon intensity on filling factor.
Our results qualitatively align with previous experimen-
tal findings, showing a peak in the filling factor of 7/3,
indicating the relative stability of FQHN in this filling.
Therefore, our subsequent analysis will focus primarily
on the ν = 7/3 state.

FIG. 4: (color online) Via scanning the parameters ωx and
w0 for 10 electrons at ν = 7/3, we calculate the neutral gap
as the gap between the lowest two states in k = 0 subspace
shown in (a). The nematic order parameters of the ground
state are shown in (b). The ground state wave function over-
lap with that of the pure Coulomb interaction without in-
plane field and thickness is shown in (c). (d) Schematic phase
diagram labeled by A: isotropic FQH (IFQH), B: anisotropic
FQH (AFQH), C: FQH nematics (FQHN) and D: charge den-
sity wave (CDW), respectively.

B. Phase diagram

First, we discuss the Laughlin phase in which both the
charge and neutral gaps are not closed. We simply de-
fine the neutral gap as the spectrum gap between the
ground state and the first excited state in the k = 0 sub-
spacey. The results in the ωx − w0 plane are illustrated
in Fig. 4(a) for a system with 10 electrons. It shows that
the gap is nonzero when ωx is small and there is a max-
imum value for finite ωx, which is consistent with the
pseudopotential c1/c3 as shown in Fig. 2(b). Even with
a non-zero gap, the Laughlin phase can be separated into
two components, one of which preserves rotational sym-
metry while the other does not. Therefore, the wave
function overlap is computed between the ground state
and the pure Coulomb ground state, which has no thick-
ness and no magnetic field in the plane. As shown in
Fig. 4(c), the isotropic Laughlin phase only survives for
small ωx. This could be confirmed by examining the Ising
nematic order Nx2−y2 of the ground state, as illustrated
in Fig. 4(b), where the isotropic Laughlin phase, known
as the A phase in Fig. 4(d), exhibits zero nematic order
without breaking the rotation symmetry.

The B phase, with a finite spectrum gap and nonzero
nematic order, could be the anisotropic Laughlin phase.
According to the geometric explanation provided by Hal-
dane,51 a set of anisotropic Laughlin states can be char-
acterized by an intrinsic metric. These states, denoted
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FIG. 5: (color online) The maximum value of overlap between
the ν = 7/3 ground state for each parameter point (ωx, w0),
and the generalized Laughlin states parametrized by varying
the metric γ. The generalized Laughlin wave function can be
obtained by diagonalizing the pseudopotential Hamiltonian
with c1(qg).

as Ψ
ν=1/m
L (g) =

∏
i<j [b

†
i (g) − b†j(g)]

m |0⟩ where b†(g) is
the single particle creation operator in the anisotropic
Landau basis,57 represent the unique ground state with
zero energy of the model Hamiltonian with nonzero c1.
Here, g represents a unimodular metric associated with
an “area preserving” deformation.

g =

(
cosh 2θ + sinh 2θ cos 2ϕ sinh 2θ sin 2ϕ

sinh 2θ sin 2ϕ cosh 2θ − sinh 2θ cos 2ϕ

)
,

where ϕ and θ represent the rotation and stretching pa-
rameters, respectively, for the primary motion of the elec-
tron in a magnetic field. By incorporating the g metric,
a circular trajectory transforms into an elliptical one. In
our case, we restrict the in-plane field in x direction, thus
the parameter ϕ should be a constant. Consequently, we
introduce a unified parameter γ = cosh 2θ + sinh 2θ to
characterize the metric, as discussed in the investigation
of band mass anisotropy.40 The value of γ = 1 repre-
sents the isotropic scenario with rotational symmetry.
To determine the intrinsic metric γc of a given ground
state wave function with fixed ωx and w0, it is necessary
to compute the overlap Og = O(ϕ, γ) = |⟨Ψ|ΨL(g)⟩|2,
where the intrinsic metric gc is the metric that maximizes
this overlap. Here we produce the general Lauglin state
ΨL(g) by pseudopotential c1(

−→qg ) = 2L1(q
2
g) − 2 where

q2g = gabq
aqb and L1(x) is the Laguerre polynomial. In

this case, the value of gc is consistently set to ϕ = 0,
meaning that we only adjust γ within the interval of
[1, 2.5]. Fig. 5 shows the graph of the maximum O(ϕ, γ)
for the system. The red-colored area may represent the
anisotropic Laughlin phase, as optimizing the metric g
can enhance the overlap to the identity. Hence, in the
B phase, the ground state shows a gap and can be char-
acterized as an anisotropic Laughlin wavefunction with
non-zero Ising nematic order as well. Here we need to no-

FIG. 6: The energy spectrum of 10 electrons for ν = 7/3 in
the 1LL with fixed w0 = 1.25 and different ωx. (a) ωx = 0.0.
(b) ωx = 10.5. (c) ωx = 26.5. (d) ωx = 51.5. They are
marked as asterisks in Fig. 4(d).

tice that the overlap for zero in-plane magnetic field with
ωx = 0 is not very high |⟨Ψ|ΨL(g = 1)⟩|2 ≃ 69% which
mean the isotropic ground state is not very accurately
described by Laughlin state in the 1LL. By increasing
the layer thickness, the overlap could be significantly en-
hanced to ∼ 96%, indicating that the finite layer thick-
ness plays a role in stabilizing the Laughlin state in the
1LL. Similar phenomenon was also observed previously
in Ref. 58.
Now we aim to demonstrate that the C phase in

Fig. 4(d) corresponds to the FQHN phase. First of all,
as shown in Fig. 4(b), it has a non-zero Ising nematic
order. Fig. 4(a) shows a small but non-zero gap for a
finite system in this region. This could be seen in the
energy spectrum, as shown in Fig. 6. In which we fix
w0 = 1.25 and take different values of ωx. (a) ωx = 0.0,
(b) ωx = 10.5, (c) ωx = 26.5, and (d) ωx = 51.5 represent
four points (marked by asterisks in Fig. 4(d)) in phases A,
B, C, and D respectively. It is clear that the magnetoro-
ton mode59–62becomes softer as the in-plane magnetic
field increases, and the lowest excited state transitions to
the k = 0 subspace in the C and D phase, although an
energy gap still remains in a finite system. To determine
if the neutral gap has been eliminated, it is necessary to
perform extrapolation in the thermodynamic limit. In
the following, we calculate the thermodynamic limit gap
from analyzing the thermoelectric Hall conductivity scal-
ing.
The thermoelectric effects, which allow for the direct

transformation of heat energy into electrical power, are
both fascinating and useful. In a thermoelectric experi-
ment, a temperature gradient ▽T is established, causing
the system to generate an electrical current I to counter-
act its effect. The relationship between them is described
by Ii = −αij▽jT , where αij denotes the thermoelectric
conductivity. In practical trials, it is typical to determine
the thermopower Sxx and Nernst coefficient Sxy, which
are linked to αij by the equation Sik = αijρjk, where
ρ signifies resistivity. In the investigation conducted by
Sheng and Fu,63 the αxy was calculated for the FQH sys-
tem in torus geometry. They observed a non-Fermi liquid
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FIG. 7: (a) Finite-size scalings of the ν = 7/3 ground energy
gap at parameters in four phases. (b) and (c) display the
thermoelectric Hall conductivity αxy for 6 − 8 electrons. In
the inserted plot in panel (b), we fit the low temperature data
with αxy ∝ exp(−∆E/kBT ). The fitting parameter ∆E =
0.092 is consistent with the spectrum gap in Figure (a). In
the insets of (c), since the system is gapless, we fit the date
by power-law scaling function αxy ∝ T η and obtain η ≈ 1.01.

power-law trend where αxy varies as T η with η approxi-
mately equal to 0.5 for composite Fermi-liquid states at
filling fractions ν = 1/2 and ν = 1/4. For the Laugh-
lin FQH state at ν = 1/3, it was determined that αxy

decreases exponentially as αxy ∼ exp(−∆E/kBT ) with
a neutral magneto-roton gap as the temperature nears
zero. We conducted a comparable analysis on the fast-
rotating dipolar fermions in the FQH regime.64 Here, we
analysis the thermoelectric Hall conductivity scaling at
the same place in parameter space as that in Fig. 6. Fig-
ure 7(a) illustrates the variation in the size of the gap
∆E across various system sizes. The gap for each system
is extrapolated from the scaling behavior of αxy as vary-
ing the temperature as shown in Figure 7(b). Therefore,
the thermodynamic limit extrapolation indicates that the
A/B phases exhibit a gap, whereas the C/D phases do
not. Furthermore, the gapless phase D demonstrates
Fermi liquid properties with αxy ∝ T 1.01 and η ∼ 1,
suggesting the presence of a new phase in that region. In
Fig. 4(d), the D phase is characterized by two properties.
As shown in Fig. 4(b) and Fig. 5, both the Ising nematic
order parameter and wave function overlap are zero in D
phase. We will demonstrate that the D phase represents
a state of charge density wave (CDW).

To acquire additional details regarding the four phases,
we calculate the pair correlation function as defined by

g(r) =
LxLy

Ne(Ne − 1)

∑
i̸=j

⟨ψ| δ(r− ri + rj) |ψ⟩ (7)

In Fig. 8, the g(r) values are plotted along the x and y
directions. In phase A, the pair correlation functions dis-
play symmetry for ωx = 0.0, indicating rotational sym-
metry. The lack of symmetry becomes more noticeable in

FIG. 8: The ground state pair correlation function g(r) along
the (a) x and (b) y directions for four different ωxs as men-
tioned previously.

phases B, C, and D. In particular, the values of g(r) along
the direction of y are almost identical in the anisotropic
phases. In phase D, with ωx = 51.5, the pair correlation
function along the x direction shows a nearly periodic
oscillation pattern, a characteristic feature of the CDW
state.

FIG. 9: The static structure factor for the ν = 7/3 state
with w0 = 1.25 and varying ωx values as indicated earlier.

As an extra diagnostic tool for the phases of state, it
is useful to consider a guiding center structure factor,
which is actually the Fourier transformation of the pair
correlation function.

S0(q) =
1

Ne

∑
i,j

⟨eiq·rie−iq·rj⟩ (8)

The results are shown in Fig. 9 also for the same pa-
rameters as above in each phase. The transition from a
circular to an elliptical contour of S0(q) also indicates
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FIG. 10: The value of the static structure factor along qx
and qy direction in Fig. 9 (a) and (b) respectively.

the breakdown of rotational symmetry. Two sharp peaks
appear in rest phases, and they become more and more
prominent as increasing the strength of the in-plane field.
This is similar to those previously identified in n ≥ 2
LL states,65 which are the hallmark of CDW order. In
particular, the phase D depicted in Fig. 9(d), the two
peaks are divergent and the remaining portion of S0(q)
are suppressed to almost zero, suggesting the system has
transitioned into a fully one-dimensional crystalline state.
Those q value of peaks gives the length scale of the unit
cell in CDW phase.

To show the presence of the gapped state in both the
A and B phases once more, we plot the value of the struc-
ture factor along two directions and analyze the behavior
near q = 0. As shown in Fig. 10, in phase A, it is expected
that the S0(q) function exhibits symmetry in two direc-
tions, and a behavior proportional to q4 near the point
q = 0 indicates the presence of an incompressible state
with a gap. In phase B, despite the distinct appearance
of S0(q) in two orientations, its behavior close to S0(q)
is also quartic, suggesting the presence of an anisotropic
FQH state with incompressible properties.

To learn more about the CDW phase, we plot the
2D projection of S0(q) for several Laughlin fillings ν =
1/(2n+ 1) with a large in-plane magnetic field. As illus-
trated in Fig. 11, it is interesting to observe that there
are 2n peaks evenly distributed along a line centered at
q = 0. This is strongly suggestive of a tendency toward
CDW ordering, as a CDW responds strongly to an exter-
nal potential modulation with a wave vector that matches
one of its reciprocal lattice vectors. The fact that other
peaks appear only at integer multiples of the primary
wave vector suggests that the CDW has a 1D structure.
This is quit nature since we apply the in-plane in one
direction. Similar phenomena were also previously ob-
served in Landau levels n ≥ 2 at half filling.65

IV. SUMMARIES AND CONCLUSIONS

In this work, we investigate the fate of the FQH states
in a realistic model with considering the effects of the

FIG. 11: The 2D plot of the static structure factor for the
Laughlin filling ν = 1

2n+1
(n = 1, 2, 3, 4) on the 1LL in pa-

rameterized in D phase.

layer thickness and an in-plane magnetic field. Based
on solving the single particle problem in this case, the
electron-eletron interaction could be expressed in gener-
alized pseudopotentials. After comparing several FQH
states in the 1LL, we find that the Ising nematic order
reaches its peak at ν = 7/3. By adjusting the parameters
w0 and ωx, which represent the layer thickness and in-
plane magnetic field, respectively, we calculate the neu-
tral gap, Ising nematic order, wave function overlap, pair
correlation function, projected static structure factor and
finally obtain the phase diagram in the parameter space.
As increasing the strength of the in-plane magnetic field,
we identify the (A) isotropic FQH, (B) anisotropic FQH,
(C) FQH nematic, and (D) CDW phases at ν = 7/3. The
spectrum gap and wave function overlap are maxmized
at finite ωx, indicating that small in-plane magnetic field
enhances the stability of the Laughlin state at ν = 7/3.

In the FQHN phase, we show through numerical anal-
ysis that the rotational symmetry is broken due to a
non-zero Ising nematic order, and there is an energy gap
closing in the thermodynamic limit, as evidenced by ex-
amining the scaling properties of the thermoelectric Hall
conductivity. The CDW phase is charactered by Fermi
liquid behavior of thermoelectric Hall conductivity, pe-
riodic oscillation pattern of the pair correlation function
and sharp peaks in static structure factor. These find-
ings align with recent resonant inelastic light scattering
experimental observations and provide valuable insights
into the underlying physics of the FQH states in mi-
croscopic Hamiltonians. During the manuscript prepa-
ration, we came across a recent study by Ref. 66 that
introduced a microscopic model for FQHN. This model
demonstrates the FQH-FQHN-CDW transition by ad-
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justing the shortest-range pseudopotential (c0 for bosons
and c1 for fermions) of the Coulomb interaction in the
LLL. We argue that transitioning to the 1LL represents
a natural approach to reduce the strength of the shortest-
range pseudopotential when compared to the LLL. In our
approach, the phase of the fractional quantum Hall ne-
matics is induced by an in-plane magnetic field rather
than occurring spontaneously. Our discoveries could pro-
vide insights for similar experiments, particularly those
involving tilted fields.
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