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Relativistic stochastic hydrodynamics from quantum nonlinear projection operator
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We systematically derive relativistic stochastic hydrodynamics based on the method of quantum
nonlinear projection operator. Morozov’s nonlinear projection operator is a generalization of the
well-known linear Mori-Zwanzig projection operator method, from which one can account for the
nonlinear interaction between macroscopic modes. The quantum generalized Fokker-Planck and
Langevin equations are also obtained using this formalism, which are fundamentally important
in non-equilibrium statistical physics. As an application, the relativistic stochastic hydrodynamic
equations with Gaussian noises are derived, which are applicable in studying anomalous transport
phenomena near critical points. The possible extension to include multiplicative noises is also
discussed.

I. INTRODUCTION

In the phase diagram of quantum chromodynamics (QCD), the critical point (CP) is the end point of the first-order
phase transition line in the temperature-baryon chemical potential plane. Its property is one of the most fascinating
features of the QCD phase diagram and draws the extensive attention of the community of heavy-ion collisions all
the time. Since the concept of the QCD critical point was first put forward, constant theoretical efforts have been
put into the related studies. Nowadays its existence is predicted by various QCD effective models and suggested
by lattice QCD simulations [1–10]. Based on these existing researches, the Beam Energy Scan (BES) program was
launched by Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory with one physical goal of
searching for this conjectured QCD critical point. Recent relativistic heavy-ion collision experiments at RHIC [11],
Facility for Antiproton and Ion Research (FAIR) [12, 13], and Nuclotron-base Ion Collider fAcility (NICA) [14, 15]
are devoted to finding the QCD critical point and have seen much experimental progress [16–34]. At this point very
large fluctuation will occur, which could induce a critical phenomenon of divergent bulk viscosity [35] as a potential
signal of the existence of the critical point in experiments. However, as pointed out in [36], the universal mechanism
causing the critical divergence of the transport coefficients has not been elucidated clearly. In fact, it is the nonlinear
fluctuations between the fluctuations of macroscopic variables that lead to the divergence: the transport coefficients
thus can be separated into two parts, the rapidly relaxing part of microscopic time scale decided by a microscopic
theory, such as the Boltzmann equation [37] and the long-time tail of macroscopic time scale. Only by taking into
account nonlinear interactions between macroscopic modes can the divergent behavior of the transport coefficients
be fully understood [38, 39], especially when the thermal fluctuations of long-wavelength modes are necessarily large
near the critical point, which motivates the present study on the relativistic fluctuating hydrodynamics.
Another important motivation is the introduction of the method of projection operator for studying the dynamic

evolution of some relativistic systems. The projection operator, initially proposed by Mori and Zwanzig [40, 41], has
long been a powerful tool for the extraction of slow dynamics. In many cases of our interest, especially when the
behavior of a system over long distances and time scales is concerned, there is a clear separation in the time scales
between the relevant slow variables and the vast number of fast microscopic degrees of freedom. The distinction
of what is slow or fast is not that arbitrary but dictated by the fundamental physical principles. For instance,
the conservation laws give rise to slow variables. According to the Noether theorem, every continuous symmetry
corresponds to a conserved observable that generates the symmetry. The dynamics of the local density associated with
the conserved generator exhibits a slow behavior, as is manifestly shown in hydrodynamics [42]. Another main source
of slow variables concerns the phase transition. As one passes into the ordered state in a phase transition, the slow
variables associated with the breaking of a continuous symmetry appear known as Nambu–Goldstone modes [43, 44].
For instance, the structure of the fluctuation function of the transverse staggered fields in isotropic antiferromagnet
is changed qualitatively by the broken symmetry and looks much like the hydrodynamic correlation functions in a
fluid, indicating that the Nambu–Goldstone modes associated with the spontaneous symmetry breaking have the
dynamical effect of simulating a conservation law [45]. A third example of a slow variable is the order parameter near
a second-order phase transition, during which the system is experiencing a phenomenon called critical slowing down
[46]. Besides, the time scale separation, as observed in Brownian motion [47, 48], typically results from the significant
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difference in masses between the pollen particle and the background fluid particles, which is also a very classical
example. Note that the formalism of the projection operator has been widely applied to study slow dynamics listed
above in the context of condensed matter physics and modern statistical physics, see [41, 45, 49–51] and the reference
therein for a comprehensive overview. However, there are fewer related works in the context of relativistic statistics
[52–54]. Therefore, it is worthwhile to give discussions on the application of the projection operator techniques to
relativistic situations such as heavy-ion collisions, cosmology, and astrophysics, as we will devote our efforts to below.
In this paper, we utilize the nonlinear projection operator method developed by Morozov [55, 56] to derive the

nonlinear evolution equations of relativistic fluctuating hydrodynamics in a fully quantum manner. Before passing
into the next stage, it is necessary to pause and give comments on the adopted formalism. Mori’s original projection
operator is inherently linear in the relevant variables and when used to describe a fluid system, it is only applicable to
systems in the linear regime [53]. To circumvent this problem, new types of projection operators were proposed with
notable contributions in this regard [38, 57–59]. The Dirac delta functions with macrovariables as arguments are key
elements for technically resolving these issues. As will be demonstrated in the main text, this elegant approach not
only allows for the incorporation of macrovariable dynamics into a single equation but also facilitates the derivation of
both the generalized Fokker-Planck equation and the generalized Langevin equation simultaneously, while maintaining
exactness. The nonlinear projection operator proposed by Morozov is a quantum treatment including the non-
commutativity of operators. In this case, the Dirac delta function is enhanced to the Dirac delta operator according
to the Weyl correspondence principle [60, 61] in accordance with its classical form. In the meanwhile, the c-number
symbols of operators is used to characterize the dynamical variables. We leave the details about the Weyl symbol
description to the following sections.
This paper is organized as follows. In Sec. II, we present a brief review of Morozov’s quantum nonlinear projection

operator. In Sec. III and subsequent IV, the generalized Fokker-Planck equation and the generalized Langevin equation
are derived based on the formalism of nonlinear projection operator. After finishing these, Sec. V serves as a quantum
derivation of fluctuating hydrodynamics with Gaussian noise. The possible extension to include multiplicative noises
in the present framework is discussed in Sec. VI. Finally, we give a summary and outlook in Sec. VII.
Natural units ~ = kB = c = 1 are used. The metric tensor here is given by gµν = diag(1,−1,−1,−1), while

∆µν ≡ gµν − uµuν is the projection tensor orthogonal to the four-vector fluid velocity uµ. In addition, we employ the
symmetric shorthand notations:

X(µν) ≡ (Xµν +Xνµ)/2, (1)

X〈µν〉 ≡

(

∆µ
α∆

ν
β +∆ν

α∆
µ
β

2
−

∆µν∆αβ

3

)

Xαβ . (2)

II. NONLINEAR QUANTUM PROJECTION OPERATOR METHOD

In this section, we give a short review on Morozov’s nonlinear projection operator method [55], which can be used
elegantly to extract the slow dynamics from microscopic Hamiltonian dynamics. According to quantum mechanics,

the evolution of an operator at time t, B̂(t) = eiĤtB̂(0)e−iĤt, is ruled by the Heisenberg equation,

∂tB̂(t) = i[Ĥ, B̂(t)] ≡ iLB̂(t), (3)

where the Hamiltonian Ĥ encodes all the information of microscopic dynamics. Formally, the Liouville operator
L is defined and B̂(t) = eiLtB̂(0). For the need of discussing a many-body statistical system, a density operator
ρ̂(Γ, t) describing the phase space Γ distribution of a given ensemble system is indispensable. The Liouville equation
governing the evolution of the density operator is written as

∂tρ̂(t) = −iLρ̂(t) (4)

where the dependence on Γ has been omitted. Note as an aside, ρ̂(t) is sometimes called the nonequilibrium statistical

operator. Formally, ρ̂(t) takes the form ρ̂(t) = e−iLtρ̂(0). The average of B̂ over the density operator ρ(t) is defined
as

〈B̂〉 = Tr(ρ̂(t)B̂) = Tr(ρ̂B̂(t) ) (5)

and the second equality indicates that the same expectation value is given in both Schrödinger picture and Heisenberg
picture. Eq.(5) also means that iL is an anti-self-adjoint operator in the sense of

Tr
(

B̂iLĈ
)

= −Tr
(

ĈiLB̂
)

. (6)
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In the remainder of this text, we choose to work in Heisenberg picture, contrary to the one used in [55].
The physical contemplation must be initiated right from the outset, which lies in a sensible consideration about

how to choose the basis variables that are projected onto. A first key point is the identification of the slow dynamic
variables. Considering that the conservation laws can be naturally made a guiding principle, a set of coarse-grained
collective variables for describing slowly-varying macroscopic processes in the system are chosen as the basis vectors
{Â(t,x)} = {Â1, Â2, ..., ÂN}, namely, all the local densities of correspondent conserved quantities are included in
the list, which are closely related to the slow modes as a result of their conserved property. As a supplement, these
properly chosen collective variables are all Hermitian.
Mori’s linear projection operator formalism possess inherent shortcomings and has no access to the nonlinear

interactions between the slow modes. To overcome it, a Dirac delta operator is introduced

f̂(a) = δ(Â− a) =
1

(2π)N

∫

dx exp(ix · (Â− a)) (7)

which is obtained according to Weyl correspondence rule [55, 60, 61] consistent with its corresponding classical form

f(a) = δ(A− a) = ΠN
n=1δ(An − an) (8)

where N is the number of basis variables. With the Dirac delta operator at hand, an arbitrary operator can be
represented in the form of the following identity with the help of the Weyl symbol,

g(Â) =

∫

dag(a)δ(Â − a) (9)

where g(a) is the Weyl symbol of g(Â). A key observation should be notice that δ(Â − a) can generate all nonlinear

couplings among the variables Âi effortlessly as long as g(a) is nonlinear function of ai.
In addition, we introduce

f(a, t) ≡ Tr
(

ρ̂(t)f̂(a)
)

, (10)

which is the macroscopic probability density function in a space. Once it is integrated with f̂(a) over a, the distribution

function of Â will be obtained. For pedagogical reason, it is more convenient to rewrite f(a, t) in a classical form

f(a, t) ≡

∫

dΓδ(A(Γ) − a)ρ(Γ, t) (11)

where Γ denotes the phase space variables and the integration covers the phase space points Γ lying on the compatible
hypersurface with a constraint A(Γ) = a. One can also transfer to Heisenberg picture without doubts

f(a, t) = Tr
(

ρ̂f̂(a, t)
)

(12)

where f̂(a, t) = eiLtf̂(a, 0) = eiHtf̂(a, 0)e−iHt is an operator in Heisenberg picture.
It is useful to recall the retarded Liouville equation taking the form

( ∂

∂t
+ iL

)

ρ̂(t) = −ǫ(ρ̂(t)− ρ̂q(t)) (13)

where the quasiequilibrium statistical operator ρ̂q is introduced and ǫ → 0 after taking thermodynamic limit [62, 63].
Compared to Eq.(4), the presence of the infinitesimal source ǫ in the right-hand side (rhs) of this equation breaks
the time reversal symmetry of Liouville equation and selects causal and retarded solutions. The form of the quasi-
equilibrium statistical operator ρ̂q(t) is determined by the condition of maximum informational entropy and will be
specified soon. In this script, we assume that ρ̂q(t) and ρ(t) are expressed through the distribution function of basic
variables f(a, t). Furthermore, the statistical operator ρ̂q also needs to satisfy the self-consistency condition

f(a, t) = Tr
(

ρ̂f̂(a, t)
)

= Tr
(

ρ̂qf̂(a, t)
)

, (14)

which is equivalent to the Landau matching conditions widely used in relativistic kinetic theory for defining the
quasiequilibrium distribution function [37, 42]. Note we have shifted to the Heisenberg picture in Eq.(14).
Using the Weyl correspondence rule, ρ̂q can be put in the following form

ρ̂q =

∫

da′G(a′)f̂(a′). (15)
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The task in this stage turns into the determination of the Weyl symbol of ρ̂q based on the self-consistency condition

Eq.(14). To make it, we’ll multiply Eq.(15) by f̂(a) and use Eq.(14). As a result, we obtain

f(a, 0) =

∫

da′W (a, a′)G(a′) (16)

with the definition

W (a, a′) = Tr(f̂(a)f̂(a′) ) (17)

possessing the following properties

W (a) =

∫

da′W (a, a′) = Tr(f̂(a) ),

W (a′) =

∫

daW (a, a′) = Tr(f̂(a′) ) (18)

where W (a) denotes a quantum-mechanical generalization of the classical density of states with given values of the
coarse-grained variables a.
From Eq.(16), we get

G(a) =

∫

da′W−1(a, a
′)f(a′, 0) (19)

where the following identity is satisfied
∫

da′′W (a, a′′)W−1(a
′′, a′) = δ(a− a′). (20)

After substituting Eq.(19) into (15), the quasiequilibrium statistical operator is brought to the form

ρ̂q =

∫

dada′f̂(a)W−1(a, a
′)f(a′, 0). (21)

Combining Eqs.(18) and (20), it is not hard to show that W (a, a′) and W−1(a, a
′) have singular parts that can be

conveniently isolated. To that end, we assume

W (a, a′) = W (a)
(

δ(a− a′)−R(a, a′)
)

(22)

W−1(a, a
′) = W−1(a′)

(

δ(a− a′) + r(a, a′)
)

(23)

then the following relations should be satisfied by analyzing Eq.(18)
∫

daW (a)R(a, a′) =

∫

da′R(a, a′) = 0, (24)

and the substitution of Eqs.(22) and (23) into Eq.(20) leads to

r(a, a′) = R(a, a′) +

∫

da′′R(a, a′′)r(a′′, a′). (25)

Given R(a, a′), r(a, a′) is obtained by iteration. The use of Eq.(24) gives
∫

daW (a)r(a, a′) =

∫

da′r(a, a′) = 0, (26)

where the last equality sign follows from the iteration of the last equality sign of Eq.(24). The regular terms appearing
in Eqs.(22) and (23) originate from the non-commutativity of quantum operators.
If focusing on the derivation in [55], one will find that Eq.(21) will play a central role in getting the definition of

the projection operator. The author utilizes this to calculate the evolution function of ρ̂q(t) (in Schrödinger picture)
and the projection operator is naturally introduced to rewrite the resulting equation in a compact form. Following
[55], the projection operator P is defined as

PB̂ =

∫

dada′f̂(a)W−1(a, a
′)Tr(B̂f̂(a′) ), (27)
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as can be seen clearly, this definition is independent of which picture one works in. If W−1(a, a
′) ∼ δ(a− a′) is local,

then P degenerates into a similar form to classical delta projection operator [64]. This matching is not coincidental:
if one assumes the initial state is the microcanonical distribution f(a′, 0) = δ(a′−a0), then in the local approximation

ρ̂q = δ(Â− a0)/W (a0) (28)

which is nothing but Eq.(12) of [64].
It is easy to verify P is idempotent, i.e., P 2 = 1. Moreover, the projection operator satisfies

P f̂(a) = f̂(a), (29)

P ρ̂ = ρ̂q, (30)

Tr(B̂P Ĉ) = Tr(ĈP B̂), (31)

PG(Â) = G(Â), (32)

where the first three equalities are almost self-evident, G(Â) is a nonlinear function of Â and a proof of the last

one is given in Eq.(A9). The fourth equation Eq.(32) reveals the nonlinearity of P , which generalizes PÂ = Â to

PG(Â) = G(Â) such that the neglected nonlinear components in linear projection operator is retrieved.

III. GENERALIZED FOKKER-PLANCK EQUATION

This section is devoted to the derivation of generalized Fokker-Planck equation. We start from

∂f̂(a, t)

∂t
= eiLtiLf̂(a). (33)

Recall the Dyson-Duhamel identity [65]

eiLt = eiLtP +

∫ t

0

dueiLuPiL(1− P )eiL(1−P )(t−u) + (1− P )eiL(1−P )t, (34)

this identity can be derived via Laplace transformation just as we will show below. First, the following decomposition
is employed:

∂te
iLt = eiLtiL = eiLtPiL+ eiLt(1− P )iL. (35)

Next, the Laplace transform of exp(iLt) lead us to,

∫ ∞

0

dte−zteiLt =
1

z − iL
. (36)

Then, a decomposition of Eq. (36) into

1

z − iL
=

1

z − iL
(z − (1 − P )iL)

1

z − (1− P )iL

=
1

z − iL
(z − iL+ PiL)

1

z − (1− P )iL

=
1

z − (1− P )iL
+

1

z − iL
P iL

1

z − (1− P )iL
(37)

is utilized. After performing the inverse Laplace transform, a crucial identity is reached,

eiLt = e(1−P )iLt +

∫ t

0

dseiL(t−s)PiLe(1−P )iLs, (38)

which follows from the derivation in [53]. Noticing that

(1− P )eiL(1−P )t = e(1−P )iLt(1− P ), (39)
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the multiplication of eq.(38) by (1 − P ) from the right will give us the desired Dyson-Duhamel identity. The proof
has been completed.
It is time to apply Dyson-Duhamel identity to the rhs of Eq.(33)

∂f̂(a, t)

∂t
= eiLtPiLf̂(a) +

∫ t

0

dueiLuPiL(1− P )eiL(1−P )(t−u)iLf̂(a) + (1− P )eiL(1−P )tiLf̂(a). (40)

Then we introduce a useful definition

iLf̂(a) ≡ −
∂Ĵi(a)

∂ai
(41)

where Einstein summation conventions are respected hereafter and

Ĵ(a) ≡
1

(2π)N

∫

dxeix(Â−a)

∫ 1

0

dτe−iτxÂiLÂeiτxÂ. (42)

In deriving this equation, an important identity, i.e., Kubo identity [66]

[eB̂, Ĥ ] = eB̂
∫ 1

0

dτe−τB̂[B̂, Ĥ ]eτB̂ (43)

has been utilized.
The first term in Eq.(40) is

eiLtPiLf̂(a) = −

∫

da′′da′W−1(a
′′, a′)Tr(

∂Ĵi(a)

∂ai
f̂(a′) )f̂(a′′, t)

= −
∂

∂ai

∫

da′vi(a, a
′)f̂(a′, t) (44)

with the nonlocal streaming velocity

vi(a, a
′) ≡

∫

da′′W−1(a
′, a′′)Tr(Ĵi(a)f̂(a

′′) ). (45)

Define

X̂i(a) = (1− P )Ĵi(a), (46)

then the noise term is

(1− P )eiL(1−P )tiLf̂(a) = −
∂

∂ai
X̂i(a, t). (47)

The remaining diffusion term is

PiL(1− P )eiL(1−P )(t−u)iLf̂(a) = PiLei(1−P )L(t−u)(1 − P )iLf̂(a)

=
∂

∂ai

∫

da′Kij(a, a
′, t− u)

∂

∂a′j

∫

da′′f̂(a′′)W−1(a
′′, a′). (48)

where Kij(a, a
′, t) ≡ Tr(X̂i(a, t)X̂j(a

′) ) and X̂(a, t) ≡ e(1−P )iLtX̂(a). The relation between the diffusion kernel K
and noise function X is known as a kind of generalized fluctuation-dissipation theorem, which is of great theoretical
significance in statistical physics. In the process of deriving the diffusion kernel Kij , the properties of P listed in
Eqs.(29) to (31) are frequently used.
Putting them together, we are reaching the quantum Fokker-Planck equation in operator form

∂f̂(a, t)

∂t
=−

∂

∂ai

∫

da′vi(a, a
′)f̂(a′, t) +

∫ t

0

du
∂

∂ai

∫

da′Kij(a, a
′, t− u)

∂

∂a′j

∫

da′′f̂(a′′, u)W−1(a
′′, a′)

−
∂

∂ai
X̂i(a, t), (49)
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which is consistent with the Fokker-Planck equation obtained in a fully classical way [38]. The fluctuating force
∂

∂ai
X̂i(a, t) is uncorrelated with an arbitrary function G(Â) of Â,

Tr(G(Â)X̂(a, t)) = 0. (50)

A comment on these three terms in the rhs of Eq.(49) will be left where the nonlinear Langevin equations are derived.

Then we calculate the average of Eq.(49) with respect to ρ̂,

∂f(a, t)

∂t
=−

∂

∂ai

∫

da′vi(a, a
′)f(a′, t) +

∫ t

0

du
∂

∂ai

∫

da′Kij(a, a
′, t− u)

∂

∂a′j

∫

da′′f(a′′, u)W−1(a
′′, a′) (51)

which is in agreement with the Fokker-Planck equation obtained in [55] but in a rather different way (directly solve
ρ̂(t) from retarded Liouville equation and next construct f(a, t) based on it). Identical results are given in two distinct
quantum pictures, as it should be. The similar Fokker-Planck equation has been extensively studied with different
methods [64]. There are also a large number of other works devoting to this, but due to space limitations, the reference
here may not cover them. In this script, we name the equation as the Fokker-Planck equation in function form. A
quick observation can be made that the noise term does not survive the expectation because

Tr[ρ̂(1− P )eiL(1−P )tiLf̂(a)] =Tr[ρ̂q(1− P )eiL(1−P )tiLf̂(a)] = Tr[((1 − P )ρ̂q)e
iL(1−P )tiLf̂(a)] = 0. (52)

Recall that in Heisenberg picture ρ̂ = ρ̂q if the system is initially in equilibrium, as is implicitly prescribed consistent
with the retarded Liouville equation, see Eq.(4.3) of ref [55]. Due to this identical setting, Eq.(51) matches the
resulting equation derived in [55].

Let us pause for a while to find a very useful relation. The trace over f̂(a, t) should be independent of time

Tr(f̂(a, t) ) = Tr(f̂(a) ) = W (a) (53)

owing to the cyclical symmetry of trace. One should not confuse f(a, t) = Tr(ρ̂f̂(a, t)) with W (a) = Tr(f̂(a, t) ). Then
the trace over the whole Fokker-Planck equation (49) is

∂W (a)

∂t
=0 = −

∂

∂ai

∫

da′vi(a, a
′)W (a′) +

∫ t

0

du
∂

∂ai

∫

da′Kij(a, a
′, t− u)

∂

∂a′j

∫

da′′W (a′′)W−1(a
′′, a′)

−
∂

∂ai
Tr(X̂i(a, t) ). (54)

Now the remaining task awaiting us is to prove the second equality sign to see whether it holds naturally or offers
extra constraints.

The first term in the rhs is nothing but the divergence condition [67],

∂

∂ai

∫

da′vi(a, a
′)W (a′) =

∂

∂ai

∫

da′
∫

da′′ Tr(Ĵi(a)f̂(a
′′) )W−1(a

′, a′′)W (a′)

=
∂

∂ai

∫

da′ Tr(Ĵi(a)f̂(a
′) ) =

∂

∂ai
Tr(Ĵi(a) ) = −Tr(iLf̂(a) ) = iTr([f̂(a), Ĥ ]) = 0. (55)

Because this one holds unconditionally, we should promote it to the divergence theorem instead of treating it as a
condition. The same conclusion is also drawn in the context of classical statistical [45]. The second one vanishes for

∫

da′′W (a′′)W−1(a
′′, a′) = 1 +W−1(a′)

∫

da′′W (a′′)r(a′′, a′) = 1 (56)

is a constant, where the condition Eq.(26) is used.

As for the last noise term, it also vanishes as exhibited in appendix.B. To conclude, ∂W (a)
∂t

= 0 does not produce
extra constraints. These extra constraints are very key in the construction of fluctuating nonlinear hydrodynamics
for normal fluids in a classical context [67]. We shall comment on this when talking about multiplicative noises.
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IV. GENERALIZED LANGEVIN EQUATION

In this section, we derive the generalized Langevin equation, which can be derived from the generalized Fokker-
Planck equation. Multiply Eq.(49) with a and then integrate a, and we will find

∂Âα(t)

∂t
=−

∫

daaα
∂

∂ai

∫

da′vi(a, a
′)f̂(a′, t) +

∫

daaα

∫ t

0

du
∂

∂ai

∫

da′Kij(a, a
′, t− u)

×
∂

∂a′j

∫

da′′f̂(a′′, u)W−1(a
′′, a′)−

∫

daaα
∂

∂ai
X̂i(a, t)

=

∫

da

∫

da′vα(a, a
′)f̂(a′, t) +

∫ t

0

du

∫

da′(
∂

∂a′j
Kαj(a

′, t− u) )

∫

da′′f̂(a′′, u)W−1(a
′′, a′) + R̂α(t) (57)

where R̂k(t) ≡ e(1−P )iLt(1− P )iLÂk, and recalling that

X̂i(a) = (1− P )Ĵi(a) =
1

(2π)N
(1 − P )

∫

dx

∫ 1

0

dτeix(Â−a)e−iτxÂ(iLÂi)e
iτxÂ, (58)

then we have

Kij(a
′, t) =

∫

daKij(a, a
′, t) =

∫

daTr(X̂i(a, t)X̂j(a
′) )

=
1

(2π)2N

∫

da

∫

dxdx′

∫

dτdτ ′ Tr(ei(1−P )Lt(1− P )eix(Â−a)e−iτxÂ(iLÂi)e
iτxÂ

× (1− P )eix
′(Â−a′)e−iτ ′x′Â(iLÂj)e

iτ ′x′Â )

=
1

(2π)N

∫

dx′

∫ 1

0

dτ ′ Tr
(

(ei(1−P )Lt(1− P )iLÂi) (1− P )eix
′(Â−a′)e−iτ ′x′Â(iLÂj)e

iτ ′x′Â
)

= Tr(R̂i(t)X̂j(a
′)). (59)

Because of Eq.(50), the Langevin fluctuating force is also statistically independent of the collective variables, namely,

Tr(G(Â)R̂i(a, t)) = 0. (60)

Eq.(57) is the full generalized quantum Langevin equation without any approximations. The first term in the rhs is the
drift term characterized by a nonlocal streaming velocity v(a, a′), whose nonlocality stems from the non-commutativity
of quantum operators and thus is a quantum effect absent in the classical Langevin equation. The second one is a
diffusion term with non-Markov memory effects. If looking at the specific form of the diffusion or memory kernel
Kij(a, t), one can also find that the quantum non-commutativity is involved hindering the direct comparison with its
classical correspondence. The third one represents fast motion of noise, whose relation with the diffusion kernel is
so-called fluctuation-dissipation theorem but not that evident at a simple glance. In order to correctly account for
the physical effects brought by the nonlinear fluctuations, the stochastic noise terms, trigger by the hydrodynamic
excitations generated by thermal fluctuations within the fluid, are indispensable [68].
In order to compare with the existing classical results, we have to turn to the local approximation, that is,

v(a, a′) = v(a)δ(a− a′), W−1(a
′′, a′) = W−1(a′)δ(a′ − a′′) (61)

with a local averaged velocity

v(a) = Tr(f̂(a)iLÂ)W−1(a). (62)

In fact, a regular part can also be separated from v(a, a′) in the same fashion to W (a, a′) and W−1(a, a
′) of which the

details can be found in [55]. Then the full Langevin equation becomes

∂Âα(t)

∂t
=vα(Â, t) +

∫ t

0

du

∫

da′(
∂

∂a′j
Kαj(a

′, t− u) )W−1(a′)f̂(a′, u) + R̂α(t), (63)
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which matches the result of [38]. Furthermore, if we introduce the definition K̃ij(a, t) ≡ Kij(a, t)/W (a), then the
equation turns into

∂Âα(t)

∂t
=vα(Â, t) +

∫ t

0

du

∫

da
∂

∂aj
(K̃αj(a, t− u)W (a) )W−1(a)f̂(a, u) + R̂α(t)

=vα(Â, t) +

∫ t

0

du

∫

da(
∂

∂aj
K̃αj(a, t− u) )f̂(a, u) +

∫ t

0

du

∫

daK̃αj(a, t− u)Fj(a)f̂(a, u) + R̂α(t) (64)

in good agreement with the form present in [64]. Here the conjugate variable of ak is defined, in a conventional way,
as the derivative of lnW (a) with respect to ak

Fk(a) =
∂

∂ak
lnW (a). (65)

Since W (a) is the structure function providing a complete thermodynamic description of a system in thermal equi-

librium subject to constraints giving rise to the specified values ”Â = a”, it can be seen as a partition function of the
microcanonical ensemble. More intuitively, Eq.(62) can be rewritten as

v(a) = Tr(f̂(a)iLÂ)W−1(a) = Tr(ρ̂(a)iLÂ) . (66)

Note Tr ρ̂(a) = 1 and Tr(ρ̂(a)Âi ) = ai, then ρ̂(a) acts like a density operator in microcanonical ensemble with
fixed values of the coarse-grained variables. In the case where the coarse-grained variables are the densities of
thermodynamic quantities, one can take advantage of the equivalence of statistical ensembles and replace the averaging
in Eq.(62) with a canonical or grand-canonical ensemble. Notably, the third term in the last line of Eq.(64) resembles
the famous Onsager relation and can be viewed as a generalized Onsager relation in a convolution form with memory
effects.
The second term of Eq.(64) is key and its presence indicates that the diffusion kernel K̃ has in general nontrivial

dependence on the coarse-grained variables, which will be commented and stressed afterwards. In this place, we want
to show a simplified but very helpful form of the generalized Langevin equation. By replacing the diffusion kernel
with its average

K̃αj(a, t− u) →

∫

daW (a)K̃αj(a, t− u) =

∫

daKαj(a, t− u) = Tr(R̂α(t− u)R̂j), (67)

where W (a) is taken as a equilibrium distribution function of a up to a normalized factor
∫

daW (a) =

∫

daTr(f̂(a) ) = Tr(1) = const. (68)

This constant can be completely absorbed into the definition of other coefficients so there is no need to worry about
it. Such a procedure is also implemented in [38] to seek a simpler equation. After finishing the replacement, we will
get

∂Âα(t)

∂t
= vα(Â, t) +

∫ t

0

duTr(R̂α(t− u)R̂j)Fj(Â(u)) + R̂α(t) (69)

which recovers our familiar Langevin equation irrespective of the memory structure. Moreover, the diffusion kernel is
expressed as a two-point time correlation function of the noise term.
As is seen from above, the local approximation is very crucial to the simplification operations. At least, this

is valid for classical systems. Furthermore, the validity may also hold for some quantum systems. For example,
the contribution of the integral terms in the Fokker-Planck and Langevin equations can be minor as long as the
commutators of the basis operators are parametrically small. In this case, the nonlocality represented by r(a, a′) are
expressed in terms of a series expansion in the small parameter, which is also the same case for the nonlocality of
v(a, a′). On the other hand, if the non-equilibrium state of the system is such that the distribution function f(a, t)
and the corresponding density of states W (a) change slowly when varying the distance |a − a′| compared to the
variation of r(a, a′), then in the first approximation, they can be considered constant when we calculate the integral
term in the Fokker-Planck and Langevin equations. In this case, the contribution of regular parts becomes minor due
to Eq.(26). Especially, in some physical system such as the relativistic heavy ion collisions of our interest, the created
physical environment is a super hot medium. In this case, the quantum effects are suppressed by thee scale of high
temperature. In this case, the quantum effects are often neglected and the local approximation is acceptably useful.
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V. A QUANTUM DERIVATION OF FLUCTUATING HYDRODYNAMICS WITH GAUSSIAN NOISE

A. Markov approximation

When casting the generalized Langevin equation into fluctuating hydrodynamics, the Markov approximation is
necessary to remove the delay effects appearing in the integral term. Considering that the operator of projection
1 − P in the diffusion kernel K(a, t) or K(a, a′, t) eliminates the slow evolution associated with the coarse-grained
variables, the effect of time delays can be neglected in the evolution equations when a clear separation of time scales
exists. This means that the time scales for an appreciable change of Â(t) are distinctly larger than the typical time

scales involved in the Langevin fluctuating force R̂k(t). The simplified Langevin equation is taken as the starting
point

∂Âα(t)

∂t
=vα(Â(t)) +

∫ ∞

0

duTr(R̂α(u)R̂j)Fj(Â(t)) + R̂α(t) (70)

where the time hierarchy t ≫ u is assumed. A further transformation leads to

∂Âα(t)

∂t
=vα(Â(t)) + γαjFj(Â(t)) + R̂α(t) (71)

where γ is the bare kinetic coefficient defined as

γij ≡

∫ ∞

0

duTr(R̂i(u)R̂j). (72)

The first two terms in the rhs of Eq.(70) generally contain nonlinear coupling of Â due to the presence of v(Â) and

F (Â) while R̂α(t) is a fluctuating force satisfying

Tr(R̂i(t)R̂j(t
′) ) = 2γijδ(t− t′). (73)

It can be shown in [38] that the nonlinear couplings contained in the drift term will lead to the renormalization of
the bare kinetic coefficient. Last but not least, if choosing to write the x dependence explicitly, we get

∂Âα(t,x)

∂t
=vα(Â(t,x)) +

1

V

∫

dx′γαj(x− x
′)Fj(Â(t,x′)) + R̂α(t,x) (74)

with

γij(x− x
′) ≡

∫ ∞

0

duTr(R̂i(u,x)R̂j(0,x
′) ). (75)

B. Relativistic hydrodynamics

The evolution of a relativistic fluid is governed by the continuity equations

∂µT
µν = 0 , (76)

∂µN
µ = 0 , (77)

where T µν , Nµ are the energy momentum tensor and conserved current respectively. In this subsection, the hat
symbol of the operators is temporarily neglected.
By utilizing symmetry analysis and the second law of thermodynamics, T µν and Nµ can be conveniently written

as in Landau frame

T µν = euµuν − p∆µν + τµν , (78)

Nµ = nuµ + jµ , (79)

with e, n and p being the energy density, the charge density and the pressure. The metric tensor here is given by
gµν = diag(1,−1,−1,−1), while ∆µν ≡ gµν−uµuν is the projection tensor orthogonal to the four-vector fluid velocity
uµ. Also, the dissipative terms, π and j, are given by

τµν = −2η∇〈µuν〉 − ζθ∆µν , (80)

jµ = −
σT (e+ p)

n
∇µ µ

T
, (81)
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where µ is the chemical potential conjugate the conserved charge density n and ∇µ ≡ ∆µν∂
ν is the spatial derivative.

A shorthand for the thermodynamic force θ = ∇ · u denotes the expansion rate. Three transport coefficients η, ζ and
κ are the bare shear, bulk viscosities and the bare thermal conductivity, respectively.
In the linear regime, hydrodynamic modes can be sought via the linearized equations. A linear mode analysis is

carried out on top of the background of thermal equilibrium. In a relativistic fluid, the quiescent equilibrium system
is perturbed according to

e(t,x) = e0 + δe(t,x), p(t,x) = p0 + δp(t,x),

n(t,x) = n0 + δn(t,x), uµ(t,x) = (1, 0) + (0, δvi(t,x)),

T (t,x) = T0 + δT (t,x),
µ

T
=

µ0

T0
+ δ(

µ

T
). (82)

Due to u · u = 1, (δv)2 ≪ 1, the terms of O(δv2) is neglected afterward. Then we have

∂δn

∂t
= −n0∇ · δv −

σT0(e0 + p0)

n0
∇2δ

(

µ

T

)

, (83)

∂δe

∂t
= −(e0 + p0)∇ · δv, (84)

∂πi

∂t
= −∇iδp− (ζ +

1

3
η)∇i(∇ · δv)− η∇2δvi. (85)

where πi ≡ δT 0i.

C. Relativistic fluctuating hydrodynamics

The nonlinear interactions among these hydrodynamic modes is absent in conventional hydrodynamics in the
linear regime [53], more importantly, without stochastic noises, conventional hydrodynamics ignores the inherent
hydrodynamic excitations triggered by thermal fluctuations. When the thermodynamic fluctuations are large, the
effects of nonlinear couplings become significantly enhanced, which is the case in the critical regime. The impacts of
nonlinear fluctuations of the coarse-grained variables can be properly accounted for in the framework of the Langevin
equation. In this subsection, we derive the relativistic fluctuating hydrodynamics from the Langevin equation step
by step.
Inspire by the relativistic hydrodynamic equations, the coarse-grained slow variables set is taken to be {Â(t,x)} =

{δe(t,x), δn(t,x), πi(t,x)}. First, we need to figure out the streaming term

v(a) = Tr(ρ̂(a)iLÂ(t,x)) = Tr(ρ̂(a)∂tÂ(t,x)). (86)

If looking at the continuity equation,

∂tÂ(t,x) = ∇ · ĴA, (87)

the derivative of Â with respect to t gives exactly the related reversible currents and dissipative currents vanishes
when averaged over a thermodynamic ensemble shown in the rhs of Eq.(86). Therefore, we can directly read the
streaming velocities,

vn = −∇ · (n̂δv̂), ve = −∇ · π̂, vπ = −∇iδp̂, (88)

where the background is set to be rest and the nonlinear couplings between fluctuations is manifestly shown in vn
and vπ (noticing that p̂ may contain nonlinear couplings in terms of these basis fluctuations, see also [45]).
Next, recalling the given definition of the thermodynamic force,

Fk(Â) =
δ

δÂk

lnW (Â) (89)

we can translate δ(µ/T ) and δv into 1
V

δ lnW (Â)
δn̂

and T0

V

δ lnW (Â)
δπ̂

according to Boltzmann relation S ≡ lnW (Â) with
S, V being the total entropy and volume. The factor 1/V comes without surprise because it counteracts the same
factor in Eq.(74).
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Comparing the relativistic hydrodynamic equation Eqs.(76) to (81) with the Langevin equation, the kinetic coeffi-
cients can also be read without efforts

γnn = −
σT0(e0 + P0)

n0
∇2, (90)

γπiπj
= −

(

(ζ +
1

3
η)∇i∇j + ηδij∇

2
)

, (91)

which demonstrates that

Tr(R̂n(t,x)R̂n(t
′,x′) ) = −

2σT0(e0 + P0)

n0
∇2δ(t− t′)δ(x− x

′), (92)

Tr(R̂πi
(t,x)R̂πj

(t′,x′) ) = −2
(

(ζ +
1

3
η)∇i∇j + ηδij∇

2
)

δ(t− t′)δ(x− x
′), (93)

where the spatial coordination x dependence is explicitly recovered. Note through out the script, x dependence is
frequently suppressed for compactness sometimes.
The parameterization given in Eq.(90) and (91) is expected to successfully reproduce the Ornstein–Zernike result

[36, 45]. Attention is supposed to be paid to the vanishing of the noise term Re and its corresponding diffusion kernel.
This is a nontrivial consistency cross check. The reason for its vanishing is that its reversible current is also a local
density of the conserved quantity, i.e., δT̂ 0i, which is also in the list of the chosen coarse-grained slow variables,

R̂e ≡ (1 − P )iLê = (1− P )∂iπ̂i = ∂i(1− P )π̂i = 0, (94)

where PÂ = Â is proven in the appendix.A.
The conclusion that the energy density does not dissipate depends on the choice of the definition of the fluid velocity,

or the choice of the set of coarse-grained slow variables in the language of projection operator . If working in Eckart
frame, the charge density, rather than the energy density, does not dissipate .
After all the dust has set down, we eventually obtain

∂δn̂

∂t
= −∇ · (n̂δv̂)−

σT0(e0 + P0)

n0
∇2 δ lnW (Â)

δn̂
+ R̂n(t,x), (95)

∂δê

∂t
= −∇ · π̂, (96)

∂π̂i

∂t
= −∇iδp̂− (ζ +

1

3
η)∇i(∇ ·

δ lnW (Â)

δπ̂i

)− η∇2 δ lnW (Â)

δπ̂i

+ R̂πi
(t,x). (97)

Note our results here are almost identical to the ones derived in [36] in a classical way except the streaming term of
Eq.(97), where the author neglects δp and uses a potential condition to rewrite that streaming term. Besides, ∇ ·π is
replaced by ∇· ((ê+ p̂)δv̂) therein. But we prefer ∇·π because the linearity in the basis fluctuations is unambiguously
revealed without causing extra confusion.

VI. POSSIBLE EXTENSION TO INCLUDE MULTIPLICATIVE NOISES

In this section, we comment on the possible extension to include multiplicative noises. The kinetic coefficients in
Eqs.(95) to (97) is independent of the fluctuating fields, therefore, the noise R̂ is so-called Guassian noise, which is
not always the case. In view of the fact that the kinetic coefficients characterize the intrinsic properties of the system
with given thermodynamic states (e0, p0 · · · ). If the perturbation is not too large to change the intrinsic properties,
the description with fluctuation-independent kinetic coefficients suffices, in line with the logic hidden in the linear
response theory. However, if the perturbation is strong enough to fundamentally alter the intrinsic properties and the
thermodynamic state of the system, for instance, when the critical behavior in vicinity of the QCD critical point is
studied, the critical fluctuation is so large that the Langevin equation with multiplicative noises and field-dependent
kinetic coefficients is essentially needed.
Such a fluctuating nonlinear hydrodynamics for normal fluids is given in the context of classical nonrelativistic

statistics [67]. The authors construct a phenomenological model to achieve this. In their derivation, a very alike

formula ∂W (a)
∂t

= 0 appears and provides three nontrivial constraint conditions, among which there is a detailed
balance condition. The detailed balance condition plays an essential role in the construction of the fluctuating
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nonlinear hydrodynamics, from which the multiplicative noises and the diffusion kernel can be worked out just by
”reading” as is done in the last subsection.
Just as is commented around Eq.(54), there are no constraint conditions coming from Eq.(54) according to our

derivation step by step, which is also confirmed by one of the authors of [67] in a later textbook [45] using a classical
treatment. Therefore, there is no shortcut to the possible extension with multiplicative noises, we have to literally
work out Eq.(64), which is left as a future work in progress.

VII. SUMMARY AND OUTLOOK

In this work, we present a systematic derivation of relativistic fluctuating hydrodynamics employing the quantum
nonlinear projection operator method. Morozov’s nonlinear projection operator, as an extension of the well-established
linear Mori-Zwanzig projection operator, enables the consideration of nonlinear interactions among macroscopic
modes. This approach yields the quantum Fokker-Planck and Langevin equations, which are key in investigating
anomalous transport phenomena in the vicinity of critical points. We then apply these equations to the coarse-
grained hydrodynamic variables, resulting in the formulation of the relativistic fluctuating hydrodynamics with Gaus-
sian noise. Additionally, the potential extension of this framework to incorporate the effects of multiplicative noises
is also discussed.
There are some possible extensions which deserve to be focused on in future. The first one, as noted above, is to

bring the multiplicative noises in and re-derive the relativistic fluctuating hydrodynamics. The multiplicative noises
shall play an important role in studying the critical behavior near the QCD critical point and may shed light on the
research for QCD critical point in the experimental aspect. A comprehensive analysis by the dynamic renormalization
group based on the relativistic fluctuating hydrodynamics can also be sought, which is a mature technique in studying
the critical behavior in condensed matter physics. In addition, the obtained generalized Fokker-Planck and Langevin
equations with nonlocal quantum effects can be helpful in condense matter physics and low-temperature physics,
where quantum effects are non-negligible and of much research interest.
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Appendix A: The proof of useful identities

In this appendix, we prove some useful identities associated with the nonlinear projection operator. The first one
is PÂ = Â. We have

PÂ =

∫

dada′f̂(a)W−1(a, a
′)Tr(Âf̂(a′) )

=

∫

dada′a′f̂(a)W−1(a, a
′)W (a′)

=

∫

dada′a′f̂(a)(δ(a− a′) + r(a, a′) )

= Â+

∫

daf̂(a)

∫

da′a′r(a, a′), (A1)

and
∫

da′a′W (a, a′) =

∫

da′a′ Tr(f̂(a)f̂(a′) ) = Tr(f̂(a)Â ) = aW (a). (A2)

On the other hand
∫

da′a′W (a, a′) =

∫

da′a′W (a)(δ(a − a′) +R(a, a′) ) = aW (a) →

∫

da′a′R(a, a′) = 0. (A3)
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Now we get

a′r(a, a′) = a′R(a, a′) +

∫

da′′R(a, a′′)a′r(a′′, a′). (A4)

By iterating Eq.(A4), we reach

∫

da′a′r(a, a′) = 0, (A5)

which follows from the same reason for getting the second identity in Eq.(26). Finally, we obtain PÂ = Â.
This can be also derived in a simpler way, noticing that

P f̂(a) = f̂(a), (A6)

then a integral over a constructed as

∫

daG(a)P f̂(a) =

∫

daG(a)f̂ (a). (A7)

Because P only act upon the operator, it can be safely factorized out

∫

daG(a)P f̂(a) = P

∫

daG(a)f̂ (a), (A8)

this eventually gives us

PG(Â) = G(Â). (A9)

Here G(Â) is a nonlinear function of Â.

Appendix B: The vanishing of noise contribution

The trace of the noise term is

Tr[(1− P )eiL(1−P )tiLf̂(a)] =Tr[eiL(1−P )tiLf̂(a)]− Tr[PeiL(1−P )tiLf̂(a)]

= Tr[Ŷ (a, t)]− Tr[

∫

da′′da′f̂(a′′)W−1(a
′′, a′)Tr(Ŷ (a, t)f̂(a′) )]

= Tr[Ŷ (a, t)]−

∫

da′′da′W−1(a
′′, a′)Tr

(

f̂(a′′)
)

Tr
(

Ŷ (a, t)f̂(a′)
)

= Tr[Ŷ (a, t)]−

∫

da′′da′W−1(a
′′, a′)W (a′′)Tr

(

Ŷ (a, t)f̂(a′)
)

= Tr[Ŷ (a, t)]− Tr[Ŷ (a, t)] = 0 (B1)

where the shorthand notation is Ŷ (a, t) ≡ eiL(1−P )tiLf̂(a) and Eq.(26) has been used.
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