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ABSTRACT
Multi-agent learning algorithms have been shown to display com-

plex, unstable behaviours in a wide array of games. In fact, previous

works indicate that convergent behaviours are less likely to occur

as the total number of agents increases. This seemingly prohibits

convergence to stable strategies, such as Nash Equilibria, in games

with many players.

To make progress towards addressing this challenge we study

the Q-Learning Dynamics, a classical model for exploration and

exploitation in multi-agent learning. In particular, we study the

behaviour of Q-Learning on games where interactions between

agents are constrained by a network. We determine a number of

sufficient conditions, depending on the game and network structure,

which guarantee that agent strategies converge to a unique stable

strategy, called the Quantal Response Equilibrium (QRE). Crucially,

these sufficient conditions are independent of the total number

of agents, allowing for provable convergence in arbitrarily large

games.

Next, we compare the learned QRE to the underlying NE of

the game, by showing that any QRE is an 𝜖-approximate Nash

Equilibrium. We first provide tight bounds on 𝜖 and show how

these bounds lead naturally to a centralised scheme for choosing

exploration rates, which enables independent learners to learn

stable approximate Nash Equilibrium strategies. We validate the

method through experiments and demonstrate its effectiveness

even in the presence of numerous agents and actions. Through

these results, we show that independent learning dynamics may

converge to approximate Nash Equilibria, even in the presence of

many agents.
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1 INTRODUCTION
Game Theory (EGT) has emerged as a powerful formalism for

studying learning in multi-agent settings [55, 63]. Here, agents are

required to explore their state space to determine optimal actions,

whilst simultaneously maximising their expected reward in the face

of the changing behaviour of their opponents. By modelling these

situations as idealised games it is possible to study the effect of vari-

ous factors, such as payoffs and number of agents, on the dynamics

of learning. An important question which is often studied from this

lens is whether popular multi-agent learning algorithms converge

to an equilibrium [20, 31, 41] (most often the Nash Equilibrium).

Unfortunately, it seems that the general answer to this question

is no. Recent work has shown that, even in zero-sum games, the

dynamics of no-regret learning algorithms can be cyclic [39] or

chaotic [6]. In addition, even small deviations from the zero-sum

setting can result in robustly non-convergent dynamics [7, 25] so

that in general-sum games, non-convergent behaviour appears to

be the norm [13, 14, 17, 27, 30, 44, 45, 52, 65, 66]. To make matters

worse, recent findings in [51] suggest that, as the number of agents

in the game increases, the likelihood for chaotic dynamics also

increases when agents have low exploration rates. Similarly, the

results of [26] imply that incredibly large exploration rates may

be required in games with many agents in order to ensure conver-

gence. This seemingly presents a bottleneck for strong convergence

guarantees in multi-agent settings with many agents.

Despite this, many real world problems such as resource alloca-

tion [1, 46], routing [3, 8, 9] and robotics [19, 57] consider a large

number of agents who continuously adapt to one another. These

practical applications in conjunction with the negative results in

the face of many players immediately yield the following question:

Is there any hope for independent learning agents to converge to an
equilibrium in games with many players?

Tomake progress in answering this question, this work examines

multi-agent learning in network games. Here, it is assumed that

agents can only interact with their neighbours within an underlying

communication network. Such systems are ubiquitous: machine

learning architectures often impose structure between models [22,

33]; in robotic systems, agents interact through communication

networks [16, 57]; in both economics and biology, agent interactions

are constrained through social networks. Network games refine

the setting of [26, 51], in which it was assumed that each agent is

directly influenced by every other agent in the environment. This
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work provides strong evidence that the network structure matters,

in some cases even more so than the total number of agents.

Model and Contribution. We consider agents who update via the

Q-Learning dynamic, [54, 64], a foundational model from game

theory which describes the behaviour of agents who balance ex-

ploration and exploitation. Similar to [26] we determine a number

of sufficient conditions on exploration rates such that Q-Learning

is guaranteed to converge to a unique equilibrium. In this work,

however, we find that these conditions depend on graph theoretic

properties of the interaction network. In our experiments, we exam-

ine how these conditions depend on the total number of agents and

find network structures for which there is no explicit dependence.

These implications are visualised on a number of representative

network games and it is shown that large numbers of agents may

converge to an equilibrium, so long as weakly connected network

structures are used. By contrast, if the network is strongly con-

nected, we recover the results of [26, 51] and show that stability

depends on the total number of agents.

The equilibrium solution to which Q-Learning converges is the

Quantal Response Equilibrium (QRE) [32, 35], a widely studied ex-

tension of the Nash Equilibrium for agents who explore their state

space [15, 29, 31]. In this work, we quantify the ‘distance’ between

a QRE and NE by showing that any QRE is an approximate Nash

Equilibrium and providing tight bounds on this approximation. Us-

ing this, we present a procedure for choosing exploration rates so

that Q-Learning agents may converge ‘closer’ to the Nash Equilib-

rium, whilst maintaining the stability of the dynamic. We validate

this procedure in a number of large scale network games and show

that it leads to improvements in the convergence of Q-Learning

dynamics towards approximate Nash Equilibria.

Related Work. In [14] the authors showed that the Experience

Weighted Attraction (EWA) dynamic, which is closely related to

Q-Learning [32], achieves chaos in classes of two-player games.

Advancing this result, [51] showed that chaotic dynamics become

more prevalent as the number of agents increase. Similar to this

work, [26] apply the framework of monotone game [12, 47, 61] to
show that Q-Learning Dynamics converge to a unique equilibrium

in any game, given sufficient exploration. However, they also find

that this condition increases with the number of agents.

Besides online learning, other approaches have been developed

to try to compute Nash Equilibria in games. For our purposes, the

most relevant of these are homotopy-like methods [21, 62]. The

principle of these methods is to perturb the payoff functions so that

the resulting perturbed game is ‘easier’ to solve. Then, by iteratively

annealing this perturbation, one can approximate the underlying

NE. Recently [15] applies an entropy perturbation of payoffs and

use gradient-descent based approach to solve for a continuum of

Quantal Response Equilibria (QRE), which eventually leads to a

NE [35]. Whilst homotopy methods present a powerful tool for

computing approximate equilibria, they often lack the advantages

of decentralisation provided by online learning and may not come

with strong guarantees. [48] combines the entropy perturbation

approach with online learning and show that, in two-player zero-

sum games, this method allows independent learners to converge

asymptotically to an NE. However, as with most learning strategies,

its behaviour in many player, general sum games is unknown.

We address the problem of learning in many player games by

examining the role of an underlying communication network. A

number ofworks in game theory have shown that network structure

affects the uniqueness and stability of NE [2, 4, 11, 37, 47]. Our

main result refines that of [26] to include the network and show

that Q-Learning dynamics can reach a QRE in any network game,

given sufficiently high exploration rates. Crucially, these conditions

are explicitly independent of the total number of agents. We also

show that the QRE achieved by Q-Learning is an approximate

Nash Equilibrium, and design a centralised scheme for updating

exploration rates so that Q-Learning dynamics converge along the

continuum of stable QRE to an approximate Nash Equilibrium.

2 PRELIMINARIES
We begin in Section 2.1 by defining the network game model, which

is the setting on which we study the Q-Learning dynamics, which

we describe in Section 2.2.

2.1 Game Model
In this work, we consider network polymatrix games [32]. ANetwork

Game is described by the tuple G = (N , E, (𝑢𝑘 ,S𝑘 )𝑘∈N), where
N denotes a finite set N of players, indexed by 𝑘 = 1, . . . , 𝑁 . Each

agent can choose from a finite set S𝑘 of actions, indexed by 𝑖 =

1, . . . , 𝑛. We denote the strategy x𝑘 of an agent 𝑘 as the probabilities

with which they play their actions. Then, the set of all strategies of

agent 𝑘 is Δ(S𝑘 ) := {x𝑘 ∈ R𝑛 :

∑
𝑖 𝑥𝑘𝑖 = 1, 𝑥𝑘𝑖 ≥ 0}. Each agent is

also given a payoff function𝑢𝑘 : Δ(S𝑘 ) ×Δ(S−𝑘 ) → R. Agents are
connected via an underlying network defined by E. In particular,

E consists of pairs (𝑘, 𝑙) ∈ N × N of connected agents 𝑘 and 𝑙 .

For any agent 𝑘 ∈ N , we denote by N𝑘 = {𝑙 ∈ N : (𝑘, 𝑙) ∈ E}
the neighbours of 𝑘 , i.e. all the agents who directly interact with

agent 𝑘 in the network. An equivalent way to define the network

is through an adjacency matrix 𝐺 such that

[𝐺]𝑘,𝑙 =
{

1, if agents 𝑘, 𝑙 are connected,

0, otherwise.
.

It is assumed that the network is undirected so that𝐺 is a symmetric

matrix. Each edge (𝑘, 𝑙) ∈ E corresponds to a pair of payoffmatrices

𝐴𝑘𝑙
, 𝐴𝑙𝑘

. With these specifications, the payoff received by each

agent 𝑘 under joint strategy x = (x𝑘 , x−𝑘 ) is given by

𝑢𝑘 (x𝑘 , x−𝑘 ) =
∑︁
(𝑘,𝑙 ) ∈E

x𝑘 · 𝐴𝑘𝑙x𝑙 . (1)

For any x ∈ Δ =: ×𝑘Δ(S𝑘 ), we can define the reward to agent 𝑘 for

playing action 𝑖 as 𝑟𝑘𝑖 (x−𝑘 ) = 𝜕𝑢𝑘𝑖 (x)/𝜕𝑥𝑘𝑖 . Under this notation,
𝑢𝑘 (x𝑘 , x−𝑘 ) = ⟨x𝑘 , 𝑟𝑘 (x−𝑘 )⟩. With this in place, we can define

suitable equilibrium solutions for the game.

Definition 2.1 (Nash Equilibrium (NE)). A joint mixed strategy

x̄ ∈ Δ is a Nash Equilibrium (NE) if, for all agents 𝑘 and all actions

𝑖 ∈ S𝑘
x̄𝑘 = arg max

y𝑘 ∈Δ𝑘

𝑢𝑘 (y𝑘 , x̄−𝑘 ) .

Definition 2.2 (Quantal Response Equilibrium (QRE)). A joint

mixed strategy x̄ ∈ Δ is a Quantal Response Equilibrium (QRE) if,



for all agents 𝑘 and all actions 𝑖 ∈ S𝑘

x̄𝑘𝑖 =
exp(𝑟𝑘𝑖 (x̄−𝑘 )/𝑇𝑘 )∑

𝑗∈S𝑘 exp(𝑟𝑘 𝑗 (x̄−𝑘 )/𝑇𝑘 )
.

The QRE [5, 35] naturally extends the Nash Equilibrium through

the parameter 𝑇𝑘 , known as the exploration rate. In particular, the

limit𝑇𝑘 → 0 corresponds exactly to the Nash Equilibrium, whereas

the limit 𝑇𝑘 → ∞ corresponds to the case where action 𝑖 ∈ S𝑘 is

played with the same probability regardless of its associated reward.

The link between the QRE and the Nash Equilibrium is made precise

through the following result.

Proposition 2.3 ([38]). Consider a game G = (N , E, (𝑢𝑘 ,S𝑘 )𝑘∈N)
and let𝑇1, . . . ,𝑇𝑁 > 0 be exploration rates. Define the perturbed game
G𝐻 = (N , E, (𝑢𝐻

𝑘
,S𝑘 )𝑘∈N) with the payoff functions

𝑢𝐻
𝑘
(x𝑘 , x−𝑘 ) = 𝑢𝑘 (x𝑘 , x−𝑘 ) −𝑇𝑘 ⟨x𝑘 , ln x𝑘 ⟩.

Then x̄ ∈ Δ is a QRE of G iff it is a Nash Equilibrium of G𝐻 .

Game Structure. To achieve our main result, we must parame-

terise interactions in the network game. This allows us to consider

network games which are not necessarily zero-sum. First, we define

the influence bound for each agent 𝑘 .

Definition 2.4 (Influence Bound). Let G = (N , E, (𝑢𝑘 ,S𝑘 )𝑘∈N)
be a network game. Then, for any 𝑘 ∈ N , the influence bound is

given by

𝛿𝑘 = max

𝑖∈S𝑘 ,𝑎−𝑘 ,𝑎̃−𝑘 ∈S−𝑘
{|𝑟𝑘𝑖 (𝑎−𝑘 ) − 𝑟𝑘𝑖 (𝑎−𝑘 ) |}, (2)

where the pure strategies 𝑎−𝑘 , 𝑎−𝑘 ∈ S−𝑘 differ only in the action

of one agent 𝑙 ∈ N𝑘 .

The influence bound describes how sensitive each agent’s reward

is to changes in opponent strategies. As another parameterisation

which is directly applicable to network games, we define the inten-
sity of identical interests.

Definition 2.5 (Intensity of Identical Interests). Let G be a net-

work game whose edgeset E is associated with the payoff matrices

(𝐴𝑘𝑙 , 𝐴𝑙𝑘 ) (𝑘,𝑙 ) ∈E . The intensity of identical interests 𝜎𝐼 of G is given

as

𝜎𝐼 = max

(𝑘,𝑙 ) ∈E
∥𝐴𝑘𝑙 + (𝐴𝑙𝑘 )⊤∥2, (3)

where ∥𝑀 ∥2 = sup∥x∥2=1
∥𝑀x∥2 denotes the operator 2-norm [36].

The intensity of identical interests can be thought of as a measure

of how cooperative a network game is. The reasoning for this is

as follows. Suppose 𝐴, 𝐵 are the payoff matrices which maximise

(3) and suppose that 𝐵⊤ = 𝑐𝐴 for some 𝑐 = (−1, 1). Then, 𝜎𝐼 is
minimised when 𝑐 = −1, in which case 𝐴, 𝐵 is zero-sum, and is

maximised at 𝑐 = 1 so that 𝐴 = 𝐵⊤, which defines an game of

identical interests.

2.2 Learning Model
In this work, we analyse the Q-Learning dynamic, a prototypical
model for determining optimal policies by balancing exploration

and exploitation [55, 59]. In this model, each agent 𝑘 ∈ N maintains

a history of the past performance of each of their actions. This

history is updated via the Q-update

𝑄𝑘𝑖 (𝜏 + 1) = (1 − 𝛼𝑘 )𝑄𝑘𝑖 (𝜏) + 𝛼𝑘𝑟𝑘𝑖 (x−𝑘 (𝜏)),

where 𝜏 denotes the current time step.

𝑄𝑘𝑖 (𝜏) denotes the Q-value maintained by agent 𝑘 about the

performance of action 𝑖 ∈ 𝑆𝑘 . In effect, 𝑄𝑘𝑖 gives a discounted

history of the rewards received when 𝑖 is played, with 1− 𝛼𝑘 as the

discount factor.

Given these Q-values, each agent updates their mixed strategies

according to the Boltzmann distribution, given by

𝑥𝑘𝑖 (𝜏) =
exp(𝑄𝑘𝑖 (𝜏)/𝑇𝑘 )∑
𝑗 exp(𝑄𝑘 𝑗 (𝜏)/𝑇𝑘 )

,

in which 𝑇𝑘 ∈ [0,∞) is the exploration rate of agent 𝑘 .
It was shown in [54, 64] that a continuous time approximation

of the Q-Learning algorithm could be written as

¤𝑥𝑘𝑖
𝑥𝑘𝑖

= 𝑟𝑘𝑖 (x−𝑘 ) − ⟨x𝑘 , 𝑟𝑘 (x)⟩ +𝑇𝑘
∑︁
𝑗∈𝑆𝑘

𝑥𝑘 𝑗 ln

𝑥𝑘 𝑗

𝑥𝑘𝑖
, (QLD)

which we call the Q-Learning dynamics (QLD). The fixed points

of this dynamic coincide with the (QRE) of the game [32]. QLD

can also be seen as an entropy regularised form of the well-studied

replicator dynamics (RD) [23, 34]. Besides its importance in the

study of population biology [42], RD is known to be a special case

of the generalised Follow the Regularised Leader learning dynamic

[40], which models agents who maximise their accumulated payoffs

subject to a penalisation function. RD has been shown to display

asymptotic convergence in potential games [23], cyclic behaviour

in zero-sum games [39] and chaos in a number of other classes

[17, 53]. The connection between RD and QLD is explored in [31].

3 GUARANTEED CONVERGENCE OF
Q-LEARNING IN NETWORK GAMES

In this sectionwe determine a number of sufficient conditions on the

exploration rates 𝑇𝑘 under which Q-Learning dynamics converge

to a unique QRE. We find that these conditions are dependent

on the structure of the rewards in the game, parameterised by

the interaction coefficient or the inflence bound, and also on the

structure of the network. We then compare our result to that of

[26] and show that, under suitable network structures, stability

can be achieved with comparatively low exploration rates, even in

the presence of many players. This also refines the result of [51]

which suggests that learning dynamics are increasingly unstable as

the number of players increases, regardless of exploration rate. All

proofs are in Appendix B.

Theorem 3.1. Consider a network game G = (N , E, (𝑢𝑘 ,S𝑘 )𝑘∈N)
which has a network adjacency matrix 𝐺 . Let 𝜎𝐼 denote the intensity
of identical interests for G and 𝛿𝑘 denote the influence bound of each
agent 𝑘 ∈ N . Then, the Q-Learning Dynamic converges to a unique
QRE x̄ ∈ Δ if any of the following conditions hold for all agents
𝑘 ∈ N ,

𝑇𝑘 > 𝛿𝑘 |N𝑘 |, (C1)

𝑇𝑘 >
1

2

𝜎𝐼 ∥𝐺 ∥∞ , (C2)

where ∥𝑀 ∥∞ = max𝑖
∑

𝑗 | [𝑀]𝑖 𝑗 | is the operator∞-norm. If, in addi-
tion, each edge defines the same bimatrix game (𝐴, 𝐵), then asymp-
totic convergence of Q-Learning Dynamics holds if, for all 𝑘 ∈ N

𝑇𝑘 >
1

2

𝜎𝐼 ∥𝐺 ∥2 . (C3)



Ring Network
∥𝐺 ∥∞ = 2, ∥𝐺 ∥

2
= 2

Star Network
∥𝐺 ∥∞ = 𝑁 − 1, ∥𝐺 ∥

2
=
√
𝑁 − 1

Fully Connected Network
∥𝐺 ∥∞ = 𝑁 − 1, ∥𝐺 ∥

2
= 𝑁 − 1

Figure 1: Examples of networks with five agents and associated ∥𝐺 ∥∞ and ∥𝐺 ∥
2
.

Shapley Game Sato Game

Shapley Game Sato Game

Figure 2: Lower Bound on sufficient exploration as defined by (Top) (C2) in a Full Network and Ring Network (Bottom) (C3) in a
Full Network, Star Network and Full Network.

Shapley Game Sato Game

Figure 3: Lower Bound on sufficient exploration as defined by (C1), (C2) and (C3) in a Star Network. For (C1), max𝑘∈N 𝛿𝑘 |N𝑘 | is
depicted which therefore coincides with the condition defined in [26].

Remark 3.2. Condition (C1) immediately refines the result of [26] to

the case of network games. In the latter work, the authors implicitly

assume that the reward for each agent depends on all other agents.

In our work, this corresponds exactly to the case of a fully connected

network, whereN𝑘 = N\{𝑘}. In addition, [26] define the influence

bound to be over all agents, yielding a single condition which must



hold for all 𝑘 . Instead (C1) allows for agents who have a lower 𝛿𝑘
or who are not strongly connected in the network to have lower

exploration rates 𝑇𝑘 without compromising convergence.

Remark 3.3. We can directly compare (C1) and (C2) due to the

definition of the infinity norm. In particular ∥𝐺 ∥∞ = max𝑘 |N𝑘 | is
the maximum number of neighbours for any agent 𝑘 ∈ N . There-

fore, in a network where all agents are connected identically, the

network dependency in (C1) is the same as that in (C2) . Next, the

advantage of using the influence bound is that its definition applies

in games which are not defined by matrices, and so the result gener-

alises outside of network polymatrix games. By contrast, 𝜎𝐼 is often

easier to compute than 𝛿𝑘 as it is based on matrix norms rather

than pairwise differences. Furthermore,
1

2
𝜎𝐼 is less than 𝛿𝑘 in a

number of polymatrix games (c.f. Sec. 4). In summary, (C1) presents

an advantage in terms of generality , whilst (C2) is often easier to

compute and can be a tighter bound in network polymatrix games

where all agents are identically coupled.

Remark 3.4. Theorem 3.1 applies generally across all network poly-

matrix games, without making any assumptions, such as the net-

work zero-sum condition. In fact, for networks of pairwise zero

sum games, the following holds

Corollary 3.5. If the network game G is a pairwise zero-sum matrix,
i.e.𝐴𝑘𝑙 + (𝐴𝑙𝑘 )⊤ = 0 for all (𝑘, 𝑙) ∈ E, then the Q-Learning dynamics
converge to a unique QRE so long as exploration rates𝑇𝑘 for all agents
are strictly positive.

Corollary 1 is supported by the result of [26, 32] in which it was

shown that Q-Learning converges to a unique QRE in all network

zero-sum games, even if they are not pairwise zero-sum , so long

as all exploration rates 𝑇𝑘 are positive.

Remark 3.6. Whilst (C3) requires a stronger assumption, namely

that each edge corresponds to the same bimatrix game, this setting

is well motivated in the literature [17, 60]. In addition, it holds

that ∥𝐺 ∥2 ≤ ∥𝐺 ∥∞ for all symmetric matrices 𝐺 . Therefore, (C3)

provides a stronger bound than (C2). Figure 2 depicts (C2) and (C3)

on various network games, whilst a direct comparison is visualised

in Figure 3.

3.1 QRE as approximate Nash Equilibria
In the following section we compare the QRE as an equilibrium

solution to the Nash Equilibrium (NE) condition. In particular we

show that the QRE of any game, which no longer needs to be a

network game, is close to an NE in the following sense

Definition 3.7 (𝜖-approximate Nash Equilibrium). A strategy x̄ ∈
Δ is an 𝜖-approximate Nash Equilibrium for the game G if, for all

agents 𝑘 , and all strategies y𝑘 ∈ Δ𝑘
𝑢𝑘 (y𝑘 , x̄−𝑘 ) − 𝑢𝑘 (x̄𝑘 , x̄−𝑘 ) ≤ 𝜖.

Proposition 3.8. Consider a game G and let 𝑇1, . . . ,𝑇𝑁 > 0 denote
positive exploration rates. Then any QRE x̄ ∈ Δ is an 𝜖-approximate
Nash Equilibrium where

𝜖 = max

𝑘∈N
𝑇𝑘𝐴𝑘 (x̄𝑘 ), (4)

𝐴𝑘 (x𝑘 ) = max

𝑖∈𝑆𝑘
ln𝑥𝑘𝑖 − ⟨x𝑘 , ln x𝑘 ⟩. (5)

Remark 3.9. Comparing (4) with (QLD), it can be seen that 𝜖 denotes

the maximum amount of entropy regularisation applied to the

payoffs at the QRE x̄. Of course, this depends on the value of x̄ itself.

As an example, if the QRE is the uniform distribution, i.e. x̄𝑘 =

(1/𝑛𝑘 , . . . , 1/𝑛𝑘 ) for all agents 𝑘 , then 𝐴𝑘 (x̄𝑘 ) = 0. In this case, x̄ is

exactly an NE of the game.

Remark 3.10. It is also important to note that value of 𝜖 given by any

QRE x̄ holds exactly. This gives the tightest possible approximation

of Nash for any given QRE x̄. Whilst it is largely known that QRE

can be considered as approximations of Nash [15, 35, 62], to our

knowledge Proposition 3.8 is the first which exactly quantifies the

‘distance’ between the two equilibrium concepts.

We plot 𝐴𝑘 (x) for the case 𝑛𝑘 = 3 and 𝑛𝑘 = 2 in the Appendix

(Figure 9). To determine its upper bounds, note that 𝐴𝑘 (x̄𝑘 ) ≤
maxx𝑘 ∈Δ𝑘

𝐴𝑘 (x𝑘 ) =: 𝐴𝑘 . The form for 𝐴𝑘 is in general unavailable

in closed form and sowe give exact values in the Appendix, focusing

here on sharp bounds.

Lemma 3.11 (Full version in Lemma C.1).

𝐴𝑘 := max

x𝑘 ∈Δ𝑘

(
max

𝑖∈𝑆𝑘
ln𝑥𝑘𝑖 − ⟨x𝑘 , ln x𝑘 ⟩

)
= O(ln𝑛𝑘 ) .

3.2 Updating Exploration Rates
In this section, we use Theorem 3.1 and Proposition 3.8 to devise

a scheme to update exploration rates so that which Q-Learning

dynamics are driven ‘close’ to a NE. The full algorithm is provided

in the Appendix, with the main ideas discussed here. Starting with

a choice of 𝑇𝑘 which satisfies any of the conditions in Theorem

3.1, it is clear that agents will achieve an 𝜖-NE where 𝜖 is given by

(4). First, we notice that the value of 𝜖 depends only on the agent

who maximises 𝑇𝑘𝐴𝑘 (x̄𝑘 ). Therefore, it is natural to decrease the

exploration rate for only this agent. We repeat this process until

another agent maximises𝑇𝑘𝐴𝑘 (x̄𝑘 ), in which case this becomes the

agent whose exploration rate is decreased, or the learning dynamics

no longer achieve asymptotic convergence, at which point the

learning process stops, and the last found QRE is chosen as the final

joint strategy of all agents. To evaluate whether the system achieves

asymptotic convergence for any choice of𝑇𝑘 , a window of the final

𝐻 -iterations of learning is recorded and, for each 𝑘 ∈ N , 𝑖 ∈ S𝑘
the relative difference between the maximum and minimum value

of 𝑥𝑘𝑖 across the window is determined. If this value is less some

tolerance, the system is said to have converged. More formally the

dynamics are said to have converged if(
max𝑡 ∈𝐻 𝑥𝑘𝑖 (𝑡) −min𝑡 ∈𝐻 𝑥𝑘𝑖 (𝑡)

max𝑡 ∈𝐻 𝑥𝑘𝑖 (𝑡)

)
< 𝑙 . (6)

By following this process, agents iteratively reach QRE which

are closer approximations of an NE. We evaluate this process in

our experiments and show that, even in large scale games, the 𝜖-

approximation of the NE improves leading to optimal, and stable,

learned joint strategies.

4 EXPERIMENTS
We first visualise and exemplify the implications of our main result,

Theorem 3.1, on a number of games. In particular, we simulate

the Q-Learning algorithm described in Section 2.2 and show that



𝑇 = 0.7 𝑇 = 1.5 𝑇 = 2 𝑇 = 2.7

Figure 4: Trajectories of Q-Learning in a three agent NetworkChakraborty Gamewith 𝛼 = 7, 𝛽 = 8.5. Axes denote the probabilities
with which each player chooses their first action.

Fully Connected Network Ring Network

Fully Connected Network Ring Network

Figure 5: Q-Learning in the (Top) Network Shapley Game (Bottom) Network Sato Game with 15 agents. The boxplot depicts the
probabilities with which three of the agents play their first action in the final 2500 iterations of learning. This is depicted for
varying choices of exploration rate 𝑇 .

Shapley Game Sato Game

Figure 6: Empirically determined stability boundary of Q-Learning measured against the number of agents. Q-Learning is
iterated with 10 initial conditions and the game is considered to have converged if, for all agents and initial conditions (6) holds
with 𝑙 = 1 × 10

−5. The Fully Connected Network, Star Network and Ring Networks are considered.



Figure 7: Measures of ‘closeness’ to Nash Equilibrium as the exploration update scheme is applied to the Network Chakraborty
Game with five agents and 𝛼 = 2.5, 𝛽 = 1.5. (Left) Distance to NE measured by exploitability (7) of the joint strategy x(𝑡). (Right)
𝜖 as defined by (4). Both metrics decreases as exploration rates are updated until condition (6) fails at approx. 8 × 10

4 iterations,
after which learning is halted.

Figure 8: Histograms depicting the decrease of (Top) Ex-
ploitability and (Bottom) 𝜖 over 150, 000 iterations of learning
across 500 randomly generated network games with payoffs
bounded in [0, 5].

Q-Learning asymptotically approaches a unique QRE so long as

the exploration rates are sufficiently large. We show, in particular,

that the amount of exploration required depends on the structure

of the network rather than the total number of agents.

Remark 4.1. In our experiments, we take all agents 𝑘 to have the

same exploration rate 𝑇 and so drop the 𝑘 notation. As all bounds

in Theorem 3.1 must hold for all agents 𝑘 , this assumption does not

affect the generality of the results.

4.1 Convergence of Q-Learning
We first illustrate the convergence of Q-Learning using the Network
Chakraborty Game, which was analysed in [43] to characterise

chaos in learning dynamics. Formally, the payoff to each agent 𝑘 is

defined as

𝑢𝑘 (x𝑘 , x−𝑘 ) = x⊤
𝑘

Ax𝑙 , 𝑙 = 𝑘 − 1 mod 𝑁,

𝐴 =

(
1 𝛼

𝛽 0

)
, 𝛼, 𝛽 ∈ R.

We visualise the trajectories generated by running Q-Learning

in Figure 4 for a three agent network and choosing 𝛼 = 7, 𝛽 = 8.5.

It can be seen that, for low exploration rates, the dynamics reach

a limit cycle around the boundary of the simplex. However, as

exploration increases, the dynamics are eventually driven towards

a fixed point for all initial conditions.

Network Shapley Game. In the following example, each edge of

the network game has associated the same pair of matrices 𝐴, 𝐵

where

𝐴 =
©­«
1 0 𝛽

𝛽 1 0

0 𝛽 1

ª®¬ , 𝐵 =
©­«
−𝛽 1 0

0 −𝛽 1

1 0 −𝛽
ª®¬ ,

where 𝛽 ∈ (0, 1).
This has been analysed in the two-agent case in [56], where it

was shown that the Fictitious Play learning dynamic do not con-

verge to an equilibrium. [26] analysed the network variant of this

game for the case of a ring network and numerically showed that

convergence can be achieved by Q-Learning through sufficient

exploration.

In Figure 5 we examine both a fully connected network and

a ring network with 15 agents. In this case, the dynamics evolve

in R45
which prohibits a visualisation of the complete dynamics.

To resolve this, we instead take three representative agents and

depict the spread of their strategies in the final 2500 iterations

of learning. A bar which stretches from 0 to 1 indicates that the

dynamics are spread across the simplex which may occur in a limit

cycle or chaotic orbit that approaches the boundary of the simplex

(c.f. Figure 4). These are seen to occur for low exploration rates.

By contrast, when exploration rates are increased beyond a certain

threshold, a flat line is seen which indicates that the dynamics

are stationary, i.e. a fixed point has been reached. Importantly,

the boundary at which equilibrium behaviour occurs is higher in

the fully connected network, where ∥𝐺 ∥∞ = 14 than in the ring

network, where ∥𝐺 ∥∞ = 2. This indicates that larger numbers of



agents may be introduced in the environment without impacting

stability, so long as a weakly connected network is chosen.

Network Sato Game. Wealso analyse the behaviour of Q-Learning

in a variant of the game introduced in [53], where it was shown

that chaotic behaviour is exhibited by learning dynamics in the two-

agent case. We extend this towards a network game by associating

each edge with the payoff matrices 𝐴, 𝐵 given by

𝐴 =
©­«
𝜖𝑋 −1 1

1 𝜖𝑋 −1

−1 1 𝜖𝑋

ª®¬ , 𝐵 =
©­«
𝜖𝑌 −1 1

1 𝜖𝑌 −1

−1 1 𝜖𝑌

ª®¬ ,
where 𝜖𝑋 , 𝜖𝑌 ∈ R. Notice that for 𝜖𝑋 = 𝜖𝑌 = 0, this corresponds

to the classic Rock-Paper-Scissors game which is zero-sum so that,

by Corollary 1, Q-Learning will converge to an equilibrium with

any positive exploration rates. We choose 𝜖𝑋 = 0.01, 𝜖𝑌 = −0.05 in

order to stay consistent with [53] which showed chaotic dynamics

for this choice. The boxplot once again shows that sufficient ex-

ploration leads to convergence of all initial conditions. However,

the amount of exploration required is significantly smaller than

that of the Network Shapley Game. This can be seen as being due

to the significantly lower interaction coefficient of the Sato game

𝜎𝐼 = 0.05 as compared to the Shapley game 𝜎𝐼 = 2.

4.2 Stability Boundary
In these experiments we empirically determine the dependence of

the stability boundary w.r.t. the number of agents. For accurate com-

parison with Figure 2, we consider the Network Sato and Shapley

Games in a fully-connected network, star network and ring net-

work. We iterate Q-Learning for various values of 𝑇 and determine

whether the dynamics have converged. To evaluate convergence,

we apply (6) with |𝐻 | = 2500 iterations and 𝑙 = 1 × 10
−5
. In Figure

6, we plot the smallest exploration rate 𝑇 for which (6) holds for

varying choices of 𝑁 . It can be seen that the prediction of Theorem

3.1 holds, in that the number of agents plays no impact for the

ring network whereas the increase in the fully-connected network

is linear in 𝑁 . In addition, it is clear that the stability boundary

increases slower in the Sato game than in the Shapley game, owing

to the smaller interaction coefficient.

An additional point to note is that the stability boundary for the

star network increases slower than the fully-connected network in

all games. We anticipate that this is due to the fact that the 2-norm

∥𝐺 ∥2 in the star network is smaller than that of the fully-connected

network (c.f. Figure 1).

4.3 Effectiveness of Exploration Update Scheme
In these experiments, we evaluate the exploration update scheme

outlined in Section 3.2. using |𝐻 | = 500 and 𝑙 = 1×10
−5

. In Figure 7

we consider the Network Chakraborty Game with 𝛼 = 2.5, 𝛽 = 1.5

We measure the ‘distance’ between the strategy x(𝑡) and the NE

using two metrics: first by 𝜖 as given in (4) and second through

exploitability 𝜙 (x) given as

𝜙 (x) =
∑︁
𝑘

max

y𝑘 ∈Δ𝑘

𝑢𝑘 (y𝑘 , x−𝑘 ) − 𝑢𝑘 (x𝑘 , x−𝑘 ). (7)

The exploitability is used, sometimes under different names, as

a measure of distance to the NE [15, 49] and, from (4) it can be

seen that 𝜙 (x̄) =
∑
𝑘 𝑇𝑘𝐴𝑘 (x̄𝑘 ) for any QRE x̄. The reason for

examining 𝜙 is that its definition holds for any strategy x ∈ Δ,
whilst (4) only holds at a QRE x̄ ∈ Δ. It can be seen in all cases

that both metrics decrease as agents learn, until condition (6) is no

longer satisfied. To examine the generality of this performance, we

evaluate the exploration update scheme in 500 randomly generated

network games with 15 agents, two actions and a ring structure.

Exploitability and 𝜖 are evaluated at the first iteration and final

iteration and the difference is recorded. Figure 8 plots the decrease of

bothmetrics as a histogram across all 500 games. These experiments

(as well as additional presented in Appendix D) suggest that, if

exploration rates are updated according the scheme in Section 3.2,

independent learning agents may learn stable equilibrium strategies

which closely approximate Nash Equilibria.

5 CONCLUSION
In this paper we show that the Q-Learning dynamics is guaranteed

to converge in arbitrary network games, independent of any re-

strictive assumptions such as network zero-sum or potential. This

allows us to make a branching statement which applies across all

network games.

In particular, our analysis shows that convergence of the Q-

Learning dynamics can be achieved through sufficient exploration,

where the bound depends on the pairwise interaction between

agents and the structure of the network. Overall, compared to the

literature, we are able to tighten the bound on sufficient exploration

and show that, under certain network interactions, the bound does

not increase with the total number of agents. This allows for stabil-

ity to be guaranteed in network games with many players.

A fruitful direction for future research would be to capture the

effect of the payoffs through a tighter bound than the interaction

coefficient and to explore further how properties of the network

affect the bound. In addition, whilst there is still much to learn in

the behaviour of Q-Learning in stateless games, the introduction

of the state variable in the Q-update is a valuable next step.
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A PRELIMINARIES
In this section we outline the various tools and properties that we will use in our proofs.

A.1 Variational Inequalities and Monotone Games
Our aim in this work is to analyse the Q-Learning dynamics in network games without invoking any particular structure on the payoffs

(e.g. zero-sum). To do this, we employ the Variational Inequality approach, which has been successfully applied towards the analysis of

network games [37, 47] as well as learning in games [18, 26, 58].

Definition A.1 (Variational Inequality). Consider a set X ⊂ R𝑑 and a map 𝐹 : X → R𝑑 . The Variational Inequality (VI) problem 𝑉 𝐼 (X, 𝐹 )
is given as

⟨x − x̄, 𝐹 (x̄)⟩ ≥ 0, for all x ∈ X. (8)

We say that x̄ ∈ X belongs to the set of solutions to a variational inequality problem 𝑉 𝐼 (X, 𝐹 ) if it satisfies (8).

The premise of the variational approach to game theory [12, 50] is that the problem of finding equilibria of games can be reformulated as

determining the set of solutions to a VI problem. This is done by choosing associating the setX with Δ and the map 𝐹 with the pseudo-gradient
of the game.

Definition A.2 (Pseudo-Gradient Map). The pseudo-gradient map of a game G = (N , E, (𝑢𝑘 ,S𝑘 )𝑘∈N) is given by 𝐹 (x) = (𝐹𝑘 (x))𝑘∈N =

(−𝐷x𝑘𝑢𝑘 (x𝑘 , x−𝑘 ))𝑘∈N .

The advantage of this formulation is that we can apply results from the study of Variational Inequalities to determine properties of the

game. These results rely solely on the form of the pseudo-gradient map and so can generalise results which assume a potential or zero-sum

structure of the game [26, 28].

Lemma A.3 ([38]). Consider a game G = (N , E, (𝑢𝑘 ,S𝑘 )𝑘∈N) and for any 𝑇1, . . . ,𝑇𝑁 > 0, let 𝐹 be the pseudo-gradient map of G𝐻 . Then
x̄ ∈ Δ is a QRE of G if and only if x̄ is a solution to 𝑉 𝐼 (Δ, 𝐹 ).

With this correspondence in place, we can analyse properties of the pseudo-gradient map and its relation to properties of the game and

the learning dynamic. One important property is monotonicity.

Definition A.4. A map 𝐹 : X → R𝑑 is

(1) Monotone if, for all x, y ∈ X,
⟨𝐹 (x) − 𝐹 (y), x − y⟩ ≥ 0.

(2) Strongly Monotone with constant 𝛼 > 0 if, for all x, y ∈ X,

⟨𝐹 (x) − 𝐹 (y), x − y⟩ ≥ 𝛼 | |x − y| |2
2
.

Definition A.5 (Monotone Game). A game G is monotone if its pseudo-gradient map is monotone.

A large part of our analysis will be in determining conditions under which the pseudo-gradient map is monotone. Upon doing so, we are

able to employ the following results.

Lemma A.6 ([38]). Consider a game G = (N , E, (𝑢𝑘 ,S𝑘 )𝑘∈N) and for any 𝑇1, . . . ,𝑇𝑁 > 0, let 𝐹 be the pseudo-gradient map of G𝐻 . G has a
unique QRE x̄ ∈ Δ if 𝐹 is strongly monotone with any 𝛼 > 0.

Lemma A.7 ([26]). If the game𝐺 is monotone, then the Q-Learning Dynamics (QLD) converge to the unique QRE with any positive exploration
rates 𝑇1, . . . ,𝑇𝑁 > 0.

Finally, recall that an operator 𝑓 : X ⊂ R𝑛 → R𝑛 is strongly convex with constant 𝛼 if, for all x, y ∈ X

𝑓 (y) ≥ 𝑓 (x) + 𝐷𝑓 (x)⊤ (y − x) + 𝛼

2

∥x − y∥2
2
.

It is known that, if 𝑓 (x) is strongly convex, then its Hessian 𝐷2

x 𝑓 (x) is strongly positive definite with constant 𝛼 . Thus, all eigenvalues of

𝐷2

x 𝑓 (x) are larger than 𝛼 . To apply this in our setting, we use the following result.

Proposition A.8 ([38]). The function 𝑓 (x𝑘 ) = 𝑇𝑘 ⟨x𝑘 , ln x𝑘 ⟩ is strongly convex with constant 𝑇𝑘 .

A.2 Matrix Norms
In addition, the following definitions and properties hold for any matrix 𝐴.

(1) ∥𝐴∥2 =
√︁
𝜆max (𝐴⊤𝐴) where 𝜆max is the largest eigenvalue of 𝐴,

(2) ∥𝐴∥∞ = max𝑖
∑

𝑗 | [𝐴]𝑖 𝑗 |,
(3) 𝜌 (𝐴) = max𝑖 |𝜆𝑖 (𝐴) | where 𝜆𝑖 (𝐴) denotes an eigenvalue of 𝐴.



Proposition A.9 (Weyl’s Inequality). Let 𝐽 = 𝐷 + 𝑁 where 𝐷 and 𝑁 are symmetric matrices. Then it holds that

𝜆min (𝐽 ) ≥ 𝜆min (𝐷) + 𝜆min (𝑁 ) .

where 𝜆min (𝐴) denotes the smallest eigenvalue of a matrix.

Proposition A.10. Let 𝐺,𝐴 be matrices and ⊗ denote the Kronecker product. Then

∥𝐺 ⊗ 𝐴∥2 = ∥𝐺 ∥2∥𝐴∥2 .

Proposition A.11. Let 𝐴 be a symmetric matrix. Then

|𝜆min (𝐴) | ≤ 𝜌 (𝐴) = ∥𝐴∥2 .

The following result is used in our proof to be able to parameterise the effect of pairwise interactions by 𝜎𝐼 .

Lemma A.12. Let 𝐺 ∈ M𝑁 (R) be matrix for which each entry 𝑔𝑖 𝑗 := [𝐺]𝑖 𝑗 is either 0 or 1. Let 𝑁 ∈ M𝑁𝑛 (R) be a block matrix such that

[𝑁 ]𝑖 𝑗 =
{
𝐴𝑖 𝑗 if 𝑔𝑖 𝑗 = 1

0 otherwise
,

where 𝐴𝑖 𝑗 ∈ M𝑛 (R) are matrices of the same dimension. let 𝐴 ∈ 𝑀𝑛 (R) be a matrix which satisfies ∥𝐴∥2 ≥ ∥𝐵𝑖 𝑗 ∥2 for all (𝑖, 𝑗) ∈ E. Finally let
𝑁̃ ∈ 𝑀𝑁𝑛 (R) be a block matrix given by Then

∥𝑁 ∥
2
≤

√︁
∥𝐺 ∥

1
∥𝐺 ∥∞ max

1≤𝑖, 𝑗≤𝑛



𝐴𝑖 𝑗




2
.

Proof. Let 𝑣 = (𝑣1, . . . , 𝑣𝑛) ∈ R𝑁𝑛
where 𝑣𝑖 ∈ R𝑁 for 1 ≤ 𝑖 ≤ 𝑛. Then

∥𝑁𝑣 ∥2
2
=








©­­«
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. (9)

For each fixed 𝑖 ∈ {1, . . . , 𝑛}, we have the upper bound
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By plugging (10) in (9) and expanding the squared bracket, we obtain that
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where the last inequality follows by completing the square. Notice that the two sums above are identical, hence

∥𝑁𝑣 ∥2
2
≤ max

1≤𝑖, 𝑗≤𝑛



𝐴𝑖 𝑗


2

2

𝑛∑︁
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2

2

.

It remains the upper bound the RHS in the above inequality. Indeed, we have that

𝑛∑︁
𝑖=1
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2

2

= ∥𝐺∞∥ ∥𝐺1∥ .

Thus

sup

𝑣 : ∥𝑣 ∥=1

∥𝑁𝑣 ∥2
2
≤ ∥𝐺∞∥ ∥𝐺1∥max

𝑖, 𝑗



𝐴𝑖 𝑗


2

2
,

and the conclusion follows.

□



B PROOF OF THEOREM 3.1
In this section we provide the full proof of Theorem 3.1. First, we prove the following result, which will be used to parameterise interactions

by the influence bound 𝛿𝑘 .

LemmaB.1. In a network game G = (N , E, (𝑢𝑘 ,S𝑘 )𝑘∈N), the following holds for any agent 𝑘 ∈ N action 𝑖 ∈ S𝑘 and strategies x−𝑘 , y−𝑘 ∈ Δ−𝑘
|𝑟𝑘𝑖 (x−𝑘 ) − 𝑟𝑘𝑖 (y−𝑘 ) | ≤ 𝛿𝑘

∑︁
𝑙∈N𝑘

∥x𝑙 − y𝑙 ∥1 .

Proof. Fix an agent 𝑘 and define the dummy game
˜G𝑘 = (N𝑘 ∪ {𝑘}, (𝑢̃𝑘 ,S𝑘 )𝑘∈N𝑘∪{𝑘 } ) so that

˜G𝑘 is composed of only agent 𝑘 and

its neighbours. In addition, the rewards are chosen so that 𝑟𝑘𝑖 (x−𝑘 ) = 𝑟𝑘𝑖 (x−𝑘 ) for all x−𝑘 and 𝑟𝑙𝑖 (x−𝑙 ) = 𝑟𝑙 𝑗 (x−𝑙 ) for all 𝑙 ∈ N𝑘 and all

𝑖, 𝑗 ∈ S𝑘 . In ˜G𝑘 , the maximum influence bound 𝛿 := max𝑙∈N𝑘∪{𝑘 } 𝛿𝑙 is exactly 𝛿𝑘 . Then, from [10] Proposition 5, the following holds in
˜G𝑘

|𝑟𝑘𝑖 (x−𝑘 ) − 𝑟𝑘𝑖 (y−𝑘 ) | ≤
∑︁
𝑙≠𝑘

𝛿 ∥x𝑙 − y𝑙 ∥1 .

This translates in the original network game G to the statement of the Lemma. □

With these results in place, we can prove Theorem 3.1 in the main paper.

Proof of Theorem 3.1. In order to apply Lemma A.7 we show that, under any of the conditions, the perturbed game G𝐻 is strongly

monotone. To this end, we take the derivative of the pseudo-gradient of G𝐻 which we call the pseudo-Hessian given by

[𝐽 (x)]𝑘,𝑙 = 𝐷x𝑙 𝐹𝑘 (x) .

It follows that, if
𝐽 (x)+𝐽 ⊤ (x)

2
is strongly positive definite for all x ∈ Δ with any 𝛼 > 0, i.e. x⊤ 𝐽 (x)x ≥ 𝛼 for all x ∈ Δ, then 𝐹 (x) is strongly

monotone with the same constant 𝛼 . We can rewrite the pseudo-Hessian as

𝐽 (x) = 𝐷 (x) + 𝑁 (x),
where 𝐷 (x) is a block diagonal matrix with −𝐷2

x𝑘x𝑘𝑢
𝐻
𝑘
(x𝑘 , x−𝑘 ) along the diagonal. 𝑁 (x) is an off-diagonal block matrix with

[𝑁 (x)]𝑘,𝑙 =
{
−𝐷x𝑘 ,x𝑙𝑢

𝐻
𝑘
(x𝑘 , x−𝑘 ) if (𝑘, 𝑙) ∈ E

0 otherwise

.

In words, 𝑁 (𝑥) shares the same structure of the adjacency matrix 𝐺 of the game, except that it has −𝐷x𝑘 ,x𝑙𝑢
𝐻
𝑘
(x𝑘 , x−𝑘 ) wherever 𝐺 takes

the value 1 and the block matrix 0 wherever 𝐺 has 0. Next we evaluate these partial differentials. Recall that

−𝑢𝐻
𝑘
(x𝑘 , x−𝑘 ) = 𝑇𝑘 ⟨x𝑘 , ln x𝑘 ⟩ −

∑︁
(𝑘,𝑙 ) ∈E

x𝑘 · 𝐴𝑘𝑙x𝑙 .

As a result, for all (𝑘, 𝑙) ∈ E, [𝑁 (x)]𝑘,𝑙 = −𝐴𝑘𝑙
, so that 𝑁 (x) represents the network interaction. By contrast, 𝐷 (x) depends on 𝑇𝑘 and is

independent of the payoffs 𝑢𝑘 . As such, it measures the strength of the game perturbation. Now, let 𝐽 (x) be defined as

𝐽 (x) = 𝐽 (x) + 𝐽⊤ (x)
2

= 𝐷 (x) + 𝑁 (x) + 𝑁⊤ (x)
2

.

Then, from Proposition A.8 it follows that 𝐷 (x) is strongly positive definite with constant 𝑇 = min𝑘 𝑇𝑘 . In particular, this means that

𝜆min𝐷 (x) ≥ 𝑇 . Finally, applying Weyl’s inequality

𝜆min (𝐽 ) ≥ 𝑇 + 𝜆min

(
𝑁 + 𝑁⊤

2

)
≥ 𝑇 − 𝜌

(
𝑁 + 𝑁⊤

2

)
= 𝑇 −





𝑁 + 𝑁⊤
2






2

≥ 𝑇 − 1

2

∥𝐴 + 𝐵∥
2

√︁
∥𝐺 ∥∞∥𝐺 ∥1

= 𝑇 − 1

2



𝐴 + 𝐵⊤


2
∥𝐺 ∥∞

= 𝑇 − 1

2

𝜎𝐼 ∥𝐺 ∥∞ ,

where we employ Propositions A.11, Lemma A.12 and the fact that 𝐺 is symmetric so that ∥𝐺 ∥∞ = ∥𝐺 ∥1. The matrices 𝐴, 𝐵 are chosen so

that 

𝐴 + 𝐵⊤


2
= max

(𝑘,𝑙 ) ∈E




𝐴𝑘𝑙 + (𝐴𝑙𝑘 )⊤





2

= 𝜎𝐼 .



𝑛𝑘 = 2 𝑛𝑘 = 3

Figure 9: 𝐴𝑘 (x𝑘 ) plotted on a unit simplex Δ𝑘

Then, under (C2), 𝜆min (𝐽 (x)) ≥ 𝑇 − 1

2
𝜎𝐼 ∥𝐺 ∥∞ > 0 and, therefore 𝐹 (x) is strongly monotone with constant 𝑇 − 1

2
𝜎𝐼 ∥𝐺 ∥∞. Using Lemma

A.7, it follows that Q-Learning Dynamics converge to a unique QRE.

To achieve (C3) we apply Proposition A.10 which yields that

𝑇 −




𝑁 + 𝑁⊤

2






2

=𝑇 −




 (𝐴 + 𝐵⊤) ⊗ 𝐺

2






2

=𝑇 − 1

2



𝐴 + 𝐵⊤


2
∥𝐺 ∥

2

=𝑇 − 1

2

𝜎𝐼 ∥𝐺 ∥2 .

Finally, we prove (C1). In this case, it holds that, for any 𝑘 and any x, y ∈ Δ

(x𝑘 − y𝑘 )⊤ (𝐹𝑘 (x) − 𝐹𝑘 (y)) = (x𝑘 − y𝑘 )⊤ (𝑇𝑘 ln x𝑘 −𝑇𝑘 ln y𝑘 ) − (x𝑘 − y𝑘 )⊤ (𝑇𝑘𝑟𝑘 (x−𝑘 ) −𝑇𝑘𝑟𝑘 (y−𝑘 ))
≥ 𝑇𝑘 ∥x𝑘 − y𝑘 ∥21 −

��(x𝑘 − y𝑘 )⊤ (𝑟𝑘 (x−𝑘 ) − 𝑟𝑘 (y−𝑘 ))
��

≥ 𝑇𝑘 ∥x𝑘 − y𝑘 ∥21 − ∥x𝑘 − y𝑘 ∥1𝛿𝑘
∑︁
𝑙∈N𝑘

∥x𝑙 − y𝑙 ∥1

≥ 𝑇𝑘 ∥x𝑘 − y𝑘 ∥21 − ∥x𝑘 − y𝑘 ∥1𝛿𝑘
∑︁
𝑙≠𝑘

[𝐺]𝑘𝑙 ∥x𝑙 − y𝑙 ∥1

= 𝜉𝑘 (𝑀𝜉)𝑘 ,

where 𝜉 = (x𝑘 − y𝑘 )𝑘∈N and 𝑀 = (𝑑𝑖𝑎𝑔(𝑇𝑘 )𝑘∈N − 𝑑𝑖𝑎𝑔(𝛿𝑘 )𝑘∈N ·𝐺). Notice that, to achieve the third inequality, we applied Lemma B.1

Then under (C1),𝑀 is strictly diagonally dominant and so is strictly positive definite. Then∑︁
𝑘

(x𝑘 − y𝑘 )⊤ (𝐹𝑘 (x) − 𝐹𝑘 (y)) ≥ 𝜉⊤𝑀𝜉 > 0,

so that 𝐹 (x) is strictly monotone. Then, Lemma A.7 can be applied to yield convergence of Q-Learning Dynamics. □

C PROOFS FROM SECTION 3.1
First we show that any QRE x̄ is an approximate Nash Equilibrium.

Proof of Proposition 3.8. We first notice that, for some 𝜖 > 0, the definition of an 𝜖-Nash Equilibrium in Definition 3.7 holds if

max

𝑘∈N
max

𝑖∈S𝑘
𝑟𝑘𝑖 (x̄−𝑘 ) − ⟨x̄𝑘 , 𝑟𝑘 (x̄−𝑘 )⟩ = 𝜖.



Next, recall that a QRE x̄ ∈ Δ corresponds to an interior fixed point of the Q-Learning Dynamics [32]. From this it holds that, for any 𝑘 and

any 𝑖 ∈ S𝑘

0 = 𝑟𝑘𝑖 (x̄−𝑘 ) − ⟨x̄𝑘 , 𝑟𝑘 (x̄−𝑘 )⟩ +𝑇𝑘
∑︁
𝑗∈S𝑘

𝑥𝑘 𝑗 ln

𝑥𝑘 𝑗

𝑥𝑘𝑖

𝑟𝑘𝑖 (x̄−𝑘 ) − ⟨x̄𝑘 , 𝑟𝑘 (x̄−𝑘 )⟩ = −𝑇𝑘
∑︁
𝑗∈S𝑘

𝑥𝑘 𝑗 ln

𝑥𝑘 𝑗

𝑥𝑘𝑖

= 𝑇𝑘 ln𝑥𝑘𝑖 − ⟨x𝑘 , ln x𝑘 ⟩.

As this holds for any 𝑖 ∈ S𝑘 , the following holds

max

𝑘∈N
max

𝑖∈S𝑘
𝑟𝑘𝑖 (x̄−𝑘 ) − ⟨x̄𝑘 , 𝑟𝑘 (x̄−𝑘 )⟩ = max

𝑘∈N
𝑇𝑘 max

𝑖∈S𝑘
ln𝑥𝑘𝑖 − ⟨x𝑘 , ln x𝑘 ⟩

= max

𝑘∈N
𝑇𝑘𝐴𝑘 (x̄𝑘 ),

so that x̄ is an 𝜖-Nash Equilibrium with 𝜖 = max𝑘∈N 𝑇𝑘𝐴𝑘 (x̄𝑘 ) □

Lemma C.1 (Full version of Lemma 3.11). Let u𝑘 = (1/𝑛𝑘 , . . . , 1/𝑛𝑘 ) ∈ Δ𝑘 and e𝑘𝑖 ∈ Δ𝑘 be the canonical basis vector with 𝑖th entry equal to 1

and 0 elsewhere. Then

𝐴𝑘 := max

x𝑘 ∈Δ𝑘

©­«max

𝑖∈S𝑘
ln𝑥𝑘𝑖 −

∑︁
𝑗∈S𝑘

𝑥𝑘 𝑗 ln𝑥𝑘 𝑗
ª®¬ =

ln (𝑛𝑘 − 1) − ln

(
𝑊

(
𝑛𝑘−1

𝑒

))
1 + 1/𝑊

(
𝑛𝑘−1

𝑒

) , (11)

with equality if x∗ = 𝑐 e𝑘𝑖 + (1 − 𝑐)u𝑘 for any 𝑖 ∈ S𝑘 , where 𝑐 = 1/
(
𝑊

(
𝑛𝑘−1

𝑒

)
+ 1

)
and𝑊 (·) is the Lambert W function.

Proof. The max over 𝑖 ∈ {1, . . . , 𝑛𝑘 } can be eliminated, as

max

x𝑘 ∈Δ𝑘

©­«max

𝑖∈S𝑘
ln𝑥𝑘𝑖 −

∑︁
𝑗∈S𝑘

𝑥𝑘 𝑗 ln𝑥𝑘 𝑗
ª®¬ = max

x𝑘 ∈Δ𝑘

©­«ln𝑥𝑘𝑖 −
∑︁
𝑗∈S𝑘

𝑥𝑘 𝑗 ln𝑥𝑘 𝑗
ª®¬ . (12)

Notice that any value of the LHS realized by x𝑘 can also be realized by the RHS for y𝑘 , where y𝑘 is obtained from x𝑘 by swapping the largest

and 𝑖th entries of x𝑘 . Explicitly, let 𝑖0 = arg max𝑗∈S𝑘 𝑥𝑘 𝑗 and

𝑦𝑘 𝑗 =


𝑥𝑘𝑖0 if 𝑗 = 𝑖

𝑥𝑘𝑖 if 𝑗 = 𝑖0

𝑥𝑘 𝑗 otherwise

Having eliminated the inner maximization, we can formulate the RHS of (12) as a constrained optimization problem, which we solve in two

steps.

Firstly, we show that the x∗ maximizing the RHS of (12) lies on one of the line segments connecting the vertices e𝑘𝑖 of the simplex Δ𝑘
with the uniform distribution u𝑘 (see Figure 9). Next, we determine the position of x∗ on this segment, and substitute the value of x∗ to
obtain the RHS of (11). We then derive tight bounds on this quantity.

For the first step, consider the Lagrangian 𝐿 : Δ𝑘 × (0,−∞) → R ∪ {∞} given by

𝐿 (x𝑘 ) = ln𝑥𝑘𝑖 −
∑︁
𝑗∈S𝑘

𝑥𝑘 𝑗 ln𝑥𝑘 𝑗 + 𝜆
©­«
∑︁
𝑗∈S𝑘

𝑥𝑘 𝑗 − 1
ª®¬ .

Setting the partial derivatives to 0, we obtain that

𝜕𝐿

𝜕𝑥𝑘𝑖
= −1 + 𝜆 + 1/𝑥𝑘 𝑗 − ln𝑥𝑖 = 0,

𝜕𝐿

𝜕𝑥𝑘 𝑗
= −1 + 𝜆 − ln𝑥𝑘 𝑗 = 0 for all 𝑗 ∈ S𝑘 with 𝑗 ≠ 𝑖,

𝜕𝐿

𝜕𝜆
=

∑︁
𝑗∈S𝑘

𝑥𝑘 𝑗 − 1 = 0,

with the solution given by x∗ with 𝑥𝑘 𝑗 = 1/𝑊 (𝑒1−𝜆) and 𝑥𝑘𝑖 = 𝑒−1+𝜆
for 𝑗 ≠ 𝑖 , where𝑊 is the Lambert W function. Note that 𝐿(x𝑘 ) = −∞

for x𝑘 on the boundary of Δ𝑘 and further that the mapping x𝑘 → ln𝑥𝑘𝑖 −
∑

𝑗∈S𝑘 𝑥𝑘 𝑗 ln𝑥𝑘 𝑗 is concave, as its Hessian is diagonal with



negative entries, hence the stationary point of 𝐿 gives a maximum. Finally, determining 𝜆 is equivalent to solving∑︁
𝑗∈S𝑘

𝑥𝑘 𝑗 =
1

𝑊 (𝑒1−𝜆)
+ (𝑛𝑘 − 1)𝑒−1+𝜆 = 1,

which is intractable to the best of our knowledge, even with modern software such as Mathematica. Nevertheless, we have proved that

the maximizer x∗ of (12) lies on the line segment connecting a vertex and the centre of the simplex, which reduces our initial constrained

optimization problem to one dimension. Without loss of generality, pick the first vertex and let x∗ = (𝑥, 1−𝑥
𝑛𝑘−1

, . . . , 1−𝑥
𝑛𝑘−1
) for some 𝑥 ∈ [0, 1].

We have that

ln𝑥𝑖 −
∑︁
𝑗∈S𝑘

𝑥𝑘 𝑗 ln𝑥𝑘 𝑗 = ln𝑥 + 𝑥 ln𝑥 + (1 − 𝑥) ln 1 − 𝑥
𝑛𝑘 − 1

,

which involves no special functions. By setting the derivative to 0, we find that this expression is maximized for 𝑥 = 1/
(
1 +𝑊

(
𝑛𝑘−1

𝑒

))
and

that the maximum value is given by

𝐴𝑘 =

ln (𝑛𝑘 − 1) − ln

(
𝑊

(
𝑛𝑘−1

𝑒

))
1 + 1/𝑊

(
𝑛𝑘−1

𝑒

) .

Finally, we give bounds for 𝐴𝑘 . [24] proves the sharp bound

ln𝑥 − ln ln𝑥 <𝑊 (𝑥) < ln𝑥 − ln ln𝑥 + ln (1 + 1/𝑒),
which translates to

𝐴𝑘 <
ln𝑛𝑘 − ln (ln𝑛𝑘 − ln ln𝑛𝑘 )

1 + 1

ln𝑛𝑘−ln ln𝑛𝑘

< ln𝑛𝑘 − ln (ln𝑛𝑘 − ln ln𝑛𝑘 ) < ln𝑛𝑘 .

□

Algorithm 1 Iterative improvement of QRE

Input: Network game G = (N , E, (𝑢𝑘 ,S𝑘 )𝑘∈N); Exploration Rate annealing step Δ𝑇 ; Maximum number of anneals𝑀 ; Q-Learning horizon

𝐻 ; Convergence Window Length ℎ; Tolerance tol.

Output: Learned QRE x̄ ∈ Δ
𝑇𝑘 ← 𝛿𝑘 |N𝑘 | for all 𝑘 ∈ N ⊲ or (C2), (C3)

for 𝜏 = 1 : 𝐻 do
for k = 1, . . . , N do

𝑄𝑘𝑖 ← (1 − 𝛼𝑘 )𝑄𝑘𝑖 + 𝛼𝑘𝑟𝑘𝑖 (x−𝑘 )
x𝑘 (𝜏) ← softmax(𝑄𝑘/𝑇𝑘 )

end for
end for
x̄← x(𝐻 )
for t = 1:M do ⊲ or until break statement is reached

for 𝑘 = 1, . . . , 𝑁 do
𝜖𝑘 ← 𝑇𝑘𝐴𝑘 (x̄𝑘 ) ⊲ from (5)

end for
𝑙 = arg max𝑘∈N 𝜖𝑘 ⊲ ties broken arbitrarily

𝑇𝑙 ← 𝑇𝑙 − Δ𝑇
for 𝜏 = 1 : 𝐻 do

for k = 1, . . . , N do
𝑄𝑘𝑖 ← (1 − 𝛼𝑘 )𝑄𝑘𝑖 + 𝛼𝑘𝑟𝑘𝑖 (x−𝑘 )
x𝑘 (𝜏) ← softmax(𝑄𝑘/𝑇𝑘 )

end for
end for
𝑉 ← max𝑘,𝑖

{
max𝜏 ∈𝐻 𝑥𝑘𝑖 (𝜏 )−min𝜏 ∈𝐻 𝑥𝑘𝑖 (𝜏 )

min𝜏 ∈𝐻 𝑥𝑘𝑖 (𝜏 )

}
if 𝑉 < tol then

x̄← x(𝐻 )
else

break
end if

end for



𝑇 = 0.15 𝑇 = 0.3 𝑇 = 0.4 𝑇 = 0.55

Figure 10: Trajectories of Q-Learning in a three agent Network Mismatching Game with𝑀 = 2. Axes denote the probabilities
with which each player chooses their first action.

D ADDITIONAL EXPERIMENTS
In this section, we present additional experiments on the behaviour of Q-Learning in Network Games, as well as on the exploration update

scheme. In Figure 10, we examine a Network Mismatching Game, which was analysed in [30] as an example of limit cycle behaviour in

replicator dynamics. Here, the payoff to each agent 𝑘 is given as

𝑢𝑘 (x𝑘 , x−𝑘 ) = x⊤
𝑘

Ax𝑙 , 𝑙 = 𝑘 − 1 mod 𝑁,

𝐴 =

(
0 1

𝑀 0

)
, 𝑀 ≥ 1

From Figure 10 it is clear that, as exploration rates increase, the dynamics are driven towards a QRE from all initial conditions.

Next, we present additional experiments on the exploration updating scheme in Section 3.2. In particular, we apply the scheme to a

Network Mismatching Game with 5 agents. We plot the exploitability (7) and 𝜖 (4) over 150, 000 iterations of learning. In both cases it is

again clear that the distance to Nash decreases as the exploration updating scheme is applied. In the case that𝑀 = 2, the scheme is applied

until (6) fails at approx. 60, 000 iterations, whilst in the case𝑀 = 4, agents learn for 80, 000 iterations before the dynamics are considered

unstable. In Figure 12 we plot the trajectories of Q-Learning using the first action played by three representative agents. The dynamics move

between QRE as the exploration rates are adjusted, however stability of the dynamic is maintained.



Figure 11: Measures of ‘closeness’ to Nash Equilibrium as the exploration update scheme is applied to the Network Mismatching
Game with five agents and (Top)𝑀 = 2 (Bottom)𝑀 = 4. (Left) Distance to NE measured by exploitability (7) of the joint strategy
x(𝑡). (Right) 𝜖 as defined by (4). Both metrics decreases as exploration rates are updated until condition (6) fails, after which
learning is halted.

Figure 12: Trajectories of Q-Learning generated as the centralised scheme is applied to (Left) Mismatching Game with𝑀 = 2

(Right) Mismatching Game with𝑀 = 4.
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