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Abstract

We explore non-equilibrium processes in two-dimensional conformal field theories

(2d CFTs) due to the growth of operators induced by inhomogeneous and homogeneous

Hamiltonians by investigating the time dependence of the partition function, energy

density, and entanglement entropy. The non-equilibrium processes considered in this

paper are constructed out of the Lorentzian and Euclidean time evolution governed by

different Hamiltonians. We explore the effect of the time ordering on entanglement

dynamics so that we find that in a free boson CFT and RCFTs, this time ordering does

not affect the entanglement entropy, while in the holographic CFTs, it does. Our main

finding is that in the holographic CFTs, the non-unitary time evolution induced by the

inhomogeneous Hamiltonian can retain the initial state information longer than in the

unitary time evolution.
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3.3.1 Möbius case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.2 SSD limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Entanglement entropy in Integrable Theories 19
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1 Introduction and summary

In recent years, it has come to light that holographic conformal field theories (CFTs),

which can be described by semiclassical gravity, possess chaotic properties. To elucidate

the mechanism behind holography, a vast literature examining their chaotic properties has

been accumulated[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. One of the main

chaotic phenomena observed in holographic CFTs, in which the “size” of local operators grow

during time evolution, is known as operator growth. In fact, under time evolution by these

maximally chaotic Hamiltonians, the size of these local operators can grow exponentially in

time [20, 21, 22].

Some pioneering works on operator growth explored the time dependence of entanglement

entropy after a vacuum state has been excited by a local operator before undergoing regular

time evolution [23, 24, 25, 26, 27]. In these papers, we similarly start from the vacuum state

with the insertion of a single local operator and evolve the system with two-dimensional CFT

Hamiltonians. Unlike previous works, we will use spatially inhomogeneous Hamiltonians to

either time evolve the system or to regulate the state.
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In non-holographic theories such as RCFTs or the free boson CFT, the time dependence

of the entanglement entropy of a subsystem A, which we denote SA, is well-described by

the propagation of excitations called quasiparticles. When the subsystem A is half of an

infinite system, the entanglement entropy SA increases by a constant determined by the local

operator inserted, at a time that is determined by the motion of these quasiparticles. On the

other hand, in 2d holographic CFTs, the entanglement entropy SA grows logarithmically at

late times and so the dependence of SA on the local operator is hidden by this logarithmic

growth. This suggests that the scrambling effect of 2d holographic Hamiltonians hides the

information of the local operator inserted5. These studies have been generalized in different

ways. In [29, 30], the initial states were respectively chosen to be the thermofield double

state and the thermal state instead of the vacuum state. In [31, 32], the authors considered

the time evolution with two local operators inserted instead of one. Some other studies

of local operator quenches can be found in [33, 34, 35]. In this paper, we will explore

this scrambling process by using spatially inhomogeneous Hamiltonians instead of the usual

uniform Hamiltonian.

The inhomogenous Hamiltonians considered in this paper were originally introduced as

inhomogeneous deformations of spin systems with the intention of reducing the systems’ de-

pendence on boundary conditions [36, 37, 38, 39]. We consider a family of Möbius Hamiltoni-

ans that are parametrized by a parameter θ that controls the spatial inhomogeneity. Setting

θ = 0 gives the usual uniform Hamiltonian. On the other hand, sending θ → ∞ gives the SSD

Hamiltonian which is the most inhomogeneous Hamiltonian we consider. These inhomoge-

neous deformations were subsequently introduced in 2d CFTs [40, 41] which is tantamount to

placing these CFTs on curved spacetimes [42]. Currently, these inhomogeneous deformations

are used to analytically explore the properties of quantum systems following global quenches

and periodic Floquet driving [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58].

In addition, the non-equilibrium processes induced by these inhomogeneous quenches can be

used to cool systems to the ground state [59, 60, 61, 62, 63, 64] which produces non-local

correlations in conformal field theories [65, 66]. This production of non-local correlations

was further explored in spin chains in [67]. The generalization of Floquet driving in CFTs

with dimensions greater than 2 have been studied in [68]. The relationship between lo-

cal quenches and Möbius quenches were explored in [69], while the entanglement entropy

for quantum quenches in generic inhomogeneous CFTs with open boundary conditions was

derived in [70].

In this paper, we consider a Lorentzian time evolution induced by a Hamiltonian H1,

followed by a subsequent Euclidean time evolution induced by a Hamiltonian H2, and vice

versa, in order to explore the effect of the ordering of time evolutions with different signa-

tures on the non-equilibrium process. We also studied the growth of operators induced by

homogeneous and inhomogeneous Hamiltonians in both Euclidean and Lorentzian signature

5In this paper, we will treat the heavy operators as local operator quench in holographic CFTs. If we

consider Rényi entropy and treat the light local operator, we can keep some information even at the leading

order. See [28], for example.
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by investigating the time dependence of entanglement entropy and the energy density. The

time-evolved states considered in this paper are

∣∣Φa(t̃)
〉
= Nae

−iH1 t̃e−ϵH2O |0⟩ ,
∣∣Φb(t̃)

〉
= Nbe

−ϵH2e−iH1 t̃O |0⟩ ,
(1.1)

where ϵ denotes the time duration of the Euclidean evolution, t̃ denotes the time duration

of the Lorentzian evolution, Na,b guarantees that the norms of the states are unity, and the

Hamiltonians Hi considered in this paper are the undeformed, sine-square deformed, and

Möbius Hamiltonians in two-dimensional conformal field theories (2d CFTs) on the circle

with circumference L. We assume that the ground state for the undeformed Hamiltonian is

equal to that of the deformed Hamiltonian and we denote this ground state by |0⟩, so |0⟩
is the ground state of both H1 and H2. When H1 is not equal to H2, the state

∣∣Φa(t̃)
〉
is

different from the state
∣∣Φb(t̃)

〉
.

The role of the Euclidean time evolution is to reduce the effect of the local operators on

the non-equilibrium processes. To see this, note that the Euclidean time evolution operator

can be expanded in terms of the eigenstates ofH2 as e
−ϵH2 =

∑M
a=1 e

−ϵEa |a⟩ ⟨a|, where Ea and
|a⟩ denote the eigenvalues and eigenstates of H2 respectively. Here, a labels the eigenstates

while EM is the maximum eigenvalue. Since exponential function e−x is negligible for x≫ 1,

we approximate the Euclidean time evolution by

e−ϵH2 =
M∑

a=1

e−ϵEa |a⟩ ⟨a| ≈
M̃∑

a=1

e−ϵEa |a⟩ ⟨a| , (1.2)

where M̃ labels the largest eigenvalue such that ϵEM̃ = O(1). Thus, the Euclidean time

evolution approximately removes contributions from the high-energy modes with Eh > EM̃ .

In other words, the Euclidean time evolution effectively reduces the dimension of the Hilbert

space of states contributing to the non-equilibrium process. For the states in (1.1), the terms

in the expansion in the energy eigenbasis of H2 with ⟨Eh| O |0⟩ in
∣∣Φa(t̃)

〉
and ⟨Eh| e−iH1 t̃O |0⟩

in
∣∣Φb(t̃)

〉
are negligible. Therefore, the local operator is smeared within a region of size O(ϵ)

as in Fig. 1 and the Euclidean time evolution has reduced the locality of the system.

Once the Lorentzian time evolution is included, the order in which the Lorentzian and

Euclidean time evolutions are performed potentially lead to different physics. In
∣∣Φa(t̃)

〉
,

the local operator state first evolves under Euclidean time evolution before a subsequent

Lorentzian time evolution with leads to operator growth. On the other hand, in
∣∣Φb(t̃)

〉
, the

order of time evolution is swapped; the operator grows during the initial Lorentzian time

evolution before it undergoes a subsequent Euclidean time evolution. In the former case,

the initial Euclidean time evolution approximately removes the contribution of high-energy

modes where the fine-grained information of the local operator might be encoded before the

smeared local operator grows under the final Lorentzian time evolution (see the left panel

of Fig. 2). Contrast this with the latter case where the local operator grows during the
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eiHMöbius/SSDt1σn(wX , wX)e−iHMöbius/SSDt1 =

∣∣∣∣
dwNew

X

dwx

∣∣∣∣
2hn

σn

(
wNew

X , wNew
X

)

(wX , wX) = (iX, −iX).

XNew
X =

wNew
X − wNew

X

2i
, X = X1

f = 0, X = X2
f =

L

2
,

SB = − c

12
log

[ ∏

i=1,2

∣∣∣∣
dwNew

Yi

dwYi

∣∣∣∣
2
]

+ lim
n→1

1

1 − n
log

〈
σn

(
wNew

Y1
, wNew

Y1

)
σn

(
wNew

Y2
, wNew
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2ε

O(1) " O(1/ε)
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(
XNew

Y1
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Y2

)]

IA,B = SA + SB − SA∪B
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log
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(
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Y1
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)
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(
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Y2
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log
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)
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(
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)
σn (wX1 , wX1) σn (wX2 , wX2)

〉

|φ(t1)〉 =
(
e−it1HSSD + 12

)
|TFD〉 . IA,B ≈ 0

lV=A,B, PC,V=A,B SA∪B, ρA∪B Parameters & ε

O (c) Hi=1,2, |Bell〉 =
1

2

∑

i=↑,↓
|i〉1 ⊗ |i〉2 H1 vL,R = ±2 sin2

(
πX

L

)
x̃ |Bell; x̃〉 =

1√
q

q∏

i=1

|i; x̃〉1 |i; x̃〉2 ,

Hi=1,2 SB ≈ cπL

12ε
, qi

1,L qi
2,L

t0 & O(L).
L

2
> lA, lB, lA + lB > 0

−trAρA log ρA ∼ O(ε)

(0.2)

2

Figure 1: A sketch depicting the smearing of a local operator. After acting e−ϵH2 on a state

with an insertion of a local operator, the local operator is smeared within a region of size

O(ϵ). The circle and red curve illustrate the local and smeared local operators respectively.

Lorentzian time evolution before the Euclidean time evolution operator removes the high-

energy modes. In this case, during the initial Lorentzian time evolution, the information

of the local operator which is encoded in the high-energy modes may spread to the low-

energy modes. Consequently, even after the final Euclidean time evolution, the fine-grained

information of the local operator might still remain (see the right panel of Fig. 2).

Summary

Let us summarize the main results of this paper below.

Time dependence of the partition function

Since the time dependence of the partition function is determined by that of the two point

function for the vacuum state, it is independent of the details of the CFTs. For the Möbius

Hamiltonians, the partition functions in the cases considered in this paper are finite. For SSD

Hamiltonian, when the excitations created by the local operator hit a spatial point where

the Hamiltonian density vanishes, the partition function becomes infinite. This suggests that

at the spatial position where the Hamiltonian density vanishes, the corresponding Euclidean

time evolution operator does not reduce the Hilbert space to a subspace that only contains

the low energy modes.
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2[b] Non-unitary process

Figure 2: Unitary and non-unitary processes. In [a], we smear the local operator, then evolve

the system in real time. In [b], we evolve the system in real time before smearing the local

operator. The orange region illustrates the space-time region where the local operator is

delocalized by the dynamics. In the case of |Φa⟩, the effect of smearing is delocalized during

the real time evolution. In the case of |Φb⟩, the effect of smearing is spatially localized.

Time dependence of energy density

We also explored the time dependence of the energy density which is a CFT-independent

quantity as well. During both unitary and non-unitary Lorentzian time evolutions, the

time dependence of the energy density follows the propagation of excitations with velocities

determined by the Hamiltonians. An exception occurs for the non-unitary Lorentzian time

evolution. For example, during non-unitary process induced by the SSD time evolution, the

energy density at the origin grows quartically in time.

Time dependence of entanglement entropy in two-dimensional conformal field

theories

Unlike the partition function and the energy density, the entanglement entropy of a single

interval in 2d CFTs depends on the theory under consideration.

Two-dimensional free bosons and rational CFTs: During the inhomogeneous time

evolutions in 2d free bosons and rational CFTs (RCFTs), the time ordering of Lorentzian

and Euclidean time evolution does not affect the growth of entanglement entropy when it

is well-behaved. The time evolution of the entanglement entropy follows the propagation of

quasiparticles created by the insertion of the local operators. In the time interval where en-

tanglement entropy deviates from the vacuum entanglement entropy, its value is determined

by the local operator that is inserted. For a particular Hermitian sum of vertex operators
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in the free boson CFT, this value is log 2. For general RCFTs, this value is given by the

logarithm of the quantum dimension of the local operator.

Two-dimensional holographic CFTs: In contrast to the 2d free boson CFT and

RCFTs, the ordering of the Lorentzian and Euclidean time evolution does affect the growth

of entanglement entropy. For Möbius time evolution, the time dependence of entanglement

entropy exhibits quantum revivals. In other words, the value of entanglement entropy os-

cillates periodically in time. During the Lorentzian time evolution induced by the Möbius

Hamiltonian, the period of quantum revivals is L cosh 2θ, while during the time evolution

induced by the uniform Hamiltonian, the period is L. Here, L is the system size and θ is the

parameter determining the inhomogeneity of the Möbius Hamiltonian. When the entangle-

ment entropy becomes larger than the vacuum entanglement entropy, the deviation between

these two quantities depends on the ordering of the Lorentzian and Euclidean time evolution

(see Section 5.1 for the details of the analysis.).

Finally, we summarize our findings on the SSD limit, where θ → ∞. During the real

time evolution induced by the uniform Hamiltonian, the time evolution of the entanglement

entropy is similar to the Möbius case. There are a few main differences between the Möbius

Hamiltonians and the SSD Hamiltonian. Firstly, during unitary time evolution with the

uniform Hamiltonian, if the operator is inserted at the origin where the SSD Hamiltonian

density is zero, the entanglement entropy becomes infinite in the SSD case. Secondly, during

the non-unitary time evolution with the uniform Hamiltonian, the entanglement entropy

becomes infinite when the excitations created by the local operator hit the origin. Together

with the divergences observed in the partition function, this suggests that the SSD euclidean

time evolution does not reduce the dimension of the local Hilbert space at the origin. During

real time evolution induced by the SSD Hamiltonian, the entanglement entropy remains

constant if the local operator is inserted at the origin where the SSD Hamiltonian density

vanishes but changes in time if the local operator is inserted somewhere else. Yet another

difference with inhomogeneous Hamiltonian with θ ̸= ∞ is the absence of quantum revivals

in the entanglement entropy. The time dependence of entanglement entropy is well described

by the propagation of quasiparticles created by the local operator (see Section 4.2.), although

this quasiparticle picture can not determine the value of the entanglement entropy. If one

of the boundaries of the subsystem is at the origin where the SSD Hamiltonian density is

zero, the information of the local operator survives longer under the non-unitary real time

evolution than during the unitary real time evolution.

Organization of this paper

In Section 2, we present the details of the systems considered in this paper, define entangle-

ment entropy, and present the time evolution of local operators in the Heisenberg picture. In

Section 3, the time evolution of the CFT-independent quantities, namely the partition func-

tion and the energy density, are presented. In Section 4, we report the time dependence of

entanglement entropy in 2d free boson CFT and general RCFTs, and then propose an effec-
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tive picture describing the time dependence of entanglement entropy in such non-holographic

theories. In Section 5, the time dependence of entanglement entropy in 2d holographic CFTs

is presented. We conclude the paper in Section 6 where we discuss our findings in this paper.

2 Preliminary

In this section, we will explain the details of the inhomogeneous Hamiltonians and systems

considered, how to compute the entanglement entropy in the path-integral formalism, and

discuss the real time trajectory, induced by the inhomogeneous Hamiltonians, of the local

operator.

2.1 Inhomogeneous Hamiltonians

Here, we will explain the Hamiltonians considered in this paper. The CFT Hamiltonians

considered in this paper are undeformed, Möbius, and SSD Hamiltonians defined as

Hinh =

∫
dxf(x)h(x), (2.1)

where the envelope function are defined as

f(x) =





1 for H

1− tanh (2θ) cos
(
2πx
L

)
for HMöbius

2 sin2
(
πx
L

)
for HSSD

. (2.2)

For θ = 0, HMöbius reduces to the undeformed Hamiltonian, H, while for θ = ∞, HMöbius

reduces to the SSD Hamiltonian HSSD. In the SSD limit, where θ = ∞, the deformed

Hamiltonian density, h(x) = f(x)h(x) vanishes at x = 0, while at x = L/4 and x = 3L/4,

the deformed density reduces to the undeformed one. Let us defined the Virasoro generator

as

Ln =

∮
dz

2πi
zn+1T (z), Ln =

∮
dz

2πi
zn+1T (z), (2.3)

where n are integer numbers, (z, z) = (e
2π(ix+τ)

L , e
2π(−ix+τ)

L ) = (e
2πw
L , e

2πw
L ), and the chiral and

anti-chiral parts of the energy-momentum tensor is defined by h(x) = T (w)+T (w). In terms

of Virasoro generators, the inhomogeneous Hamiltonian are given by

H0 =
2π

L

(
L0 + L0

)
,

HMöbius =
2π

L

[
L0 + L0 −

tanh 2θ

2

(
L1 + L−1 + L1 + L−1

)]
,

HSSD =
2π

L

[
L0 + L0 −

1

2

(
L1 + L−1 + L1 + L−1

)]
.

(2.4)
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2.2 The systems considered in this paper

We explain the system considered in this paper. We start from the vacuum state with the

insertion at the spatial position x of the local operator, and then evolve the systems according

to the evolution constructed of the Euclidean and Lorentzian time evolution. More precisely,

the systems considered in this paper are

|Ψ1⟩ = N1e
−iHMöbiust1e−ϵH0O(x) |0⟩ , |Ψ2⟩ = N2e

−ϵH0e−iHMöbiust1O(x) |0⟩ ,
|Ψ3⟩ = N3e

−iH0t0e−ϵHMöbiusO(x) |0⟩ , |Ψ4⟩ = N4e
−ϵHMöbiuse−iH0t0O(x) |0⟩ ,

(2.5)

where the normalization constants satisfy with

N−2
1 = ⟨0| O†(x)e−2ϵH0O(x) |0⟩ ,N−2

2 = ⟨0| O†(x)eiHMöbiust1e−2ϵH0e−iHMöbiust1O(x) |0⟩
N−2

3 = ⟨0| O†(x)e−2ϵHMöbiusO(x) |0⟩ ,N−2
4 = ⟨0| O†(x)eiH0t0e−2ϵHMöbiuse−iH0t0O(x) |0⟩ .

(2.6)

The inverse normalization constants, N−2
1 (N−2

3 ), are independent of t1 (t0), while N−2
2

(N−2
4 ) varies with times under the evolution induced by HMöbius (H0). Thus, since the

normalization constants for i = 1, 3 are constant and those for i = 2, 4, we call the time

evolution for i = 1, 3 the unitary one, while we call the time evolution for i = 2, 4 the non-

unitary one. The systems considered are defined on the spatial circle with the circumference

L. The difference between |Ψ1⟩ (|Ψ3⟩) and |Ψ2⟩ (|Ψ4⟩) is the time ordering of the Euclidean

and Lorentzian time evolution. In |Ψi=1,3⟩, the systems initially follow the Euclidean time

evolution, and then undergo Lorentzian time evolution, while in |Ψi=2,4⟩, the ordering of the

time evolution is opposite. For i = 1, 2, the time evolution is induced by the inhomogeneous

Hamiltonian, while for i = 3, 4, it is induced by the uniform Hamiltonian. The density

operators associated with the systems in (2.5) are given by

ρ1 = N 2
1 e

−iHMöbiust1e−ϵH0O(x) |0⟩ ⟨0| O†(x)e−ϵH0eiHMöbiust1 ,

ρ2 = N 2
2 e

−ϵH0e−iHMöbiust1O(x) |0⟩ ⟨0| O†(x)eiHMöbiust1e−ϵH0 ,

ρ3 = N 2
3 e

−it0H0e−ϵHMöbiusO(x) |0⟩ ⟨0| O†(x)e−ϵHMöbiuseiH0t0 ,

ρ4 = N 2
4 e

−ϵHMöbiuse−it0H0O(x) |0⟩ ⟨0| O†(x)eiH0t0e−ϵHMöbius ,

(2.7)

2.3 Entanglement entropy

In this paper, we will mainly explore the effect on the entanglement dynamics of the time or-

dering of Euclidean and Lorentzian time evolution by using entanglement entropy. Therefore,

let us define the entanglement entropy. To this end, we divide the circle into a single interval,

A, and a complement subsystem, A, and then define a reduced density matrix associated to

A by ρA,i = trAρi. Endpoints of A are X1 and X2, and we assume that X1 > X2 > 0. We

will consider the time-dependence of SA,i in only three cases in the following section (See
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Fig. 3 ):

A =





{
x
∣∣0 ≤ x ≤ X2, X1 ≤ x ≤ L

}
, where X2 > L−X1 > 0 and X1 >

L
2
> X2 > 0 for (a)

{
x
∣∣X2 ≤ x ≤ X1

}
, where 0 < X2 <

L
2
< X1 and L

2
−X2 > X1 − L

2
for (b)

{
x
∣∣X2 ≤ x ≤ X1

}
, where 0 < X2 < X1 <

L
2
for (c)

.

(2.8)

X2

X1

A

Case (a)
x = 0

X1

X2

A

Case (b)
x = 0

X1

X2

A

Case (c)
x = 0

Figure 3: The subsystems considered in this paper. In (a), the subsystem includes only the

origin. In (b), the subsystem includes only x = L
2
. In (c), the subsystem does not contain

both the origin and L
2
. The origin and L

2
are the fixed points during the SSD time evolution,

as explained in Section 2.4.

We define the n-th moment of the Rényi entanglement entropy as

S
(n)
A =

1

1− n
log
[
trAρ

(n)
A

]
. (2.9)

Then, we define entanglement entropy as the Von Neumann limit, where n→ 1, of S
(n)
A ,

SA = lim
n→1

S
(n)
A = −trA (ρA log ρA) . (2.10)

2.3.1 Euclidean path integral

In this paper, we will employ the twist operator formalism suitable for the analytic compu-

tation [71, 72]. To do so, we first define the Euclidean Rényi entanglement entropy, a cousin

of the Rényi entanglement entropy, and then compute it in the path-integral formalism.

Subsequently, we will perform the analytic continuation from Euclidean time to Lorentzian

time. Consequently, we explore the time dependence of the entanglement entropy for a single

interval. Define the Euclidean density operators as a Euclidean counterpart of the density

operators in (2.7),

ρ1,E = N 2
E,1e

−HMöbiusτ1e−ϵH0O(x) |0⟩ ⟨0| O†(x)e−ϵH0eHMöbiusτ1 = N 2
E,1U

E
1,ϵO(x) |0⟩ ⟨0| O†(x)ŨE

1,ϵ,

ρ2,E = N 2
E,2e

−ϵH0e−HMöbiusτ1O(x) |0⟩ ⟨0| O†(x)eHMöbiusτ1e−ϵH0 = N 2
E,2U

E
2,ϵO(x) |0⟩ ⟨0| O†(x)ŨE

2,ϵ,

ρ3,E = N 2
E,3e

−τ0H0e−ϵHMöbiusO(x) |0⟩ ⟨0| O†(x)e−ϵHMöbiuseH0τ0 = N 2
E,3U

E
3,ϵO(x) |0⟩ ⟨0| O†(x)ŨE

3,ϵ,

ρ4,E = N 2
E,4e

−ϵHMöbiuse−τ0H0O(x) |0⟩ ⟨0| O†(x)eτ0H0e−ϵHMöbius = N 2
E,4U

E
4,ϵO(x) |0⟩ ⟨0| O†(x)ŨE

4,ϵ,

(2.11)
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where N 2
E,i=1∼4 guarantee that trρi,E = 1, and they are given by

N 2
E,1 =

1

⟨0| O†(x)e−2ϵH0O(x) |0⟩ , N
2
E,2 =

1

⟨0| O†(x)eHMöbiusτ1e−2ϵH0e−HMöbiusτ1O(x) |0⟩ ,

N 2
E,3 =

1

⟨0| O†(x)e−2ϵHMöbiusO(x) |0⟩ , N
2
E,4 =

1

⟨0| O†(x)eH0τ0e−2ϵHMöbiuse−H0τ0O(x) |0⟩ .

(2.12)

In this paper, O is a primary operator with the conformal dimension (hO, hO). Define an

Euclidean reduced density matrix by ρA,i,E = trAρi,E and then define the Euclidean n-th

Rényi and Von Neumann entanglement entropies by

S
(n)
A,i,E =

1

1− n
log
[
trAρ

n
A,i,E

]
, SA,i,E = lim

n→1
S
(n)
A,i,E (2.13)

In the twist operator formalism [73, 27], the Euclidean n-th Rényi entanglement entropy

for single interval A is given by

S
(n)
A,i =

1

1− n
log




〈
O†
n(x)Ũ

E
i,ϵσn(X1)σn(X2)U

E
i,ϵOn(x)

〉

〈
O†
n(x)ŨE

i,ϵU
E
i,ϵOn(x)

〉n


, (2.14)

where ⟨·⟩ denotes the vacuum expectation value, σn and σn are the twist and anti-operators

with the conformal dimension
(
hn, hn

)
=
(
c(n2−1)

24n
, c(n

2−1)
24n

)
, and On is a primary operator

with the conformal dimensions (nhO, nhO) as in [27]. In terms of Heisenberg picture, SnA,i,E
reduces to

S
(n)
A,i,E =

1

1− n
log

[〈
O†,H
n,i,ϵ(x)σn(X1)σn(X2)OH

n,i,−ϵ(x)
〉]

− n

1− n
log

[〈
O†,H
i,ϵ (x)OH

i,−ϵ(x)
〉]

,

(2.15)

where OH
n,i,±ϵ(x) denote the local operator in the Heisenberg picture. Here, we use the facts

that Ui,E,±ϵ |0⟩ = |0⟩ and UE
i,ϵŨ

E
i,−ϵ = UE

i,−ϵŨ
E
i,ϵ = ŨE

i,ϵU
E
i,−ϵ = ŨE

i,−ϵU
E
i,ϵ = 1. The primary

operators in the Heisenberg picture are given by

OH
n,i,ϵ(x) = UE

i,−ϵO(wx, wx)Ũ
E
i,ϵ =

∣∣∣∣
dwNew,i

ϵ

dwx

∣∣∣∣
2nhO

O(wNew,i
ϵ , wNew,i

ϵ ), (2.16)

where complex coordinates (w,w) are defined by (w,w) = (τ + ix, τ − ix), and (wx, wx) =

(ix,−ix). The details of computation on (2.16) and the trajectories of local operators

during the evolution considered are reported in Appendix A.1. Consequently, in terms of

(wNew,i
±ϵ , wNew,i

±ϵ ), the n-th moment of Rényi entanglement entropy is given by

S
(n)
A,i,E =

1

1− n
log




〈
O†
n(w

New,i
ϵ , wNew,i

ϵ )σn(wX1 , wX1)σn(wX2 , wX2)On(w
New,i
−ϵ , wNew,i

−ϵ )
〉

〈
O†(wNew,i

ϵ , wNew,i
ϵ )O(wNew,i

−ϵ , wNew,i
−ϵ )

〉n




(2.17)

Thus, the contributions from the conformal factors are canceled out. In the following sections,

we consider the time dependence of the entanglement entropy in various 2d CFTs.
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2.4 Time trajectory of the local operators

We will close this section by exploring the time trajectory, induced by the Möbius and

SSD Hamiltonian, of the local operator after performing the analytic continuation. Before

performing the analytic continuation, we define the spatial position of the local operator by

XNew,i=1,2
±ϵ =

wNew,i=1,2
±ϵ − wNew,i=1,2

±ϵ
2i

. (2.18)

Then, we perform the analytic continuation, τ1 = it1. Let Xf
1 and Xf

2 denote 0 and L
2
. We

assume that at t1 = 0, the local operator is inserted at x. During the time evolution induced

by the Möbius Hamiltonian, the local operator for Xf
1 < x < Xf

2 periodically oscillates with

time between Xf
1 and Xf

2 , while for Xf
2 < x < L the one does between L and Xf

2 (See Fig.

4). During the time evolution induced by HSSD, if the local operator is inserted at either Xf
1

or Xf
2 , the local operator does not spatially move. Therefore, we call them fixed points. In

addition to them, during the SSD time evolution, the local operator spatially moves to Xf
2 ,

and consequently accumulates around Xf
2 .

[a] Möbius evolution [b] SSD evolution

Figure 4: The picture illustrating the spatial trajectory of the operator during the time

evolution. Panel [a] illustrates the time evolution of the local operator during the Möbius

time evolution, while [b] does it during the SSD time evolution. The initial insertion points

of the operator are marked by blue and green, and their trajectories are denoted by blue and

green curves. The two fixed points, Xf
1 = 0 and Xf

2 = L/2, are marked in red.

3 Universal quantities

In this section, we will explore the time dependence of universal quantities which are inde-

pendent of the details of the 2d CFTs. First, we present the time dependence of the partition

function, and then we will report on the time dependence of the expectation value of the

energy density.
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3.1 Time-dependence of partition function

Define the partition function as

Zi=1,··· ,4 = N−2
E,i=1,··· ,4 (3.1)

where Z0 is the partition function for the vacuum state. Then, we perform the analytic

continuation, τi=0,1 = it0,1, and explore the time dependence of the partition functions.

Since Z0 is time-independent and we are focusing on the time dependent piece of the partition

function, we redefine the partition function as Z̃i =
Zi

Z0
.

3.1.1 Möbius case

Let us consider the time dependence of the redefined partition function for the four density

operators in (2.7). For general θ ̸= ∞, their time dependence is determined by

Z̃1 =

(
L

π sinh
(
2πϵ
L

)
)4hO

≈
ϵ
L
≪1

1

(2ϵ)4hO
=: Z̃

(1)
1 ,

Z̃2 = Z̃1 ×
[
1

χχ

]2hO
≈

ϵ
L
≪1

Z̃
(1)
1 ×

[
1

χχ

]2hO
,

Z̃3 =


 π

L sinh
(

2πϵ
Leff

)
cosh 2θ

(
1− cos

(
2πx
L

)
tanh 2θ

)




4hO

≈
ϵ
L
≪1

Z̃
(1)
1 ×

(
1(

1− cos(2πx
L
) tanh(2θ)

)
)4hO

,

Z̃4 =


 π

L cosh 2θ sinh
(

2πϵ
Leff

)




4hO

×


 1(

1− cos(2π(t0+x)
L

) tanh(2θ)
)(

1− cos(2π(t0−x)
L

) tanh(2θ)
)




2hO

≈
ϵ
L
≪1

Z̃
(1)
1 ×


 1(

1− cos(2π(t0+x)
L

) tanh(2θ)
)(

1− cos(2π(t0−x)
L

) tanh(2θ)
)




2hO

(3.2)

where the χ are defined as

χ = cos2
(
πt1
Leff

)
+ sin2

(
πt1
Leff

)(
cosh(2θ) + sinh(2θ)

(
− cos

(
2πx

L

)
+ i sin

(
2πx

L

)))2

(3.3)

Here, since for θ ̸= ∞, |1− cos (A) tanh 2θ| > 0, where A is assumed to be a real parameter,

Z̃i=3,4 do not diverge. Additionally, since |χ| > 0 for any t1, x, θ ∈ R , Z̃i=2 does not diverge.

Therefore, these partition functions for the Möbius case are well-defined and the Euclidean

time evolution induced by the Möbius Hamiltonian. The redefined partition functions, Z̃i=1,3,

are independent of time, while Zi=2,4 depends on the time. The partition function, Z̃i=2, is

a periodic function with the period Leff, while Z̃i=4 is the periodic one with L.

13



3.1.2 SSD limit

Now, we look closely at the time dependence of the partition functions for the states consid-

ered in the SSD limit, where θ → ∞. Since Z̃i=1 is independent of θ, Z̃i=1 in the SSD limit

is the same as that for finite θ. In the SSD limit, the redefined partition function for i = 3

reduces to

Z̃3 =

(
csc2

(
πx
L

)

4ϵ

)4hO

. (3.4)

Thus, Z̃3 depends on the insertion point of the local operator. If the local operator is inserted

at x = 0, Z̃3 becomes infinite. Since the Hamiltonian density of HSSD vanishes at x = 0,

and O(x = 0) commutes with e−ϵHSSD , this damping functor, e−ϵHSSD , can not keep the state

finite. In other words, this suggests that at x = 0, the Euclidean time evolution induced by

HSSD does not play as a regulator. In the SSD limit, the time dependence of the partition

functions for i = 2, 4 at the leading other of the small ϵ reduces to

Z̃2 = Z̃1 ×


 1
[
16 sin4

(
πx
L

) (
πt1
L

)4 − 8 sin2
(
πx
L

)
cos
(
2πx
L

) (
πt1
L

)2
+ 1
]2




hO

≈
ϵ
L
≪1

Z̃
(1)
1 ×


 1
[
16 sin4

(
πx
L

) (
πt1
L

)4 − 8 sin2
(
πx
L

)
cos
(
2πx
L

) (
πt1
L

)2
+ 1
]2




hO

,

Z̃4 =

(
1

2ϵ
[
cos
(
2πx
L

)
− cos

(
2πt0
L

)]
)4hO

,

(3.5)

where at t0 = nL ± x, where n is an integer, Z̃4 diverges. Here, Z̃4 is a periodic function

of t0 with a period L. Our interpretation is that when the excitations created by the local

operator hit X = 0, the spatial point where the Hamiltonian density of HSSD vanishes,

the partition function becomes infinite. A possible explanation is that the Euclidean time

evolution induced by HSSD does not work as a regulator at the origin. In the large t1-regime,

the t1 dependence of Z2 is approximately given by

Z̃2 ≈





(
L8 csc8(πx

L )
4096π8t81ϵ

4

)hO
x ̸= 0

1
(2ϵ)4hO

x = 0

. (3.6)

Thus, when the operator is inserted at x ̸= 0, the partition function decays with t1, while

when the operator is inserted at x = 0, the partition function is independent of time. This

suggests that during the SSD time evolution, the local operator at x = 0 does not change

the entanglement structure.
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3.2 Non-unitarity

Let us define the current as the derivative of the partition with respect to time,

ji =
d
〈
Ψi(t)

∣∣Ψi(t)
〉

dta=0,1

, (3.7)

where i labels the states. The symbol t1 is for i = 1, 2, while t0 is for i = 3, 4. For i = 1, 3,

ji vanishes, which means that the time evolution is unitary because the norm of state is

conserved. For i = 2, 4, ji does not vanish. The currents for i = 2, 4 are determined by

j2 = i

(
2π

L

)
sinh

(
2πϵ

L

)
tanh 2θ ⟨Ψ2(t)| (L1 − L−1 + L1 − L−1) |Ψ2(t)⟩ ,

j4 = i

(
2π

L

)(
2 tanh 2θ

csch4θ

) 1
2

sinh

(
2πϵ

L

√
2 tanh 2θcsch4θ

)
⟨Ψ4(t)| (L1 − L−1 + L1 − L−1) |Ψ4(t)⟩ ,

(3.8)

We can see from (3.8) that for both |Ψ⟩2 and |Ψ⟩4, the dissipation of the partition function

is determined by L1 −L−1 +L1 −L−1. In SSD limit, the equations for the current reduce to

j2 = i

(
2π

L

)
sinh

(
2πϵ

L

)
⟨Ψ2(t)| (L1 − L−1 + L1 − L−1) |Ψ2(t)⟩ ,

j4 = 2ϵi

(
2π

L

)2

⟨Ψ4(t)| (L1 − L−1 + L1 − L−1) |Ψ4(t)⟩ .
(3.9)

Non-unitarity of the dynamics for i = 2, 4 is due to the time evolution of expectation value

of L1 − L−1 + L1 − L−1.

3.3 Energy density

Above, we explored the global properties of the systems by using the (redefined) partition

functions. Here, we will explore the time dependence of a local universal quantity, the

energy density. In our calculation, we begin with the calculation of the energy density in the

Euclidean path integral, and then perform the analytic continuation to real time. Define the

expectation values of chiral and anti-chiral parts of the energy density as

⟨Tww(wX , wX)⟩i,E = tr (ρi,ETww(wX , wX)) =

〈
O† (wNew,i

ϵ , wNew,i
ϵ

)
Tww(wX , wX)O

(
wNew,i

−ϵ , wNew,i
−ϵ

)〉

〈
O†
(
wNew,i

ϵ , wNew,i
ϵ

)
O
(
wNew,i

−ϵ , wNew,i
−ϵ

)〉 ,

⟨Tww(wX , wX)⟩i,E = tr (ρi,ETww(wX , wX)) =

〈
O† (wNew,i

ϵ , wNew,i
ϵ

)
Tww(wX , wX)O

(
wNew,i

−ϵ , wNew,i
−ϵ

)〉

〈
O†
(
wNew,i

ϵ , wNew,i
ϵ

)
O
(
wNew,i

−ϵ , wNew,i
−ϵ

)〉 ,

(3.10)

where the energy density is assumed to be defined as the linear combination of Tww and the

chiral and anti-chiral parts of the energy density, T = Tww+Tww. We call ⟨Tww⟩i and ⟨Tww⟩i
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chiral and anti-chiral energy densities, respectively. By performing the conformal map from

cylinder to the flat space and using the Ward-Takahashi identity, the the expectation values

of energy densities 6 are given by

⟨Tww(wX , wX)⟩i,E = − c

24

(
2π

L

)2

+ hO

(
dzX
dwX

)2
[

1

zX − zNew,i
ϵ

− 1

zX − zNew,i
−ϵ

]2
,

⟨Tww(wX , wX)⟩i,E = − c

24

(
2π

L

)2

+ hO

(
dzX
dwX

)2
[

1

zX − zNew,i
ϵ

− 1

zX − zNew,i
−ϵ

]2
.

(3.12)

3.3.1 Möbius case

First, we will closely look at the time dependence of the chiral and anti-chiral energy densities

during the Möbius time evolution. After performing analytic continuations, τi=0,1 = it0,1, at

the second order of the small ϵ expansion, they are determined by

⟨Tww (wX)⟩i=1,·,4 ≈
(
2π

L

)2 [
− c

24
+ ϵ2T θ

i=1,·,4

]
, ⟨Tww (wX)⟩i=1,·,4 ≈

(
2π

L

)2 [
− c

24
+ ϵ2T θ

i=1,·,4

]
,

(3.13)

6Here, the Ward-Takahashi identity is

⟨Tzz(z)O(z1, z1)O(z2, z2)⟩ =
2∑

i=1

[
hO

(z − zi)
2 +

1

z − zi
∂zi

]
⟨O(z1, z1)O(z2, z2)⟩ ,

⟨Tzz(z)O(z1, z1)O(z2, z2)⟩ =
2∑

i=1

[
hO

(z − zi)
2 +

1

z − zi
∂zi

]
⟨O(z1, z1)O(z2, z2)⟩ .

(3.11)
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where functions, T θ
i=1,··· ,4, T

θ

i=1,··· ,4, Di=1,2,± and N±, are defined as

T θ
i=1 =

π2hO
L2D+

, T θ

i=1 =
π2hO
L2D−

, T θ
i=2 =

π2hON+

L2D+

, T θ

i=2 =
π2hON−
L2D−

,

T θ
i=3 =

π2ϵ2hO
(
tanh 2θ cos

(
2πx
L

)
− 1
)2

L2 sin4
[
π(t0+X−x)

L

] , T θ

i=3 =
π2hO

(
tanh 2θ cos

(
2πx
L

)
− 1
)2

L2 sin4
[
π(t0−X+x)

L

] ,

T θ
i=4 =

π2hO
(
tanh 2θ cos

(
2π(t0−x)

L

)
− 1
)2

L2 sin4
[
π(t0+X−x)

L

] , T θ

i=4 =
π2hO

(
tanh 2θ cos

(
2π(t0+x)

L

)
− 1
)2

L2 sin4
[
π(t0−X+x)

L

] ,

D± =

[
1

2

(
sinh2(2θ) cos2

(
π(x+X)

L

)
+ cosh2(2θ) cos2

(
π(x−X)

L

))

−
(
sinh(4θ) cos

(
π(x−X)

L

)
cos

(
π(x+X)

L

)
+ sin2

(
π(x−X)

L

))

+
1

2
cos

(
2πt1
Leff

)(
cosh2(2θ)

(
− cos2

(
π(x−X)

L

))
− sinh2(2θ) cos2

(
π(x+X)

L

))

+
1

2
cos

(
2πt1
Leff

)(
sinh(4θ) cos

(
π(x−X)

L

)
cos

(
π(x+X)

L

)
+ sin2

(
π(x−X)

L

))

± sin

(
2πt1
Leff

)
sin

(
π(x−X)

L

)(
sinh(2θ) cos

(
π(x+X)

L

)
− cosh(2θ) cos

(
π(x−X)

L

))]2
,

N± =

[
cosh2(2θ)

(
1− tanh(2θ) cos

(
2πx

L

))
+

1

2
sinh(4θ) cos

(
2πt1
Leff

)(
cos

(
2πx

L

)
− tanh(2θ)

)

± sinh(2θ) sin

(
2πx

L

)
sin

(
2πt1
Leff

)]2
,

(3.14)

where the effective system size is defined as Leff = L cosh 2θ. Thus, the leading order

behaviors of these densities in the small ϵ expansion are O(1) and independent of time and

the location of the local operator, while the next-to-leading order terms are O(ϵ2), and the

insertion of the local operator contributes to these behaviors. The second order terms of

energy densities for i = 3, 4 are periodic functions with t0, and their periods are L For

i = 3, 4, this small ϵ expansion becomes invalid at t0 = ±(X − x) + nL, where n are integers

because the second order terms of energy densities diverges. This suggests that the local

operator at x induces localized energies and they propagate to left and right at the speed of

light When these local excitations reach X, the energy densities at X drastically grow.

3.3.2 SSD limit

Next, we explore the time dependence of the energy density after taking the SSD limit and

then performing analytic continuation. Because the details are complicated, we relegate them

to Appendix B. To simplify them and explore their properties, we take the small ϵ limit and

closely look at the first and second order terms of the energy densities in this limit. In this
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limit, the energy densities for four states are approximated by

⟨Tww (wX)⟩i=1,...,4 ≈
(
2π

L

)2 [
− c

24
+ ϵ2T θ=∞

i=1,...,4

]
, ⟨Tww (wX)⟩i=1,...,4 ≈

(
2π

L

)2 [
− c

24
+ ϵ2T θ=∞

i=1,...,4

]
,

(3.15)

where the functions, T θ=∞
i=1,··· ,4 and T θ=∞

i=1,··· ,4, are defined as

T θ=∞
i=1 =

4hOπ2L2

[
2πt1 sin

[
πX
L

]
sin
[
πx
L

]
+ L sin

[
π(X−x)

L

]]4 ,

T θ=∞
i=1 =

4hOπ2L2

[
2πt1 sin

[
πX
L

]
sin
[
πx
L

]
+ L sin

[
π(x−X)

L

]]4 ,

T θ=∞
i=2 =

hOπ2
[
L2 − 4π2t21 sin

2
[
πx
L

]
+ 4πt1L sin

[
πx
L

]
cos
[
πx
L

]]2

L2
[
2πt1 sin

[
πX
L

]
sin
[
πx
L

]
+ L sin

[
π(X−x)

L

]]4 ,

T θ=∞
i=2 =

hOπ2
[
L2 − 4π2t21 sin

2
[
πx
L

]
− 4πt1L sin

[
πx
L

]
cos
[
πx
L

]]2

L2
[
2πt1 sin

[
πX
L

]
sin
[
πx
L

]
+ L sin

[
π(x−X)

L

]]4 ,

T θ=∞
i=3 =

4πhO sin4
[
πx
L

]

L2 sin4
[
π(t0−x+X)

L

] , T θ=∞
i=3 =

4πhO sin4
[
πx
L

]

L2 sin4
[
π(t0+x−X)

L

] ,

T θ=∞
i=4 =

4πhO sin4
[
π(t0−x)

L

]

L2 sin4
[
π(t0−x+X)

L

] , T θ=∞
i=4 =

4πhO sin4
[
π(t0+x)

L

]

L2 sin4
[
π(t0+x−X)

L

] .

(3.16)

For i = 1, 2, unlike the Möbius time evolution, T θ=∞
i=1,2 and T θ=∞

i=1,2 becomes non-periodic

functions. Since the functions, T θ=∞
i=1,2 and T θ=∞

i=1,2, diverge at t1 = L
2π

[
cot
(
πX
L

)
− cot

(
πx
L

)]

and t1 = −L
2π

[
cot
(
πX
L

)
− cot

(
πx
L

)]
, this small ϵ expansion becomes invalid. One possible

interpretation of this energy divergence is that the local operator at the spatial location x

creates two local excitations called quasiparticles, and they propagate to left and right with

velocities v = ±2 sin2
[
πx
L

]
. When this local excitations hit the point where we measure the

energy densities, they grow drastically. For i = 1, the chiral and anti-chiral energy densities

at X = 0 are independent of t1. For i = 2, the energy densities at X = 0 depends on t1, and

for large t1, the time dependence is approximated by

⟨Tww (wX)⟩2 = ⟨Tww (wX)⟩2 ≈
(
2π

L

)2 [
− c

24
+

16π6hOϵ2t41
L6

]
. (3.17)

Thus, in the late time regime, the energy is localized at the origin regardless of the insertion

position of the local operator. This accumulation of energy around X = 0 can not be

described by the propagation of quasiparticles with v = ±2 sin2
[
πx
L

]
because the time for

quasiparticles to arrive at the origin is infinite. Thus, this goes beyond the quasiparticle
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picture. For the late time regime, in the spatial regions where the energy is not localized, the

chiral and anti-chiral energy densities are independent of the insertion location of the local

operator, and it is given by

⟨Tww (wX)⟩2 = ⟨Tww (wX)⟩2 ≈
(
2π

L

)2
[
− c

24
+

π2hOϵ2

L2 sin4
[
πX
L

]
]
. (3.18)

For i = 3, 4, T θ=∞
i=3,4 and T θ=∞

i=3,4 are the periodic functions of t0 with the period, L. The

energy densities at X diverge at the times, t0 = ±(x−X)+nL. As in for i = 1, 2, their time

dependence can be described by the quasiparticles that are created by the local operator

which propagate to left and right at the speed of light. For i = 4, the t0-dependence of

numerators of T θ=∞
i=4 and T θ=∞

i=4 exhibit the dynamical behavior that is not explained by this

quasiparticle picture. For simplicity, focus on the chiral energy density in the middle time

regime, when L ≫ t0 ≫ x and L ≫ t0 ≫ x − X. In this time regime, the chiral energy

density is approximated by

⟨Tww (wX)⟩4 ≈
(
2π

L

)2 [
− c

24
+

4πϵ2hO
L2

]
. (3.19)

In the time regime where L ≫ t0 ≫ X − x, the anti-chiral energy density is approximated

by (3.19). This suggests that long after the local excitation has passed the spatial point X,

the energy density can deviate from the vacuum one. The energy densities for i = 3 do not

have such time regimes where the term at order O(ϵ2) is approximated by a constant. Thus,

during the non-unitary time evolution, some properties of the energy densities go beyond the

quasiparticle picture.

4 Entanglement entropy in Integrable Theories

In the following sections, we will explore the time dependence of a quantity that depends on

the operator contents of the 2d CFT, namely the entanglement entropy. In this section, we

focus on the time-dependent part of the entanglement entropy in 2d free bosons and rational

CFTs (RCFTs). We collectively refer to these theories as integrable theories as opposed

to the maximally chaotic holographic CFTs. Let us define the change in the n-th Rényi

entanglement entropy as [74]

∆S
(n)
A,i

(ti) =
1

1− n
log

trA(ρA)
n

(trAρA)n
− 1

1− n
log

trA(ρ
g.s.
A )n

(trAρ
g.s.
A )n

(4.1)

where ρA and ρg.s.A are the density matrices for the local operator excited state and the

ground state respectively, and ti = t1 for i = 1, 2 and ti = t0 for i = 3, 4. This change,

∆S
(n)
A,i(ti), is independent of the UV-cutoff because this is defined by subtracting the n-th

Rényi entanglement entropy for the vacuum state. Then, in this section, we consider the

change in the second Rényi entanglement entropy after the inhomogeneous and homogeneous
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local operator quenches. The change in the entanglement entropy after a single local operator

quench can be written in terms of a path integral over a n-sheeted Riemann surface with two

copies of the local operator on each Riemann sheet [74, 26, 23, 24, 25, 75]

∆S
(n)
A,i(ti)

=
1

1− n
log




〈
O†(wNew,i

1 , wNew,i
1 )O(wNew,i

2 , wNew,i
2 ) . . .O†(wNew,i

2n−1 , w
New,i
2n−1 )O(wNew,i

2n , wNew,i
2n )

〉
Cn〈

O†(wNew,i
ϵ , wNew,i

ϵ )O(wNew,i
−ϵ , wNew,i

−ϵ )
〉n
C




(4.2)

where

wNew,i
1 = wNew,i

ϵ , wNew,i
2 = wNew,i

−ϵ (4.3)

where C and Cn are the cylinder and n-replicated cylinder and wNew,i
2j−1 and wNew,i

2j are the

corresponding coordinates of wNew,i
1 and wNew,i

2 on the jth sheet for j = 1, . . . , n. The same

is true for the anti-holomorphic coordinates. The branch cut on each Riemann surface runs

from w = iX2 to w = iX1 and from w̄ = −iX2 to w̄ = −iX1. We assume that the local

operator is spinless with conformal dimension hO.

Perform a cylinder-to-plane conformal transformation z = e
2πw
L and z̄ = e

2πw̄
L . The branch

cut is now given by an arc on the unit circle running from z2 = ei
2πX2

L to z1 = ei
2πX1

L and

from z̄2 = e−i
2πX2

L to z̄1 = e−i
2πX1

L . Next, we uniformize this Riemann surface with a suitable

conformal transformation. To orient the branch cut along arbitrary directions, consider the

conformal transformation

ζn =
z − ei

2πX2
L

ei
2πX1

L − z
eiψ = −eiψ+iπ(X2−X1)

L
sinh π(w−iX2)

L

sinh π(w−iX1)
L

,

ζ
n
=
z − e−i

2πX2
L

e−i
2πX1

L − z
e−iψ = −e−iψ+iπ(X1−X2)

L
sinh π(w+iX2)

L

sinh π(w+iX1)
L

(4.4)

where ψ ∈ R is an arbitrary parameter that allows us to orient the branch cut so that the

branch cut is oriented along the rays with arguments ψ − π(X1−X2)
L

and π(X1−X2)
L

− ψ on the

ζn and ζ̄n complex planes respectively. Note that it does not matter whether or not X2 < X1

or X1 < X2. In both cases, the branch cut lies along the same direction.

4.1 Second Rényi Entropy

For simplicity, set n = 2. The uniformized coordinates are related by ζNew,i
1 = −ζNew,i

3 and

ζNew,i
2 = −ζNew,i

4 and ζ
New,i

1 = −ζNew,i

3 and ζ
New,i

2 = −ζNew,i

4 . By performing a conformal

transformation

η =
(Z − Z1)(Z3 − Z4)

(Z − Z4)(Z3 − Z1)
, η =

(Z − Z1)(Z3 − Z4)

(Z − Z4)(Z3 − Z1)
, (4.5)
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arbitrary four-point functions on the complex plane can be written as

〈
O†(Z1, Z1)O(Z2, Z2)O†(Z3, Z3)O(Z4, Z4)

〉
C (4.6)

=
1

Z2hO
13 Z2hO

24

1

Z
2hO
13 Z

2hO
24

lim
η4,η4→∞

η2hO4 η2hO4

〈
O†(0)O(η2, η2)O†(1)O(∞)

〉
C

where η2, η2 are the cross-ratios and Zij = Zi − Zj. These cross ratios are defined as

η2 =
Z12Z34

Z13Z24

, η2 =
Z12Z34

Z13Z24

. (4.7)

Therefore, the ratio of correlation functions in (4.2) can be written as a function of the

cross-ratio alone
〈
O†(wNew,i

1 , wNew,i
1 )O(wNew,i

2 , wNew,i
2 )O†(wNew,i

3 , wNew,i
3 )O(wNew,i

4 , wNew,i
4 )

〉
C2〈

O†(wNew,i
ϵ , wNew,i

ϵ )O(wNew,i
−ϵ , wNew,i

−ϵ )
〉2
C

= [η2(1− η2)η̄2(1− η̄2)]
2hO G(η2, η̄2) (4.8)

where

G(x, x̄) = lim
η,η̄→∞

η2hO η̄2hO
〈
O†(0)O(x, x̄)O†(1)O(∞)

〉
C (4.9)

and the cross-ratio is

η2 =
(ζ1 − ζ2) (ζ3 − ζ4)

(ζ1 − ζ3) (ζ2 − ζ4)
, η̄2 =

(
ζ̄1 − ζ̄2

) (
ζ̄3 − ζ̄4

)
(
ζ̄1 − ζ̄3

) (
ζ̄2 − ζ̄4

) (4.10)

These formulas (4.8), (4.9) and (4.10) hold for arbitrary choices of the branch cut direction

ψ as one would expect. The change in the second Rényi entropy for a quench by the local

operator O in any 2d CFT is

∆S
(2)
A,i(ti) = − log [η2(1− η2)η2(1− η2)]

2hO G(η2, η2) (4.11)

Free Boson

To obtain non-trivial entanglement dynamics under the local operator quench, we simply

choose the local operator to be a sum of vertex operators [26, 23, 24]

O =
e

i
2
ϕ + e−

i
2
ϕ

√
2

(4.12)

where ϕ is a c = 1 free boson. This local operator has conformal dimensions hO = hO = 1
8

and the four-point function (4.9) is

G(z, z̄) =
1 + |z|+ |1− z|
2
√

|z(1− z)|
(4.13)
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The change in entanglement entropy for the sum of vertex operator (4.12) is [26]

∆S
(2)
A,i(ti) = log

2

1 + |η2|+ |1− η2|
. (4.14)

just as in [75]. As we will see later, when ϵ
L
→ 0, the cross ratios η2, η2 → 0, 1. For these

four possibilities, the second Rényi entropy (4.14) to leading order in ϵ
L
is

∆S
(2)
A,i(ti)

ϵ/L→0−−−−→
{
0, if η2, η2 → 0 or η2, η2 → 1

log 2, if η2 → 0, η2 → 1 or η2 → 1, η2 → 0
(4.15)

General RCFTs

For general RCFTs, the four-point function can be written as a sum over intermediate pri-

maries as [76, 25, 74]

G(z, z) =
∑

b

(Cb
OO)

2FO(b|z)FO(b|z) (4.16)

where b runs over the primaries and the conformal blocks are normalized so that FO(b|z) =
zhb−2hO(1+O(z)). By using a fusion transformation, the cross ratios of the conformal blocks

can be changed as

FO(b|1− z) =
∑

c

Fbc[O]FO(c|z) (4.17)

For RCFTs,

F00[O] =
1

dO
(4.18)

where 0 is the vacuum and dO is the quantum dimension of the primary operator O. When

the cross ratios η2, η2 → 0, 1, applying the asymptotic form of the conformal blocks as well

as the fusion transformation (4.17) and the crossing symmetry gives

∆S
(2)
A,i(ti)

ϵ/L→0−−−−→
{
0, if η2, η2 → 0 or η2, η2 → 1

log dO, if η2 → 0, η2 → 1 or η2 → 1, η2 → 0
(4.19)

This is exactly the same behaviour as for the free boson (4.14), but with log dO instead of

log 2. Therefore, the results of the local operator quench in the RCFT can be obtained from

that of the free boson by simply replacing log 2 with log dO.

Cross ratio

The cross ratio does not depend on the operator content of the 2d CFTs and is explicitly

given by

η2 =
1

2


1−

(
ζNew,i
+ϵ

)2
+
(
ζNew,i
−ϵ

)2

2ζNew,i
+ϵ ζNew,i

−ϵ


 . (4.20)
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The same expression holds for the anti-holomorphic components by replacing the holomorphic

quantities with the anti-holomorphic quantities. These expressions (4.14) and (4.20) are valid

for arbitrary directions of the uniformization branch cut ψ as expected. The only subtlety in

the computation of the cross ratio (4.20) lies in the computation of the denominator. In what

follows, let ·̂ denote both holomorphic and anti-holomorphic coordinates and σ = +1/ − 1

for holomorphic/anti-holomorphic coordinates. For example, ζ̂ρϵ denote both holomorphic

and anti-holomorphic coordinates with ρ = ±1 indicating their Euclidean time positions.

Assume that to second order in the small ϵ expansion, where δ = 2πϵ
L

≪ 1, these coordinates

take the form

ζ̂2ρϵ = ξ0(ti, L, x,X1, X2, θ, σ)
[
1 + iδρξ1(ti, L, x,X1, X2, θ, σ) + δ2ξ2(ti, L, x,X1, X2, θ, σ)

]

(4.21)

where ξ0, ξ1, ξ2 are arbitrary real functions that are independent of ρ and x is the spatial

location of the local operator insertion. To first order in δ ≪ 1,

ζ̂2ρϵ = ξ0(ti, L, x,X1, X2, θ, σ) + iδρξ0(ti, L, x,X1, X2, θ, σ)ξ1(ti, L, x,X1, X2, θ, σ). (4.22)

Assume that ξ0(ti, L, x,X1, X2, θ, σ), ξ1(ti, L, x,X1, X2, θ, σ) ∈ R, are finite and

ξ0(ti, L, x,X1, X2, θ, σ), ξ1(ti, L, x,X1, X2, θ, σ) ̸= 0. (4.23)

This means that ξ0(ti, L, x,X1, X2, θ, σ)ξ1(ti, L, x,X1, X2, θ, σ) is finite and non-zero. There-

fore, to linear order in δ, ζ̂2±ϵ are two numbers that lie slightly off the positive or negative real

axis on the complex ζ, ζ planes. Following [25], we choose the phase ψ in the uniformization

map (4.4) such that the branch cut lies on the negative real axis on the complex ζn, ζ
n
plane.

If ξ0(ti, L, x,X1, X2, θ, σ) > 0, then ζ̂2ρϵ lies slightly off the positive real axis for both ρ = ±1

and in the δ → 0,

ζ̂ρϵ =
√
ξ0
√
1 + iδρξ1 + δ2ξ2 (4.24)

so the denominator of the cross ratio (4.20) is

ζ̂+ϵζ̂−ϵ = ξ0

[
1 +

1

2
δ2(ξ21 + 2ξ2)

]
(4.25)

On the other hand, if ξ0(ti, L, x,X1, X2, θ, σ) < 0, these coordinates ζ̂2+ϵ will lie slightly off

the negative real axis where the branch cut is located. In order to take the δ → 0 limit while

avoiding the branch cut, we can rotate them as such

ζ̂2ρ1ϵ = eiπ
(
−ζ̂2ρ1ϵ

)
, ζ̂2ρ2ϵ = e−iπ

(
−ζ̂2ρ2ϵ

)
(4.26)

where (ρ1, ρ2) = (1,−1) or (ρ1, ρ2) = (−1, 1) depending on the sign of ξ0ξ1. The function

−ζ̂2±ϵ now lie slightly off the positive real axis and we can safely take the δ → 0 limit. The

denominator in the cross ratio when ξ0 < 0 is approximately given by

ζ̂2+ϵζ̂
2
−ϵ =

√
|ξ0| [1 + iδξ1 + δ2ξ2]

√
|ξ0| [1− iδξ1 + δ2ξ2] = |ξ0|

[
1 +

1

2
δ2(ξ21 + 2ξ2)

]
(4.27)
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Therefore, for both sign of ξ0, as long as ξ0 ̸= 0 and is finite,

ζ̂+ϵζ̂−ϵ = |ξ0|
[
1 +

1

2
δ2(ξ21 + 2ξ2)

]
(4.28)

Putting this back into the cross ratio (4.20), we find that to quadratic order in δ, the cross

ratio is given by

η̂2 =
1

2

{
1− sgn(ξ0)

[
1− 1

2
δ2ξ21

]}
(4.29)

which does not depend on ξ2. Of course, we require that ξ2 does not depend on ρ = ±1

and does not diverge and that both ξ0, ξ1 are finite and non-zero. It does not matter if ξ2
vanishes or not.

Simple Example

The results for the change in the second Rényi entropy for these integrable theories for

various choices of subsystems and two different local operator insertion positions are listed in

Appendix C. Let us list the result for one such case here. Consider a subsystem that contains

the origin as in case (a) and place the local operator at Xf
2 . For Lorentzian time evolution

with the SSD Hamiltonian, i = 1, 2, the cross ratio to second order in ϵ
L
is

η̂2 =
1

2

{
1− sgn

[
t1 − σL

2π
cot πX2

L

t1 − σL
2π

cot πX1

L

][
1−

( ϵ
L

)2
× positive number

]}
(4.30)

so η2, η2 → 0, 1 as ϵ
L
→ 0 as mentioned earlier. The change in the second Rényi entropy for

i = 1, 2 becomes

∆S
(2)
A,i(t1) =

{
log 2, i = 1, 2, L

2π
cot πX2

L
< t1 <

L
2π
| cot πX1

L
|

0 i = 1, 2, 0 < t1 <
L
2π

cot πX2

L
and L

2π
| cot πX1

L
| < t1

(4.31)

in the free boson CFT and the log 2 gets replaced with log dO for generic RCFTs. This is

well-described by the quasiparticle picture which is detailed in the following subsection.

4.2 Quasiparticle Picture

It turns out that the behavior of the change in the second Rényi entropy is well-described by

a quasiparticle picture. At the initial time ti = 0, for i = 0, 1, a Bell pair of quasiparticles,

one left-moving and the other right-moving, are created at the position of the local operator

O. These quasiparticles propagate with speed given by the envelope function f(x) defined

in (2.2).

For finite values of θ, a quasiparticle that begins at position x arrives at position X at

time ti given by

tan
πti

L cosh 2θ
= µe2θ

tan πX
L

− tan πx
L

1 + e4θ tan πX
L

tan πx
L

, (4.32)
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where µ = +1/ − 1 for right/left moving quasiparticles as found previously in [45, 65]. For

the uniform Hamiltonian, setting θ = 0 gives X = (x + µt0)modL which is the trajectory

for quasiparticles moving with uniform unit speed. Since we think of the local operators

at x as the source of the quasiparticles and the endpoints of the subsystems X1 and X2

as the target X, by looking at the corresponding factors in the coordinates ζ̂nρϵ, we see

that the holomorphic coordinates correspond to the left moving quasiparticles and the anti-

holomorphic coordinates correspond to the right moving ones.

In the SSD limit, a quasiparticle that starts off at position x at t1 = 0 winds up at

position X at time t1 that is determined by

±t1 =
L

2π

(
cot

πx

L
− cot

πX

L

)
(4.33)

where +/− corresponds to right/left moving quasiparticles. The factor of cot πx
L

diverges

at Xf
1 since the quasiparticles that start off at that position don’t move. To get non-trivial

entanglement dynamics, place the local operator at the other fixed point Xf
2 .

The second Rényi entropy of a subsystem in the local operator excited state is the same as

that of the vacuum state unless the subsystem contains exactly one member of the entangled

bell pair of quasiparticles in which case the second Rényi entropy increases by an amount

that is determined by the local operator O.

4.3 Summary for integrable theories

While the calculation for the change in the second Rényi entropy for the local operator

excited state in integrable theories is involved, the final result is simple and easy to under-

stand. Therefore, we summarize the key physical result here and relegate the details of the

calculation to Appendix C.

The entanglement entropy is described by a pair of bell pairs that are created at the

location of the local operator insertion as first described in [25] with the qubits propagating

with a speed given by the Möbius/SSD envelope function. When either member of the bell

pair, but not both, is inside the subsystem, the second Rényi entropy increases by log 2 for

Hermitian sum of vertex operators (4.12) in the free boson theory and by log dO in general

RCFTs for a primary O.

The entanglement entropy is completely determined by the unitary time evolution oper-

ator and does not depend on the regulator Hamiltonian except for certain choices of x which

causes the regulator to vanish. This is because the coordinates ζ2±ϵ have a real part that at

the leading O
((

ϵ
L

)0)
order is given by the unitary operator while the imaginary part at the

leading O
((

ϵ
L

))
order is dependent on the regulator Hamiltonian. These coordinates there-

fore lie slightly off the real axis of the complex ζ2, ζ
2
planes with the real part determined by

the unitary time evolution while the regulator Hamiltonian only serves to introduce a small

separation between the two operators O and O†. The jumps in the second Rényi entangle-

ment entropy are determined by the location of the operators along the real axis and hence
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only depend on the unitary time evolution. This also explains why swapping the order of

the Lorentzian and Euclidean time evolution operators has no effect on the change in the

second Rényi entropy to leading order in ϵ
L
when ∆S

(2)
A,i(ti) is finite for the three choices of

subsystems (a), (b) and (c) considered in this paper, including the case where the interval

A = [0, X1], 0 < X1 <
L
2
, ends on the fixed point Xf

1 . Since the leading order term in ϵ
L
in

the coordinates and hence the cross ratios are independent of the ordering of the Lorentzian

and Euclidean evolution, so is the change in the second Rényi entropy ∆S
(2)
A,i(ti) to leading

order. However, the order of the Lorentzian and Euclidean time evolution does affect the

times at which ∆S
(2)
A,i(ti) diverges which only occurs when the Euclidean time evolution is

generated by the SSD Hamiltonian. When the local operator is inserted at Xf
1 , ∆S

(2)
A,3(t0)

diverges for all t0 while ∆S
(2)
A,4(t0) diverges only for t0 = nL where n ∈ Z. On the other hand,

when the local operator is inserted at Xf
2 , ∆S

(2)
A,3(t0) remains finite for all t0 while ∆S

(2)
A,4(t0)

diverges when t0 =
(
n+ 1

2

)
L where n ∈ Z.

5 Entanglement entropy in two-dimensional Holographic

CFTs (2d holographic CFTs)

Here, we explore the time dependence of SA,i during the Möbius/SSD time evolution. We

begin by the Euclidean Rényi entanglement entropy in (2.17), and then map from the cylinder

to the complex plane, (z, z) = (e
2πw
L , e

2πw
L ). Then, S

(n)
A,i,E is given by

S
(n)
A,i,E =

1

1− n
log




〈
O†
n(z

New,i
ϵ , zNew,i

ϵ )σn(zX1 , zX1)σn(zX2 , zX2)On(z
New,i
−ϵ , zNew,i

−ϵ )
〉

〈
O†(zNew,i

ϵ , zNew,i
ϵ )O(zNew,i

−ϵ , zNew,i
−ϵ )

〉n




− c(1 + n)

24n
log

[∏

i=1,2

∣∣∣∣
dzXi

dwXi

∣∣∣∣

]
,

(5.1)

where zNew,i
±ϵ = e

2πw
New,i
±ϵ
L , zXi=1,2

= e
2πwXi=1,2

L and z is the complex conjugate of z. Furthermore,

to simplify the form of S
(n)
A,i,E, we perform a conformal map,

z̃(z) =

(
zNew,i
ϵ − z

) (
zX2 − zNew,i

−ϵ

)

(
z − zNew,i

−ϵ

)(
zNew,i
ϵ − zX2

) , z̃(z) =
(
zNew,i
ϵ − z

) (
zX2 − zNew,i

−ϵ

)

(
z − zNew,i

−ϵ

) (
zNew,i
ϵ − zX2

) . (5.2)

Then, (5.1) reduces to the function of the cross ratios (zc,i, zc,i),

S
(n)
A,i,E =

1

1− n
log
[
|zX1 − zX2|−4nhn |1− zc,i|4nhn Gn(zc,i, zc,i)

]
− c(n+ 1)

6n
log

(
2π

L

)
, (5.3)
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where (zc,i, zc,i) are defined as

(zc,i, zc,i) =



(
zNew,i
ϵ − zX1

) (
zX2 − zNew,i

−ϵ

)

(
zX1 − zNew,i

−ϵ

)(
zNew,i
ϵ − zX2

) ,
(
zNew,i
ϵ − zX1

) (
zX2 − zNew,i

−ϵ

)

(
zX1 − zNew,i

−ϵ

) (
zNew,i
ϵ − zX2

)


 . (5.4)

Here, we assume that zc,i, zc,i ≈ 1, and then we perform the OPE at zc,i, zc,i ≈ 1. Subse-

quently, we closely look at the behavior of logGn(zc,i, zc,i) at the leading order of the small

n limit, where n ≈ 1. The leading behavior of logGn(zc,i, zc,i) reduces to

logGn(zc,i, zc,i) ≈
c(1− n)

6
log


z

(1−αO)

2
c,i z

(1−αO)

2
c,i (1− zαO

c,i )(1− zαO
c,i )

αOαO


, (5.5)

where αO = αO =
√

1− 24hO/c. Consequently, in the Von Neumann limit, n → 1, (5.3)

reduces to

SA,i,E =
c

6
log


z

1−αO
2

c,i z
1−αO

2
c,i (1− zαO

c,i )(1− zαO
c,i )

αOαO




+
c

6
log
[
|zX1 − zX2 |2

]
− c

6
log
[
|1− zc,i|2

]
− c

3
log

(
2π

L

)
.

(5.6)

Finally, take the analytic continuation, τ1 = it1 and τ0 = it0. We will explore the time

evolution of SA,i in the three cases shown in Fig. 3 In this section, the insertions of local

operator are at x = Xf
a=1,2. We will explore the characteristic properties of the dynamics for

the state, |Ψ⟩i, by investigating the time dependence of entanglement entropy.

5.1 Möbius Hamiltonian

Here, we will investigate the time dependence of SA,i for finite θ. First, we will explore the

time dependence of SA,i when the local operator is inserted at x = Xf
1 = 0, and then we will

explore the time dependence for the insertion at x = Xf
2 = L/2 of the local operator.

5.1.1 When the local operator is inserted at x = Xf
1 = 0.

Let us present the time dependence of the cross ratios for i = 1 ∼ 4 when the local operator

is inserted at x = Xf
1 = 0. To explore the properties of dynamics irrelevant to the regulator

as possible, we investigate the time dependence of the cross ratios and SA,i in the small ϵ

expansion, ϵ
L
≪ 1. When the local operator is inserted at x, the small ϵ expansion of the

cross ratios analytically-continued to the real time is approximated by

zc,i ≈ 1 + iϵfi(Ti, x, θ)

zc,i ≈ 1 + iϵgi(Ti, x, θ),
(5.7)

27



where Ti=1,2 = t1, Ti=3,4 = t0, and x denotes the insertion point of the local operator. For

all the subsystems and the locations, considered in this paper, of the local operator, in the

small ϵ limit, the next-to-leading terms of zc,i and zc,i are O(ϵ), and they are pure imaginary.

We define fi(Ti, x, θ) and gi(Ti, x, θ) as the coefficient of iϵ of zc,i and zc,i. The details of the

cross ratios, when the local operator is inserted at Xf
1 , are reported in Appendix D.1. In

(5.7), the θ in fi(Ti, x, θ) or gi(Ti, x, θ) is a finite number. We use fi(Ti, x,∞) or gi(Ti, x,∞)

to represent the limit as θ → ∞. We represent the time dependence of the cross ratio by the

second order in the small ϵ limit. Define tx by

tx =
Leff

π
tan−1

[
e2θ tan

(πx
L

)]
. (5.8)

For i = 1, 2, fi=1,2(Ti=1,2, X
f
1 , θ) (gi=1,2(Ti=1,2, X

f
1 , θ)) is positive in the time intervals, nLeff+

tL−X2 > t1 > nLeff + tL−X1 ((n+ 1)Leff + tX2 > t1 > nLeff + tX1), where n is an non-negative

integer. It is negative in the time intervals, (n+ 1)Leff + tL−X1 > t1 > nLeff + tL−X2 (nLeff +

tX1 > t1 > nLeff + tX2). Since the denominators of fi=1,2(Ti=1,2, X
f
1 , θ) (gi=1,2(Ti=1,2, X

f
1 , θ))

vanishes around the times, t1 = nLeff + tL−X1 or t1 = nLeff + tL−X2 (t1 = nLeff + tX1 or

t1 = nLeff+tX2), the small ϵ expansion in (5.7) breaks down. For i = 3, 4, fi=3,4(Ti=1,2, X
f
1 , θ)

(gi=3,4(Ti=1,2, X
f
1 , θ)) is positive in the time intervals, nL−X2 > t0 > nL−X1 ((n+1)L+X2 >

t0 > nL + X1), while it is negative in the time intervals, (n + 1)L − X1 > t0 > nL − X2

(nL +X2 > t0 > nL +X1). Since fi=1,2(Ti=1,2, X
f
1 , θ) (gi=1,2(Ti=1,2, X

f
1 , θ)) vanishes around

the times t0 = nL − X2 or t0 = nL − X1 (t0 = nL + X2 or t0 = nL + X1), the small ϵ

expansion in (5.7) breaks down. As in [27], this suggests that we need to choose a different

branch from that before the trajectory of the cross ratio encircles the origin,

zc,i → e±2iπzc,i, zc,i → e±2iπzc,i. (5.9)

where ± is determined by how the trajectory encircles the origin. For example in the case

of zc,3, when L − X1 > t0 > 0, the location of zc,3 is infinitesimally negative along the

imaginary direction. Conversely, within the interval L − X2 > t0 > L − X1, the location

becomes infinitesimally positive. This suggests that around t0 = L − X1, the trajectory of

zc,3 encircles the origin clockwise, so that zc,3 → e−2iπzc,3. The values of (5.6) depends on

the branches, and the entanglement entropy in 2d holographic CFTs should be given by

the geodesics length, [77, 78]. In this section, we assume that the trajectories of cross ratios

respect causality, and we choose the branches such that the value of (5.6) is minimized. Thus,

we determine the time dependence of SA,i.

Before reporting the detailed time evolution of SA,i, we will present the common behavior

of SA,i for the Möbius case. The outlined time dependence of SA,i follows the propagation

of the quasiparticles as in the integrable theories explained above. In other words, the local

operator produces an entangled pair at its insertion point, and the quasiparticles of this

pair propagate left and right at the velocity determined by the envelope function. The time

dependence of SA,i=1,2 (SA,i=3,4) are given by the periodic functions of t1 (t0) with the period,

Leff (L). Unlike the integrable theories, the detailed time dependence of entanglement entropy
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for i = 1 (i = 3) is different from that for i = 2 (i = 4). In other words, in the time intervals

where the value of entanglement entropy is larger than that of the vacuum one, the value

of SA,i=1 (SA,i=3) is different from that of SA,i=2 (SA,i=4). Therefore, the time dependence

of SA,i in 2d CFTs depends on the time ordering of the Euclidean and real time evolution.

Since we can see from the time dependence of SA,i for (a) that the characteristic behavior of

entanglement dynamics for the Möbius case, we present SA,i only for (a) here, and report on

that for (b) and (c) in Appendix E.1.1. The time dependence of SA,i is given by

SA,1 ≈
c

3
log

[
L

π
sin

(
π (X1 −X2)

L

)]

+





0 tL−X1 > t1 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵf1(t1, X

f
1 , θ)

]
nLeff + tt1,+ > t1 > nLeff + tL−X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵg1(t1, X

f
1 , θ)

]
nLeff + tX2 > t1 > nLeff + tt1,+

0 nLeff + tL−X2 > t1 > nLeff + tX2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵf1(t1, Xf

1 , θ)
]

nLeff + tt1,− > t1 > nLeff + tL−X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵg1(t1, Xf

1 , θ)
]

nLeff + tX1 > t1 > nLeff + tt1,−

0 (n+ 1)Leff + tL−X1 > t1 > nLeff + tX1

,

SA,2 ≈
c

3
log

[
L

π
sin

(
π (X1 −X2)

L

)]

+





0 tL−X1 > t1 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵf2(t1, X

f
1 , θ)

]
nLeff + tt1,+ > t1 > nLeff + tL−X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵg2(t1, X

f
1 , θ)

]
nLeff + tX2 > t1 > nLeff + tt1,+

0 nLeff + tL−X2 > t1 > nLeff + tX2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵf2(t1, Xf

1 , θ)
]

nLeff + tt1,− > t1 > nLeff + tL−X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵg2(t1, Xf

1 , θ)
]

nLeff + tX1 > t1 > nLeff + tt1,−

0 (n+ 1)Leff + tL−X1 > t1 > nLeff + tX1

,

SA,3 ≈
c

3
log

[
L

π
sin

(
π (X1 −X2)

L

)]

+





0 L−X1 > t0 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵf3(t0, X

f
1 , θ)

]
nL+ tt0,+ > t0 > (n+ 1)L−X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵg3(t0, X

f
1 , θ)

]
nL+X2 > t0 > nL+ tt0,+

0 (n+ 1)L−X2 > t0 > nL+X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵf3(t0, Xf

1 , θ)
]

nL+ tt0,− > t0 > (n+ 1)L−X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵg3(t0, Xf

1 , θ)
]

nL+X1 > t0 > nL+ tt0,−

0 (n+ 2)L−X1 > t0 > nL+X1

,
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SA,4 ≈
c

3
log

[
L

π
sin

(
π (X1 −X2)

L

)]

+





0 L−X1 > t0 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵf4(t0, X

f
1 , θ)

]
nL+ tt0,+ > t0 > (n+ 1)L−X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵg4(t0, X

f
1 , θ)

]
nL+X2 > t0 > nL+ tt0,+

0 (n+ 1)L−X2 > t0 > nL+X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵf4(t0, Xf

1 , θ)
]

nL+ tt0,− > t0 > (n+ 1)L−X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵg4(t0, Xf

1 , θ)
]

nL+X1 > t0 > nL+ tt0,−

0 (n+ 2)L−X1 > t0 > nL+X1

.

(5.10)

Where n is an integer greater than or equal to 0 , and tt1,±, t
t
0,± are positive. we define tt1,±, t

t
0,±

as follows:

tt1,± =
Leff

π
tan−1

[
±
√
e4θ tan

π (L−X1)

L
tan

πX2

L

]
, cos

(
πtt0,±
L

)
= ±

√√√√
∏2

i=1 cos
[
πXi

L

]

cos
[
π(X1+X2)

L

]

(5.11)

We also studied the time dependence of SA,i when the local operator is inserted at x = L
2
.

However, the characteristic behavior of SA,i for the insertion at x = L
2
of the local operator

is the same as that for x = 0. Therefore, we postpone SA,i for x = L
2
to Appendix E.1.2.

5.2 SSD limit

Now, let us consider the time dependence of SA,i in the SSD limit, θ → ∞. In this limit, Leff

will become infinite, while L will remain finite. This suggests that the time dependence of

SA,i=1,2 in the SSD limit may not be periodic, while for i = 3, 4 that may remain periodic.

5.2.1 When the insertion of O is at x = Xf
1

We consider the time evolution of SA when the local operator O is the inserted at x = Xf
1 .

In this case, t1-dependence of SA,i=1,2 is given by

SA,1 = SA,2 =
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]
. (5.12)

We can see from t1-dependence of SA,i=1,2 that the local operator at x = Xf
1 does not

grow with time during the evolution induced by the SSD Hamiltonian. This is because the

Hamiltonian density of HSSD is zero at the origin, so that this evolution operator trivially

acts on the local operator. For |Ψ3⟩, the cross ratios are exactly unity, so that SA,i=3 becomes

infinite. This is because the local operators inserted coincide with each other since HSSD does
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not play as the regulator. For |Ψ4⟩, the cross ratios are approximated by

zc,4 ≈ 1−
4iπϵ sin2

[
πt0
L

]
sin
[
π(X1−X2)

L

]

L
∏

i=1,2 sin
[
π(t0+Xi)

L

] +O(ϵ2), zc,4 ≈ 1 +
4iπϵ sin2

[
πt0
L

]
sin
[
π(X1−X2)

L

]

L
∏

i=1,2 sin
[
π(t0−Xi)

L

] +O(ϵ2),

(5.13)

where around t0 = ti=1,2,n,±, these expansions are invalid. The definition of ti=1,2,n,± are

ti=1,2,n,± = nL±Xi=1,2, (5.14)

where n is an integer number. The time dependence of the denominator of zc,4 and zc,4 in this

case is the same as that for Möbius case when the local operator is inserted at x = Xf
1 . This

suggests we may have the candidates, corresponding to the branches, of geodesics. The time

dependence of entanglement entropy is determined by the minimal one of these candidates.

Here, we report on the time dependence of SA,4 for only (a) here, while that for (b) and (c)

are presented in Appendix E.2.1. The time dependence of SA,4 in (a) is determined by

SA,4 ≈
c

3
log

[
L

π
sin

(
π (X1 −X2)

L

)]

+





0 L−X1 > t0 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵf4(t0, X

f
1 ,∞)

]
nL+ tt0,+ > t0 > (n+ 1)L−X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵg4(t0, X

f
1 ,∞)

]
nL+X2 > t0 > nL+ tt0,+

0 (n+ 1)L−X2 > t0 > nL+X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵf4(t0, Xf

1 ,∞)
]

nL+ tt0,− > t0 > (n+ 1)L−X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵg4(t0, Xf

1 ,∞)
]

nL+X1 > t0 > nL+ tt0,−

0 (n+ 2)L−X1 > t0 > nL+X1

.

(5.15)

where the tt0,± is given by (5.11).

Large L limit

Now, let us take the large L limit to check if the time dependence of SA,4 is consistent with

that in [27]. In this limit, zc,4 and zc,4 are approximated by

zc,4 ≈ 1− 4iπ2ϵ(X1 −X2)t
2
0

L2(t0 +X1)(t0 +X2)
, zc,4 ≈ 1 +

4iπ2ϵ(X1 −X2)t
2
0

L2(t0 −X1)(t0 −X2)
(5.16)

For simplicity, let us assume that L
2
> X1 > X2 > 0. Consequently, the t0-dependence of

SA,4 is given by

SA,4 ≈





c
3
log [(X1 −X2)] X2 > t0

c
6
log
[
sin (παO)
παO

· L2(X1−t0)(t0−X2)(X1−X2)

2πϵt20

]
X1 > t0 > X2

c
3
log [(X1 −X2)] t0 > X1

(5.17)

Thus, this is consistent with that in [27].
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5.2.2 When the insertion of O is at x = Xf
2

Now, let us consider the case where the local operator is inserted at the other fixed point,

x = Xf
2 = L/2. To second order in the small ϵ expansion, the analytic-continued cross ratios

are given by

zc,1 ≈ 1−
2iπLϵ sin

(
π(X1−X2)

L

)

(
L cos

(
πX1

L

)
− 2πt1 sin

(
πX1

L

)) (
L cos

(
πX2

L

)
− 2πt1 sin

(
πX2

L

)) +O(ϵ2),

zc,1 ≈ 1 +
2iπLϵ sin

(
π(X1−X2)

L

)

(
2πt1 sin

(
πX1

L

)
+ L cos

(
πX1

L

)) (
2πt1 sin

(
πX2

L

)
+ L cos

(
πX2

L

)) +O(ϵ2),

zc,2 ≈ 1−
2iπϵ (L2 + 4π2t21) sin

[
π(X1−X2)

L

]

L
(
L cos

(
πX1

L

)
− 2πt1 sin

(
πX1

L

)) (
L cos

(
πX2

L

)
− 2πt1 sin

(
πX2

L

)) +O(ϵ2),

zc,2 ≈ 1 +
2iπϵ (L2 + 4π2t21) sin

[
π(X1−X2)

L

]

L
(
2πt1 sin

(
πX1

L

)
+ L cos

(
πX1

L

)) (
2πt1 sin

(
πX2

L

)
+ L cos

(
πX2

L

)) +O(ϵ2),

zc,3 ≈ 1−
4iπϵ sin

[
π(X1−X2)

L

]

L cos
[
π(t0+X1)

L

]
cos
[
π(t0+X2)

L

] +O(ϵ2), zc,3 ≈ 1 +
4iπϵ sin

[
π(X1−X2)

L

]

L cos
[
π(t0−X1)

L

]
cos
[
π(t0−X2)

L

] +O(ϵ2),

zc,4 ≈ 1−
4iπϵ cos2

(
πt0
L

)
sin
[
π(X1−X2)

L

]

L cos
[
π(t0+X1)

L

]
cos
[
π(t0+X2)

L

] +O(ϵ2), zc,4 ≈ 1 +
4iπ cos2

(
πt0
L

)
sin
[
π(X1−X2)

L

]

L cos
[
π(t0−X1)

L

]
cos
[
π(t0−X2)

L

] +O(ϵ2).

(5.18)

For i = 1, 2, define the characteristic time scales by

t̃i=1,2,± =
L

2π
tan

[
π

L

(
L

2
±Xi

)]
. (5.19)

The second order of cross ratios, zc,i=1,2 (zc,i=1,2), is positive in the time interval, t̃2,− > t1 >

t̃1,− (t̃2,+ > t1 or t1 > t̃1,+), while it is negative in t̃1,− > t1 or t1 > t̃2,− (t̃1,+ > t1 > t̃2,+).

Around t1 = t̃i,− (t1 = t̃i,+), the small ϵ expansion breaks down because the coefficient of ϵ2

becomes drastically large. Thus, unlike the Möbius case, the cross ratios in the SSD limit

do not periodically behave. For i = 3, 4, the time intervals determining the sign of the cross

ratios and the times for the small ϵ expansion to be invalid are the same as those for the case

of Möbius Hamiltonian. However, while during the unitary time evolution corresponding to

i = 3, the value of SA,i=3 is finite, during the non-unitary one corresponding to i = 4, SA,i=4

diverges at t0 = L·
(
1
2
+ n
)
because the cross ratios becomes unity for any ϵ.This suggests that

e−ϵHSSD does not work as a regulator at x = Xf
2 . As in the Möbius case, the outlined time

evolution of SA,i can be described by the quasiparticle picture. As explained in the Möbius

case, the entangled pair is induced at the insertion point of the local operator, and then the

quasiparticles of this pair moves to left and right at the velocity determined by the envelope
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functions: for i = 1, 2 the velocity is |2 sin2
(
πx
L

)
|; for i = 3, 4 the velocity is the speed of

light. When only one of pair is in the subsystems considered, the entanglement between this

pair contributes to SA,i. Since we can see the properties of entanglement dynamics in the

SSD limit from SA,i for (a), we only present it. The readers interested in (b) and (c) should

look at Appendix E.2.2.
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In the AdS/CFT correspondence, the time dependence of SA,i in (a) is given by

SA,1 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 t̃2,− > t1 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵf1(t1, Xf

2 ,∞)
]

t̃t1 > t1 > t̃2,−
c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵg1(t1, Xf

2 ,∞)
]

t̃1,+ > t1 > t̃t1

0 t1 > t̃1,+

,

SA,2 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 t̃2,− > t1 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵf2(t1, Xf

2 ,∞)
]

t̃t1 > t1 > t̃2,−
c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵg2(t1, Xf

2 ,∞)
]

t̃1,+ > t1 > t̃t1

0 t1 > t̃1,+

,

SA,3 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 L
2
−X2 > t0 > 0

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵf3(t0, Xf

2 ,∞)
]

nL+ t̃t0,+ > t1 >
(
1
2
+ n
)
L−X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵg3(t0, Xf

2 ,∞)
] (

n− 1
2

)
L+X1 > t1 > nL+ t̃t0,+

0
(
n+ 3

2

)
L−X1 > t0 >

(
n− 1

2

)
L+X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵf3(t0, X

f
2 ,∞)

]
nL+ t̃t0,− > t0 >

(
n+ 3

2

)
L−X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵg3(t0, X

f
2 ,∞)

] (
n+ 1

2

)
L+X2 > t0 > nL+ t̃t0,−

0
(
3
2
+ n
)
L−X2 > t0 >

(
1
2
+ n
)
L+X2

,

SA,4 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 L
2
−X2 > t0 > 0

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵf4(t0, Xf

2 ,∞)
]

nL+ t̃t0,+ > t1 >
(
1
2
+ n
)
L−X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵg4(t0, Xf

2 ,∞)
] (

n− 1
2

)
L+X1 > t1 > nL+ t̃t0,+

0
(
n+ 3

2

)
L−X1 > t0 >

(
n− 1

2

)
L+X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵf4(t0, X

f
2 ,∞)

]
nL+ t̃t0,− > t0 >

(
n+ 3

2

)
L−X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵg4(t0, X

f
2 ,∞)

] (
n+ 1

2

)
L+X2 > t0 > nL+ t̃t0,−

0
(
3
2
+ n
)
L−X2 > t0 >

(
1
2
+ n
)
L+X2

.

(5.20)

where n is an integer greater than or equal to 0, and t̃i,± are positive. The characteristic
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parameters are given by

t̃t1 =
√
t̃1,+t̃2,−, cos

(
πt̃0,±
L

)
= ±

√√√√−∏2
i=1 sin

[
πXi

L

]

cos
[
π(X1+X2)

L

] (5.21)

For general x, except for x ̸= 0, the time dependence of SA,i is finite because the local

operators inserted do not coincide with each other (See Appendix E.2.3 for the details of

SA,i).

5.3 Information survival

We close this section by exploring the contribution from the time ordering of the Euclidean

and Lorentzian time evolution to the information scrambling. Let us assume that the time

dependence of entanglement entropy follows the propagation of quasiparticles. During the

evolution induced by the SSD Hamiltonian, the quasiparticles move to and then accumulate

around x = Xf
1 . Therefore, if the boundary of A is at x = Xf

1 , the quantum entanglement

of quasiparticles keeps contributing to the time dependence of SA. To check whether or not

the information of the local operator such as the dependence of SA on the local operator

conformal dimension survives at late times, we will explore the time dependence of SA,i=1,2

in the SSD limit. We assume that the insertion point of the local operator is Xf
2 , and take

A to be

A =

{
x

∣∣∣∣0 ≤ x ≤ X2 <
L

2

}
. (5.22)

We closely look at the leading order of SA,i=1,2 in the small ϵ limit. Then, the time dependence

of SA,i=1,2 in the SSD limit is given by

SA,i=1 ≈
c

3
log

[
L

π
sin

(
πX1

L

)]

+





0 L

2π tan (πX1
L )

> t1 > 0

c
6
log
[
2 sin [παO]

αO

]
+ c

6
log

[
t1− L

2π tan(πX1
L )

ϵ

]
t1 >

L

2π tan (πX1
L )

> 0
,

SA,i=2 ≈
c

3
log

[
L

π
sin

(
πX1

L

)]

+





0 L

2π tan (πX1
L )

> t1 > 0

c
6
log
[
2 sin [παO]

αO

]
+ c

6
log



L2

(
t1− L

2π tan(πX1
L )

)
ϵ(L2+4π2t21)


 t1 >

L

2π tan (πX1
L )

> 0
,

(5.23)

Thus, as we expected, SA,i=1,2 is not the vacuum entanglement entropy. Subsequently, we

consider the time dependence of SA,i=1,2 in the late time regime t1 ≫ L

2π tan (πX1
L )

, L
2π
. In this
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late time regime, the time dependence of SA,i=1 is approximately

SA,i=1 ≈
c

3
log

[
L

π
sin

(
πX1

L

)]
+
c

6
log

[
2 sin [παO]

αO

]
+
c

6
log

[
t1
ϵ

]
, (5.24)

where since the last term of (5.24) grows logarithmically with t1 and becomes larger than

the term depending on αO, the information of the local operator inserted is locally hidden

by this logarithmic growth. Then, we consider the late-time dependence of SA,i=2. In the

late-time interval, L
2

ϵ
≫ t1 ≫ L

2π tan (πX1
L )

, L
2π
, the time dependence of SA,i=2 is approximately

SA,i=2 ≈
c

3
log

[
L

π
sin

(
πX1

L

)]
+
c

6
log

[
2 sin [παO]

αO

]
− c

6
log

[
4π2ϵt1
L2

]
. (5.25)

The last term of (5.25) contributes positively to SA,i=2, while it deceases with t1. Therefore,

in this time interval, the dependence on αO of SA,i=2 can still remain. In the very late-

time regime, t1 >
L2

ϵ
, the small ϵ expansion in (5.18) breaks down because the second order

behavior of the cross ratios overcomes the leading one. By taking the late time limit, t1 ≫ 1,

and then taking the small ϵ limit, let us explore the late time behavior of the cross ratios.

In this limit, the leading order of the cross ratios is approximated by −1, so we cannot use

the conformal block in (5.6). In the time regime, L2

ϵ
≫ t1 ≫ L

2π tan (πX1
L )

, L
2π
, for i = 1, the

information of the local operators is locally hidden, while i = 2, it cannot be hidden. This

suggests that the initial state information for i = 2 survives longer than that for i = 1 during

the SSD holographic time evolution. It would be interesting to explore the time dependence

of SA,i=2 in the very late-time region t1 ≫ L2

ϵ
to check whether or not the information of the

local operator remains during the 2d holographic time evolution forever. We leave it as an

open problem.

6 Discussions

In this paper, we explored the time dependence of the entanglement entropy for the excited

states induced by the insertion of the local operators in 2d free, rational, and holographic

CFTs. The time evolution considered is constructed of Euclidean and Lorentzian time evo-

lution. For i = 1, 3, the systems undergo the Euclidean evolution first and then undergo the

Lorentzian time evolution, while the order of the time evolution for i = 2, 4 is the opposite.

Since the norm of the state for i = 2, 4 is not invariant under the real time evolution, the

evolution for i = 2, 4 is non-unitary. Our main findings in this paper are threefold. The first

one is about the Euclidean and Lorentzian time evolution induced by the SSD Hamiltonian.

Since the Hamiltonian density of the SSD Hamiltonian at x = Xf
1 is zero, HSSD is expected

to commute with O(x = Xf
1 ). When the local operator is at x = Xf

1 , for i = 1, 2, the

entanglement entropy, energy density, and partition function do not depend on the times,

while for i = 3, 4, they are divergent, as we expected. This suggests that in the continuum

limit, the Euclidean and real time evolution of HSSD does not play as the regulator and time
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evolution operator at x = Xf
1 , respectively.The second main result is that in free and ratio-

nal CFTs, the time dependence of the entanglement entropy does not depend on the time

ordering of the Euclidean and Lorentzian time evolution, while in the holographic CFTs, the

ordering of these time evolutions with different signatures matters. The third one is about

the local operator information survival for i = 1, 2. We considered the time dependence of

the entanglement entropy when Xf
1 is put on the boundary of the subsystems. In 2d holo-

graphic CFTs, during the unitary time evolution (for i = 1), in the late time regime, the

entanglement entropy grows logarithmically in time, so that this logarithmic growth hides

the dependence of the entanglement entropy on the conformal dimension. During the non-

unitary time evolution (for i = 2), the dependence of the entanglement entropy on the local

operator remains for a longer time than that for i = 1. However, we could not determine if

for i = 2, the information about the local operator inserted remains forever. If we first take

the late time limit, t1 ≫ 1, and subsequently take the small ϵ limit, then the cross ratios

approaches to −1. Therefore, the approximation of the conformal blocks around z, z ≈ 1 is

invalid. In this paper, we could not consider a situation where the quasiparticles contribute

forever to the entanglement entropy during the evolution induced by the holographic CFT

Hamiltonian because the inhomogeneous Hamiltonians are defined on a compact space. It

would be interesting to explore if the information of the local operator inserted remains dur-

ing a non-unitary process on a non-compact space that is more similar to the setup considered

in [27, 23] . For example, it would be interesting to explore the system during the time evo-

lution constructed out of the Euclidean evolution induced by the Rindler Hamiltonian and

the real time evolution induced by the homogeneous time evolution.

Acknowledgements

We thank useful discussions with Tadashi Takayanagi, Chen Bai, and Farzad Omidi. M.N. is

supported by funds from the University of Chinese Academy of Sciences (UCAS), funds from

the Kavli Institute for Theoretical Sciences (KITS). K.T. is supported by JSPS KAKENHI

Grant No. 21K13920 and MEXT KAKENHI Grant No. 22H05265. M.T. is supported by

an appointment to the YST Program at the APCTP through the Science and Technology

Promotion Fund and Lottery Fund of the Korean Government, as well as the Korean Local

Governments - Gyeongsangbuk-do Province and Pohang City.

A Trajectory of the local operator

Here, we will explain how to compute the trajectories of the local operator and present the

details.
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A.1 How to compute the local operator trajectories

Here, we derive the transformation of the primary operator during the unitary and non-

unitary time evolution. The Euclidean time evolution operators considered here are

UE
i,ϵ =





e−τ1HMöbiuse−ϵH0 for i = 1

e−ϵH0e−τ1HMöbius for i = 2

e−τ0H0e−ϵHMöbius for i = 3

e−ϵHMöbiuse−τ0H0 for i = 4

, ŨE
i,ϵ =





e−ϵH0eτ1HMöbius for i = 1

eτ1HMöbiuse−ϵH0 for i = 2

e−ϵHMöbiuseτ0H0 for i = 3

eτ0H0e−ϵHMöbius for i = 4

. (A.1)

First, we focus on H0. In the complex coordinates, (w,w), it is given by

H0 =
1

2iπ

∮
dwT (w) +

1

2iπ

∮
dwT (w) (A.2)

Then, by performing the conformal transformation, (z, z) = (e
2πw
L , e

2πw
L ), the energy densities

transform as

T (w) =

(
dz

dw

)2

T (z) +
c

12
{z;w} , T (w) =

(
dz

dw

)2

T (z) +
c

12
{z;w} , (A.3)

where Schwarzian derivatives are defined as

{z;w} =

(
d3z
dw3

dz
dw

)
− 3

2

(
d2z
dw2

dz
dw

)2

, {z;w} =

(
d3z
dw3

dz
dw

)
− 3

2

(
d2z
dw2

dz
dw

)2

. (A.4)

Consequently, H0 reduces to

H0 =
2π

L
·
[

1

2iπ

∮
dzzT (z) +

1

2iπ

∮
dzzT (z)− c

12

]
=

2π

L

[
Lz0 + L

z

0 −
c

12

]
, (A.5)

where the Virasoro generators are defined as

Lzn =
1

2iπ

∮
dzzn+1T (z), L

z

n =
1

2iπ

∮
dzzn+1T (z). (A.6)

The transformation, induced by H0, of the primary operator, O, with the conformal factor

(hO, hO) is given by

eaH0O(z, z)e−aH0 = e
2πa
L

(
Lz
0+L

z
0

)
O(z, z)e

− 2πa
L

(
Lz
0+L

z
0

)
= λ2hOO(λz, λz), (A.7)

where a is a real parameter, and λ is defined as

λ := e
2πa
L . (A.8)

Define (wNew
a , wNew

a ) as

(e
2πwNew

a
L , e

2πwNew
a
L ) := (λz, λz). (A.9)
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By using the conformal map, during the Euclidean time evolution induced by H0, the trans-

formation of the primary operator reduces to

eaH0O(w,w)e−aH0 =

∣∣∣∣
dwNew

a

dw

∣∣∣∣
2hO

O(wNew
a , wNew

a ) (A.10)

Next, we take a closer look at HMöbius. Starting from the complex coordinates, (w,w), it

is written as

HMöbius =
1

2iπ

∮
dw

[
T (w)− tanh 2θ

2

(
e

2πw
L + e

−2πw
L

)
T (w)

]

+
1

2iπ

∮
dw

[
T (w)− tanh 2θ

2

(
e

2πw
L + e

−2πw
L

)
T (w)

]
.

(A.11)

We next map from (w,w) to (z, z) where the Hamiltonian is expressed as

HMöbius =

(
2π

L

)
× 1

2iπ

∮
dz

[
zT (z)− tanh 2θ

2
(z2 + 1)T (z)

]

+

(
2π

L

)
× 1

2iπ

∮
dz

[
zT (z)− tanh 2θ

2
(z2 + 1)T (z)

]
− c

12
×
(
2π

L

)
.

(A.12)

Subsequently, we map (z, z) to (z̃, z̃) =
(− cosh θz+sinh θ
− cosh θ+sinh θz

, − cosh θz+sinh θ
− cosh θ+sinh θz

)
, and the Möbius Hamil-

tonian reduces to

HMöbius =

(
2π

L

)
× 1

2iπ

[∮
dz̃z̃T (z̃) +

∮
dz̃z̃T (z̃)

]
− c

12
×
(
2π

L

)

=

(
2π

Leff

)
×
[
Lz̃0 + Lz̃0 −

c

12

]
,

(A.13)

where the Virasoro generators on (z̃, z̃) are defined as

Lz̃n =
1

2iπ

∮
dz̃z̃n+1T (z̃), L

z̃

n =
1

2iπ

∮
dz̃z̃

n+1
T (z̃). (A.14)

Thus, the time evolution induced by HMöbius is equivalent to the evolution induced by the

dilatation operator on (z̃, z̃). Therefore, the transformation of the primary operator during

the Möbius time evolution is given by

OH(z̃, z̃, a) := eaHMöbiusO(z̃, z̃)e−aHMöbius = λ2hOeff O(λeffz̃, λeffz̃), (A.15)

where Leff is defined by replacing L of λ with Leff. On a separate note, let us consider the

Schrödinger equation of the local operator with respect to a. It is given by

dOH(z̃, z̃, a)

da
=

2π

Leff

[
2hOOH(z̃, z̃, a) + z̃∂z̃OH(z̃, z̃, a) + z̃∂z̃OH(z̃, z̃, a)

]
. (A.16)

39



This is equivalent to the transformation, induced by the dilation operator in (z̃, z̃), of

OH(z̃, z̃, a),

dOH(z̃, z̃, a)

da
=
[
HMöbius,OH(z̃, z̃, a)

]
=

[(
2π

Leff

)
·
[
Lz̃0 + Lz̃0 −

c

12

]
,OH(z̃, z̃, a)

]
. (A.17)

Since the Möbius Hamiltonian is given by the linear combination of the Virasoro as in (2.4),

OH(z, z, a) should follow the Schrödinger equation in the complex coordinates, (z, z),

dOH(z, z, a)

da
= [HMöbius,OH(z, z, a)]

=
2π

L

[
Lz0 + L

z

0 −
tanh 2θ

2

(
Lz1 + Lz−1 + L

z

1 + L
z

−1

)
,OH(z, z, a)

]

=
2π

Leff

[
hO (cosh 2θ − z sinh 2θ)OH(z, z, a) +

(
z cosh 2θ − sinh 2θ

2
(1 + z2)

)
∂zOH(z, z, a)

]

+
2π

Leff

[
hO (cosh 2θ − z sinh 2θ)OH(z, z, a) +

(
z cosh 2θ − sinh 2θ

2
(1 + z2)

)
∂zOH(z, z, a)

]
.

(A.18)

By mapping from (z̃, z̃) to (z, z), the equation (A.17) reduces to (A.18). Thus, (A.18) is

consistent with (A.17).

Now let us return to the main part of the analysis in this section. Define the complex

coordinates (wNew
a,Möbius, w

New
a,Möbius) as

(e
2πwNew

a,Möbius
L , e

2πwNew
a,Möbius
L ) :=

(
λeffz̃, λeffz̃

)
. (A.19)

Consequently, the transformation of the primary operator, eaHMöbiusO(w,w)e−aHMöbius , is given

by replacing wNew
a and wNew

a of (A.10) with wNew
a,Möbius and w

New
a,Möbius,

eaHMöbiusO(w,w)e−aHMöbius =

∣∣∣∣∣
dwNew

a,Möbius

dw

∣∣∣∣∣

2hO

O(wNew
a,Möbius, w

New
a,Möbius) (A.20)

The transformation in (2.16) is given by the operation constructed of (A.10) and (A.20). For

example, for i = 1 (i = 3), we perform the transformation, induced by H0 (HMöbius), of the

primary operator, and then we do the one induced by HMöbius (H0), while for i = 2 (i = 4),

we do the one induced by HMöbius (H0), and then we do the one induced by H0 (HMöbius).
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A.2 The details of the trajectories

Here, we present the details of the local operator trajectories before the analytic continuation.

They are given by

wNew,1
±ϵ =

L

2π
log




[
(1− λ̂−τ1) cosh 2θ − (λ̂−τ1 + 1)

]
λ±ϵz + (λ̂−τ1 − 1) sinh 2θ

(1− λ̂−τ1) sinh 2θλ±ϵz + (λ̂−τ1 − 1) cosh 2θ − (λ̂−τ1 + 1)


,

wNew,1
±ϵ =

L

2π
log




[
(1− λ̂−τ1) cosh 2θ − (λ̂−τ1 + 1)

]
λ±ϵz + (λ̂−τ1 − 1) sinh 2θ

(1− λ̂−τ1) sinh 2θλ±ϵz + (λ̂−τ1 − 1) cosh 2θ − (λ̂−τ1 + 1)


,

wNew,2
±ϵ = ±ϵ+ L

2π
log




[
(1− λ̂−τ1) cosh 2θ − (λ̂−τ1 + 1)

]
z + (λ̂−τ1 − 1) sinh 2θ

(1− λ̂−τ1) sinh 2θz + (λ̂−τ1 − 1) cosh 2θ − (λ̂−τ1 + 1)


,

wNew,2
±ϵ = ±ϵ+ L

2π
log




[
(1− λ̂−τ1) cosh 2θ − (λ̂−τ1 + 1)

]
z + (λ̂−τ1 − 1) sinh 2θ

(1− λ̂−τ1) sinh 2θz + (λ̂−τ1 − 1) cosh 2θ − (λ̂−τ1 + 1)


,

wNew,3
±ϵ = −τ0 +

L

2π
log




[
(1− λ̂±ϵ) cosh 2θ − (λ̂±ϵ + 1)

]
z + (λ̂±ϵ − 1) sinh 2θ

(1− λ̂±ϵ) sinh 2θz + (λ̂±ϵ − 1) cosh 2θ − (λ̂±ϵ + 1)


,

wNew,3
±ϵ = −τ0 +

L

2π
log




[
(1− λ̂±ϵ) cosh 2θ − (λ̂±ϵ + 1)

]
z + (λ̂±ϵ − 1) sinh 2θ

(1− λ̂±ϵ) sinh 2θz + (λ̂±ϵ − 1) cosh 2θ − (λ̂±ϵ + 1)


,

wNew,4
±ϵ =

L

2π
log




[
(1− λ̂±ϵ) cosh 2θ − (λ̂±ϵ + 1)

]
λ−τ0z + (λ̂±ϵ − 1) sinh 2θ

(1− λ̂±ϵ) sinh 2θλ−τ0z + (λ̂±ϵ − 1) cosh 2θ − (λ̂±ϵ + 1)


,

wNew,4
±ϵ =

L

2π
log




[
(1− λ̂±ϵ) cosh 2θ − (λ̂±ϵ + 1)

]
λ−τ0z + (λ̂±ϵ − 1) sinh 2θ

(1− λ̂±ϵ) sinh 2θλ−τ0z + (λ̂±ϵ − 1) cosh 2θ − (λ̂±ϵ + 1)


,

(A.21)

where z, z, λ̂±ϵ, λ̂−τ1 , λ±ϵ, and λ−τ0 are defined by

z = ei
2πx
L , z = e−i

2πx
L , λ̂±ϵ = exp

( ±2πϵ

L cosh 2θ

)
, λ̂−τ1 = exp

( −2πτ1
L cosh 2θ

)
,

λ±ϵ = e
±2πϵ

L , λ−τ0 = e(
−2πτ0

L ). (A.22)
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In SSD limit, θ → ∞, the trajectories of the local operators reduce to

wNew,1
±ϵ =

L

2π
log



πτ1

(
1− e

±2πϵ
L e

2iπx
L

)
+ Le

±2πϵ
L e

2iπx
L

πτ1

(
1− e

±2πϵ
L e

2iπx
L

)
+ L


,

wNew,1
±ϵ =

L

2π
log



πτ1

(
1− e

±2πϵ
L e

−2iπx
L

)
+ Le

±2πϵ
L e

−2iπx
L

πτ1

(
1− e

±2πϵ
L e

−2iπx
L

)
+ L


,

wNew,2
±ϵ = ±ϵ+ L

2π
log



πτ1

(
1− e

2iπx
L

)
+ Le

2iπx
L

πτ1

(
1− e

2iπx
L

)
+ L


,

wNew,2
±ϵ = ±ϵ+ L

2π
log



πτ1

(
1− e

−2iπx
L

)
+ Le

−2iπx
L

πτ1

(
1− e

−2iπx
L

)
+ L


,

wNew,3
±ϵ = −τ0 +

L

2π
log



±πϵ

(
1− e

2iπx
L

)
+ Le

2iπx
L

±πϵ
(
1− e

2iπx
L

)
+ L


,

wNew,3
±ϵ = −τ0 +

L

2π
log



±πϵ

(
1− e

−2iπx
L

)
+ Le

−2iπx
L

±πϵ
(
1− e

−2iπx
L

)
+ L


,

wNew,4
±ϵ =

L

2π
log



±πϵ

(
1− e

−2πτ0
L e

2iπx
L

)
+ Le

−2πτ0
L e

2iπx
L

±πϵ
(
1− e

−2πτ0
L e

2iπx
L

)
+ L


,

wNew,4
±ϵ =

L

2π
log



±πϵ

(
1− e

−2πτ0
L e

−2iπx
L

)
+ Le

−2πτ0
L e

−2iπx
L

±πϵ
(
1− e

−2πτ0
L e

−2iπx
L

)
+ L


.

(A.23)

B The details of energy densities without taking the

small ϵ limit

Here, without taking the small ϵ limit, we present the details of energy densities during

Möbius/SSD time evolution.

B.1 Möbius evolution

First, we will closely look at the time dependence of the chiral and anti-chiral energy densities

during the Möbius time evolution. After performing analytic continuations, τi=0,1 = it0,1,

42



without the small ϵ expansion, they are determined by

⟨Tww (wX)⟩i=1,·,4 ≈
(
2π

L

)2 [
− c

24
+ T θ

i=1,·,4

]
, ⟨Tww (wX)⟩i=1,·,4 ≈

(
2π

L

)2 [
− c

24
+ T θ

i=1,·,4

]
,

(B.1)

where functions, T θ
i=1,··· ,4, T

θ

i=1,··· ,4, are defined as

T θ
i=1 =

(
1

2
sinh

(
2πϵ

L

))2

×


 1

cos
(

πt1
Leff

)
sin
(

π(x−X−iϵ)
L

)
− sin

(
πt1
Leff

)(
cosh(2θ) cos

(
π(x−X−iϵ)

L

)
− sinh(2θ) cos

(
π(x+X−iϵ)

L

))




2

×


 1

cos
(

πt1
Leff

)
sin
(

π(x−X+iϵ)
L

)
− sin

(
πt1
Leff

)(
cosh(2θ) cos

(
π(x−X+iϵ)

L

)
− sinh(2θ) cos

(
π(x+X+iϵ)

L

))




2

,

T θ

i=1 =

(
1

2
sinh

(
2πϵ

L

))2

×


 1

sin
(

πt1
Leff

)(
cosh(2θ) cos

(
π(x−X−iϵ)

L

)
− sinh(2θ) cos

(
π(x+X−iϵ)

L

))
+ cos

(
πt1
Leff

)
sin
(

π(x−X−iϵ)
L

)




2

×


 1

sin
(

πt1
Leff

)(
cosh(2θ) cos

(
π(x−X+iϵ)

L

)
− sinh(2θ) cos

(
π(x+X+iϵ)

L

))
+ cos

(
πt1
Leff

)
sin
(

π(x−X+iϵ)
L

)




2

T θ
i=2 =

(
1

2
sinh

(
2πϵ

L

))2

×
(
sinh(2θ) sin

(
2πx

L

)
sin

(
2πt1
Leff

)
+ sin2

(
πt1
Leff

)(
cosh(4θ)− sinh(4θ) cos

(
2πx

L

))
+ cos2

(
πt1
Leff

))2

×


 1

cos
(

πt1
Leff

)
sin
(

π(x−X−iϵ)
L

)
− sin

(
πt1
Leff

)(
cosh(2θ) cos

(
π(x−X−iϵ)

L

)
− sinh(2θ) cos

(
π(x+X−iϵ)

L

))




2

×


 1

cos
(

πt1
Leff

)
sin
(

π(x−X+iϵ)
L

)
− sin

(
πt1
Leff

)(
cosh(2θ) cos

(
π(x−X+iϵ)

L

)
− sinh(2θ) cos

(
π(x+X+iϵ)

L

))




2

,

T θ

i=2 =

(
1

2
sinh

(
2πϵ

L

))2

(
− sinh(2θ) sin

(
2πx

L

)
sin

(
2πt1
Leff

)
+ sin2

(
πt1
Leff

)(
cosh(4θ)− sinh(4θ) cos

(
2πx

L

))
+ cos2

(
πt1
Leff

))2

×


 1

sin
(

πt1
Leff

)(
cosh(2θ) cos

(
π(x−X−iϵ)

L

)
− sinh(2θ) cos

(
π(x+X−iϵ)

L

))
+ cos

(
πt1
Leff

)
sin
(

π(x−X−iϵ)
L

)




2

×


 1

sin
(

πt1
Leff

)(
cosh(2θ) cos

(
π(x−X+iϵ)

L

)
− sinh(2θ) cos

(
π(x+X+iϵ)

L

))
+ cos

(
πt1
Leff

)
sin
(

π(x−X+iϵ)
L

)




2

(B.2)
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T θ
i=3 =



sinh
(

2πϵ
Leff

) (
sinh(2θ) cos

(
2πx
L

)
− cosh(2θ)

)

2 sinh2
(

πϵ
Leff

)(
cosh(2θ) cos

(
π(t0−x+X)

L

)
− sinh(2θ) cos

(
π(t0+x+X)

L

))
2 + 2 cosh2

(
πϵ
Leff

)
sin2

(
π(t0−x+X)

L

)




2

,

T θ

i=3 =



sinh
(

2πϵ
Leff

) (
sinh(2θ) cos

(
2πx
L

)
− cosh(2θ)

)

2 sinh2
(

πϵ
Leff

)(
cosh(2θ) cos

(
π(t0+x−X)

L

)
− sinh(2θ) cos

(
π(−t0+x+X)

L

))
2 + 2 cosh2

(
πϵ
Leff

)
sin2

(
π(t0+x−X)

L

)




2

,

T θ
i=4 =



sinh
(

2πϵ
Leff

)(
sinh(2θ) cos

(
2π(t0−x)

L

)
− cosh(2θ)

)

2 sinh2
(

πϵ
Leff

)(
cosh(2θ) cos

(
π(t0−x+X)

L

)
− sinh(2θ) cos

(
π(t0−x−X)

L

))
2 + 2 cosh2

(
πϵ
Leff

)
sin2

(
π(t0−x+X)

L

)




2

,

T θ

i=4 =



sinh
(

2πϵ
Leff

)(
sinh(2θ) cos

(
2π(t0+x)

L

)
− cosh(2θ)

)

2 sinh2
(

πϵ
Leff

)(
cosh(2θ) cos

(
π(t0+x−X)

L

)
− sinh(2θ) cos

(
π(t0+x+X)

L

))
2 + 2 cosh2

(
πϵ
Leff

)
sin2

(
π(t0+x−X)

L

)




2

,

(B.3)

where the effective system size is defined as Leff = L cosh 2θ.
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B.2 SSD evolution

The time evolution of the energy densities during the SSD evolution is given by

⟨Tww (wX)⟩1 =
(
2π

L

)2
[
− c

24
+

hOL4 sinh2
[
2πϵ
L

]

4
[
2πt1 sin

[
πX
L

]
sin
[
π(x−iϵ)

L

]
+ L sin

[
π((X−x)+iϵ)

L

]]2

× 1
[
2πt1 sin

[
πX
L

]
sin
[
π(x+iϵ)

L

]
+ L sin

[
π((X−x)−iϵ)

L

]]2

]
,

⟨Tww (wX)⟩1 =
(
2π

L

)2
[
− c

24
+

hOL4 sinh2
[
2πϵ
L

]

4
[
2πt1 sin

[
πX
L

]
sin
[
π(x+iϵ)

L

]
− L sin

[
π((X−x)−iϵ)

L

]]2

× 1
[
2πt1 sin

[
πX
L

]
sin
[
π(x−iϵ)

L

]
− L sin

[
π((X−x)+iϵ)

L

]]2

]
,

⟨Tww (wX)⟩2 =
(
2π

L

)2
[
− c

24
+

1
[
2πt1 sin

[
π(X−iϵ)

L

]
sin
[
πx
L

]
+ L sin

[
π((X−x)−iϵ)

L

]]2

× hO sinh2
[
2πϵ
L

] [
L2 + 4πt1L sin

(
πx
L

)
cos
(
πx
L

)
+ 4π2t21 sin

2
(
πx
L

)]2
[
2πt1 sin

[
π(X+iϵ)

L

]
sin
[
πx
L

]
+ L sin

[
π((X−x)+iϵ)

L

]]2

]
,

⟨Tww (wX)⟩2 =
(
2π

L

)2
[
− c

24
+

1
[
2πt1 sin

[
π(X+iϵ)

L

]
sin
[
πx
L

]
− L sin

[
π((X−x)+iϵ)

L

]]2

× hO sinh2
[
2πϵ
L

] [
L2 − 4πt1 sin

(
πx
L

)
cos
(
πx
L

)
+ 4π2t21 sin

2
(
πx
L

)]2
[
2πt1 sin

[
π(X−iϵ)

L

]
sin
[
πx
L

]
− L sin

[
π((X−x)−iϵ)

L

]]2

]
,

⟨Tww (wX)⟩3 =
(
2π

L

)2


− c

24
+

4hOπ2L2ϵ2 sin2
[
4πx
L

]
[
L2 sin2

[
π(t0−x+X)

L

]
+ 4π2ϵ2 sin2

[
π(t0+X)

L

]
sin2

[
πx
L

]]2


 ,

⟨Tww (wX)⟩3 =
(
2π

L

)2


− c

24
+

4hOπ2L2ϵ2 sin2
[
4πx
L

]
[
L2 sin2

[
π(t0+x−X)

L

]
+ 4π2ϵ2 sin2

[
π(t0−X)

L

]
sin2

[
πx
L

]]2


 ,

⟨Tww (wX)⟩4 =
(
2π

L

)2


− c

24
+

4hOπ2L2ϵ2 sin2
[
ππ(−x+t0)

L

]

[
L2 sin2

[
π(t0−x+X)

L

]
+ 4π2ϵ2 sin2

[
π(t0−X)

L

]
sin2

[
πx
L

]]2


 ,

⟨Tww (wX)⟩4 =
(
2π

L

)2


− c

24
+

4hOπ2L2ϵ2 sin4
[
π(x+t0)

L

]

[
L2 sin2

[
π(t0+x−X)

L

]
+ 4π2ϵ2 sin2

[
π(t0+X)

L

]
sin2

[
πx
L

]]2


 ,

(B.4)
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C Results for the Integrable Theories

As mentioned in Section 4.3, the calculation of the change in the second Rényi entropy in

the integrable theories is involved so we collect the relevant techincal details and results in

this appendix.

C.1 Möbius Case

Let hatted quantities stand for both holomorphic/anti-holomorphic quantities and let σ =

+1/− 1 for holomorphic/anti-holomorphic quantities respectively. Insert the local operator

at position x. Set the phase ψ = π+ π(X1−X2)
L

to align the branch cut along the negative real

axis in the ζn and ζ̄n planes. Then, perform the analytic continuation τ1 → it1 for i = 1, 2

and τ0 → it0 for i = 3, 4 and expand in powers of δ = 2πϵ
L

up to the second order to find:

i = 1 :

ζ̂nρϵ

=
sin πt1

L cosh 2θ

(
cos π(x+X2)

L
tanh 2θ − cos π(x−X2)

L

)
+ cos πt1

L cosh 2θ
sin πσ(x−X2)

L
sech 2θ

sin πt1
L cosh 2θ

(
cos π(x+X1)

L
tanh 2θ − cos π(x−X1)

L

)
+ cos πt1

L cosh 2θ
sin πσ(x−X1)

L
sech 2θ

(
1

+

(
2πϵ

L

)
iρ sin πσ(X1−X2)

L
sech2 2θ

2
[
cos πt1

L cosh 2θ
sech 2θ sin πσ(x−X1)

L
+ sin πt1

L cosh 2θ

(
cos π(x+X1)

L
tanh 2θ − cos π(x−X1)

L

)]

× 1[
cos πt1

L cosh 2θ
sech 2θ sin πσ(x−X2)

L
+ sin πt1

L cosh 2θ

(
cos π(x+X2)

L
tanh 2θ − cos π(x−X2)

L

)]

−
(πϵ
L

)2 sin πσ(X1−X2)
L

sech2 2θ
[
cos πt1

L cosh 2θ
sech 2θ sin πσ(x−X1)

L
+ sin πt1

L cosh 2θ

(
cos π(x+X1)

L
tanh 2θ − cos π(x−X1)

L

)]2

×

[
cos πt1

L cosh 2θ
sech 2θ cos π(x−X1)

L
+ sin πt1

L cosh 2θ

(
sin πσ(x−X1)

L
− sin πσ(x+X1)

L
tanh 2θ

)]

[
cos πt1

L cosh 2θ
sech 2θ sin πσ(x−X2)

L
+ sin πt1

L cosh 2θ

(
cos π(x+X2)

L
tanh 2θ − cos π(x−X2)

L

)]
)

(C.1)
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i = 2 :

ζ̂nρϵ

=
sin πt1

L cosh 2θ

(
cos π(x+X2)

L
tanh 2θ − cos π(x−X2)

L

)
+ cos πt1

L cosh 2θ
sin πσ(x−X2)

L
sech 2θ

sin πt1
L cosh 2θ

(
cos π(x+X1)

L
tanh 2θ − cos π(x−X1)

L

)
+ cos πt1

L cosh 2θ
sin πσ(x−X1)

L
sech 2θ

(
1

+

(
2πϵ

L

)
iρ sin πσ(X1−X2)

L

2
[
cos πt1

L cosh 2θ
sech 2θ sin πσ(x−X1)

L
+ sin πt1

L cosh 2θ

(
cos π(x+X1)

L
tanh 2θ − cos π(x−X1)

L

)]

×
[
sech2 2θ cos2

πt1
L cosh 2θ

+ sin2 πt1
L cosh 2θ

(
1 + tanh2 2θ − 2 tanh 2θ cos

2πx

L

)

+sin
2πt1

L cosh 2θ
tanh 2θ sech 2θ sin

2πσx

L

]

× 1[
cos πt1

L cosh 2θ
sech 2θ sin πσ(x−X2)

L
+ sin πt1

L cosh 2θ

(
cos π(x+X2)

L
tanh 2θ − cos π(x−X2)

L

)]

−
(πϵ
L

)2 sin πσ(X1−X2)
L[

cos πt1
L cosh 2θ

sech 2θ sin πσ(x−X2)
L

+ sin πt1
L cosh 2θ

(
cos π(x+X2)

L
tanh 2θ − cos π(x−X2)

L

)]

×

[
cos πt1

L cosh 2θ
sech 2θ cos π(x−X1)

L
+ sin πt1

L cosh 2θ

(
sin πσ(x−X1)

L
+ sin πσ(x+X1)

L
tanh 2θ

)]

[
cos πt1

L cosh 2θ
sech 2θ sin πσ(x−X1)

L
+ sin πt1

L cosh 2θ

(
cos π(x+X1)

L
tanh 2θ − cos π(x−X1)

L

)]2

×
[
sech2 2θ cos2

πt1
L cosh 2θ

+ sin2 πt1
L cosh 2θ

(
1 + tanh2 2θ − 2 tanh 2θ cos

2πx

L

)

+sin
2πσx

L
sin

2πt1
L cosh 2θ

tanh 2θ sech 2θ

]
(C.2)

i = 3 :

ζ̂nρϵ

=
sin π[t0+σ(X2−x)]

L

sin π[t0+σ(X1−x)]
L

{
1 +

(
2πϵ

L

)
iρ sin πσ(X1−X2)

L

(
1− cos 2πx

L
tanh 2θ

)

2 sin π[t0+σ(X1−x)]
L

sin π[t0+σ(X2−x)]
L

+

(
2πϵ

L

)2 sin πσ(X1−X2)
L

(
1− cos 2πx

L
tanh 2θ

) [
cos π[t0+σ(X1−x)]

L
− cos π[t0+σ(X1+x)]

L
tanh 2θ

]

4 sin2 π[t0+σ(X1−x)]
L

sin π[t0+σ(X2−x)]
L

}

(C.3)
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i = 4 :

ζ̂nρϵ

=
sin π[t0+σ(X2−x)]

L

sin π[t0+σ(X1−x)]
L

{
1 +

(
2πϵ

L

) iρ sin πσ(X1−X2)
L

(
1− cos 2π(t0−xσ)

L
tanh 2θ

)

2 sin π[t0+σ(X1−x)]
L

sin π[t0+σ(X2−x)]
L

+
(πϵ
L

)2

×
sin πσ(X1−X2)

L

(
1− cos 2π(t0−σx)

L
tanh 2θ

) [
cos π[t0+σ(X1−x)]

L
− cos π[t0−σ(X1+x)]

L
tanh 2θ

]

sin2 π[t0+σ(X1−x)]
L

sin π[t0+σ(X2−x)]
L

}

(C.4)

In these formulas, ρ = ±1. Note that the signs always appear in the form ρϵ, σx, σX1

and σX2 so the anti-holomorphic coordinates can be obtained from the holomorphic ones by

simply flipping the signs x → −x, X1 → −X1 and X2 → −X2. For finite values of θ, when

sin πt1
L cosh 2θ

(
cos

π(x+Xj)

L
tanh 2θ − cos

π(x−Xj)

L

)
+cos πt1

L cosh 2θ
sin

πσ(x−Xj)

L
sech 2θ ̸= 0 for j = 1, 2

and i = 1, 2, ξ0, ξ1 as defined in (4.21) are non-zero and finite and ξ2 is finite. The envelope

functions for i = 3 and i = 4, 1 − cos 2πx
L

tanh 2θ and 1 − cos 2π(t0−σx)
L

tanh 2θ respectively,

are never zero for finite θ so for finite θ and
t0+σ(Xj−x)

L
̸∈ Z, ξ0, ξ1 ̸= 0 and are finite while ξ2

is finite. The cross ratios to second order in ϵ
L
are

η̂2

=





1
2

(
1− sgn

[
sin

πt1
L cosh 2θ

(
cos

π(x+X2)
L

tanh 2θ−cos
π(x−X2)

L

)
+cos

πt1
L cosh 2θ

sin
πσ(x−X2)

L
sech 2θ

sin
πt1

L cosh 2θ

(
cos

π(x+X1)
L

tanh 2θ−cos
π(x−X1)

L

)
+cos

πt1
L cosh 2θ

sin
πσ(x−X1)

L
sech 2θ

]

×
[
1−

(
πϵ
L

)2 sin2
π(X1−X2)

L
sech4 2θ

2
[
cos

πt1
L cosh 2θ

sech 2θ sin
πσ(x−X1)

L
+sin

πt1
L cosh 2θ

(
cos

π(x+X1)
L

tanh 2θ−cos
π(x−X1)

L

)]2
× 1[

cos
πt1

L cosh 2θ
sech 2θ sin

πσ(x−X2)
L

+sin
πt1

L cosh 2θ

(
cos

π(x+X2)
L

tanh 2θ−cos
π(x−X2)

L

)]2
])
, i = 1

1
2

(
1− sgn

[
sin

πt1
L cosh 2θ

(
cos

π(x+X2)
L

tanh 2θ−cos
π(x−X2)

L

)
+cos

πt1
L cosh 2θ

sin
πσ(x−X2)

L
sech 2θ

sin
πt1

L cosh 2θ

(
cos

π(x+X1)
L

tanh 2θ−cos
π(x−X1)

L

)
+cos

πt1
L cosh 2θ

sin
πσ(x−X1)

L
sech 2θ

]

×
[
1−

(
πϵ
L

)2 sin2
π(X1−X2)

L

2
[
cos

πt1
L cosh 2θ

sech 2θ sin
πσ(x−X1)

L
+sin

πt1
L cosh 2θ

(
cos

π(x+X1)
L

tanh 2θ−cos
π(x−X1)

L

)]2
1[

cos
πt1

L cosh 2θ
sech 2θ sin

πσ(x−X2)
L

+sin
πt1

L cosh 2θ

(
cos

π(x+X2)
L

tanh 2θ−cos
π(x−X2)

L

)]2
×
{
sech2 2θ cos2 πt1

L cosh 2θ
+ sin2 πt1

L cosh 2θ

(
1 + tanh2 2θ − 2 tanh 2θ cos 2πx

L

)

+sin 2πσx
L

sin 2πt1
L cosh 2θ

tanh 2θ sech 2θ

}2])
, i = 2

1
2

{
1− sgn

[
sin

π[t0+σ(X2−x)]
L

sin
π[t0+σ(X1−x)]

L

] [
1−

(
2πϵ
L

)2 sin2
π(X1−X2)

L (1−cos 2πx
L

tanh 2θ)
2

8 sin2
π[t0+σ(X1−x)]

L
sin2

π[t0+σ(X2−x)]
L

]}
, i = 3

1
2

{
1− sgn

[
sin

π[t0+σ(X2−x)]
L

sin
π[t0+σ(X1−x)]

L

] [
1−

(
2πϵ
L

)2 sin2
π(X1−X2)

L

(
1−cos

2π(t0−σx)
L

tanh 2θ
)2

8 sin2
π[t0+σ(X1−x)]

L
sin2

π[t0+σ(X2−x)]
L

]}
, i = 4.

(C.5)
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Note that the cross ratios are periodic in time with period L cosh 2θ for i = 1, 2 and L for

i = 3 and they are completely symmetric under an exchange of X1 and X2. These cross

ratios reduce to (C.18) in the SSD θ → ∞ limit.

C.1.1 Operator at Xf
1

In the ϵ
L
→ 0 limit, the cross ratios are approximately

η̂2 =





1
2

{
1− sgn

[
cos

πX2
L

cos
πX1
L

tan
πt1

L cosh 2θ
+σe2θ tan

πX2
L

tan
πt1

L cosh 2θ
+σe2θ tan

πX1
L

]

×
[
1−

(
ϵ
L

)2 × (positive term)
]}

, i = 1, 2, cos πt1
L cosh 2θ

̸= 0

1
2

{
1− sgn

[
cos

πX2
L

cos
πX1
L

] [
1−

(
ϵ
L

)2 × (positive term)
]}

, i = 1, 2, cos πt1
L cosh 2θ

= 0

1
2

{
1− sgn

[
sin

π(t0+σX2)
L

sin
π(t0+σX1)

L

] [
1−

(
ϵ
L

)2 × (positive term)
]}

, i = 3

1
2

{
1− sgn

[
sin

π(t0+σX2)
L

sin
π(t0+σX1)

L

]

×
[
1−

(
ϵ
L

)2 (
1− cos 2πt0

L
tanh 2θ

)2 × (positive term)
]}

, i = 4

(C.6)

where we used the fact that Xj ̸= L
2
for i = 1, 2.

Case (a)

Consider the interval A = [0, X2]∪ [X1, L] with 0 < X2 <
L
2
< X1 < L and X2 > L−X1 > 0.

The second Rényi entanglement entropy is

∆S
(2)
A,i(ti) =





0, i = 1, 2,m < t1
L cosh 2θ

< m− tan−1(e2θ tan πX1
L )

π

log 2, i = 1, 2,m− tan−1(e2θ tan πX1
L )

π
< t1

L cosh 2θ
< m+

tan−1(e2θ tan πX2
L )

π

0, i = 1, 2,m+
tan−1(e2θ tan πX2

L )
π

< t1
L cosh 2θ

< m+ 1− tan−1(e2θ tan πX2
L )

π

log 2, i = 1, 2,m+ 1− tan−1(e2θ tan πX2
L )

π
< t1

L cosh 2θ
< m+ 1 +

tan−1(e2θ tan πX1
L )

π

0, i = 1, 2,m+ 1 +
tan−1(e2θ tan πX1

L )
π

< t1
L cosh 2θ

< m+ 1

0, i = 3, 4,m < t0
L
< m+ 1− X1

L

log 2, i = 3, 4,m+ 1− X1

L
< t0

L
< m+ X2

L

0, i = 3, 4,m+ X2

L
< t0

L
< m+ 1− X2

L

log 2, i = 3, 4,m+ 1− X2

L
< t0

L
< m+ X1

L

0, i = 3, 4,m+ X1

L
< t0

L
< m+ 1

(C.7)
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for non-negative integersm. The principal branch of the arctangent is chosen, i.e. tan−1(x) ∈
(−π

2
, π
2
). The i = 1, 2 results are fully explained by the Möbius quasiparticle picture

with finite θ. Initially, ∆S
(2)
A,1(t1) = 0 because both quasiparticles are contained in sub-

system A. At t1
L cosh 2θ

= m − tan−1(e2θ tan πX1
L )

π
, the left-moving quasiparticle hits X1 and

exits subsystem A so the second Rényi entropy jumps to ∆S
(2)
A,1(t1) = log 2. At t1 =

L cosh 2θ

[
m+

tan−1(e2θ tan πX2
L )

π

]
, the right-moving quasiparticle hits X2 and also exits the

subsystem so the second Rényi entropy drops back down to ∆S
(2)
A,1(t1) = 0. At t1 =

L cosh 2θ

[
m+ 1− tan−1(e2θ tan πX2

L )
π

]
, the left-moving quasiparticle hits X2 and re-enters the

subsystem so the second Rényi entropy increases back up to ∆S
(2)
A,1(t1) = log 2 until t1 =

L cosh 2θ

[
m+ 1 +

tan−1(e2θ tan πX1
L )

π

]
when the right moving quasiparticle re-enters A so the

second Rényi entropy drops back down to ∆S
(2)
A,1(t1) = 0. Setting θ = 0 gives the obvious

answer that generalizes the result in [25] but for a finite spatial system instead. Note that

∆S
(2)
A,i(t1) for i = 1, 2 is continuous even when cos πt1

L cosh 2θ
= 0 to leading order in ϵ

L
.

On the other hand, the i = 3, 4 case is explained by the uniform θ = 0 quasiparticle

picture.

Case (b)

Consider the interval A = [X2, X1] with X1 >
L
2
> X2 > 0 and L

2
− X2 > X1 − L

2
. The

second Rényi entanglement entropy is

∆S
(2)
A,i(ti) =





0, i = 1, 2,m < t1
L cosh 2θ

< m+
tan−1(e2θ tan πX2

L )
π

log 2, i = 1, 2,m+
tan−1(e2θ tan πX2

L )
π

< t1
L cosh 2θ

< m− tan−1(e2θ tan πX1
L )

π

0, i = 1, 2,m− tan−1(e2θ tan πX1
L )

π
< t1

L cosh 2θ
< m+ 1 +

tan−1(e2θ tan πX1
L )

π

log 2, i = 1, 2,m+ 1 +
tan−1(e2θ tan πX1

L )
π

< t1
L cosh 2θ

< m+ 1− tan−1(e2θ tan πX2
L )

π

0, i = 1, 2,m+ 1− tan−1(e2θ tan πX2
L )

π
< t1

L cosh 2θ
< m+ 1

0, i = 3, 4,m < t0
L
< m+ X2

L

log 2, i = 3, 4,m+ X2

L
< t0

L
< m+ 1− X1

L

0, i = 3, 4,m+ 1− X1

L
< t0

L
< m+ X1

L

log 2, i = 3, 4,m+ X1

L
< t0

L
< m+ 1− X2

L

0, i = 3, 4,m+ 1− X2

L
< t0

L
< m+ 1

(C.8)

for non-negative integers m. The i = 1, 2 case is explained by the Möbius quasiparti-

cle picture. Initially, both quasiparticles are outside of A so ∆S
(2)
A,1(t1) = 0. At t1 =

L cosh 2θ

[
m+

tan−1(e2θ tan πX2
L )

π

]
, the right-moving quasiparticle hits X2 and enters subsys-
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tem A so the second Rényi entropy increases to ∆S
(2)
A,1(t1) = log 2. The left-moving quasi-

particle hits X1 at t1
L cosh 2θ

= m − tan−1(e2θ tan πX1
L )

π
and also enters subsystem A so the sec-

ond Rényi entropy drops back down to ∆S
(2)
A,1(t1) = 0. The right-moving quasiparticle

subsequently arrives at X1 at t1
L cosh 2θ

= m + 1 +
tan−1(e2θ tan πX1

L )
π

and leaves subsystem A

so the second Rényi entanglement entropy goes back up to ∆S
(2)
A,1(t1) = log 2. Finally,

at t1 = L cosh 2θ

[
m+ 1− tan−1(e2θ tan πX2

L )
π

]
, the left-moving quasiparticle reaches X2 and

also leaves the subsystem so the second Rényi entropy drops back down to ∆S
(2)
A,1(t1) = 0.

The change in the second Rényi entropy ∆S
(2)
A,i(t1) for i = 1, 2 is continuous even when

cos πt1
L cosh 2θ

= 0 to leading order in ϵ
L
.

On the other hand, the i = 3, 4 case is described by the uniform θ = 0 quasiparticle

picture.

Case (c)

Consider the interval A = [X2, X1] with 0 < X2 < X1 <
L
2
. The second Rényi entanglement

entropy is

∆S
(2)
A,i(ti) =





0, i = 1, 2,m < t1
L cosh 2θ

< m+
tan−1(e2θ tan πX2

L )
π

log 2, i = 1, 2,m+
tan−1(e2θ tan πX2

L )
π

< t1
L cosh 2θ

< m+
tan−1(e2θ tan πX1

L )
π

0, i = 1, 2,m+
tan−1(e2θ tan πX1

L )
π

< t1
L cosh 2θ

< m+ 1− tan−1(e2θ tan πX1
L )

π

log 2, i = 1, 2,m+ 1− tan−1(e2θ tan πX1
L )

π
< t1

L cosh 2θ
< m+ 1− tan−1(e2θ tan πX2

L )
π

0, i = 1, 2,m+ 1− tan−1(e2θ tan πX2
L )

π
< t1

L cosh 2θ
< m+ 1

0, i = 3, 4,m < t0
L
< m+ X2

L

log 2, i = 3, 4,m+ X2

L
< t0

L
< m+ X1

L

0, i = 3, 4,m+ X1

L
< t0

L
< m+ 1− X1

L

log 2, i = 3, 4,m+ 1− X1

L
< t0

L
< m+ 1− X2

L

0, i = 3, 4,m+ 1− X2

L
< t0

L
< m+ 1

(C.9)

for non-negative integers m. The Möbius quasiparticle picture explains the i = 1, 2 cases.

Initially, both quasiparticles are outside subsystem A so ∆S
(2)
A,1(t1) = 0. The right-moving

quasiparticle arrives at X2 and enters subsystem A at t1 = L cosh 2θ

[
m+

tan−1(e2θ tan πX2
L )

π

]

so the second Rényi entanglement entropy increases to ∆S
(2)
A,1(t1) = log 2. It then reaches

X1 at t1
L cosh 2θ

= m +
tan−1(e2θ tan πX1

L )
π

at exits the subsystem A so the second Rényi en-

tanglement entropy drops back down to ∆S
(2)
A,1(t1) = 0. Subsequently, the left-moving

quasiparticle enters subsystem A through X1 at t1 = L cosh 2θ

[
m+ 1− tan−1(e2θ tan πX1

L )
π

]
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so the second Rényi entanglement entropy goes back up to ∆S
(2)
A,1(t1) = log 2. Finally, at

t1 = L cosh 2θ

[
m+ 1− tan−1(e2θ tan πX2

L )
π

]
, the left-moving quasiparticle hits X2 and exits

subsystem A so the second Rényi entanglement entropy drops back down to ∆S
(2)
A,1(t1) = 0.

As before, the change in the second Rényi entropy ∆S
(2)
A,i(t1) for i = 1, 2 is continuous even

when cos πt1
L cosh 2θ

= 0 to leading order in ϵ
L
.

On the other hand, the i = 3, 4 case is described by the uniform θ = 0 quasiparticle

picture.

C.1.2 Operator at Xf
2

The trajectory of quasiparticles that begin at x = L
2
is given by sending x→ L

2
in (4.32) and

can be rewritten as

t1 = L cosh 2θ

[
k − µ tan−1

(
e−2θ cot πX

L

)

π

]
(C.10)

where k ∈ Z and µ = +1/− 1 for right/left moving quasiparticles.

When the local operator is placed at the second fixed point x = Xf
2 , the cross ratio (C.5)

simplifies to

η̂2 =





1
2

{
1− sgn

[
tan

πt1
L cosh 2θ

−σe−2θ cot
πX2
L

tan
πt1

L cosh 2θ
−σe−2θ cot

πX1
L

]

×
[
1−

(
ϵ
L

)2 × (positive term)
]}

, i = 1, 2, cos πt1
L cosh 2θ

̸= 0

O
((

ϵ
L

)2)
, i = 1, 2, cos πt1

L cosh 2θ
= 0

1
2

{
1− sgn

[
cos

π(t0+σX2)
L

cos
π(t0+σX1)

L

] [
1−

(
ϵ
L

)2 × positive number
]}

, i = 3

1
2

{
1− sgn

[
cos

π(t0+σX2)
L

cos
π(t0+σX1)

L

]

×
[
1−

(
ϵ
L

)2 (
1 + cos 2πt0

L
tanh 2θ

)2 × positive term
]}

, i = 4

(C.11)

where we used the fact that 0 < X2, X1 < L.
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Case (a)

Consider the interval A = [0, X2] ∪ [X1, L] with X2 > L − X1 > 0. The second Rényi

entanglement entropy is

∆S
(2)
A,i(ti) =





0, i = 1, 2,m < t1
L cosh 2θ

< m+
tan−1(e−2θ cot

πX2
L )

π

log 2, i = 1, 2,m+
tan−1(e−2θ cot

πX2
L )

π
< t1

L cosh 2θ
< m− tan−1(e−2θ cot

πX1
L )

π

0, i = 1, 2,m− tan−1(e−2θ cot
πX1
L )

π
< t1

L cosh 2θ
< m+ 1 +

tan−1(e−2θ cot
πX1
L )

π

log 2, i = 1, 2,m+ 1 +
tan−1(e−2θ cot

πX1
L )

π
< t1

L cosh 2θ
< m+ 1− tan−1(e−2θ cot

πX2
L )

π

0, i = 1, 2,m+ 1− tan−1(e−2θ cot
πX2
L )

π
< t1

L cosh 2θ
< m+ 1

0, i = 3, 4,m < t0
L
< m+ 1

2
− X2

L

log 2, i = 3, 4,m+ 1
2
− X2

L
< t0

L
< m+ X1

L
− 1

2

0, i = 3, 4,m+ X1

L
− 1

2
< t0

L
< m+ 3

2
− X1

L

log 2, i = 3, 4,m+ 3
2
− X1

L
< t0

L
< m+ 1

2
+ X2

L

0, i = 3, 4,m+ 1
2
+ X2

L
< t0

L
< (m+ 1)

(C.12)

for non-negative integers m.

For i = 1, 2, the Rényi entropy is continuous at t1 = 2k+1
2
L cosh 2θ at leading or-

der in ϵ
L
. Taking the θ = 0 limit for i = 1, 2 gives the obvious generalization of the

result in [25]. Initially, both quasiparticles are outside of A so ∆S
(2)
A,1(t1) = 0. At

t1 = L cosh 2θ

[
m+

tan−1(e−2θ cot
πX2
L )

π

]
, the left-moving quasiparticle hits X2 and enters A so

∆S
(2)
A,1(t1) = log 2. The right-moving quasiparticle hits X1 at

t1
L cosh 2θ

= m− tan−1(e−2θ cot
πX1
L )

π

and enters A as well so the second Rényi entanglement entropy drops back down to

∆S
(2)
A,1(t1) = 0. At t1 = L cosh 2θ

[
m+ 1 +

tan−1(e−2θ cot
πX1
L )

π

]
, the left moving quasi-

particle arrives at X1 and exits subsystem A so the second Rényi entropy goes back

up to ∆S
(2)
A,1(t1) = log 2. The right moving quasiparticle also leaves the subsystem at

t1 = L cosh 2θ

[
m+ 1− tan−1(e−2θ cot

πX2
L )

π

]
so the second Rényi entanglement entropy returns

to its original value of ∆S
(2)
A,1(t1) = 0. Note that the change in the second Rényi entropy

∆S
(2)
A,i(t1) for i = 1, 2 is continuous even when cos πt1

L cosh 2θ
= 0 to leading order in ϵ

L
.

On the other hand, the i = 3, 4 Rényi entropy is described by the uniform θ = 0 quasi-

particle picture.
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Case (b)

Consider the interval A = [X2, X1] with X1 >
L
2
> X2 > 0 and L

2
− X2 > X1 − L

2
. The

second Rényi entanglement entropy is

∆S
(2)
A,i(ti) =





0, i = 1, 2,m < t1
L cosh 2θ

< m− tan−1(e−2θ cot
πX1
L )

π

log 2, i = 1, 2,m− tan−1(e−2θ cot
πX1
L )

π
< t1

L cosh 2θ
< m+

tan−1(e−2θ cot
πX2
L )

π

0, i = 1, 2,m+
tan−1(e−2θ cot

πX2
L )

π
< t1

L cosh 2θ
< m+ 1− tan−1(e−2θ cot

πX2
L )

π

log 2, i = 1, 2,m+ 1− tan−1(e−2θ cot
πX2
L )

π
< t1

L cosh 2θ
< m+ 1 +

tan−1(e−2θ cot
πX1
L )

π

0, i = 1, 2,m+ 1 +
tan−1(e−2θ cot

πX1
L )

π
< t1

L cosh 2θ
< m+ 1

0, i = 3, 4,m < t0
L
< m+ X1

L
− 1

2

log 2, i = 3, 4,m+ X1

L
− 1

2
< t0

L
< m+ 1

2
− X2

L

0, i = 3, 4,m+ 1
2
− X2

L
< t0

L
< m+ 1

2
+ X2

L

log 2, i = 3, 4,m+ 1
2
+ X2

L
< t0

L
< m+ 3

2
− X1

L

0, i = 3, 4,m+ 3
2
− X1

L
< t0

L
< m+ 1

(C.13)

for non-negative integersm. For i = 1, 2, the Rényi entropy is continuous at t1 =
2k+1
2
L cosh 2θ

for integer k at leading order in ϵ
L
. For i = 1, 2, the uniform θ = 0 case gives the obvious

sensible answer. For finite θ, both particles begin in subsystem A so ∆S
(2)
A,1(t1) = 0. The

right moving quasiparticle reaches X1 at t1 = L cosh 2θ

[
m− tan−1(e−2θ cot

πX1
L )

π

]
and exits

the subsystem A so the second Rényi entropy goes up to ∆S
(2)
A,1(t1) = log 2. The left mov-

ing quasiparticle also exits the subsystem at t1 = L cosh 2θ

[
m+

tan−1(e−2θ cot
πX2
L )

π

]
so the

second Rényi entropy drops back down to ∆S
(2)
A,1(t1) = 0. The right-moving quasiparticle

subsequently re-enters subsystem A at t1 = L cosh 2θ

[
m+ 1− tan−1(e−2θ cot

πX2
L )

π

]
so the sec-

ond Rényi entropy goes back up to ∆S
(2)
A,1(t1) = log 2. Finally, the left moving quasiparticle

re-enters A at t1
L cosh 2θ

= m + 1 +
tan−1(e−2θ cot

πX1
L )

π
so the second Rényi entropy returns to

∆S
(2)
A,1(t1) = 0. As before, the change in the second Rényi entropy ∆S

(2)
A,i(t1) for i = 1, 2 is

continuous even when cos πt1
L cosh 2θ

= 0 to leading order in ϵ
L
.

On the other hand, the i = 3, 4 cases are explained by the θ = 0 uniform quasiparticle

picture.
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Case (c)

Consider the interval A = [X2, X1] with 0 < X2 < X1 <
L
2
. The second Rényi entanglement

entropy is

∆S
(2)
A,i(ti) =





0, i = 1, 2,m < t1
L cosh 2θ

< m+
tan−1(e−2θ cot

πX1
L )

π

log 2, i = 1, 2,m+
tan−1(e−2θ cot

πX1
L )

π
< t1

L cosh 2θ
< m+

tan−1(e−2θ cot
πX2
L )

π

0, i = 1, 2,m+
tan−1(e−2θ cot

πX2
L )

π
< t1

L cosh 2θ
< m+ 1− tan−1(e−2θ cot

πX2
L )

π

log 2, i = 1, 2,m+ 1− tan−1(e−2θ cot
πX2
L )

π
< t1

L cosh 2θ
< m+ 1− tan−1(e−2θ cot

πX1
L )

π

0, i = 1, 2,m+ 1− tan−1(e−2θ cot
πX1
L )

π
< t1

L cosh 2θ
< m+ 1

0, i = 3, 4,m < t0
L
< m+ 1

2
− X1

L

log 2, i = 3, 4,m+ 1
2
− X1

L
< t0

L
< m+ 1

2
− X2

L

0, i = 3, 4,m+ 1
2
− X2

L
< t0

L
< m+ 1

2
+ X2

L

log 2, i = 3, 4,m+ 1
2
+ X2

L
< t0

L
< m+ 1

2
+ X1

L

0, i = 3, 4,m+ 1
2
+ X1

L
< t0

L
< m+ 1

(C.14)

for non-negative integersm. For i = 1, 2, the Rényi entropy is continuous at t1 =
2k+1
2
L cosh 2θ

for integer k at leading order in ϵ
L
. For i = 1, 2, the θ = 0 case gives the sensible answer.

For finite θ, initially, both quasiparticles are located outside A so ∆S
(2)
A,1(t1) = 0. At t1 =

L cosh 2θ

[
m+

tan−1(e−2θ cot
πX1
L )

π

]
, the left moving quasiparticle reaches X1 and enters subsys-

tem A so ∆S
(2)
A,1(t1) = log 2. It then travels to X2 at t1 = L cosh 2θ

[
m+

tan−1(e−2θ cot
πX2
L )

π

]

and exits the subsystem so the second Rényi entropy drops back down to ∆S
(2)
A,1(t1) = 0.

The right moving quasiparticle arrives at X2 at t1 = L cosh 2θ

[
m+ 1− tan−1(e−2θ cot

πX2
L )

π

]

and enters subsystem A so the second Rényi entropy jumps to ∆S
(2)
A,1(t1) = log 2. Finally,

at t1 = L cosh 2θ

[
m+ 1− tan−1(e−2θ cot

πX1
L )

π

]
, the right moving quasiparticle reaches X1 and

exits the subsystem so the second Rényi entropy drops back down to ∆S
(2)
A,1(t1) = 0. As

before, the change in the second Rényi entropy ∆S
(2)
A,i(t1) for i = 1, 2 is continuous even when

cos πt1
L cosh 2θ

= 0 to leading order in ϵ
L
.

As usual, the i = 3, 4 cases are explained by the θ = 0 uniform quasiparticle picture.

C.2 SSD Quench

Putting the wNew,i, wNew,i coordinates that correspond to SSD evolution into the uniformiza-

tion map (4.4), aligning the branch cut of ζn, ζ
n
along the negative real axis by setting

ψ = π + π(X1−X2)
L

and analytically continuing to real time τ1 = it1 for i = 1, 2 and τ0 = it0
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for i = 3, 4, the coordinates on the n-sheeted Riemann surface to second order in 2πϵ
L

are

ζ̂nρϵ =





t1 sin
πx
L

sin
πX2
L

+ L
2π

sin
πσ(X2−x)

L

t1 sin
πx
L

sin
πX1
L

+ L
2π

sin
πσ(X1−x)

L

{
1

+
(
2πϵ
L

) iρL2 sin
πσ(X1−X2)

L

8π2
[
t1 sin

πx
L

sin
πX1
L

+ L
2π

sin
πσ(X1−x)

L

][
t1 sin

πx
L

sin
πX2
L

+ L
2π

sin
πσ(X2−x)

L

]
−
(
2πϵ
L

)2 L2 sin
πσ(X1−X2)

L

[
t1 sin

πσX1
L

cos πx
L

− L
2π

cos
π(x−X1)

L

]
16π2

[
t1 sin

πx
L

sin
πX1
L

+ L
2π

sin
πσ(X1−x)

L

]2[
t1 sin

πx
L

sin
πX2
L

+ L
2π

sin
πσ(X2−x)

L

]
}
, i = 1

t1 sin
πx
L

sin
πX2
L

+ L
2π

sin
πσ(X2−x)

L

t1 sin
πx
L

sin
πX1
L

+ L
2π

sin
πσ(X1−x)

L

{
1

+
(
2πϵ
L

) iρ sin
πσ(X1−X2)

L (L2+4π2t21 sin
2 πx

L
+2πt1L sin 2πxσ

L )
8π2

[
t1 sin

πx
L

sin
πX1
L

+ L
2π

sin
πσ(X1−x)

L

][
t1 sin

πx
L

sin
πX2
L

+ L
2π

sin
πσ(X2−x)

L

]
+
(
2πϵ
L

)2 sin
πσ(X1−X2)

L

[
t1 sin

πσx
L

cos
πX1
L

+ L
2π

cos
π(x−X1)

L

]
(L2+4π2t21 sin

2 πx
L

+2πt1L sin 2πxσ
L )

16π2
[
t1 sin

πx
L

sin
πX1
L

+ L
2π

sin
πσ(X1−x)

L

]2[
t1 sin

πx
L

sin
πX2
L

+ L
2π

sin
πσ(X2−x)

L

]
}
, i = 2

sin
π[t0+σ(X2−x)]

L

sin
π[t0+σ(X1−x)]

L

{
1−

(
2πϵ
L

) iρ sin2 πx
L

sin
πσ(X1−X2)

L

sin
π[t0+σ(X1−x)]

L
sin

π[t0+σ(X2−x)]
L

+
(
2πϵ
L

)2 sin3 πxσ
L

sin
πσ(X1−X2)

L
sin

π(t0+σX1)
L

sin2
π[t0+σ(X1−x)]

L
sin

π[t0+σ(X2−x)]
L

}
, i = 3

sin
π[t0+σ(X2−x)]

L

sin
π[t0+σ(X1−x)]

L

{
1−

(
2πϵ
L

) iρ sin2
π(t0−σx)

L
sin

πσ(X1−X2)
L

sin
π[t0+σ(X1−x)]

L
sin

π[t0+σ(X2−x)]
L

−
(
2πϵ
L

)2 sin3
π(t0−σx)

L
sin

πσ(X1−X2)
L

sin
πσX1

L

sin2
π[t0+σ(X1−x)]

L
sin

π[t0+σ(X2−x)]
L

}
, i = 4

(C.15)

where x is the position where the local operator was inserted. Taking the θ → ∞ limit of the

Möbius coordinates (C.1,C.2,C.3,C.4) reproduces the SSD coordinates (C.15). When x = 0

for i = 3, the coordinates of the two local operators are

ζ̂±ϵ =
sin π(t0+σX2)

L

sin π(t0+σX1)
L

(C.16)

which is equivalent to setting the regulator ϵ = 0. The two local operators are coincident

and hence the correlator is ill-defined. Naively, if

sin π(t0+σX2)
L

sin π(t0+σX1)
L

< 0, (C.17)

the coordinates of the two operators ζ̂2±ϵ sit on the branch cut on the negative real axis

and the rotation that we have been doing would be ill-defined. Similarly, for i = 4, when

t0 = σx + nL for n ∈ Z, the regulator ϵ drops out of the exact coordinates and the two

operators become co-incident.
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When t1 sin
πx
L
sin

πXj

L
+ L

2π
sin

πσ(Xj−x)
L

̸= 0 for j = 1, 2 for i = 1, 2 and x ̸= 0,
t0+σ(Xj−x)

L
̸∈

Z for j = 1, 2 for i = 3, and t0−σx
L

̸∈ Z and
t0+σ(Xj−x)

L
̸∈ Z for j = 1, 2 for i = 4, both ξ0, ξ1

as defined in (4.21) are non-zero and are finite and ξ2 is finite so the cross ratios to second

order in ϵ
L
(4.29) are

η̂2 =





1
2

{
1− sgn

[
t1 sin

πx
L

sin
πX2
L

+ L
2π

sin
πσ(X2−x)

L

t1 sin
πx
L

sin
πX1
L

+ L
2π

sin
πσ(X1−x)

L

][
1

−
(
2πϵ
L

)2 L4 sin2
π(X1−X2)

L

128π4
[
t1 sin

πx
L

sin
πX1
L

+ L
2π

sin
πσ(X1−x)

L

]2[
t1 sin

πx
L

sin
πX2
L

+ L
2π

sin
πσ(X2−x)

L

]2
]}

, i = 1

1
2

{
1− sgn

[
t1 sin

πx
L

sin
πX2
L

+ L
2π

sin
πσ(X2−x)

L

t1 sin
πx
L

sin
πX1
L

+ L
2π

sin
πσ(X1−x)

L

][
1

−
(
2πϵ
L

)2 sin2
π(X1−X2)

L [L2+4π2t21 sin
2 πx

L
+2πt1L sin 2πxσ

L ]
2

128π4
[
t1 sin

πx
L

sin
πX1
L

+ L
2π

sin
πσ(X1−x)

L

]2[
t1 sin

πx
L

sin
πX2
L

+ L
2π

sin
πσ(X2−x)

L

]2
]}

, i = 2

1
2

{
1− sgn

[
sin

π[t0+σ(X2−x)]
L

sin
π[t0+σ(X1−x)]

L

] [
1−

(
2πϵ
L

)2 sin4 πx
L

sin2
π(X1−X2)

L

2 sin2
π[t0+σ(X1−x)]

L
sin2

π[t0+σ(X2−x)]
L

]}
, i = 3

1
2

{
1− sgn

[
sin

π[t0+σ(X2−x)]
L

sin
π[t0+σ(X1−x)]

L

] [
1−

(
2πϵ
L

)2 sin4
π(t0−σx)

L
sin2

π(X1−X2)
L

2 sin2
π[t0+σ(X1−x)]

L
sin2

π[t0+σ(X2−x)]
L

]}
, i = 4

(C.18)

C.2.1 Operator at Xf
1

Setting x = 0 in (C.18) gives

η̂2(x = 0) =





O
(
ϵ2

L2

)
, i = 1, 2,∀t1 > 0

1
2

{
1− sgn

[
sin

π(t0+σX2)
L

sin
π(t0+σX1)

L

] [
1−

(
ϵ
L

)2
sin4 πt0

L
× positive number

]}
, i = 4

(C.19)

for 0 < X1, X2 < L. The second order term in the cross ratio for the i = 4 case in (C.19)

vanishes when t0
L
∈ Z. As explained previously, setting x = 0 for the i = 3 case as well as

t0 = nL for n ∈ Z for i = 4 leads to correlators that are ill-defined because wNew,i
ϵ = wNew,i

−ϵ .

That is, the operators become coincident and the cross ratios η2 = η2 = 0 vanish identically

to all orders in ϵ. The following results hold away from these special cases.

Contrast the i = 4 cross ratio with the corresponding Möbius cross ratio (C.6) where the

regulator term does not vanish for finite θ for all time t0 ∈ R. The time-dependence of the

cross ratio η̂2 is the same to O
(
ϵ
L

)
as in the Möbius case so ∆S

(2)
A,4 is the same for the Möbius

case as it is for the SSD case with the exception that the correlation functions and hence the

Rényi entropy remains well-defined even when t0
L

∈ Z for the Möbius evolution. Note also

that for i = 4, the cross ratio is periodic in time t0 with period L.
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Case (a)

The change in second Rényi entropy is

∆S
(2)
A,i(ti) =





0, i = 1, 2

0, i = 4,mL < t0 < mL+ L−X1

log 2, i = 4,mL+ L−X1 < t0 < mL+X2

0, i = 4,mL+X2 < t0 < mL+ L−X2

log 2, i = 4,mL+ L−X2 < t0 < mL+X1

0, i = 4,mL+X1 < t0 < (m+ 1)L

(C.20)

for non-negative integers m. Taking the SSD limit of (C.7) for i = 1, 2 reproduces the

corresponding result in (C.20). The i = 4 case is explained by the θ = 0 uniform quasiparticle

picture. Keep in mind that for i = 4, the local operator correlation function and hence the

second Rényi entropy is ill-defined at t0
L
∈ Z.

Case (b)

The change in second Rényi entropy is

∆S
(2)
A,i(ti) =





0, i = 1, 2

0, i = 4,mL < t0 < mL+X2

log 2, i = 4,mL+X2 < t0 < mL+ L−X1

0, i = 4,mL+ L−X1 < t0 < mL+X1

log 2, i = 4,mL+X1 < t0 < mL+ L−X2

0, i = 4,mL+ L−X2 < t0 < (m+ 1)L

(C.21)

for non-negative integers m. Taking the θ → ∞ SSD limit in (C.8) reproduces the first line

of (C.21). The i = 4 case is explained by the uniform θ = 0 quasiparticle picture.

Case (c)

The change in second Rényi entropy is

∆S
(2)
A,i(ti) =





0, i = 1, 2

0, i = 4,mL < t0 < mL+X2

log 2, i = 4,mL+X2 < t0 < mL+X1

0, i = 4,mL+X1 < t0 < mL+ L−X1

log 2, i = 4,mL+ L−X1 < t0 < mL+ L−X2

0, i = 4,mL+ L−X2 < t0 < (m+ 1)L

(C.22)

for non-negative integers m. Taking the θ → ∞ SSD limit in (C.9) reproduces the first line

of (C.22). As before, the i = 4 case is explained by the uniform θ = 0 quasiparticle picture.
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C.2.2 Operator at Xf
2

Setting x = L
2
in (C.18) gives

η̂2

(
x =

L

2

)

=





1
2

{
1− sgn

[
t1−σL

2π
cot

πX2
L

t1−σL
2π

cot
πX1
L

] [
1−

(
ϵ
L

)2 × positive number
]}

, i = 1, 2

1
2

{
1− sgn

[
cos

π(t0+σX2)
L

cos
π(t0+σX1)

L

] [
1−

(
ϵ
L

)2 × positive number
]}

, i = 3

1
2

{
1− sgn

[
cos

π(t0+σX2)
L

cos
π(t0+σX1)

L

] [
1−

(
ϵ
L

)2
cos4 πt0

L
× positive number

]}
, i = 4

(C.23)

where the cross ratio is periodic in time with t0 ∼ t0+L for i = 3. The cross ratio for i = 3 is

the same for both Möbius and SSD quenches so for i = 3, ∆S
(2)
A,i is the same for both Möbius

and SSD when the local operator is inserted at x = L
2
.

As before, when t0 = 2k+1
2
L for k ∈ Z, the regulator term vanishes for the i = 4 case

and the correlator and hence the second Rényi entropy is ill-defined since wNew,4
ϵ = wNew,4

−ϵ
which means that the operators become coincident and the cross ratios η2 = η2 = 0 vanish

identically to all orders in ϵ. The second Rényi entropy is ill-defined at these times for i = 4

for holographic CFTs as well. Contrast this with the Möbius case where the regulator term

does not vanish for finite θ and the cross ratios are identical to those of the SSD quench for

∆S
(2)
A,4(t0) with x = L

2
to order O

(
ϵ
L

)
so the Rényi entropy is the same for both Möbius and

SSD for i = 4 with the exception that the correlators and hence the Rényi entropy are well

defined even at t0 =
2k+1
2
L for integers k in the Möbius quench.

Case (a)

The change in second Rényi entropy is

∆S
(2)
A,i(ti) =





log 2, i = 1, 2, L
2π

cot πX2

L
< t1 <

L
2π
| cot πX1

L
|

0 i = 1, 2, 0 < t1 <
L
2π

cot πX2

L
and L

2π
| cot πX1

L
| < t1

0, i = 3, 4,mL < t0 < mL+ L
2
−X2

log 2, i = 3, 4,mL+ L
2
−X2 < t0 < mL+X1 − L

2

0, i = 3, 4,mL+X1 − L
2
< t0 < mL+ 3L

2
−X1

log 2, i = 3, 4,mL+ 3L
2
−X1 < t0 < mL+ L

2
+X2

0, i = 3, 4,mL+ L
2
+X2 < t0 < (m+ 1)L

(C.24)

for non-negative integers m. For i = 1, 2, both quasiparticles are initially outside the sub-

system so ∆S
(2)
A,1(t1) = 0. The left-moving quasiparticle enters the subsystem at L

2π
cot πX2

L

and ∆S
(2)
A,1(t1) jumps to log 2 before the right-moving quasiparticle also enters the subsystem

at L
2π
| cot πX1

L
| and ∆S

(2)
A,1(t1) drops back down to 0. Taking the θ → ∞ SSD limit of (C.12),

where only the m = 0 period matters, gives the i = 1, 2 result in (C.24).
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The i = 3, 4 case is explained by the uniform θ = 0 quasiparticle picture.

Case (b)

The change in second Rényi entropy is

∆S
(2)
A,i(ti) =





log 2, i = 1, 2, L
2π
| cot πX1

L
| < t1 <

L
2π

cot πX2

L

0 i = 1, 2, 0 < t1 <
L
2π
| cot πX1

L
| and L

2π
cot πX2

L
< t1

0, i = 3, 4,mL < t0 < mL+X1 − L
2

log 2, i = 3, 4,mL+X1 − L
2
< t0 < mL+ L

2
−X2

0, i = 3, 4,mL+ L
2
−X2 < t0 < mL+ L

2
+X2

log 2, i = 3, 4,mL+ L
2
+X2 < t0 < mL+ 3L

2
−X1

0, i = 3, 4,mL+ 3L
2
−X1 < t0 < (m+ 1)L

(C.25)

for non-negative integers m. For i = 1, 2, both quasiparticles begin in subsystem A so

∆S
(2)
A,1(t1) = 0. At time L

2π
| cot πX1

L
|, the right-moving quasiparticle leaves subsystem A so

∆S
(2)
A,1(t1) jumps to log 2. Subsequently, the left-moving quasiparticle leaves the subsystem

A at L
2π

cot πX2

L
and ∆S

(2)
A,1(t1) drops back down to 0. Taking the θ → ∞ SSD limit in (C.13)

for i = 1, 2 reproduces the corresponding result in (C.25).

The uniform θ = 0 quasiparticle picture fully explains the i = 3, 4 case.

Case (c)

The change in second Rényi entropy entropy is

∆S
(2)
A,i(ti) =





log 2, i = 1, 2, L
2π

cot πX1

L
< t1 <

L
2π

cot πX2

L

0 i = 1, 2, 0 < t1 <
L
2π

cot πX1

L
and L

2π
cot πX2

L
< t1

0, i = 3, 4,mL < t0 < mL+ L
2
−X1

log 2, i = 3, 4,mL+ L
2
−X1 < t0 < mL+ L

2
−X2

0, i = 3, 4,mL+ L
2
−X2 < t0 < mL+ L

2
+X2

log 2, i = 3, 4,mL+ L
2
+X2 < t0 < mL+ L

2
+X1

0, i = 3, 4,mL+ L
2
+X1 < t0 < (m+ 1)L

(C.26)

for non-negative integers m. For i = 1, 2, both quasiparticles are initially outside subsystem

A. The left-moving quasiparticle enters the subsystem at L
2π

cot πX1

L
, causing ∆S

(2)
A,1(t1) to

jump to log 2 before exiting the subsystem at L
2π

cot πX2

L
at which time ∆S

(2)
A,1(t1) drops back

down to 0. Taking the θ → ∞ SSD limit of (C.14) for i = 1, 2 reproduces the corresponding

result in (C.26).

The i = 3, 4 case is explained by the uniform θ = 0 quasiparticle picture.
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C.2.3 Information survival in integrable theories

As we have seen in the previous subsections, when the time evolution operator is the SSD

Hamiltonian, the late time second Rényi entropy for the local operator quenched state returns

to the vacuum value as the subsystems are situated away from the fixed point Xf
1 where

the quasiparticles accumulate. To have a non-vacuum second Rényi entropy at late times,

place the local operator at Xf
2 and consider a subsystem A = [X2, X1] where X2 = 0 and

0 < X1 <
L
2
.

The coordinates are

ζ̂nρϵ =





1

cos
πX1
L

− 2πt1
L

sin
πσX1

L

{
1 +

(
2πϵ
L

) iρ sin
πσX1

L

2(cos πX1
L

− 2πt1
L

sin
πσX1

L )

−
(
2πϵ
L

)2 sin2
πX1
L

4(cos πX1
L

− 2πt1
L

sin
πσX1

L )
2

}
, i = 1

1

cos
πX1
L

− 2πt1
L

sin
πσX1

L

{
1 +

(
2πϵ
L

) iρ sin
πσX1

L (L2+4π2t21)
2L2(cos πX1

L
− 2πt1

L
sin

πσX1
L )

−
(
2πϵ
L

)2 sin
πσX1

L ( 2πt1
L

cos
πX1
L

+sin
πσX1

L )(L2+4π2t21)
4L2(cos πX1

L
− 2πt1

L
sin

πσX1
L )

2

}
, i = 2

cos
πt0
L

cos
π(t0+σX1)

L

{
1−

(
2πϵ
L

) iρ sin
πσX1

L

cos
π(t0+σX1)

L
cos

πt0
L

−
(
2πϵ
L

)2 sin
πσX1

L
sin

π(t0+σX1)
L

cos2
π(t0+σX1)

L
cos

πt0
L

}
, i = 3

cos
πt0
L

cos
π(t0+σX1)

L

{
1−

(
2πϵ
L

) iρ sin πσX1
L

cos
πt0
L

cos
π(t0+σX1)

L

−
(
2πϵ
L

)2 sin2
πX1
L

cos2
πt0
L

cos2
π(t0+σX1)

L

}
, i = 4

(C.27)

These coordinates (C.27) can be obtained either by setting X2 = 0 in (4.4) and then perform-

ing a Taylor expansion in 2πϵ
L

or by sending X2 → 0 in the SSD coordinates (C.15). Since

0 < X1 <
L
2
, when t1 ̸= Lσ

2π
cot πX1

L
, ξ0, ξ1 and ξ2 as defined in (4.21) are finite and non-zero

for i = 1, 2 while for i = 3, 4, when cos πt0
L
, cos π(t0+σX1)

L
̸= 0, ξ0 and ξ1 are non-zero and finite

while ξ2 does not diverge. t1 =
Lσ
2π

cot πX1

L
for i = 1, 2 and t0 = (m+ 1

2
)L−σX1 with integers

m for i = 3, 4 correspond to the discontinuities in the second Rényi entropy anyway so away

from these points the second Rényi entropy is well defined. When t0 = (m+ 1
2
)L for integers

m, the change in the second Rényi entropy becomes ill-defined for i = 3, 4. Applying (4.29),
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the cross ratios are

η̂2 =





1
2

{
1− sgn

[
cos πX1

L
− 2πt1

L
sin πσX1

L

] [
1−

(
2πϵ
L

)2 sin2
πX1
L

8(cos πX1
L

− 2πt1
L

sin
πσX1

L )
2

]}
, i = 1

1
2

{
1− sgn

[
cos πX1

L
− 2πt1

L
sin πσX1

L

] [
1−

(
2πϵ
L

)2 sin2
πX1
L (L2+4π2t21)

2

8L4(cos πX1
L

− 2πt1
L

sin
πσX1

L )
2

]}
, i = 2

1
2

{
1− sgn

[
cos

πt0
L

cos
π(t0+σX1)

L

] [
1−

(
2πϵ
L

)2 sin2
πX1
L

2 cos2
π(t0+σX1)

L
cos2

πt0
L

]}
, i = 3

1
2

{
1− sgn

[
cos

πt0
L

cos
π(t0+σX1)

L

] [
1−

(
2πϵ
L

)2 sin2
πX1
L

cos2
πt0
L

2 cos2
π(t0+σX1)

L

]}
, i = 4

(C.28)

which can also be directly obtained by setting X2 = 0, x = L
2
in (C.18) for all cases i =

1, 2, 3, 4. Since the cross ratios are periodic with t0 ∼ t0 + L for i = 3, 4, the corresponding

change in second Rényi entropy will have the same periodicity as well. The change in the

second Rényi entropy for the local operator (4.12) in the free boson theory is

∆S
(2)
A,i =





0, i = 1, 2, 0 < t1 <
L
2π

cot πX1

L

log 2, i = 1, 2, L
2π

cot πX1

L
< t1

0, i = 3, 4,mL < t0 < mL+ L
2
−X1

log 2, i = 3, 4,mL+ L
2
−X1 < t0 < mL+ L

2
+X1

0, i = 3, 4,mL+ L
2
+X1 < t0 < (m+ 1)L

(C.29)

for non-negative integers m. For i = 1, 2, the time t1 = L
2π

cot πX1

L
is the time it takes for a

left moving quasiparticle starting at Xf
2 to arrive at the rightmost boundary of the subsystem

X1. On the other hand, the i = 3, 4 cases are well-defined by the θ = 0 quasiparticle picture.

For i = 4, the Rényi is ill-defined for t0 = (k + 1
2
)L for integers k. We get the same answer

by sending X2 → 0+ in (C.26) for all cases i = 1, 2, 3, 4.

D The details of the cross ratios

Let us present the details of the cross ratio after we perform the analytic continuation to real

time.
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D.1 When the local operator is inserted at x = Xf
1 = 0.

By the second order in the small ϵ expansion, the details of the cross ratios are given by

zc,1 ≈ 1−
i2πϵ sin

[
π(X1−X2)

L

]

Le−2θ
∏

i=1,2

(
cosh θ sin

[
π(t1+Xi cosh 2θ)

L cosh 2θ

]
− sinh θ sin

[
π(t1−Xi cosh 2θ)

L cosh 2θ

]) +O(ϵ2),

zc,1 ≈ 1 +
i2πϵ sin

[
π(X1−X2)

L

]

Le−2θ
∏

i=1,2

(
cosh θ sin

[
π(t1−Xi cosh 2θ)

L cosh 2θ

]
− sinh θ sin

[
π(t1+Xi cosh 2θ)

L cosh 2θ

]) +O(ϵ2),

zc,2 ≈ 1−
i2πϵ sin

[
π(X1−X2)

L

] (
e2θ cos2

(
πt1

L cosh 2θ

)
+ e−2θ sin2

(
πt1

L cosh 2θ

))

L
∏

i=1,2

(
cosh θ sin

[
π(t1+Xi cosh 2θ)

L cosh 2θ

]
− sinh θ sin

[
π(t1−Xi cosh 2θ)

L cosh 2θ

]) +O(ϵ2),

zc,2 ≈ 1 +
i2πϵ sin

[
π(X1−X2)

L

] (
e2θ cos2

(
πt1

L cosh 2θ

)
+ e−2θ sin2

(
πt1

L cosh 2θ

))

L
∏

i=1,2

(
− cosh θ sin

[
π(t1−Xi cosh 2θ)

L cosh 2θ

]
+ sinh θ sin

[
π(t1+Xi cosh 2θ)

L cosh 2θ

]) +O(ϵ2),

zc,3 ≈ 1 +
2iϵπ(tanh(2θ)− 1) sin

[
π(X1−X2)

L

]

L
∏

i=1,2 sin
[
π(t0+Xi)

L

] +O(ϵ2),

zc,3 ≈ 1−
2iϵπ(tanh(2θ)− 1) sin

[
π(X1−X2)

L

]

L
∏

i=1,2 sin
[
π(t0−Xi)

L

] +O(ϵ2),

zc,4 ≈ 1 +
2iπϵ sin

[
π(X1−X2)

L

] (
cos
(
2πt0
L

)
tanh 2θ − 1

)

L
∏

i=1,2 sin
[
π(t0+Xi)

L

] +O(ϵ2),

zc,4 ≈ 1−
2iπϵ sin

[
π(X1−X2)

L

] (
cos
(
2πt0
L

)
tanh 2θ − 1

)

L
∏

i=1,2 sin
[
π(t0−Xi)

L

] +O(ϵ2),

(D.1)

where around t1 =
L cosh 2θ

π
tan−1

[
±e2θ tan

(
πXi

L

)]
+nL cosh 2θ, the small ϵ expansion of zc,i=1,2

or zc,i=1,2 breaks down, while around t0 = nL±Xi=1,2, that of zc,i=3,4 or zc,i=3,4 breaks down.

Here, we assume that 0 < tan−1
[
±e2θ tan

(
πXi

L

)]
< π and n is an integer greater than or

equal to zero. Let us consider the time dependence of SA,i in cases, (a), (b), and (c).
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D.2 When the local operator is inserted at x = L
2 .

When the local operator is inserted at x = L
2
, the small ϵ expansion of the cross ratios

analytically-continued to real time is approximated by

zc,1 ≈ 1−
2iπe−2θϵ sin

[
π(X1−X2)

L

]

L
∏

i=1,2

[
cos
(
π(Xi cosh 2θ+t1)

L cosh 2θ

)
cosh θ − cos

(
π(Xi cosh 2θ−t1)

L cosh 2θ

)
sinh θ

] +O(ϵ2),

zc,1 ≈ 1 +
2iπe−2θϵ sin

[
π(X1−X2)

L

]

L
∏

i=1,2

[
cos
(
π(Xi cosh 2θ−t1)

L cosh 2θ

)
cosh θ − cos

(
π(Xi cosh 2θ+t1)

L cosh 2θ

)
sinh θ

] +O(ϵ2),

zc,2 ≈ 1−
2iπϵ sin

[
π(X1−X2)

L

] (
cosh 2θ − sinh 2θ cos

(
2πt1

L cosh 2θ

))

L
∏

i=1,2

[
cos
(
π(Xi cosh 2θ+t1)

L cosh 2θ

)
cosh θ − cos

(
π(Xi cosh 2θ−t1)

L cosh 2θ

)
sinh θ

] +O(ϵ2),

zc,2 ≈ 1 +
2iπϵ sin

[
π(X1−X2)

L

] (
cosh 2θ − sinh 2θ cos

(
2πt1

L cosh 2θ

))

L
∏

i=1,2

[
cos
(
π(Xi cosh 2θ−t1)

L cosh 2θ

)
cosh θ − cos

(
π(Xi cosh 2θ+t1)

L cosh 2θ

)
sinh θ

] +O(ϵ2),

zc,3 ≈ 1− i
2πϵ(1 + tanh 2θ) sin

[
π(X1−X2)

L

]

L
∏

i=1,2 cos
[
π(t0+Xi)

L

] +O(ϵ2),

zc,3 ≈ 1 + i
2πϵ(1 + tanh 2θ) sin

[
π(X1−X2)

L

]

L
∏

i=1,2 cos
[
π(t0−Xi)

L

] +O(ϵ2),

zc,4 ≈ 1− i
2πϵ

(
1 + cos

(
2πt0
L

)
tanh 2θ

)
sin
[
π(X1−X2)

L

]

L
∏

i=1,2 cos
[
π(t0+Xi)

L

] +O(ϵ2),

zc,4 ≈ 1 + i
2πϵ

(
1 + cos

(
2πt0
L

)
tanh 2θ

)
sin
[
π(X1−X2)

L

]

L
∏

i=1,2 cos
[
π(t0−Xi)

L

] +O(ϵ2),

(D.2)

where around t1 =
Leff

π
tan−1

[
±e−2θ cot

(
πXi

L

)]
+nLeff, the small ϵ expansion of zc,i=1,2, zc,i=1,2,

breaks down, while around t0 = ±Xi + L
(
1
2
+ n
)
, the small ϵ expansion of zc,i=3,4, zc,i=3,4

breaks down. Let us define the characteristic times, 0 < t̂ < Leff, as

t̂L
2
−X2

=
Leff

π
tan−1

(
e−2θ tan

[
π

L

(
L

2
−X2

)])
, t̂L

2
+X2

=
Leff

π
tan−1

(
e−2θ tan

[
π

L

(
L

2
+X2

)])
,

t̂X1−L
2
=

Leff

π
tan−1

(
e−2θ tan

[
π

L

(
X1 −

L

2

)])
, t̂ 3L

2
−X1

=
Leff

π
tan−1

(
e−2θ tan

[
π

L

(
3L

2
−X1

)])
,

(D.3)

where Leff > t̂L
2
+X2

> t̂ 3L
2
−X1

> t̂X1−L
2
> t̂L

2
−X2

> 0.
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D.3 When the local operator is inserted at general x.

To second order in the small ϵ expansion, the cross ratios are given by

zc,1 ≈ O(ϵ2)+

1−
2iπϵ sin

[
π(X1−X2)

L

]

L
∏

i=1,2

[
sin
(

πt1
Leff

)(
cosh(2θ) cos

(
π(x−Xi)

L

)
− sinh(2θ) cos

(
π(Xi+x)

L

))
− cos

(
πt1
Leff

)
sin
(

π(x−Xi)
L

)] ,

zc,1 ≈ O(ϵ2)+

1 +
2iπϵ sin

[
π(X1−X2)

L

]

L
∏

i=1,2

[
sin
(

πt1
Leff

)(
cosh(2θ) cos

(
π(x−Xi)

L

)
− sinh(2θ) cos

(
π(Xi+x)

L

))
+ cos

(
πt1
Leff

)
sin
(

π(x−Xi)
L

)] ,

zc,2≈ O(ϵ2) + 1− 2iπϵ sin

(
π (X1 −X2)

L

)(
cos

(
πt1
Leff

)
− i sin

(
πt1
Leff

)(
cosh(2θ)− sinh(2θ)e−

2iπx
L

))

×
cos
(

πt1
Leff

)
− i sin

(
πt1
Leff

)(
− cosh(2θ) + sinh(2θ)e

2iπx
L

))

L
∏

i=1,2

[
sin
(

πt1
Leff

)(
cosh(2θ) cos

(
π(x−Xi)

L

)
− sinh(2θ) cos

(
π(Xi+x)

L

))
− cos

(
πt1
Leff

)
sin
(

π(x−Xi)
L

)] ,

zc,2 ≈ O(ϵ2) + 1 + 2iπϵ sin

(
π (X1 −X2)

L

)(
cos

(
πt1
Leff

)
− i sin

(
πt1
Leff

)(
cosh(2θ)− sinh(2θ)e

2iπx
L

))

×
cos
(

πt1
Leff

)
− i sin

(
πt1
Leff

)(
− cosh(2θ) + sinh(2θ)e−

2iπx
L

)

L
∏

i=1,2

[
sin
(

πt1
Leff

)(
cosh(2θ) cos

(
π(x−Xi)

L

)
− sinh(2θ) cos

(
π(Xi+x)

L

))
+ cos

(
πt1
Leff

)
sin
(

π(x−Xi)
L

)] ,

zc,3 ≈ 1 +
2iπϵ sin

[
π(X1−X2)

L

] (
tanh(2θ) cos

(
2πx
L

)
− 1
)

L
∏

i=1,2 sin
[
π(t0−x+Xi)

L

] +O(ϵ2),

zc,3 ≈ 1−
2iπϵ sin

[
π(X1−X2)

L

] (
tanh(2θ) cos

(
2πx
L

)
− 1
)

L
∏

i=1,2 sin
[
π(t0+x−Xi)

L

] +O(ϵ2),

zc,4 ≈ 1 +
2iπϵ sin

[
π(X1−X2)

L

] (
tanh(2θ) cos

(
2π(t0−x)

L

)
− 1
)

L
∏

i=1,2 sin
[
π(t0−x+Xi)

L

] +O(ϵ2),

zc,4 ≈ 1−
2iπϵ sin

[
π(X1−X2)

L

] (
tanh(2θ) cos

(
2π(t0+x)

L

)
− 1
)

L
∏

i=1,2 sin
[
π(t0+x−Xi)

L

] +O(ϵ2),

(D.4)

where around t1 = Leff

π
tan−1

[∣∣∣∣∣
sin

(
π(x−Xi)

L

)
cosh(2θ) cos

(
π(x−Xi)

L

)
−sinh(2θ) cos

(
π(Xi+x)

L

)
∣∣∣∣∣

]
+ nLeff , the small ϵ

expansion of zc,i=1,2, zc,i=1,2, breaks down, while around t0 = ± (x−Xi) + nL, the small ϵ

expansion of zc,i=3,4, zc,i=3,4 breaks down.
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E The time dependence of SA,i in 2d holographic CFTs

Here, we present the time dependence of SA,i for Möbius/SSD cases.

E.1 Möbius case

First, we report on the time dependence of SA,i for Möbius case. Here, we assume that the

local operator is inserted at x = 0, L
2
.

E.1.1 x = Xf
1

We present the time dependence of SA,i for the Möbius case when the local operator is

inserted at x = 0. The subsystems considered here are (b) and (c).

For case (b), the time dependence of SA,i is given by

SA,1 ≈
c

3
log

[
L

π
sin

(
π (X1 −X2)

L

)]

+





0 tX2 > t1 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵg1(t1, Xf

1 , θ)
]

nLeff + tt1,+ > t1 > nLeff + tX2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵf1(t1, Xf

1 , θ)
]

nLeff + tL−X1 > t1 > nLeff + tt1,+

0 nLeff + tX1 > t1 > nLeff + tL−X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵg1(t1, X

f
1 , θ)

]
nLeff + tt1,− > t1 > nLeff + tX1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵf1(t1, X

f
1 , θ)

]
nLeff + tL−X2 > t1 > nLeff + tt1,−

0 (n+ 1)Leff + tX2 > t1 > nLeff + tL−X2

,
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SA,2 ≈
c

3
log

[
L

π
sin

(
π (X1 −X2)

L

)]

+





0 tX2 > t1 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵg2(t1, Xf

1 , θ)
]

nLeff + tt1,+ > t1 > nLeff + tX2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵf2(t1, Xf

1 , θ)
]

nLeff + tL−X1 > t1 > nLeff + tt1,+

0 nLeff + tX1 > t1 > nLeff + tL−X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵg2(t1, X

f
1 , θ)

]
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− c
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,
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− c
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− c
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− c
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− c
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,
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log
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π
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(
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+





0 X2 > t0 > 0
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log
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]
− c
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log
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]
− c
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log
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− c
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nL+ tt0,− > t0 > nL+X1

c
6
log
[
2 sin[παO]
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− c
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For case (c), the time dependence of SA,i is given by

SA,1 ≈
c

3
log
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L

π
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π (X1 −X2)

L

)]

+





0 tX2 > t1 > 0
c
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[
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αO

]
− c

6
log
[
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1 , θ)
]
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− c
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f
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]
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,
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]
− c
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]
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0 nLeff + tL−X1 > t1 > nLeff + tX1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵf2(t1, X

f
1 , θ)

]
nLeff + tL−X2 > t1 > nLeff + tL−X1

0 (n+ 1)Leff + tX2 > t1 > nLeff + tL−X2

,

SA,3 ≈
c

3
log

[
L

π
sin

(
π (X1 −X2)

L

)]

+





0 X2 > t0 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵg3(t0, Xf

1 , θ)
]

nL+X1 > t0 > nL+X2

0 (n+ 1)L−X1 > t0 > nL+X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵf3(t0, X

f
1 , θ)

]
(n+ 1)L−X2 > t0 > (n+ 1)L−X1

0 (n+ 1)L+X2 > t0 > (n+ 1)L−X2

,

SA,4 ≈
c

3
log

[
L

π
sin

(
π (X1 −X2)

L

)]

+





0 X2 > t0 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵg4(t0, Xf

1 , θ)
]

nL+X1 > t0 > nL+X2

0 (n+ 1)L−X1 > t0 > nL+X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵf4(t0, X

f
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]
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E.1.2 x = Xf
2 .

Next, we consider the time dependence of entanglement entropy for the states with the inser-

tion at x = L
2
of the local operator. To second order in the small ϵ expansion, the cross ratios

are approximately given by (5.7). The details of the cross ratios are reported in Appendix

D.2. The time dependence of the cross ratios follows the propagation of quasiparticles.

Let us define t̂x by

t̂x =
Leff

π
tan−1

[
e−2θ tan

(πx
L

)]
. (E.3)

The time dependence of cross ratios for i = 3, 4 with the insertion at x = Xf
2 of the local

operator is similar to that with the insertion at x = Xf
1 of the local operator. Therefore,

we present here the time dependence of the cross ratios for i = 1, 2. In the cases of (a) and

(b) for i = 1, 2, fi=1,2(Ti=1,2, x = Xf
2 , θ) (gi=1,2(Ti=1,2, X

f
2 , θ)) is positive in the time intervals,

(n + 1)Leff + t̂L
2
−X2

> t1 > nLeff + t̂ 3
2
L−X1

(nLeff + t̂L
2
+X2

> t1 > nLeff + t̂X1−L
2
), where n

is an integer, while it is negative in the time intervals, nLeff + t̂ 3
2
L−X1

> t1 > nLeff + t̂L
2
−X2

((n+ 1)Leff + t̂X1−L
2
> t1 > nLeff + t̂L

2
+X2

).

In the case of (c), fi=1,2(Ti=1,2, X
f
2 , θ) (gi=1,2(Ti=1,2, X

f
2 , θ)) is positive in the time intervals,

nLeff + t̂L
2
−X2

> t1 > nLeff + t̂L
2
−X1

((n + 1)Leff + t̂X2+
L
2
> t1 > nLeff + t̂X1+

L
2
), while it is

negative in the time intervals, (n+1)Leff+ tL
2
−X1

> t1 > nLeff+ tL
2
−X2

(nLeff+ t̂L
2
+X1

> t1 >

nLeff+ t̂L
2
+X2

). Since the denominators of zc,i (zc,i) vanishes around the times, t1 = nLeff+tX1

or t1 = nLeff + tX2 (t1 = nLeff + tL−X1 or t1 = nLeff + tL−X2), the small ϵ expansion in (5.7)

breaks down.

After choosing the branches correctly, the time dependence of entanglement entropy for

(a), (b), and (c) is determined as follows. For case (a), the time dependence of SA,i is given
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by

SA,1 ≈
c

3
log
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L

π
sin

[
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L

]]

+
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2
−X2
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− c
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− c
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− c
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− c
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,
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− c
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− c
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log
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f
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log
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− c
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log
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f
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2
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2
+X2

,
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log
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π
sin
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π(X1 −X2)
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0 L
2
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log
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− c
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log
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log
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− c
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log
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2
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6
log
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]
− c

6
log
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ϵf3(t0, X

f
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]
nL+ t̃t0,− > t0 >

(
n+ 3

2

)
L−X1
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6
log
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αO
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− c
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log
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)
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,
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SA,4 ≈
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log
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− c
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− c
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− c
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(E.4)

where n is an integer greater than or equal to 0, and t̂i,± are positive. The characteristic

parameters are given by

t̂t1,± =
Leff

π
tan−1


±

√√√√e−4θ tan

(
π
(
X1 − L

2

)

L

)
tan

(
π
(
L
2
−X2

)

L

)
 ,

cos

(
πt̃t0,±
L

)
= ±

√√√√−∏2
i=1 sin

[
πXi

L

]

cos
[
π(X1+X2)

L

] .

(E.5)

Note that the computation on SA,4 breaks down at t0 = L
(
n+ 1

2

)
because zc,4 and zc,4

exactly becomes unity. Since the Hamiltonian density at x = Xf
1 ofHSSD is zero, the damping

factor, e−ϵHSSD , can not tame the high-energy mode there adequately. At t0 = L
(
n+ 1

2

)
,

the excitation created by the local operator at x = Xf
2 could arrive at x = Xf

1 , so that SA,4
becomes diverge. For case (b), the time dependence of SA,i is given by
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SA,1 ≈
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αO

]
− c

6
log
[
ϵg1(t1, X

f
2 , θ)

]
nLeff + t̂t1,+ > t1 > nLeff + t̂X1−L
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− c
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− c
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,
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− c
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− c
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− c
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− c
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− c
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− c
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(E.6)

For case (c), the time dependence of SA,i is given by

SA,1 ≈
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log
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2
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− c
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]

(n+ 1
2
)L+X1 > t1 > (n+ 1

2
)L+X2

0 (n+ 3
2
)−X1 > t1 > (n+ 1

2
)L+X1

,
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SA,4 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 L
2
−X1 > t1 > 0

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵf4(t0, X

f
2 , θ)

]
(n+ 1

2
)L−X2 > t1 > (n+ 1

2
)L−X1

0 (n+ 1
2
)L+X2 > t1 > (n+ 1

2
)L−X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵg4(t0, Xf

2 , θ)
]

(n+ 1
2
)L+X1 > t1 > (n+ 1

2
)L+X2

0 (n+ 3
2
)−X1 > t1 > (n+ 1

2
)L+X1

,

(E.7)

The time dependence of SA,i is periodic with the periodicity Leff for i = 1, 2 and L for i = 3, 4.

The time dependence of SA,i follows the propagation of quasiparticles.

E.1.3 General x

The details of the small ϵ expansion of cross ratios in general x during the Möbius time

evolution are reported in Appendix D.4 . Define t̀y as

t̀y =
Leff

π
tan−1



∣∣∣∣∣∣

sin
(
π(x−y)
L

)

cosh(2θ) cos
(
π(x−y)
L

)
− sinh(2θ) cos

(
π(y+x)
L

)

∣∣∣∣∣∣


 (E.8)

For any given general x,X1, X2, where 0 < X2 < X1 < L, when i = 1, 2 we observe several

different behaviors when x is inserted in different regions on the circle. Then, we define some

characteristic parameters:

t̀t1,± =
Leff

π
tan−1


±

√√√√2L sin
(
π(X1−x)

L

)
sin
(
π(x−X2)

L

)

δ


 ,

cos

(
πťt0,±
L

)
= ±

√√√√√
cos
(
π(2x−X1−X2)

L

)
+ cos

(
π(X1−X2)

L

)

2 cos
(
π(2x−X1−X2)

L

) .

(E.9)

Here, δ is defined as

δ =

2L

(
sinh2(2θ) cos

(
π (x+X1)

L

)
cos

(
π (x+X2)

L

)
+ cosh2(2θ) cos

(
π (x−X1)

L

)
cos

(
π (x−X2)

L

))

−L sinh(4θ)

(
cos

(
π (x+X1)

L

)
cos

(
π (x−X2)

L

)
+ cos

(
π (x−X1)

L

)
cos

(
π (x+X2)

L

))

(E.10)

Notice that in the general x case, even if we insert a local excitation in the middle of the

interval (X1 − x = x−X2 > 0) at t = 0, we still have tX2 ̸= tX1 in general.
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We select four typical cases to consider the time-dependence of SA,i here (See Fig. 5 ):

A =





{
y
∣∣X2 ≤ y ≤ X1

}
, where ,




when i = 1, 2,

X2 < x < X1, t̀X2 < t̀X1 , Leff − t̀X1 > t̀X1 and Leff − t̀X2 > t̀X2

when i = 3, 4,

X2 < x < X1, |x−X2| < |X1 − x| , |L+ x−X1| > |X1 − x|
and |L+ x−X2| > |X2 − x|

for (i)

{
y
∣∣X2 ≤ y ≤ X1

}
, where ,




when i = 1, 2,

X1 < x < L, t̀X1 < t̀X2 , Leff − t̀X1 > t̀X1 and Leff − t̀X2 > t̀X2

when i = 3, 4,

X1 < x < L, |X1 − x| < |X2 + L− x| , |L+ x−X1| > |X1 − x|
and |L+ x−X2| > |X2 − x| .

for (ii)

{
y
∣∣X2 ≤ y ≤ X1

}
, where ,




when i = 1, 2,

0 < x < X2, t̀X2 < t̀X1 , Leff − t̀X1 > t̀X1 and Leff − t̀X2 > t̀X2

when i = 3, 4,

0 < x < X2, |X2 − x| < |X1 − x| ,
|L+ x−X1| > |X1 − x| and |L+ x−X2| > |X2 − x| .

for (iii)

{
y
∣∣X2 ≤ y ≤ X1

}
, where ,{

when i = 1, 2 : t̀X2 = t̀X1 or t̀X2 = Leff − t̀X1

when i = 3, 4 : |x−X2| = |X1 − x| or |X2 + L− x| = |X1 − x|
for (iv)

(E.11)

X2

X1

A

Case (i)

x
X1

X2

A

Case (ii)

x

X1

X2

A

Case (iii)

x

X2

X1

A

Case (iv)

x

Figure 5: Four typical cases. The details of the subsystems illustrated here are in (E.11).

The time dependence of SA,i considered in the case of (i) is similar to inserting x at Xf
2

, specifically case (a) for SSD cases, as shown in equation (5.20). The time-dependence of
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SA,i is given by

SA,1 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 t̀X2 > t1 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f1(t1, x, θ)|] nLeff + t̀t0,+ > t1 > nLeff + t̀X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g1(t1, x, θ)|] nLeff + t̀X1 > t1 > nLeff + t̀t0,+

0 (n+ 1)Leff − t̀X1 > t1 > nLeff + t̀X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f1(t1, x, θ)|] nLeff + t̀t0,− > t1 > (n+ 1)Leff − t̀X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g1(t1, x, θ)|] (n+ 1)Leff − t̀X2 > t1 > nLeff + t̀t0,−

0 (n+ 1)Leff + t̀X2 > t1 > (n+ 1)Leff − t̀X2

,

SA,2 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 t̀X2 > t1 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f2(t1, x, θ)|] nLeff + t̀t0,+ > t1 > nLeff + t̀X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g2(t1, x, θ)|] nLeff + t̀X1 > t1 > nLeff + t̀t0,+

0 (n+ 1)Leff − t̀X1 > t1 > nLeff + t̀X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f2(t1, x, θ)|] nLeff + t̀t0,− > t1 > (n+ 1)Leff − t̀X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g2(t1, x, θ)|] (n+ 1)Leff − t̀X2 > t1 > nLeff + t̀t0,−

0 (n+ 1)Leff + t̀X2 > t1 > (n+ 1)Leff − t̀X2

,

SA,3 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 x−X2 > t0 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f3(t0, x, θ)|] nL+ ťt0,+ > t0 > nL+ x−X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g3(t0, x, θ)|] nL+X1 − x > t0 > nL+ ťt0,+

0 (n+ 1)L+ x−X1 > t0 > nL+X1 − x
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f3(t0, x, θ)|] nL+ ťt0,− > t0 > (n+ 1)L+ x−X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g3(t0, x, θ)|] (n+ 1)L+X2 − x > t0 > nL+ ťt0,−

0 (n+ 1)L+ x−X2 > t0 > (n+ 1)L+X2 − x

,
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SA,4 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 x−X2 > t0 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f4(t0, x, θ)|] nL+ ťt0,+ > t0 > nL+ x−X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g4(t0, x, θ)|] nL+X1 − x > t0 > nL+ ťt0,+

0 (n+ 1)L+ x−X1 > t0 > nL+X1 − x
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f4(t0, x, θ)|] nL+ ťt0,− > t0 > (n+ 1)L+ x−X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g4(t0, x, θ)|] (n+ 1)L+X2 − x > t0 > nL+ ťt0,−

0 (n+ 1)L+ x−X2 > t0 > (n+ 1)L+X2 − x

.

(E.12)

In the case of (ii), as in (5.10), the time dependence of SA,i is similar to that in the case

(a) with θ ̸= 0 and the insertion of the local operator at Xf
1 . The time-dependence of SA,i is

given by

SA,1 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 t̀X1 > t1 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f1(t1, x, θ)|] nLeff + t̀t0,+ > t1 > nLeff + t̀X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g1(t1, x, θ)|] nLeff + t̀X2 > t1 > nLeff + t̀t0,+

0 (n+ 1)Leff − t̀X2 > t1 > nLeff + t̀X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f1(t1, x, θ)|] nLeff + t̀t0,− > t1 > (n+ 1)Leff − t̀X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g1(t1, x, θ)|] (n+ 1)Leff − t̀X1 > t1 > nLeff + t̀t0,−

0 (n+ 1)Leff + t̀X1 > t1 > (n+ 1)Leff − t̀X1

,

SA,2 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 t̀X1 > t1 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f2(t1, x, θ)|] nLeff + t̀t0,+ > t1 > nLeff + t̀X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g2(t1, x, θ)|] nLeff + t̀X2 > t1 > nLeff + t̀t0,+

0 (n+ 1)Leff − t̀X2 > t1 > nLeff + t̀X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f2(t1, x, θ)|] nLeff + t̀t0,− > t1 > (n+ 1)Leff − t̀X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g2(t1, x, θ)|] (n+ 1)Leff − t̀X1 > t1 > nLeff + t̀t0,−

0 (n+ 1)Leff + t̀X1 > t1 > (n+ 1)Leff − t̀X1

,
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SA,3 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 x−X1 > t0 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f3(t0, x, θ)|] nL+ ťt0,+ > t0 > nL+ x−X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g3(t0, x, θ)|] (n+ 1)L+X2 − x > t0 > nL+ ťt0,+

0 nL+ x−X2 > t0 > (n+ 1)L+X2 − x
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f3(t0, x, θ)|] nL+ ťt0,− > t0 > nL+ x−X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g3(t0, x, θ)|] (n+ 1)L+X1 − x > t0 > nL+ ťt0,−

0 (n+ 1)L+ x−X1 > t0 > (n+ 1)L+X1 − x

,

SA,4 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 x−X1 > t0 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f4(t0, x, θ)|] nL+ ťt0,+ > t0 > nL+ x−X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g4(t0, x, θ)|] (n+ 1)L+X2 − x > t0 > nL+ ťt0,+

0 nL+ x−X2 > t0 > (n+ 1)L+X2 − x
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f4(t0, x, θ)|] nL+ ťt0,− > t0 > nL+ x−X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g4(t0, x, θ)|] (n+ 1)L+X1 − x > t0 > nL+ ťt0,−

0 (n+ 1)L+ x−X1 > t0 > (n+ 1)L+X1 − x

.

(E.13)

As shown in equation (E.2), the time dependence of entanglement entropy in case (iii) is

similar to that with θ ̸= ∞ and the insertion of the local operator at Xf
1 , specifically case

(c). The time-dependence of SA,i is given by
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SA,1 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 t̀X2 > t1 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g1(t1, x, θ)|] nLeff + t̀X1 > t1 > nLeff + t̀X2

0 (n+ 1)Leff − t̀X1 > t1 > nLeff + t̀X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f1(t1, x, θ)|] (n+ 1)Leff − t̀X2 > t1 > (n+ 1)Leff − t̀X1

0 (n+ 1)Leff + t̀X2 > t1 > (n+ 1)Leff − t̀X2

,

SA,2 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 t̀X2 > t1 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g2(t1, x, θ)|] nLeff + t̀X1 > t1 > nLeff + t̀X2

0 (n+ 1)Leff − t̀X1 > t1 > nLeff + t̀X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f2(t1, x, θ)|] (n+ 1)Leff − t̀X2 > t1 > (n+ 1)Leff − t̀X1

0 (n+ 1)Leff + t̀X2 > t1 > (n+ 1)Leff − t̀X2

,

SA,3 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 X2 − x > t0 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g3(t0, x, θ)|] nL+X1 − x > t0 > nL+X2 − x

0 (n+ 1)L+ x−X1 > t0 > nL+X1 − x
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f3(t0, x, θ)|] (n+ 1)L+ x−X2 > t0 > (n+ 1)L+ x−X1

0 (n+ 1)L+X2 − x > t0 > (n+ 1)L+ x−X2

,

SA,4 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 X2 − x > t0 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g4(t0, x, θ)|] nL+X1 − x > t0 > nL+X2 − x

0 (n+ 1)L+ x−X1 > t0 > nL+X1 − x
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f4(t0, x, θ)|] (n+ 1)L+ x−X2 > t0 > (n+ 1)L+ x−X1

0 (n+ 1)L+X2 − x > t0 > (n+ 1)L+ x−X2

.

(E.14)
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In the case of (iv), the time-dependence of SA,i is given by

S1 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]
t1 > 0

S2 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]
t1 > 0

S3 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]
t0 > 0

S4 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]
t0 > 0

(E.15)

where n is an integer greater than or equal to 0.

E.2 SSD case

Here we report on the time dependence of SA,i for (b) and (c) during the SSD time evolution

when the local operator is inserted at x = Xf
1 or x = Xf

2 .

E.2.1 x = Xf
1

Here, we assume that the local operator is inserted at Xf
1 . Now, let us present the time

dependence of SA,i=4 for case (b). In this case, the time dependence of SA,i=4 is determined

by

SA,4 ≈
c

3
log

[
L

π
sin

(
π (X1 −X2)

L

)]

+





0 X2 > t0 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵg4(t0, Xf

1 ,∞)
]

nL+ tt0,+ > t0 > nL+X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵf4(t0, Xf

1 ,∞)
]

(n+ 1)L−X1 > t0 > nL+ tt0,+

0 nL+X1 > t0 > (n+ 1)L−X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵg4(t0, X

f
1 ,∞)

]
nL+ tt0,− > t0 > nL+X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵf4(t0, X

f
1 ,∞)

]
(n+ 1)L−X2 > t0 > nL+ tt0,−

0 (n+ 1)L+X2 > t0 > (n+ 1)L−X2

(E.16)
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Subsequently, we present the time dependence of SA,i=4 for case (c). It is determined by

SA,4 ≈
c

3
log

[
L

π
sin

(
π (X1 −X2)

L

)]

+





0 X2 > t0 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵg4(t0, Xf

1 ,∞)
]

nL+X1 > t0 > nL+X2

0 (n+ 1)L−X1 > t0 > nL+X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵf4(t0, X

f
1 ,∞)

]
(n+ 1)L−X2 > t0 > (n+ 1)L−X1

0 (n+ 1)L+X2 > t0 > (n+ 1)L−X2

(E.17)

E.2.2 x = Xf
2

Here, we assume that the local operator is inserted at Xf
2 . Now, let us study the time

dependence of SA,i as follows. The time dependence of SA,i in case (b) is given by

SA,1 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 t̃1,+ > t1 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵg1(t1, X

f
2 ,∞)

]
t̃t1 > t1 > t̃1,+

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵf1(t1, X

f
2 ,∞)

]
t̃2,− > t1 > t̃t1

0 t1 > t̃2,−

,

SA,2 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 t̃1,+ > t1 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵg2(t1, X

f
2 ,∞)

]
t̃t1 > t1 > t̃1,+

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵf2(t1, X

f
2 ,∞)

]
t̃2,− > t1 > t̃t1

0 t1 > t̃2,−

,
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SA,3 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 X1 − L
2
> t0 > 0

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵg3(t0, X

f
2 ,∞)

]
nL+ t̃t0,+ > t0 >

(
n− 1

2

)
L+X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵf3(t0, X

f
2 ,∞)

] (
n+ 1

2

)
L−X2 > t0 > nL+ t̃t0,+

0
(
1
2
+ n
)
L+X2 > t0 >

(
1
2
+ n
)
L−X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵg3(t0, Xf

2 ,∞)
]

nL+ t̃t0,− > t0 >
(
1
2
+ n
)
L+X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵf3(t0, Xf

2 ,∞)
] (

3
2
+ n
)
L−X1 > t0 > nL+ t̃t0,−

0
(
1
2
+ n
)
L+X1 > t0 >

(
3
2
+ n
)
L−X1

,

SA,4 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 X1 − L
2
> t0 > 0

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵg4(t0, X

f
2 ,∞)

]
nL+ t̃t0,+ > t0 >

(
n− 1

2

)
L+X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵf4(t0, X

f
2 ,∞)

] (
n+ 1

2

)
L−X2 > t0 > nL+ t̃t0,+

0
(
1
2
+ n
)
L+X2 > t0 >

(
1
2
+ n
)
L−X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵg4(t0, Xf

2 ,∞)
]

nL+ t̃t0,− > t0 >
(
1
2
+ n
)
L+X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵf4(t0, Xf

2 ,∞)
] (

3
2
+ n
)
L−X1 > t0 > nL+ t̃t0,−

0
(
1
2
+ n
)
L+X1 > t0 >

(
3
2
+ n
)
L−X1

,

(E.18)

where n is a positive integer and t0 is a positive number.
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The time dependence of SA,i in case (c) is given by

SA,1 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 t1,− > t1 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵf1(t1, X

f
2 ,∞)

]
t2,− > t1 > t1,−

0 t1 > t2,−

,

SA,2 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 t1,− > t1 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵf2(t1, X

f
2 ,∞)

]
t2,− > t1 > t1,−

0 t1 > t2,−

,

SA,3 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 L
2
−X1 > t0 > 0

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵf3(t0, X

f
2 ,∞)

] (
1
2
+ n
)
L−X2 > t0 >

(
n+ 1

2

)
L−X1

0
(
n+ 1

2

)
L+X2 > t0 >

(
n+ 1

2

)
L−X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵg3(t0, Xf

2 ,∞)
] (

1
2
+ n
)
L+X1 > t0 >

(
1
2
+ n
)
L+X2

0
(
3
2
+ n
)
L−X1 > t0 >

(
1
2
+ n
)
L+X1

,

SA,4 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 L
2
−X1 > t0 > 0

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
ϵf4(t0, X

f
2 ,∞)

] (
1
2
+ n
)
L−X2 > t0 >

(
n+ 1

2

)
L−X1

0
(
n+ 1

2

)
L+X2 > t0 >

(
n+ 1

2

)
L−X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log
[
−ϵg4(t0, Xf

2 ,∞)
] (

1
2
+ n
)
L+X1 > t0 >

(
1
2
+ n
)
L+X2

0
(
3
2
+ n
)
L−X1 > t0 >

(
1
2
+ n
)
L+X1

(E.19)
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E.2.3 General x

Here are the details of the small ϵ expansion of cross ratios for general x during the SSD

time evolution:

zc,1 ≈ 1−
2iπLϵ sin

[
π(X1−X2)

L

]

∏
i=1,2

[
L sin

(
π(x−Xi)

L

)
− 2πt1 sin

(
πx
L

)
sin
(
πXi

L

)] +O(ϵ2),

zc,1 ≈ 1 +
2iπLϵ sin

[
π(X1−X2)

L

]

∏
i=1,2

[
L sin

(
π(x−Xi)

L

)
+ 2πt1 sin

(
πx
L

)
sin
(
πXi

L

)] +O(ϵ2),

zc,2 ≈ 1−
2iπϵ sin

[
π(X1−X2)

L

] [
L2 + 4π2t21 sin

2
(
πx
L

)
+ 2πLt1 sin

(
2πx
L

)]

L
∏

i=1,2

[
L sin

(
π(x−Xi)

L

)
− 2πt1 sin

(
πx
L

)
sin
(
πXi

L

)] +O(ϵ2),

zc,2 ≈ 1 +
2iπϵ sin

[
π(X1−X2)

L

] [
L2 + 4π2t21 sin

2
(
πx
L

)
− 2πLt1 sin

(
2πx
L

)]

L
∏

i=1,2

[
L sin

(
π(x−Xi)

L

)
+ 2πt1 sin

(
πx
L

)
sin
(
πXi

L

)] +O(ϵ2),

zc,3 ≈ 1 +
2iπϵ sin

[
π(X1−X2)

L

] (
cos
(
2πx
L

)
− 1
)

L
∏

i=1,2 sin
[
π(t0−x+Xi)

L

] +O(ϵ2),

zc,3 ≈ 1−
2iπϵ sin

[
π(X1−X2)

L

] (
cos
(
2πx
L

)
− 1
)

L
∏

i=1,2 sin
[
π(t0+x−Xi)

L

] +O(ϵ2),

zc,4 ≈ 1 +
2iπϵ sin

[
π(X1−X2)

L

] (
cos
(

2π(t0−x)
L

)
− 1
)

L
∏

i=1,2 sin
[
π(t0−x+Xi)

L

] +O(ϵ2),

zc,4 ≈ 1−
2iπϵ sin

[
π(X1−X2)

L

] (
cos
(

2π(t0+x)
L

)
− 1
)

L
∏

i=1,2 sin
[
π(t0+x−Xi)

L

] +O(ϵ2),

(E.20)

Define ťy as

ťy =

∣∣∣∣∣∣

L sin
[
π(y−x)
L

]

2π sin
(
πx
L

)
sin
(
πy
L

)

∣∣∣∣∣∣
(E.21)

One can easily check that for 0 < x < y1 < y2 < L , we have ťy1 < ťy2 .

Around t1 = ťXi
+ nLeff, the small ϵ expansion of zc,i=1,2, zc,i=1,2, breaks down, while

around t0 = ± (x−Xi) + nL, the small ϵ expansion of zc,i=3,4, zc,i=3,4 breaks down. For

any given x,X1, X2, where 0 < X2 < X1 < L, when i = 1, 2 we observe several different

behaviors as x is inserted in different regions on the circle. Here, we define the special point

Xspe as the one satisfying X2 < Xspe < X1 which obeys the following equation for i = 1, 2,

sin

(
πX1

L

)
sin

[
π (xspe −X2)

L

]
= sin

(
πX2

L

)
sin

[
π (X1 − xspe)

L

]
. (E.22)
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The parameters are given by

ťt1 =

√
L2
(
cot
(
πx
L

)
− cot

(
πX1

L

)) (
cot
(
πX2

L

)
− cot

(
πx
L

))

2π
,

cos

(
πťt0,±
L

)
=

√√√√√±
cos
(
π(2x−X1−X2)

L

)
+ cos

(
π(X1−X2)

L

)

2 cos
(
π(2x−X1−X2)

L

) .

(E.23)

In general, there exist five cases which correspond to the different behaviors of time-dependence

of SA,i (See Fig. 6 ):

A =





{
y
∣∣X2 ≤ y ≤ X1

}
, where 0 < x < X2 for (I)

{
y
∣∣X2 ≤ y ≤ X1

}
, where X2 < x < Xspe for (II)

{
y
∣∣X2 ≤ y ≤ X1

}
, where x = Xspe for (III)

{
y
∣∣X2 ≤ y ≤ X1

}
, where Xspe < x < X1 for (IV)

{
y
∣∣X2 ≤ y ≤ X1

}
, where X1 < x < L for (V)

(E.24)
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X1
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x X2

X1
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x

X2

X1

A

Case (IV)

x

X2

X1

A

Case (V)
x

Figure 6: Five general cases. The details of subsystem illustrated here are reported in (E.24).

In the case of (I), the time dependence of SA,i is given by

S1 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 ťX2 > t1 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g1(t1, x,∞)|] ťX1 > t1 > ťX2

0 ťX1

,

S2 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 ťX2 > t1 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g2(t1, x,∞)|] ťX1 > t1 > ťX2

0 t1 > ťX1

,

(E.25)
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In the case of (II), the time dependence of SA,i is given by

S1 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 ťX2 > t1 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f1(t1, x,∞)|] ťt1 > t1 > ťX2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g1(t1, x,∞)|] ťX1 > t1 > ťt1

0 t1 > ťX1

,

S2 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 ťX2 > t1 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f2(t1, x,∞)|] ťt1 > t1 > ťX2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g2(t1, x,∞)|] ťX1 > t1 > ťt1

0 t1 > ťX1

.

(E.26)

In the case of (III), the time dependence of SA,i is given by

S1 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]
t1 > 0

S2 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]
t1 > 0

(E.27)

In the case of (IV), the time dependence of SA,i is given by

S1 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 ťX1 > t1 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g1(t1, x,∞)|] ťt1 > t1 > ťX1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f1(t1, x,∞)|] ťX2 > t1 > ťt1

0 t1 > ťX2

,

S2 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 ťX1 > t1 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g2(t1, x,∞)|] ťt1 > t1 > ťX1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f2(t1, x,∞)|] ťX2 > t1 > ťt1

0 t1 > ťX2

.

(E.28)
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In the case of (V), the time dependence of SA,i is given by

S1 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 ťX1 > t1 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f1(t1, x,∞)|] ťX2 > t1 > ťX1

0 t1 > ťX2

,

S2 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 ťX1 > t1 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f2(t1, x,∞)|] ťX2 > t1 > ťX1

0 t1 > ťX2

,

(E.29)

For any given general x,X1, X2, where 0 < X2 < X1 < L), for i = 3, 4, we select four

typical cases, according to (E.11). As shown in equation (5.20), the time dependence of

SA,i considered in the case of (i) is similar to that in case (a) with the insertion of the local
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operator at Xf
2 and θ = ∞. The time dependence of SA,i is given by

SA,3 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 x−X2 > t0 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f3(t0, x,∞)|] nL+ ťt0,+ > t0 > nL+ x−X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g3(t0, x,∞)|] nL+X1 − x > t0 > nL+ ťt0,+

0 (n+ 1)L+ x−X1 > t0 > nL+X1 − x
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f3(t0, x,∞)|] nL+ ťt0,− > t0 > (n+ 1)L+ x−X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g3(t0, x,∞)|] (n+ 1)L+X2 − x > t0 > nL+ ťt0,−

0 (n+ 1)L+ x−X2 > t0 > (n+ 1)L+X2 − x

,

SA,4 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 x−X2 > t0 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f4(t0, x,∞)|] nL+ ťt0,+ > t0 > nL+ x−X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g4(t0, x,∞)|] nL+X1 − x > t0 > nL+ ťt0,+

0 (n+ 1)L+ x−X1 > t0 > nL+X1 − x
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f4(t0, x,∞)|] nL+ ťt0,− > t0 > (n+ 1)L+ x−X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g4(t0, x,∞)|] (n+ 1)L+X2 − x > t0 > nL+ ťt0,−

0 (n+ 1)L+ x−X2 > t0 > (n+ 1)L+X2 − x

.

(E.30)

In the case of (ii), the time dependence of SA,i is similar to case (a) when inserting x at

Xf
1 of the Möbius cases, as shown in equation (5.10). The time dependence of SA,i is given
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by

SA,3 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 x−X1 > t0 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f3(t0, x,∞)|] nL+ ťt0,+ > t0 > nL+ x−X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g3(t0, x,∞)|] (n+ 1)L+X2 − x > t0 > nL+ ťt0,+

0 nL+ x−X2 > t0 > (n+ 1)L+X2 − x
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f3(t0, x,∞)|] nL+ ťt0,− > t0 > nL+ x−X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g3(t0, x,∞)|] (n+ 1)L+X1 − x > t0 > nL+ ťt0,−

0 (n+ 1)L+ x−X1 > t0 > (n+ 1)L+X1 − x

,

SA,4 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 x−X1 > t0 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f4(t0, x,∞)|] nL+ ťt0,+ > t0 > nL+ x−X1

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g4(t0, x,∞)|] (n+ 1)L+X2 − x > t0 > nL+ ťt0,+

0 nL+ x−X2 > t0 > (n+ 1)L+X2 − x
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f4(t0, x,∞)|] nL+ ťt0,− > t0 > nL+ x−X2

c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g4(t0, x,∞)|] (n+ 1)L+X1 − x > t0 > nL+ ťt0,−

0 (n+ 1)L+ x−X1 > t0 > (n+ 1)L+X1 − x

.

(E.31)

As shown in equation (E.2), the time dependence of entanglement entropy in case (iii) is

similar to that with the insertion of the local operator at Xf
1 and θ ̸= ∞, specifically case

(c). The time dependence of SA,i is given by
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SA,3 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 X2 − x > t0 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g3(t0, x,∞)|] nL+X1 − x > t0 > nL+X2 − x

0 (n+ 1)L+ x−X1 > t0 > nL+X1 − x
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f3(t0, x,∞)|] (n+ 1)L+ x−X2 > t0 > (n+ 1)L+ x−X1

0 (n+ 1)L+X2 − x > t0 > (n+ 1)L+ x−X2

,

SA,4 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]

+





0 X2 − x > t0 > 0
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |g4(t0, x,∞)|] nL+X1 − x > t0 > nL+X2 − x

0 (n+ 1)L+ x−X1 > t0 > nL+X1 − x
c
6
log
[
2 sin[παO]

αO

]
− c

6
log [ϵ |f4(t0, x,∞)|] (n+ 1)L+ x−X2 > t0 > (n+ 1)L+ x−X1

0 (n+ 1)L+X2 − x > t0 > (n+ 1)L+ x−X2

.

(E.32)

In the case of (iv), the time dependence of SA,i is given by

S3 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]
t0 > 0

S4 ≈
c

3
log

[
L

π
sin

[
π(X1 −X2)

L

]]
t0 > 0

(E.33)

where n is an integer greater than or equal to 0.
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