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Recognising changes in collective dynamics in complex systems is essential for predicting potential events
and their development. Possessing intrinsic attractors with laws associated with scale invariance, self-organised
critical dynamics represent a suitable example for quantitatively studying changes in collective behaviour. We
consider two prototypal models of self-organised criticality, the sandpile automata with deterministic (Bak-
Tang-Wiesenfeld) and probabilistic (Manna model) dynamical rules, focusing on the nature of stress fluctuations
induced by driving—adding grains during the avalanche propagation, and dissipation through avalanches that hit
the system boundary. Our analysis of stress evolution time series reveals robust cycles modulated by collective
fluctuations with dissipative avalanches. These modulated cycles are multifractal within a broad range of time
scales. Features of the associated singularity spectra capture the differences in the dynamic rules behind the
self-organised critical states and their response to the increased driving rate, altering the process stochasticity
and causing a loss of avalanche scaling. In the related sequences of outflow current, the first return distributions
are found to follow modified laws that describe different pathways to the gradual loss of cooperative behaviour
in these two models. The spontaneous appearance of cycles is another characteristic of self-organised criticality.
It can also help identify the prominence of self-organisational phenomenology in an empirical time series when
underlying interactions and driving modes remain hidden.

I. INTRODUCTION

The cooperative behaviour of interacting units is at the heart
of emergent features in many complex systems [1]; therefore,
understanding changes in collective dynamics is vital for pre-
dicting their evolution. Large interacting nonlinear systems,
driven out of equilibrium, often exhibit cyclical trends in the
temporal evolution of a relevant quantity (see recent study [2]
and references there). The appearance of cycles can be visu-
alised as a temporal accumulation of ’energy’ and then its re-
lease through collective dynamics involving many units. Im-
perfect (modulated) cycles were observed everywhere, from
geophysical and solar irradiance cycles [3], which impact the
climate and life on the Earth, to physics laboratory systems
driven by an external magnetic field [4], traffic on networks
[5], and urban growth [6]. Furthermore, the interplay of bio-
social processes [7, 8] induces complex epidemic cycles, and
social activity driven by the circadian day-night cycle cru-
cially affects social dynamics [2]. These modulated cycles
exhibit higher harmonics that can be described by multifrac-
tal analysis [2, 5, 9]. In general, the mechanisms of their
appearance in different systems still need to be better under-
stood. On the other hand, some nonlinear dynamical systems,
which are repeatedly driven by external forces observing the
time scale separation, can evolve towards attractors with criti-
cal dynamics. Long-range correlations and scaling behaviour
of avalanches characterise these self-organised critical (SOC)
states; see recent review [10] and references therein. They
represent a specific type of collective dynamics with scale
invariance, allowing us to decipher a few (out of potentially
many) parameters that determine the universal critical be-
haviours and, thus, study collective dynamics in greater de-
tail. In this work, we examine prototypical sandpile automata

models and reveal that cycles emerge spontaneously as an-
other prominent feature of SOC dynamics. Monitoring their
modulation can be a good measure of changes in collective
behaviours.

The Abelian sandpile automata and related models [11], as
the paradigm of SOC, provides theoretical ground to study
complex features of self-organised critical states: slow driv-
ing, avalanches, the relevance of time-scale separation and
dissipation at the system’s boundaries. Well-studied mod-
els Bak-Tang-Wiesenfeld (BTW) [12] with deterministic and
Manna model (MM) [13] with probabilistic distribution rules
differ in the finite-size scaling properties of the avalanches
[14], even though the avalanche scaling exponents are nu-
merically similar. Moreover, the sandpile automata models
are also the focus of the studies on predictability [15, 16]
and information complexity [17, 18], motivated by the fact
that a critical state possesses an efficient way to store infor-
mation. Universality of SOC can be affected by the geom-
etry of underlying space [19–22], randomness [23] and cou-
pled environment dynamics [24–26], as well as altered prob-
abilistic toppling conditions [27–29], activation beyond top-
pling dynamics [30] and autonomously adapting [31] sand-
piles. With the finite driving rates [32], grains are added dur-
ing the avalanche propagation, which may locally alter the
strict toppling rules and trigger additional event sequences.
Consequently, changed scaling properties of the avalanches
[33] and possible loss of scaling may occur, depending on the
system size and dissipation, when the driving rate exceeds a
specific critical value [34]. Thus, studying the time-dependent
properties [35–37] are necessary to reveal salient features of
self-organised dynamics beyond the scaling of avalanches.

Many complex systems show signatures of SOC [19, 38–
42], where it is recognised as a ’blueprint for complexity’
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[43], mechanisms providing robustness in steady states and
functional properties [44, 45], or a ’trade-off between cooper-
ation and competition’ [46]. SOC is evidenced by numerical
methods [47] from available empirical data, e.g., time series
of a relevant quantity, for example, brain activity [48], epi-
demic processes [49] and online social cooperation [50], or
geophysical and solar activity [51] and rainfalls [52]. Sim-
ilarly, properties of SOC are utilised to solve complex opti-
misation problems [53], traffic congestion management [54]
and design robust functional systems such as computer net-
works [55]. Most of these systems operate under time-varying
driving fields that change at a finite rate compared to a typi-
cal avalanche propagation time. Therefore, recognising the
mechanisms of self-organisation from the structure of a time
series of a relevant variable is critically important for identi-
fying dynamical states in many complex systems where the
interactions and driving modes are less apparent.

In this work, using two well-known sandpile automata with
deterministic (BTW) and probabilistic (MM) toppling rules,
we study the sandpile dynamics at adiabatic driving with a
perfect time-scale separation and at several finite driving rates
where additional grains are dropped during the avalanche
propagation. We reveal the emergence of robust cyclical
trends at a slow time scale in the temporal evolution of stress,
defined as the number of grains in the sandpile divided by
lattice area. Dissipative avalanches modulate these cycles in
a broad range of time scales, characterised by the appropri-
ate multifractal measures. The shapes of the respective sin-
gularity spectra correlate with the sandpile automaton rules
and their characteristic response to changed driving rates. In
conjunction with the altered sequences of outflow currents,
these multifractal features suggest fundamental differences in
the underlying self-organised dynamics beyond the scaling of
avalanches. In a more general context, these measures can
be helpful to identify changes in the collective dynamics, and
may be beneficial in studies of the empirical data from differ-
ent complex systems with expected self-organised behaviours.

II. SIMULATIONS AND RESULTS

A. Definition of the models at finite driving rates

We consider a modification of the Bak-Tang-Wiesenfeld
(BTW) [12] and Manna model (MM) [13] sandpiles on the
square lattice with open boundaries, where the system is
driven by the inflow of grains (the unit of stress) at random
locations but at a fixed rate during the avalanche propagation.
Here is the specific for the BTW model. Let L = {(i, j)}L

i, j=1
denote the L×L lattice. Then integers hi j interpreted as stress
are assigned to each cell (i, j) ∈ L . Their set H = {hi j}L

i, j=1
is the configuration of stress. As in the original model, the
instability threshold hc for the stress in the cell is introduced,
where hc = hBTW = 4, representing the number of neighbors
of any inner cell (i, j), where the cells sharing a side with (i, j)
form the set N (i, j) = NBTW(i, j) of its neighbors are

NBTW(i, j) = {(i′, j′) ∈ L : |i′− i|+ | j′− j|= 1}. (1)

The cells (i, j) with hi j < hc are called stable. The configu-
ration H is called stable if all cells are stable. In contrast,
the inequality hi j ≥ hc indicates that the cell (i, j) is unstable,
and the configuration is unstable if it consists of at least one
unstable cell.

The following automata update rules describe the dynam-
ics. Let hi j(t) denote the value of hi j at the beginning of the
time moment t. Then a random cell (i, j) is chosen and the
corresponding hi j is increased by 1

hi j(t) = hi j −→ hi j +1,
(i, j) is random from {1, . . . ,L}×{1, . . . ,L}. (2)

If the resulting value of hi j is still less than hc then nothing
more occurs at this time moment. Otherwise, the violation of
the stability condition triggers the avalanche, formally defined
in the following way.
(i) Parallel updates of stress. The unstable cell transports
hc = 4 units of stress to the neighbours, a single unit to each:

hi j −→ hi j −hc (3)

hi′ j′ −→ hi′ j′ +1, ∀(i′, j′) ∈ N (i, j). (4)

This first update represents the first step in the avalanche prop-
agation. It may result in the appearance of new unstable cells.
All these unstable cells also transport the stress to the neigh-
bours in line with equations (3), (4), creating the second round
of updates. Let us say that these updates occur in parallel and,
hence, we have just defined the second round of parallel up-
dates. In general, if the round k of the parallel updates ends up
with an unstable configuration, then the transport from all ex-
isting unstable cells in line with equations (3), (4) creates the
(k+ 1)th round of the parallel updates. These updates occur
as long as the configuration is unstable. In the simulation, it is
convenient to code the application of rules (3), (4), describing
a round of the parallel updates, one by one. Note that the order
in which the unstable cells are chosen during any round of the
parallel updates does not affect the resulting configuration.
(ii) Driving after every Rth parallel update. The adiabatic
driving, i.e., the addition of new grain after an avalanche stops,
as defined in the original models, obeys a perfect time scale
separation between the driving and propagation of avalanches.
Here, we introduce another algorithm parameter, R > 1, im-
plementing a finite driving rate. If round R of the parallel
updates defined in (i) occur at the current time moment t, then
another grain is added to a randomly chosen cell, equation (2).
This additional grain can increase the number of unstable cells
in the lattice. All unstable cells (if any exist) are processed
during the round R+ 1, and so on. In the same manner, an
additional unit of stress inflows to the random site, as deter-
mined by (2), after each Rth round of the parallel updates, i.e.,
after round pR for any natural p, if this round has happened.
Thus, the system is loaded at the rate 1/R at the time scale
associated with the avalanche propagation.
(iii) Dissipation at the boundary. At the system’s boundary,
any non-corner cell (i, j) has |N (i, j)|= 3 neighbors and the
corner cell has |N (i, j)| = 2 neighbors. Hence, when an un-
stable cell belongs to the boundary, the toppling rules (3), (4)
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lead to the dissipation of hc −|N (i, j)| units of the stress out
of the lattice.

Rules (i)–(iii) define entirely the parallel updates that con-
tinue until the stable configuration H = {hi j}L

i, j=1 is at-
tained. The values of the stress in this configuration are as-
sociated with the next time moment t + 1: hi j(t + 1) = hi j,
i, j = 1, . . . ,L.

The Manna model with the additional 1/R driving rate
at the fast time is defined similarly. We specify here the
differences from the BTW case. Specifically, the threshold
hc = hMM = 2; the set NM(i, j) of neighbors of an inner cell
(i, j) consists of two neighbours that are sampled randomly
from the set NBTW(i, j) as

NMM(i, j) = {N1,N2 : Nk, k = 1,2,
is a random element from NBTW(i, j)} . (5)

To apply the above definition (5) to the boundary cells (i, j)
we extend NBTW(i, j) by adding the empty set /0 such that the
extended NBTW(i, j) contains exactly four elements, includ-
ing the empty set(s). If the empty set is chosen once or twice
at (5), then the corresponding set of neighbours consists of
one element or becomes empty. In the latter case, two units of
stress dissipate at the boundary when the cell (i, j) is updated.
We note that the determination of neighbours is required only
to process updates. We sample the neighbours for a cell at
the moment the rules (3), (4) are applied, independently of
earlier samples related to this or other cells. With the above
changes with respect to the BTW model, the dynamics is de-
termined by the gradual loading, according to (2), in the slow
time and the transport of stress in the fast time governed by
(i)–(iii). The quantities hMM = 2 and NM are used for hc and
N . Thus, this framework defines two families of models de-
pending on the parameter R, which determines the rate 1/R of
the driving at the fast time scale. Note that large values of R
often exclude the driving during the avalanche evolution, and
we end up with the original BTW and Manna sandpiles.

For each driving rate, starting with an empty lattice (L =
256, all hi, j = 0), the grains are gradually added, and the sim-
ulation is performed according to the above-described model
rules. After a specific transient time, the system reaches a sta-
tionary state, where the average stress h(t) = L−2

∑
L
i, j=1 hi j(t)

fluctuates around a well-defined level. We then start recording
the data regarding 200000 distinct avalanches. We are sam-
pling the evolution of the average stress, the sequences of the
size and duration of all avalanches; we separately record the
sequences of dissipative avalanches (i. e., at least a single unit
of stress is dissipated during these avalanches), and their out-
flow current–the number of dissipated grains per avalanche.
These quantities are further analysed in the following.

B. Size and duration of avalanches at finite driving rates

When an avalanche is triggered at an unstable site, its prop-
agation through the system is followed. The number of par-
allel updates before reaching a stable configuration defines
the duration d of the avalanche. Meanwhile, the size s of an

avalanche is the number of cells that become unstable during
the avalanche. Each unstable cell is counted as many times as
it is unstable. Then the probability density function ϕ̂(s) and
φ̂(d) of avalanche sizes and durations are derived from the
catalogue of avalanche sequences. As stated above, we con-
sider all avalanches and, separately, the subset of dissipative
avalanches that hit the boundary.

The size-frequency relationship is likely the most known
outcome of the original BTW and MM sandpiles because of
its power-law segment that extends through almost all scales
up to the cut-off caused by the finite systems’ size. Fig. 1
illustrates the size-frequency relationship for our models built-
in from the BTW and MM sandpile automata at finite driving
rates. Logarithmically binned data are shown. To demonstrate
how the avalanche scaling is lost at finite driving rates, we
display ϕ̂(s) multiplied by an appropriate power function of s,
sτs , where the values of τs, τs,BTW = 1.20 and τs,MM = 1.27 for
the BTW and Manna models respectively, are the exponents
taken from earlier studies at adiabatic driving [56] and [57].
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(a) BTW
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(b) MM 

Driving rate
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FIG. 1. The size-frequency relationship ϕ̂(s)sτs vs s of all avalanches
for different fast-time driving rates 1/R in the BTW (a) and MM (b)
sandpiles and τs corresponding to adiabatic driving; see text.

The probability distribution functions ϕ̂(s) constructed
with different values of the parameter R exhibit a critical
change for both families of models. In particular, as the
fast-time driving rate increases, the power-law segment is
preserved with slightly changed exponents until the driving
exceeds a specific critical rate ≳ 1/R∗; then the scaling of
avalanches is lost, and the sandpile becomes frequently over-
loaded launching anomalously large avalanches. The corre-
sponding size and duration distributions exhibit a bump at the
right part, as shown in Figs. 1-2. For the considered system
size, we illustrate the estimated ϕ̂(s) with three values of R
correspond to low, (nearly) critical, and super-critical driving
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FIG. 2. The duration distribution φ̂(d) vs duration d of all avalanches
at varied driving rates 1/R in the BTW (a) and MM (b) sandpiles.
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FIG. 3. The average size of the avalanches with a given duration
< s >d vs. duration d for the BTW (a) and MM (b) sandpiles at
different driving rates.

rates for both families in Fig. 1. Notably, the two families
of the ϕ̂(s) curves also have differences in their dependence
on R. Specifically, in the BTW models, the power-law seg-

ment becomes longer with the growth of the driving rate 1/R
up to its critical threshold in contrast to the MM, where it
is practically unchanged until the scaling is lost. We recall
that the principal difference between the original BTW and
Manna sandpiles (without additional driving) is in the distri-
bution’s tail. The latter is multifractal with the BTW sandpile
but admits the finite size scaling, applicable to the whole size-
frequency relationship [14, 57] in MM. The prolongation of
the power-law segment to the right with the growth of 1/R for
the BTW models likely simplifies the distribution tails, possi-
bly altering its multifractality (this claim needs to be checked
with an independent study).

In analogy to the size distribution, the growth in the driving
rate 1/R up to a threshold value 1/R∗ roughly conserves the
shape of the duration distribution in the BTW model; mean-
while, the driving rate beyond the critical value restructures
the shape of the φ̂(d), as shown in Fig. 2. Note that, the power-
law fragment with the expected exponent is not observed at
slow drivning; perhaps, larger lattices are necessary. How-
ever, for finite driving rates, the power-law segment with the
exponent τd ≈ 1.31 appears, whereas the bump precedes the
fall at the tail. Similar observations apply to MM as shown
in Fig. 2; The power-law segment is observed in the regime
below critical dring rate, and the shape of the distribution is
preserved. Faster driving also creates a bump at the tail of
the distributions. These properties of the avalanches at finite
driving rates also manifest in the plots in Fig. 3, where the
average size of the avalanches of a given duration < s >d is
shown against the duration d. Interestingly, the size–duration
scaling is preserved at finite driving rates for the intermedi-
ate avalanches Thus, both models with the driving rate at the
fast time scale exhibits the power-law fragment suggesting the
preserved scaling relation between the size and duration of
avalanches in the intermediate range.

The probability density functionsϕ̂diss(s) related to the sub-
set of avalanches that hit the system’s boundary, known as dis-
sipative avalanches, are shown in Fig. 4. Elucidating the im-
portabce of dissipative avalanches in scaling of all avalanches
in BTW model, paper [58] indicated the power-law distribu-
tion of dissipative avalanches in the original BTW model at
the adiabatic driving with a specific exponent 7/8; similarly,
the exponent close to 1 was derived [59] for MM. We com-
plement this general claim with the observation that the accu-
racy of the power-law approximation is significantly smaller
in the dissipative avalanches at finite driving rates; compare
the curves in Fig. 1a. and 4a). The existence of the power-law
segment for ϕ̂diss with slow driving rates, R = 100, is ques-
tionable. However, the growth of the driving rate to 1/32,
which seems to be close to a critical value, purifies the power-
law segment on [2 ·102,105], and the corresponding exponent
is close to 1. Further growth in the driving rate keeps the
power-law segment on the same interval of sizes, but the ex-
ponent increases to 1.58 (i.e., 0.58 corresponding to the dis-
played axes). With the Manna models, the general behaviour
of the curves ϕ̂diss representing the size-frequency relationship
agrees with previous observations in Fig. 1b. The curves are
similar if the driving rate is small (see orange and green curves
in Fig. 4b). For a larger driving rate 1/R, a segment close to
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FIG. 4. The size-frequency relationship ϕ̂diss(s)s1.00 vs. s for the
dissipative avalanches for the BTW (a) and MM (b) models for three
driving rates 1/R. The fit (in dashed grey) to the blue curve is shown
(a) where it is computed and (b) in a broader interval than computed.

power-laws that admit approximations by the straight lines in
the double logarithmic scale with a negative slope (approx-
imately, 1.07) appears; meanwhile, the initial segment of all
curves scales with the exponent which is less than 1. When the
driving rate 1/R crosses a critical value, the initial point of the
second power-law segment is moved to the left (see the blue
line in Fig. 4b, where the fit is computed with s ∈ (87,539)
but prolonged further to the right).

C. Stress fluctuations cycles

We recall that, apart from adding grains at a given rate, the
stress fluctuations are induced at the slow time scale by out-
flow at the system’s boundary, which is carried by the dissi-
pative avalanches. At this scale, the time series of stress fluc-
tuations in the critical state for the BTW and MM sandpiles
depend on the driving rate 1/R at which additional grains are
dropped during the avalanche propagation, as Fig. 5 demon-
strates; because of slow varying stress, every 25th time step
(distinct avalanche) is recorded, indicated by the index j along
the time axis. Here, we plot the case of adiabatic driving,
i.e., dropping one grain per avalanche, and the case where the
average number of dropped grains per avalanche is similar,
measured by the ratio of the average duration at finite driving
< d >R and the average duration < d >0 at adiabatic driv-
ing. Given the different propagation of avalanches in these
two models, this ratio < d >R / < d >0≈ 14, is reached at
R = 10 in BTW, and < d >R / < d >0≈ 13 for R = 70 in
MM. Notably, these time series differ in the average stress

level and the shape of the emergent irregular cycles. More-
over, the stress evolution at a finite driving rate in the BTW
model, see the top line in Fig. 5, is profoundly different from
the case where the driving is adiabatic, which preserves the
original deterministic toppling, see the black line in the same
panel. Meanwhile, the differences are visually more minor in
the Manna model, which includes a certain degree of proba-
bilistic toppling even in the adiabatic driving mode. A striking
feature of these SOC states is the appearance of cyclical trends
of stress evolution at different time scales, as shown in Fig 5
by solid red and yellow lines.

We determine these trends by changing the parameter m
in the local adaptive detrending algorithm; this methodol-
ogy is introduced in [9] to analyse sunspot time series as-
sociated with solar cycles and adapted to treat various other
time series, e.g., in social dynamics [60], traffic on networks
[5], the magnetisation fluctuations on the hysteresis loop [4],
and other. More precisely, the time series having the length
Tmax is divided into overlapping segments, enumerated as k =
0,1,2, · · ·kmax = Tmax/m−1, of the length 2m+1, which over-
lap over m+ 1 points. Then the polynomial fits y(k)(mk+ ℓ)
over ℓ= 0,1,2, · · ·2m points in each segment are determined.
Then the local trend yc(mk+ i) over the overlapping points is
determined as yc(mk+ i) = i

m y(k+1)(mk+ i)+ m−i
m y(k)(m(k+

1)+ i), balancing the contribution of the polynomial in seg-
ment k with the one of segment k + 1; here i = 0,1,2 · · ·m
and 0 < k < kmax. In this way, the corresponding polynomial
contribution to the trend in the overlapped region decreases
linearly with the distance from the segment’s centre. Mean-
while, in the initial m+ 1 points in k = 0 and the final m+ 1
points in k = kmax segments, the trend coincides with the ac-
tual polynomial fit.

For the studied case, the linear interpolation suffices, and
the parameter m is adapted, as stated above. As Fig. 5 shows,
these cyclical trends appear to have a lot of harmonics, de-
pending on the type of the SPA and the driving rates. In con-
trast to social dynamics [2], where the primary cycles are in-
troduced by the day-night fluctuations in the driving signal,
the multiscale cycles in the SOC dynamics appear sponta-
neously. Thus, they can be visualised at different scales by
adapting the parameter m. For example, the red and yel-
low lines in Fig. 5 correspond to m =124 and m =248, re-
spectively. Visually, the emergent cycles in the case of BTW
model with infinitely slow driving is different from the ones
found at finite driving rates and processes in MM sandpiles by
all driving conditions. Moreover, a similarity between BTW at
the finite driving rate and Manna SPA is apparent, apart from
the higher average value. In the following, the multifractal
analysis and the related singularity spectra are determined to
quantify these multiscale features of the identified cycles.

Applying the detrended multifractal analysis [61–63] of
time series, we determine the generalised fluctuation func-
tion Fq(n) as a function of time intervals n and determine
its scaling properties. In this approach, the profile Y (i) =
∑

i
j=1(C( j)−⟨C⟩) of the series {C( j)} is constructed and di-

vide it in Ns segments of the length n, starting from the be-
ginning and repeating from the end of the time seriest = Tmax,
which gives in total 2Ns = 2Int(Tmax/n) segments. Then at
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FIG. 5. Stress h( j) vs. time index j in the BTW (top) and MM sandpiles (bottom) for two driving conditions: adiabatic slow driving (lower-
black line) and a fast driving at R = 10 in BTW and R = 70 in MM (upper-cyan line; the line is shifted vertically for better vision in the case of
MM). Thick red and yellow lines indicate the corresponding cycles identified by fixing m = 124 and m = 248, respectively; see text for details.
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by the thick lines of the same colour on the Fq(n) plots. (d) The singularity spectra for the large cycles (m = 248) for both SPA models with
adiabatic (slow) and varied driving rates 1/R, values of R are indicated in the legend; see text for details.

each segment µ = 1,2 · · ·Ns the local trend yµ(i) is determined by polynomial fit and the standard deviation around it is com-
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puted as F2(µ,n) = 1
n ∑

n
i=1
[
Y ((µ −1)n+ i)− yµ(i)

]2 and
similarly F2(µ,n) = 1

n ∑
n
i=1[Y (N−(µ−Ns)n+ i)−yµ(i)]2 for

µ = Ns +1, · · ·2Ns.
The fluctuation function Fq(n) for the segment length n ∈

[2, int(Tmax/4)] is defined as

Fq(n) =

(
1

2Ns

2Ns

∑
µ=1

[
F2(µ,n)

]q/2
)1/q

∼ nHq , (6)

and computed for different positive and negative values of the
exponent q ∈ [−4.5,4.5]. The spectrum of the generalised
Hurst exponent Hq is extracted by fitting the power-law re-
gions on the lines for different q; in the case of monofractal,
Hq = H2 for all q, where H2 represents the standard Hurst
exponent. Other multifractality measures [61] are readily de-
termined from the spectrum Hq. In particular, the exponent τq
related to the standard (box probability) measure is given by
τq = qHq −1. With the Legendre transform Ψ(α) = qα − τq,
where α = dτ/dq the singularity spectrum is obtained. Thus,
ψ(α) stands for a fractal dimension of the points having the
same singularity exponent α , which indicates different power-
law singularities according to |∇r( j,ε)|ε→0 ∼ εα( j) at differ-
ent data points j of the time series [61, 62].

In Fig. 6b,c, the fluctuation function Fq(n) vs n is shown
for the modulated cycles corresponding to the red lines at
the slow-adiabatic driving rate both for the BTW and Manna
SPA, indicated in each panel. Interestingly, these fluctuation
functions exhibit two distinct regions, marked as region-1 (r1)
and region-2 (r2), indicated by the straight lines of different
colours. The corresponding singularity spectra (symbols and
lines with the matching colours) are shown in Fig. 6a. In the
region r1 with smaller time intervals, the singularity spectra
of both models are centred around a similar value α0 ∼ 1.94,
suggesting a robust cyclical behaviour at these time scales. A
broader spectrum appears in the BTW case at both the small
(right) and large (left side) fluctuations. For larger time scales,
in the region-2 (r2 in the legend), however, the differences be-
tween two SPA appear to be more profound; see the discus-
sion below and Fig. 7. Here, we show the results of a similar
analysis of the fluctuation functions for the larger cycles (m2,
yellow lines in Fig. 5) and all driving rates considered; the
respective singularity spectra are shown in Fig. 6d. As this
Figure shows, the singularity spectrum for the BTW model in
the case of adiabatic driving differs from the spectra at finite
driving rates, both at large and small fluctuations. A system-
atic broadening at the right side of the spectrum occurs with
the increased driving rate. Moreover, they show a relative sim-
ilarity with the spectrum for the Manna SPA, where the lines
for adiabatic and finite driving rates practically coincide.

In the region n < m, the standard fluctuations around cycli-
cal trends in two models show the trend’s properties, i.e.,
H2 = 2 and, similarly, the power spectrum with the exponent
φ = 2 at high frequencies (not shown). Meanwhile, for much
larger time intervals, the detrended signal saturates, and the
trend and signal have similar fluctuations.

The shapes of the singularity spectra in region-2 demon-
strate the essential differences in the dynamics of the two SPA
models, even though they have similar avalanche exponents.
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FIG. 7. Top: Standard fluctuations for the stress, its cyclical trend
and detrended signal in two SPA models, as indicated. Bottom: The
singularity spectra in region-2, fitted according to eq. (7), demon-
strate quantitative differences in the dynamics of two SPA models.

These differences can be quantified in analogy to spectra of
damaged structures in Ref. [64], by fitting the data with the
expression

Ψ(α) = A(α −α0)
2 +B(α −α0)+C (7)

and introducing the index I = 2
3

α0
Ψmax

w0.5, where w0.5 stands
for the width at the half of the Ψmax. For example, the data
shown in Fig. 7 bottom panel lead to I(BTW ) = 0.743 and
I(MM) = 1.031, suggesting an increased amount of small fluc-
tuations in the stress of Manna SPA, compared to BTW model.

D. Sequences of dissipative events at finite driving rates

In this section, we focus on specific features of dissipative
avalanches that are responsible for the observed stress fluctu-
ations. Recall that in the critical state of SPA, the propagation
of avalanches is a collective dynamical process that does not
change the stress unless an avalanche hits the boundary. The
amount of grains dissipated in such events (outflow current
Ot ) can not be predicted; meanwhile, the sequences of such
events contain information about the coherence of the collec-
tive dynamics inside the sandpile.

Considering the inter-event time related to the dissipative
avalanches with an outflow current that exceeds the lower
bound of the dissipation taken into account, here Ot ≥ 1. Let
A1,A2, . . . be consequent dissipative avalanches such that the
number of lost units of stress during these events is at least 1
and t1, t2, . . . be the time of their occurrence. Then we form the
sample of inter-event intervals {t2−t1, t3−t2, . . .} and explore
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the frequencies Z(∆t) of each observed inter-event interval ∆t.
Fig. 8 a,b visualize the corresponding frequencies. With the
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FIG. 8. Frequencies of time intervals between two consecutive dissi-
pative avalanches in the BTW (a) and MM (b) with outflows Ot ≥ 1.

BTW models, the inter-event frequencies follow the exponen-
tial function e−β∆t if the driving rate is sub-critical, Fig. 8a.
The values of β slightly grow with R. However, the exponen-
tial fit fails if the driving rate is super-critical. Meanwhile, the
exponential fit to inter-event distributions works for all values
of the driving rate with the MM with slight variations in β

as driving rate increases in the super-critical domain. These
findings are relevant for the events prediction; see Discussion.

The changes in the size of dissipative avalanches with the
driving rate, manifested in the avalanche distributions in Fig.
4, is illustrated in the sequence of dissipative avalanches in
Fig. 9; cf. the stress fluctuations in Fig. 5. Two lines in each
panel correspond to the smallest and largest driving rates con-
sidered in the respective model. As Fig. 9 shows, dropping in
the average additional 13 grains per propagating avalanche in-
duces more profound differences in the sequences of the size
of dissipative avalanches in BTW than in Manna models at
similar conditions. These changes also indicate differences in
the underlying dynamics that are further demonstrated in Fig.
10 considering the distribution of first returns ∆ = Ot+1 −Ot ,
the differences between the consecutive amounts in the se-
quences of outflow current.

Carried by the dissipative avalanches, the 1st-return distri-
butions reflect the level of coherence of the self-organised crit-
ical state. Consequently, they are well-fitted by the Tsallis
q-Gaussian distribution

P(∆) = A

[
1− (1−q)

(
∆

∆0

)2
]1/1−q

, (8)
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FIG. 9. Sequences of the size s of dissipative avalanches vs. time t
of all identified avalanches for two driving rates R indicated in the
legend for BTW and MM sandpiles.

a generalisation of standard Gaussian distribution which arises
in the maximisation of Tsallis non-extensive entropy [65].
A comprehensive study in [66] with numerous real data ex-
amples show how q-Gaussian distribution arises in complex
physical systems with fractal dynamics. The fitted values
of the real-number parameter q, indicating the level of non-
extensive dynamics with fractal features, are shown in the leg-
end. Specifically, we find that in both models at slow (adia-
batic) driving, the outflow first-returns can be described with
the expression (8) with q ≳ 2 within error bars ±0.06. (Note
that the case q = 2 corresponds to the Cauchy-Lorentz dis-
tribution.) However, when the driving rate is increased, only
the central part (corresponding to small differences ∆) fits the
expression (8) with a larger q value; meanwhile, the tails of
the distributions follow a different law. In particular, large re-
turns ∆ obey Gaussian distribution f (∆) = Ae−(∆/σ)2

with a
different pre-factor A and the width σ ≈ 178± 5 for all con-
sidered driving rates R in BTW models, whereas the expres-
sion g(∆) =Be−|∆|/b fits the large-returns segments in the MM
sandpiles at large driving rates.

III. DISCUSSION AND CONCLUSIONS

We have studied the dynamics of sandpile automata with
deterministic (BTW) and probabilistic (MM) rules on a square
lattice with variable driving rates, defined by the addition
of grain at every pR step during the avalanche propagation,
where p = 0,1,2, · · · , while pR is smaller than the avalanche
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FIG. 10. Distributions for the first returns ∆ in the outflow current sequences of the dissipative avalanches for slow (adiabatic), moderate and
fast driving in BTW and MM models. Legends show the fitted values of the pertinent parameters q for q-Gaussian in Eq.(8), σ–the width of
the normal distribution, and b–for the exponential function fits; see text for more details.

duration; p = 0 corresponds to standardly considered adia-
batic driving. Having clearly distinguished slow time scale,
defined by the sequence of individual avalanches, from the
fast time scale associated with the intrinsic dynamics of
avalanche propagation, we mainly focused on the stress fluc-
tuations and the properties of the outflow current, which main-
tains the sandpile’s stationary state at every driving rate. Our
results revealed how some specific dynamical features of crit-
ical sandpiles build up and are altered with increased driving
rates. In particular:

• Cyclical trends spontaneously appear in stress fluctua-
tions at a slow time scale; collective dynamics of dissi-
pative avalanches modulate these cycles such that they
attain higher harmonics, described by the multifractal
analysis. The singularity spectra are characteristic of
the model dynamics and broaden with increasing driv-
ing rates.

• Avalanches scaling loss is demonstrated for the driving
rates that exceed a certain limit, i.e., 1/R⋆, depending
on the model dynamic rules; a more robust scaling be-
haviour is observed in MM than in BTW models. In the
complementary parameter range, < 1/R⋆, where addi-
tional grains are only sporadically dropped on the prop-
agating avalanche, the scaling range, the exponents, and
the finite size scaling properties might be altered.

• Sequences of outflow current induced by dissipative
avalanches exhibit dramatic changes in the first-return
distribution with the increased driving rate. A charac-
teristic q-Gaussian, with q ≳ 2 for both models at slow
driving, gradually changes towards Gaussian distribu-
tion in BTW sandpiles. In contrast, an exponential dis-
tribution applies to the significant first returns in the
MM case at large driving rates.

A number of open questions remains for future study. In
particular, regarding the scaling loss and the existence of a
finite critical driving rate 1/R⋆, a rigorous finite-size scaling
analysis with a correct identification of scaling variables is

necessary, in analogy to seminal studies of nonequilibrium
disordered ferromagnets with avalanching dynamics [67, 68].
In complex dynamical systems, the q-Gaussian distributions
are often detected with coherent dynamics of aggregates re-
lated to many interdependent components. The sandpile dy-
namics is characterized by dissipative avalanches that expand
at different parts of the system, thus contributing to the oscil-
lations of the average stress and rare huge drops in stress that
generate global dependencies. Interestingly, the significant
driving rate eliminates these interdependences, ruling out the
q− Gaussian features. Moreover, the exponential inter-event
distribution indicates that the sequence of events itself is un-
predictable, i.e., new events cannot be predicted based on their
history only. Therefore, if dissipative extremes in the MM
with a large driving rate inherited the predictability known
(see [52, 69]) for the original Manna model, an efficient pre-
diction algorithm must be built on specific scenarios preced-
ing the events-to-predict. On the contrary, unpredictability of
the BTW sandpile may be turned to an efficient prediction of
extremes with the models at large driving rates because yet
the sequence of these events itself exhibits the traces of pre-
dictability related to the observed non-exponential distribu-
tion. The corresponding algorithms are discussed in [70, 71].

In summary, we highlight that the above-described dynam-
ical features are different in these studied sandpile models
despite their well-known similarity regarding the scaling ex-
ponents of avalanches at adiabatic driving. These findings
indicate that the fundamental principles of SOC—building
the collective behaviours from specific microscopic dynamic
rules—also apply to the pathways towards losing criticality
when the driving conditions are changed. The robust appear-
ance of cycles, even at significant driving rates, indicates that
the collective fluctuations at different scales exist beyond the
scaling of avalanches. Therefore, studies of cyclical trends in
time series of a relevant variable may be utilised as a critical
signature of self-organisation in the underlying dynamics of
many complex systems when interactions and driving forces
are less apparent.
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