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Abstract

Strong confidentiality, integrity, user control, reliability and performance
are critical requirements in privacy-sensitive applications. Such applications
would benefit from a data storage and sharing infrastructure that provides
these properties even in decentralized topologies with untrusted storage back-
ends, but users today are forced to choose between systemic security proper-
ties and system reliability or performance. As an alternative to this status quo
we present UPSS: the user-centric private sharing system, a cryptographic
storage system that can be used as a conventional filesystem or as the foun-
dation for security-sensitive applications such as redaction with integrity and
private revision control. We demonstrate that both the security and perfor-
mance properties of UPSS exceed that of existing cryptographic filesystems
and that its performance is comparable to mature conventional filesystems
— in some cases even superior. Whether used directly via its Rust API or
as a conventional filesystem, UPSS provides strong security and practical
performance on untrusted storage.

Keywords: Cryptographic filesystem, distributed filesystem, private
sharing, redaction, private version control.

1. Introduction

Across a broad spectrum of domains, there is an acute need for private
storage with flexible, granular sharing. Environments as diverse as social net-
working, electronic health records and surveillance data management require
both strong cryptographic protection and fine-grained sharing across security
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boundaries without granting overly-broad access. Existing systems provide
coarse security guarantees or strong performance properties, but rarely both.
Fine-grained, flexible, high-performance sharing of default-private data is still
a challenging problem.

What is needed is a mechanism for least-privileged storage that facilitates
simple discretionary sharing of arbitrary subsets of data, providing strong
confidentiality and integrity properties on commodity cloud services from un-
trusted providers. In the previous years, some cryptographic filesystems have
been developed that store user data on untrusted storage providers. How-
ever, they cannot provide strong security properties nor flexible data sharing.
For example, EncFS [49] and CryFS [38] are cryptographic filesystems that
leave metadata unprotected, or in the latter one, everything is encrypted
with one key. TahoeFS [52] is another cryptographic filesystem with strong
security properties, but its design does not allow flexible and fine-grained
data sharing.

In this paper, we have built UPSS: the user-centric private sharing sys-
tem, which is a “global first” cryptographic filesystem with no assumptions
of trustworthiness for storage infrastructure or even on common definitions
of user identities. Relying on key concepts from capability systems [21],
distributed systems, log-structured filesystems and revision control, we have
developed a new approach to filesystems that offers novel features while being
usable in ways that are compatible with existing applications.

UPSS makes several key contributions to the field of privacy-preserving
filesystems. First, unlike cryptographic filesystems that entangle user and
group identifications and device specification with access controls, UPSS
stores all data as encrypted blocks on untrusted block stores including lo-
cal, network, or cloud block stores, without any mapping between the blocks
or blocks to block owners. Granular access controls are then defined by
higher level applications according to application semantics. Traditional ac-
cess control modalities such as Unix permissions can be implemented by sys-
tems using UPSS, as in the case of our FUSE-based interface, but they are
not encoded in the shared cryptographic filesystem itself. This decoupling
allows the filesystem to be global-first and local-second.

Second, all UPSS blocks can be accessed by cryptographic capabilities [21]
called block pointers consist of block names and their decryption keys that
reduces the burden of key management and simplifies naming; a block pointer
is enough to fetch, decrypt and read a block, with no central key manage-
ment required. Block pointers enable flexible data sharing at the block level
among mutually-distrustful users. They also enable per-block encryption
rather than per-file or per-filesystem encryption, which provides a stronger
security model.
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Third, UPSS enables aggressive and safe caching by defining a multi-
layer caching block store consists of other block stores that guarantee data
consistency between all block stores. The caching block store prioritizes
applying the operations on faster block stores on the cache hierarchy and
processes the operations on slower block stores in the background. Therefore,
the caching block store becomes available immediately despite the number
of layers in the hierarchy or the slowness of higher-level block stores. This
provides performance that exceeds cryptographic filesystems by factors of
1.5–40×.

Finally, UPSS design enables novel security and privacy operations such
as provenance-preserving redaction and private-by-default revision control.

UPSS’ system model and design is described in Section 2. Its security
model is described in Section 3, with specific comparison to the security
properties of both conventional and cryptographic filesystems. Performance
is evaluated in Section 4 via three case studies comparing UPSS to existing
filesystems: local filesystems (Section 4.2), network filesystems (Section 4.3)
and global filesystems (Section 4.4). Finally, novel applications enabled by
UPSS are explored in Section 5, including provenance-preserving redaction
(Section 5.1) and a new model of private revision control (Section 5.2).

2. UPSS system model and design

UPSS is a cloud-first private storage and sharing system. Rather than a
local cryptographic filesystem that projects POSIX assumptions (e.g., file
ownership, user identification and trusted devices) into the cloud, UPSS
starts with the assumptions of untrusted storage and user-directed sharing
via cryptographic capabilities [21]. UPSS can be exposed via FUSE [3] as
a conventional POSIX filesystem, allowing performance comparison to exist-
ing local filesystems, network filesystems and global filesystems, but its most
exciting capabilities are exposed directly through a Rust API.

In this section, we review key elements of the UPSS design, which was
seeded in [17, 15] and expaned in [16], and describe new design elements
that enable practical performance and novel applications that had previously
been envisioned as future work. These elements are visible across four layers
shown in Figure 1: untrusted storage (Section 2.1), an immutable copy-on-
write DAG of blocks (Section 2.2), mutable filesystem objects (Section 2.3)
and two user-visible filesystem interfaces (Section 2.4).

2.1. Untrusted storage

Like all filesystems, UPSS ultimately stores data in fixed-size blocks on
persistent media. Block sizes are all multiples of common physical sector sizes
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and are set by the backing store rather than the client. UPSS uses a default
block size of 4 kiB that can be overridden on a per-store basis. Unlike other
filesystems, all UPSS blocks are encrypted in transit and at rest: plaintext
blocks is only held in memory and never stored to persistent media. Rather
than using per-file or per-filesystem encryption keys, each block is encrypted
with a key kB derived from its plaintext and named by a cryptographic hash
nB of its ciphertext. The 2-tuple (nB, kB) constructs a block pointer as given
in eq. (1).

kB = h(B)

nB = h (EkB{B})
(1)

In this equation, B represents the plaintext contents of a block, which
contains user content and random padding to fill out the fixed-size block,
h is a cryptographic hash function and E is a symmetric-key encryption
algorithm. A block pointer is a cryptographic capability [21] to fetch, decrypt
and read a block’s contents, though not to modify it, as blocks are immutable.
Changing a single byte in the block would change a block’s encryption key
kB, which would change the encrypted version of the block, which would
change its name nB. As a matter of practical implementation, serialized
block pointers also contain metadata about their hashing and encryption
algorithms (typically SHA3 [23] and AES-128 [24]).

Deriving a symmetric encryption key from a block’s contents is an ex-
ample of convergent encryption [22, 32, 7]. Convergent encryption is a
symmetric-key encryption technique in which identical ciphertexts are pro-
duced from identical plaintexts. This technique affords two benefits: a re-
duced burden of key management and the possibility of block (rather than
file) level data deduplication [43, 22]. Deduplication is an important feature
for global-scale information sharing systems in which many users may share
the same content with others. By deduplication, only two extra 4 KiB meta
blocks are required to ingest a 1 GB file to UPSS for the second time with
the same content. However, convergent encrypion and deduplication bring
with themselves some risks that are discussed in Section 3.

2.1.1. Block stores

A narrow API including read, write, block_size and is_persistent
methods is implemented by several types of block stores shown in Figure 1:
in-memory (non-persistent), file-backed, networked, cloud via Amazon S3
[9] or Azure blob storage [39], caching and mirror. The caching and mir-
ror block stores consist of multiple stores, that accomplish different tasks.
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The former enables caching (Section 2.1.2) and the latter handles replication
(Section 2.1.3), both at the block level.

When an encrypted block is stored in a block store, the block store re-
sponds with a block name nB derived using that store’s preferred crypto-
graphic hash algorithm. A block’s name can be used to retrieve the block in
the future without any further authorization — it is a cryptographic capabil-
ity [21]. This approach allows block stores to be oblivious to user identities
and content ownership. Instead, it is a content-addressed store. The operator
of a block store cannot view plaintext content or even directly view metadata
such as file sizes or directory-file relationships. Inference of these relation-
ships is discussed in Section 3, which also describes the stronger privacy and
security properties that UPSS provides relative to other cryptographic and
conventional filesystems.

2.1.2. Caching

The caching block store consists of two other near and far stores and a
journaling mechanism. A near store can be an in-memory block store that
processes the operations faster than a far store that can be a file-backed,
networked, cloud, mirror, or another caching block store. Note that both
near and far stores can be any block stores. By having the caching block
store, UPSS enables building a cache hierarchy as shown in Figure 2. For
storing an encrypted block, the caching block store stores the block to the
near store and journal it to an on-disk file. The journaled blocks will be
processed in the background to be stored to the far store. For reading, the
caching block store tries to read the block from the near store and if it does
not exist (e.g., the near store is an in-memory store which has been cleared),
the block is read from the far store. The confidentiality and immutability of
blocks in a block store enable aggressive yet safe caching, even with remote
storage on untrusted systems. This makes UPSS achieve better performance
results as discussed in Section 4.

A challenging problem with caching data in any information system is
handling inconsistencies; a block’s content can be updated in a cache while
not in other locations. However, UPSS avoids any cache inconsistencies and
reduces this problem to a version control problem by the immutable nature
and cryptographic naming of the stored blocks. A block may be present
within or absent from a store, but it cannot be inconsistent between two
stores: even the smallest inconsistency in content would cause the blocks to
have different cryptographic names.
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Figure 2: A caching hierarchy of untrusted block stores.

2.1.3. Data availability via replication

The mirror block store handles data replication across multiple block
stores. For storing an encrypted block, the mirror block store replicates
the block to all block stores in parallel and returns the block name upon
successful replication. For reading, the mirror block store queries the block
by its name from all block stores in parallel and returns the block from a
block store that responds faster and ignores other block store responses.

2.2. Immutable DAGs

UPSS uses directed acyclic graphs (DAGs) of immutable blocks to rep-
resent files and directories. Relationships among blocks are specified by
Version objects that describe arbitrary-length collection of immutable blocks,
each accessible by their block pointers. As shown in Figure 3, multiple
Version objects can reference underlying immutable blocks, facilitating the
copy-on-write modification of files and directories described in Section 2.3.
Version objects are themselves stored in UPSS blocks, allowing them to be
named according to their cryptographic hashes. For files smaller than 100
kiB, a Version fits in a single UPSS block. A Version may contain a block
pointer to a previous Version, and thus a Version can be used as a Merkle
tree [37] (more precisely, a Merkle DAG) that represents an arbitrary number
of versions of an arbitrary quantity of immutable content.

This use of Merkle DAGs reduces the problem of data consistency to
that of version control: it is possible for two files to contain different blocks,
but not two variations of the “same” block. It is left to the user of these
immutable DAGs to provide mutable filesystem objects using copy-on-write
(CoW) semantics and to ensure that new blocks are appropriately pushed to
backend block stores.
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Figure 3: Two sequential Version objects that reference two common blocks and one
diverging block.

2.3. Mutable filesystem objects

Conventional mutable filesystem objects (files and directories) are pro-
vided by UPSS by mapping arrays of bytes into mutable Blob objects. These
objects maintain copy-on-write (CoW) references to underlying blocks and
versions. Non-traditional objects such as structured binary key-value data
structures are also possible using multiple blobs and versions.

A Blob manages an array of bytes via copy-on-write block references,
starting from an empty sequence of blocks and permitting operations such
as truncation, appending and random-access reading and writing. A Blob
accumulates edits against an immutable Version in an “edit session” [10]
until a file or directory is persisted into a new immutable Version. This
allows UPSS to accumulate write operations and batch them into aggregate
CoW operations.

Files and directories are both backed by Blob objects, and both can be
explicitly persisted to backing storage via API calls persist() and name(),
which persists an object and returns its block pointer. A file version can be
named by a block pointer to its Version object which represents the file’s
content and, optionally, history. A directory is represented as a sequence
of directory entries, each of which maps a unique, user-meaningful name
to a filesystem object (file or directory). A directory can be persisted by
serializing its entries into a Version that is named by a block pointer. Thus,
directories are also Merkle DAGs that reference the lower-level Merkle DAGs
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of other file and directory objects. Figure 4 shows an example of a directory
hierarchy in UPSS. In this example, upon persisting, a’s content is stored into
encrypted blocks and their block pointers are added to a’s Version structure
and the Version is stored in encrypted blocks as well and its block pointer
is included in a’s parent directory entries.

Cryptographic hashes are computed and blocks encrypted when files and
directories are persisted, making persisting one of the most expensive oper-
ations in UPSS. Tracking chains of Version objects in addition to content
makes both the time and storage requirements for persistence superlinear. It
is, therefore, only done when requested via the API or, in the case of UPSS-
FUSE, every 5 s. The time required to persist 4 kiB files after n filesystem
operations is shown in Figure 5. Based on our measurement results, the
total space st required in a block store to store s bytes of content follows
Equation (2).

st = (1.09 + 0.001613 s) s (2)

2.3.1. Mutation and versioning

Naming all filesystem objects by block pointers to Version structures
introduce new challenges to handling modifications. Whenever a file or di-
rectory is modified in a directory hierarchy, a new block pointer is generated
that should be updated in the object’s parent entries , and this update should
be applied up to the root directory. In order to handle updates efficiently,
every file and directory object keeps an Updater object, which is a reference
to its parent in-memory object. Upon modification and persisting, an ob-
ject notifies its Updater about its new block pointer and the parent object is
modified to reflect the child’s new version. Similar requirements for updating
of parents exist in other CoW filesystems such as ZFS [14], but the case of a
global CoW filesystem such as UPSS is more challenging than that of local
filesystems. In a local CoW filesystem, it is possible for the filesystem imple-
mentation to be aware of all concurrent uses of a parent directory, including
by multiple users. In a global filesystem, however, not all uses of a parent
directory are visible to a local host. UPSS therefore, treats every update to a
filesystem subtree as a potential versioning operation, allowing new directory
snapshots to be created and shared as described in section 2.3.2; versions can
be integrated at the level of filesystem interfaces as described in section 2.4.

2.3.2. Snapshot and sharing

As a copy-on-write filesystem, UPSS provides cheap snapshots of previous
versions. UPSS creates snapshots whenever requested via sync(2), fsync(2)
or the UNIX sync(1) command, or in case of FUSE (filesystem in user
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space) wrapper, by querying a directory’s cryptographic name with POSIX
extended attributes, or in case of UPSS API, by calling persist() or name
() methods. As shown in Listing 1, extended attributes can be queried to
retrieve the cryptographic hash or serialized block pointer of any UPSS file
or directory. Exposing serialized block pointers to users facilitates sharing
of file and directory snapshots from user to user, including sharing from
UPSS FUSE wrapper snapshots to users employing the UPSS CLI. Also,
this allows users to check integrity guarantees over file and directory Merkle
DAGs, facilitating blockchain-like applications.

As a user-empowering sharing system, these snapshots can be quickly
shared with other users for read-only access: user a need only share the
block pointer to a file or directory with user b, and user b will be able to
retrieve the content from a block store and decrypt it. Since block pointers
correspond to immutable blocks, user b cannot modify the shared block.
Upon modification, a new block is generated with a new block pointer and
user a still has access to the unmodified shared block.

2.4. File access interfaces

Users can access an UPSS filesystem via a variety of interfaces, including a
Rust API which can be compiled to WebAssembly, a command-line interface
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% attr -g hash mnt/some -dir
sha3 -512: hdd3P80hjERoF1PO9ezuOEQQwG/Goey2Up5je ...
% attr -g bp mnt/some -file
4250014222000000000000018 e01011e47605fef888cc6 ...
% upss --store=store.dat get 42500142220000000...
This is some file content!

Listing 1: Retrieving cryptographic file information via a POSIX extended attribute and
use it in the UPSS CLI.

Table 1: A list of commands available via UPSS CLI.

Command Description

upss init Initialize an empty filesystem
upss ls List the files at a particular path
upss info Verbose information about a path
upss touch Create a file at a path
upss mkdir Create a directory at a path
upss append Append to a file
upss store Store a file at a path within UPSS
upss history Prints a history of the file revisions
upss name Get a file’s block pointer in a path
upss names List the file block pointers in a path
upss get Get an UPSS file’s content
upss get-path Get file’s name by its block pointer

and a FUSE (Filesystems in Userspace) interface. Unlike many filesystems,
any UPSS directory can be treated as the root directory of a filesystem.
Within a directory hierarchy, a user may persist any subdirectory to retrieve
a block pointer to an immutable version of it. That version may then be used
as the basis for further filesystem operations including mounting, mutating
and further sharing. When new versions of files and directories are generated,
parent directories are updated until a new root directory version is created.
Storing the block pointer of that new root directory is the responsibility of an
UPSS client (API, CLI, FUSE or future native VFS implementation). The
UPSS CLI and FUSE clients both store this information in a local passphrase-
protected file as per PKCS #5 Version 2.0 [27] for interoperability. Table 1
shows a list of commands that are supported by UPSS CLI.

Direct API invocation provides clear performance benefits when com-
pared to FUSE-based wrapping. As shown in Figure 6, directly invoking
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a local or remote block store. The average number of operations per 60 seconds is reported
for five runs; error bars show standard deviation.

the UPSS API yields higher performance than using a FUSE wrapper with
the same storage backend. For two of the four microbenchmarks described
in Section 4.1, the cost of the FUSE wrapper exceeds that of the cost of
communicating with a remote blockstore via direct UPSS API.

3. Security model

UPSS is designed to provide a new approach to private data storage and
sharing, enabling both strong security properties and simple sharing across
systems and users.

Other cryptographic filesystems take a variety of approaches to encryp-
tion. EncFS [49] and NCryptFS [53] employ encryption for file content but
not the filesystem itself, e.g., directory structure. Systems such as CryFS [38]
protect the entire filesystem with a single encryption key, which has two im-
plications. Firstly, it implies strong filesystem boundaries and precludes safe
subset sharing: the unit of possible sharing in the system is a filesystem,
not a file. This may not match a user’s desired sharing granularity, in which
files or directory-oriented bundles of content may be passed among multiple
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users or systems. Secondly, this coarse-grained use of encryption increases
the value of one specific encryption key, making it a more attractive target for
attackers. In contrast to these systems, UPSS encrypts data using per-block
keys derived from block content. This removes the need for separate storage
of keys as security metadata and reduces the value to an attacker of any
single encryption key. Encryption keys in UPSS are not considered secret
to authorized users: a user who is authorized to read a file is authorized to
learn the key that was used in the reading process since that key is not used
to protect other information.

Commonly-used cloud-based storage systems allow storage providers to
examine users’ plaintext directly. In contrast to these systems, backend block
store providers in UPSS are only able to see a sea of encrypted blocks from
users. Encryption is performed on the client side, so users’ software can
ensure that plaintext is never exposed to storage providers. In addition to
hiding file content, this sea-of-encrypted-blocks approach to backend storage
ensures that metadata such as file sizes and directory structures are not re-
vealed explicitly to storage providers. Providers could perform traffic analysis
to infer relationships among various blocks, but only at significant compu-
tational cost. Even this threat could be addressed by the use of oblivious
transfer techniques such as ORAM, but other large-scale distributed systems
that support such techniques have disabled them due to unwarranted cost [5].

In addition to inferring relationships among encrypted blocks, it is also
possible for a malicious block store to attack the availability of blocks by
refusing to serve them when requested, or by delaying that service, or by
serving incorrect blocks, however, the client can independently verify their
correctness by checking their cryptographic hash against the received blocks.
Therefore, UPSS does not rely on a consensus of storage nodes.

Convergent encryption, first used in Farsite [6], provides clear benefits to
UPSS in terms of de-duplication and key management, but it can also in-
troduce risks that are not present in traditional cryptosystems. Convergent
encryption is a deterministic encryption model, but the traditional objective
of indistinguishability under chosen plaintext attack (IND-CPA) forbids de-
terminism in encryption. Convergent encryption can therefore be used to
reveal whether or not a given plaintext has previously been encrypted and
stored in the content addressable storage: an attacker can encrypt a plain-
text, present the ciphertext to a block store and use timing or other response
information to determine whether that block has previously been stored.
Worse still, näıve forms of convergent encryption would allow an attacker
to guess variations on a known format (user=1000, user=1001, etc.) to test
whether any such variations have previously been stored.

UPSS addresses these concerns by appending random padding to plain-
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text blocks to bring them to the fixed block size. Small blocks of user data,
those that most need protection from guessing attacks, are padded with high-
entropy random bits. Full blocks of user data, such as content from shared
media files, do not require padding, allowing such files to enjoy deduplica-
tion. Confirmation of a large existing block is still possible, but not via
guessing attacks due to the block sizes involved. Also, identification of the
users who have stored a particular block is protected: no user can be associ-
ated with the content. By default, any block of plaintext data that is smaller
than the fixed block size will have random padding appended, although it is
also possible to employ fully deterministic encryption if the known weakness
of convergent encryption are not a concern. For example, a typical AWS
credential file with a known access key will have sK = 72B of data that
could be known to the attacker and ss = 40B of Base64-encoded secret key
that the attacker would like to guess. UPSS will append sp = 3, 984B of
random padding to this data on encryption, which is almost 32,000 high-
entropy bits. A brute-force attack against such a block, containing a known
access key, may be attempted using a fixed sK = 72B and varying the other
4,024B. This attack would be expected to succeed after 232,191 attempts, as
shown in eq. (3). This compares favourably to the 2239 attempts that would
be required to brute-force the AWS secret key itself.

Eguesses =
1

2
· 28(ss+sp)

= 28(40+3,984)−1

= 232,191

(3)

UPSS does not explicitly represent users or user identities. This allows
applications or clients to bring their own user model to the filesystem and
avoid the limitations of system-local users, as in systems that project lo-
cal filesystems to a multi-system context, e.g., multi-user EncFS [31]). The
UPSS FUSE interface allows a single user to mount an UPSS directory and
manipulate it like an external drive; the UPSS CLI allows any user with
local permissions for the file containing the root block pointer to update it
accordingly. Multiple users on separate systems can share a backend block
store without interference, but the common block store permits efficient shar-
ing among systems and users. Higher-level applications can bring their own
concepts of users and sharing semantics to the UPSS filesystem: application
channels can be used to share block pointers to content and new versions of
content can be shared back.

The judicious use of full-filesystem, per-block convergent encryption al-
lows UPSS to employ untrusted storage backends that can scale to the largest
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of workloads without revealing user data or metadata. Its user-agnostic ap-
proach allows it to be employed within applications and in a range of uses
from a local filesystem to a global sharing system.

4. Performance evaluation

In this section, we demonstrate the practicality of UPSS as a local filesys-
tem (Section 4.2), a network filesystem (Section 4.3) and a global filesys-
tem (Section 4.4). Although UPSS achieves its best performance when ac-
cessed via API rather than FUSE, employing the FUSE interface allows us
to directly compare its performance with the performance of extant systems.
These performance comparisons are completed using a suite of microbench-
marks and one FileBench-inspired macrobenchmark.

4.1. Benchmark description

We have compared the performance of UPSS with other systems using
both custom microbenchmarks and a Filebench-inspired benchmark. All
benchmarks were executed on a 4-core, 8-thread 3.6 GHz Intel Core-i7-4790
processor with 24 GiB of RAM and 1 TB of ATA 7200 RPM magnetic
disk, running Ubuntu Linux 4.15.0-72-generic. Remote block stores, where
employed, used machines with different configurations as described in Sec-
tion 4.3.

For microbenchmarking, we evaluated the cost of creating files and di-
rectories and reading and writing from/into on-disk local and remote block
stores. For evaluating file and directory creation, we generated a user-defined
number of files and directories, added them to an ephemeral root directory
and persisted the results into file-backed block stores. To evaluate read and
write operations, we generated 1000 files filled with random data of size
4 KiB, the natural block size of our underlying storage, select a file randomly
and performed sequential read and write operations on it.

We also implemented a macrobenchmark that simulates more complex
behaviour. In this benchmark, we selected a file randomly from a set of
files and performed 10 consecutive read and write operations with different
I/O sizes: 4 KiB, 256 KiB, 512 KiB and 1 MiB. The building blocks of this
benchmark were inspired by the Filebench framework [1], but Filebench itself
could not produce the fine-grained timing information used to produce the
figures shown in Sections 4.2.2, 4.3 and 4.4.1.

4.2. UPSS as a local filesystem

Direct usage of the UPSS API requires program modification — and,
today, the use of a specific programming language. In order to expose the
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benefits of UPSS to a wider range of software, we have implemented a filesys-
tem in userspace (FUSE) [3] wrapper that exposes UPSS objects to other
applications via a hook into the Unix VFS layer. The challenge here is pic-
turing UPSS’s global view of encrypted blocks to a local view of files and
directories that can be accessed via FUSE inode numbers. To tackle this,
UPSS-FUSE uses a mapping from FUSE inode numbers to in-memory UPSS
objects to service VFS requests, as shown in Figure 7. This allows conven-
tional applications to access an UPSS directory mounted as a Unix directory
with POSIX semantics, though there is one unsupportable feature: hard
links. Hard links are defined within the context of a single filesystem, but
UPSS is designed to allow any directory to be shared as a root directory of
a filesystem. Owing to this design choice, it is impossible to provide typical
hard link semantics and, e.g., update all parents of a modified file so that
they can perform their own copy-on-write updates (see Section 2.3). There-
fore, we do not provide support for hard links — a common design choice in
network file systems such as NFS.

The UPSS-FUSE wrapper exposes an ephemeral plaintext view of an
UPSS’s directory underneath a Unix mount point, allowing conventional file
and directory access, while keeping all data and metadata encrypted at rest in
a local or remote block store (see Section 2.1). Unlike existing cryptographic
filesystems such as NCryptFS [53] and EncFS [31, 49], no plaintext directory
structure is left behind in the mount point after the filesystem has been
unmounted.

4.2.1. Consistency

In order to provide data consistency, UPSS-FUSE requests that UPSS
persist a “dirty” — i.e., modified — root directory every five seconds, or
after a tunable number of dirty objects require persisting. As described in
Section 2.3, persisting a Directory object causes its versioned children to be
recursively persisted (if dirty), after which the cryptographic block pointer
for the new root directory version can be stored in the UPSS-FUSE metadata
file. This root block pointer is the only metadata that UPSS-FUSE needs to
mount the filesystem again. The block pointer size is 80 bytes as the defualt
hashing and encryption algorithm in UPSS are SHA3-512 and AES-128 re-
spectively. As in other copy-on-write filesystems, the cost of persisting an
entire filesystem depends on the amount of “dirty” content in the filesystem.
The trade-off between the demand for frequent data synchronization and the
requirement for more frequent — though smaller — persistence operations
is illustrated in Figure 8.
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Figure 7: UPSS-FUSE exposes a UPSS directory to POSIX applications via an in-kernel
FUSE device.

4.2.2. Performance comparisons

To illustrate the performance of UPSS when used as a conventional lo-
cal filesystem, we compared UPSS-FUSE with the cryptographic filesystems
CryFS [38] and EncFS [31, 49], also based on FUSE, as well as the mature,
heavily-optimized ZFS [14]. ZFS is not a cryptographic filesystem designed
for fine-grained confidentiality, but it does share some design elements with
UPSS: it is a log-structured filesystem with copy-on-write updates that uses
cryptographic hashes to name blocks. In contrast to UPSS-FUSE, ZFS has
been extensively optimized over the past two decades to become a high-
performance, widely-deployed filesystem.

We mounted each of these four filesystems on different paths in the
Linux host referenced in Section 4.1 and ran four microbenchmarks to test
their speed in creating empty directories (MakeDir), creating empty files
(MakeFile), reading randomly select files sequentially including 4 KiB of
data (ReadFile) and writing random data to files (WriteFile).
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Figure 8: Performance of 4 kiB operations vs sync frequency (in number of dirty objects)
over five runs.

Each of these four operations was run 100k and the behaviour of the
filesystems were reported in Figure 9. In these plots, the x-axis represents
the time needed to complete all 100k operations. UPSS outperforms EncFS
and CryFS for all operations, with performance especially exceeding these
existing systems in the critical read and write benchmarks. As might be
expected, ZFS significantly outperforms UPSS in all benchmarks, with read
performance 3× and write performance 10.9× faster than UPSS-FUSE. In
UPSS-FUSE, creating files and directories have the same cost, as they are
both backed by empty collections of blocks. We also note that UPSS-FUSE
performs 1.47 − 41.6× more operations per second in various benchmarks
than CryFS and EncFS while also providing stronger security properties (see
Section 6). This is due to our design choice that the requests are served
from the mapped in-memory objects that are persisted periodically, if dirty.
Therefore, expensive persist operations can be done quickly: with little ac-
cumulation of dirty state, less synchronous persistence work is required.

These plots show the bursty nature of real filesystems, and in the case of
CryFS, they reveal performance that scales poorly as the number of requested
operations increases. Much of the bursty nature of these plots derives from
how each filesystem synchronizes data to disk. For example, by default,
ZFS synchronizes data every 5 s or when 64MiB of data has accumulated to
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Figure 9: Performance comparison of UPSS-FUSE with CryFS, EncFS and ZFS. Bench-
marks were run for 100 kops.

sync, whichever comes first. Similarly, to provide a fair comparison, UPSS-
FUSE is configured to synchronize after 5 s or 15,000 writes (close to 64MiB
of data when using 4 KiB blocks). These periodic synchronizations cause
performance to drop, even on dedicated computers with quiescent networks
and limited process trees.

4.2.3. Macro-benchmark

We ran the macrobenchmark described in Section 4.1 on UPSS-FUSE,
CryFS, EncFs and ZFS, to evaluate UPSS-FUSE in a simulation in which
consecutive read and write operations with different I/O sizes are performed
on different files. The results are reported in Figure 10. As in our mi-
crobenchmarks, ZFS outperforms the other filesystems for different I/O sizes.
UPSS-FUSE achieved better results than CryFS and EncFS for the 4 KiB
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case. However, as the I/O size increases, CryFS outperforms UPSS-FUSE.
The larger the I/O operation, the more fixed-sized blocks are generated by
UPSS-FUSE, each of which needs to be encrypted with a different key and
persisted. In CryFS, however, all the fixed-size blocks related to a file are
encrypted with the same symmetric key. This causes better performance for
larger files, but at the same time makes CryFS inapplicable to the partial
sharing and redaction use cases that can be supported by UPSS. UPSS has
been designed for small block sizes (typically 4 kiB), as decades of research
has shown that filesystems mostly contain small files [42, 11, 30].
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Figure 10: Performance of CryFS, EncFS, UPSS-FUSE and ZFS for the macrobenchmark.
The numbers are the average of KiB of I/O per second for five runs, each 60 seconds along
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4.3. UPSS as a network filesystem

Although UPSS can be used as a local filesystem, it is primarily designed
as a system for sharing data across networks with untrusted storage providers.
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UPSS’ use of encrypted block stores, in which confidentiality and integrity of
these blocks’ content are assured by clients and not servers, allows us to build
a block store in which a centralized server exploits high-quality network links
to transfer large numbers of encrypted blocks — the data plane — regardless
of what block pointers are shared between users — the control plane. This
design is amenable to multi-layer caching, as described in Section 2.1. Thus,
we have compared the performance of UPSS-FUSE when connected to a
remote block store to that of SSHFS [51] and the venerable NFS [46].

4.3.1. Performance comparison

As in Section 4.2.2, we evaluated the performance of UPSS by mounting
an UPSS-FUSE filesystem in a Unix mount point and comparing it to other
filesystems using four microbenchmarks. In this section, however, we con-
nected our UPSS-FUSE filesystem to a remote block store and compared our
performance results against two other remote filesystems: the FUSE-based
SSHFS [51] and the venerable NFS [46]. Similar to Section 4.2.2, one com-
parison filesystem is primarily designed for security and the other has higher
performance after a long history of performance optimization.

The remote block store server was run on a 4-core, 2.2 GHz Xeon E5-
2407 processor with 16 GiB of RAM and 1 TB of magnetic disk, running
FreeBSD 12.1-RELEASE. The client machine, that runs UPSS-FUSE, is a
4-core, 3.5 GHz Xeon E3-1240 v5 processor with 32 GiB of RAM and 1 TB
of magnetic disk, running Ubuntu Linux 16.04. The client and server were
connected via a dedicated gigabit switch. Figure 11 shows the behaviour
of the benchmarked filesystems when executing 100k MakeDir, MakeFile,
Read and Write operations.

UPSS outperforms SSHFS and even NFS for MakeDir, MakeFile and
Read operations and for Write, it achieves comparable results. For the
Read benchmark, UPSS-FUSE has a slow start as encrypted blocks are
read from the remote block store and are loaded into memory. After files are
loaded into memory, other read operations are served from the in-memory ob-
jects. This causes UPSS-FUSE to be about 5× faster than NFS in the Read
benchmark, validating UPSS-FUSE’s approach to encrypted block storage
and the safe and aggressive caching it enables.

4.4. UPSS as a global filesystem

In addition to local and network filesystem, UPSS-FUSE can also be con-
nected to untrusted cloud storage providers. To do so, we have implemented
an UPSS block store backed in the Amazon S3 service [9] and compared its
performance with S3FS [25], Perkeep [33] and UtahFS [4, 5].
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Figure 11: Performance comparison of UPSS-FUSE-network, NFS and SSHFS. Bench-
marks were run for 100 kops.
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4.4.1. Performance comparison

We mounted UPSS-FUSE backed with the Amazon block store (with and
without local caching), S3FS, Perkeep and UtahFS in different Unix mount
points and compared them using our four microbenchmarks. S3FS allows
Linux and macOS to mount an Amazon S3 bucket via FUSE without any
security properties. Perkeep, formerly called Camlistore, is a FUSE-based
cryptographic filesystem that can be backed by memory, local or cloud stor-
age. UtahFS which is in its initial stage of development, stores encrypted
data on untrusted cloud storage. We mounted UtahFS without Path ORAM
that hides the access patterns, as it degrades the performance [5]. Having
the Path ORAM enabled, the Write benchmark runs 18.59× slower. We
configured Perkeep and UtahFS to use an Amazon S3 account for our eval-
uation.

We ran the benchmarks discussed in Section 4.2.2 with 5k MakeDir,
MakeFile, Read and Write operations and the behaviours of UPSS-FUSE-
network, S3FS, Perkeep and UtahFS during time are reported in Figure 12.
In all of these cases, Amazon S3’s response time is the bottleneck. To have a
fair comparison, we ran the benchmarks for UPSS-FUSE with and without
caching. With caching enabled, we write the encrypted blocks in a caching
block store and journal the blocks to an on-disk file, then we write to Ama-
zon S3 bucket by processing the journal using a background thread. This
makes a large difference in the number of operations that can be done by
UPSS-FUSE as a global filesystem in comparison with S3FS, Perkeep and
UtahFS (Figure 12a). In Figure 12b, we disabled caching and persisted the
content just before the benchmark script is finished so that the content is
ready to be read from the Amazon block store. Even without caching and
having the content persisted to the Amazon block store, UPSS-FUSE out-
performs the other three filesystems by factors of 10–8,000. These results
show that the cryptographic foundation of UPSS provides, not just strong
security properties, but a foundation for aggressive caching that would be
unsafe in a system that does not use cryptographic naming.

5. UPSS: a foundation for novel applications

The performance of UPSS can be compared to extant filesystems using
UPSS-FUSE, but the most compelling aspects of UPSS are in the novel
system designs it can enable. In this section we describe the possibility of new
content-sharing systems that provide redaction with integrity (Section 5.1)
and private-by-default version control (Section 5.2) based on UPSS’s unique
characteristics.
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Figure 12: Performance comparison of UPSS-FUSE-global, S3FS, Perkeep and UtahFS.
Owing to long read and write delays for comparison filesystems, benchmarks were run for
5 kops rather than 100 kops.
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5.1. Redaction with integrity

Organizational settings with strong privacy and security requirements
often necessitate the redaction of documents before sharing or disclosing
them. Redaction is not supported by conventional filesystems, but UPSS’s
design allows redaction to be made explicit, and for relationships between
unredacted and redacted versions to be tracked, allowing a digital “chain
of custody” even for redacted documents. By constructing a Version for a
file containing full block pointers (block name and key) for some blocks but
only block names for others, it is possible to maintain a full Merkle DAG for
blind content. The prev pointer in the redacted Version also contains just
the block name of the original Version. Therefore, a user that has access
to a redacted file can reference the version it was derived from but cannot
read the unredacted version. The redacted version can be modified and those
changes fed back to the original while maintaining file or directory integrity.

An UPSS object’s redact method takes two offsets specifying the range
to be redacted and returns a new file or directory object. Listing 2 shows how
the second block of a four-block file can be redacted, with the last block of
the redacted file then modified, and new bytes finally added to the redacted
file. The diff method then finds differences between the original and the
redacted file.

We evaluated redaction performance by creating 10 MB files and redact-
ing half of their content starting from a random offset. We compared UPSS-
FUSE performance with a local block store to the filesystems discussed in
Section 4.2.2 (ZFS, EncFS and CryFS). Since these filesystems do not sup-
port redaction, we simulated redaction in them by zeroing out bytes in the
file, yielding the results in Figure 13. In this figure, UPSS outperforms even
filesystems with weaker security properties, although ZFS still shows its ma-
turity and level of optimization (albeit with no confidentiality enabled).

5.2. UVC: UPSS Version Control System

The construction of UPSS with its underlying DAG of immutable blocks
resembles extant filesystems such as ZFS, but also distributed revision con-
trol systems such as Git [34]. The Ori filesystem explicitly reduces the file
consistency problem to a version control problem, like UPSS [35], but like
Git, it does not provide confidentiality guarantees. UPSS provides an op-
portunity to create a least-privileged revision control system that treats all
data as private by default unless explicitly shared, leveraging UPSS’s under-
lying structure to represent immutable versions efficiently. We have begun
to prototype such a revision control system, UVC: UPSS Version Control
System. Its implementation is incomplete — it does not, for example, au-
thenticate users or make access control decisions about them. However, it is
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let f = get_a_file ()?;
f.write(& four_blocks)?;

let redacted = f.redact (4096, 4096 + 4095)?;
redacted.set_offset(end - 16)?;
redacted.write("the edited bytes".as_bytes ())?;
redacted.write("added bytes".as_bytes ())?;
f.diff(redacted)?;

Listing 2: An example of redacting a file and process diff on the original and redacted file.

--- a/file
+++ b/file

@@ -4096 ,4096 +4096 ,4096 @@
+++ Redacted

@@ -16368,16 +16368 ,16 @@
- "JUG47744NENOJPVW"
+ "the edited bytes"

@@ -16384,0 +16384 ,11 @@
+ "added bytes"

Listing 3: Output of executing Listing 2.

complete enough to provide initial performance evaluation that demonstrates
the strong utility of UPSS as a basis for such a revision control system.

In UVC, a client program uses UPSS directories to manage a tree of
source code via the UPSS API and generate Version objects. Block pointers
to these Version objects can then be pushed to a repository that serializes
incoming changes from multiple clients into a linear sequence of repository
versions. New directory versions that are based on the current repository
version can be accepted and treated as the new repository version; directory
versions that are not based on the current version are rejected. As in Git,
such rejected “push” operations reveal a need for the client to pull the current
respository version and rebase their work on it. All clients and the repository
server share a remote block store, which stores encrypted blocks named by
cryptographic hashes.

For our evaluation, we started with an empty repository and added a
variable number of source files from the Linux kernel to our repository, using
a UVC add operation or Git’s equivalent sequence add and commit. Finally,
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Figure 13: Redaction performance as compared with CryFS, EncFS and ZFS (which zero
out rather than redact content). Average of 100 runs with standard deviation.

we pushed revisions to the remote repository. The “remote” block store was
run on the local machine, as was the Git “remote”, to remove networking
costs from our comparative measurements. This procedure was repeated for
increasing number of Linux source files, up to the first 1,024 files in the Linux
kernel source tree, representing 18MB of source code. The time required to
complete these operations is shown in Figure 14.

Despite the additional computational effort required to encrypt all of
the data transferred through UVC, Figure 14 shows that it was less than
1 s slower than the mature, intensively-optimised Git for all measurements,
with approximately a 2× slowdown for a very large add-and-push operation.
Writing data to the remote block store is the most time-consuming phase of
our push procedure; we anticipate that future multi-threaded communica-
tion with the block store will substantially improve performance. The “in-
memory” line in Figure 14 shows the lower bound of potential cost: preparing
commits but not sending blocks to the remote store. Figure 15 shows the
time required to clone a remote repository for both Git and UVC. In this
read-only case, UVC’s performance is substantially closer to that of Git, as
fewer UPSS-specific operations (persisting, hashing plaintext and hashing
ciphertext) need to be performed.

Together, these results demonstrate that UPSS’s security model provides
a practical foundation for distributed revision control with far stronger secu-
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Figure 14: Time required to add and push files to remote UVC and Git repositories.
Results show the average and standard deviation of five runs.

rity properties than today’s conventional revision control systems, yet with
performance approaching that of mature, heavily-optimised systems. UVC
is not (yet) a fully-functional replacement for Git, but it demonstrates the
utility of UPSS’s approach.

6. Related work

The CFS [20], Coda [43],Ivy [40], and FARSITE [6] filesystems provide
availability for user data stored on dedicated servers in a distributed envi-
ronment along with other features such as disconnected operations, content-
addressable storage and log-structured systems. Coda introduced an au-
tomatic conflict resolution that can detect most but not all the classes of
conflicts. Ivy also introduced a conflict detector called lc that notifies users
about conflicts. Similar to UPSS-FUSE, FARSITE, which is a decentralized
network filesystem, uses convergent encryption [22, 32, 7] to protect user
data. As CFS, Coda and Ivy are non-cryptographic filesystems, they cannot
rely on untrusted storage servers. On the other hand, the access control lists
in FARSITE, which is a cryptographic fileystem, is not completely decoupled
from user data; therefore, higher level applications cannot define their own
policies, as it is possible in UPSS.
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Several filesystems have been designed for untrusted cloud settings, such
as NCryptFS [53], EncFS [49], OutFS [28] and CryFS [38]. NCryptFS and
EncFS are cryptographic filesystems, which protect content by encrypting
files, but leave filesystem metadata such as the directory structure unpro-
tected. CryFS and OutFS solve this problem by splitting all filesystem data
into fixed-size blocks and encrypting each block individually. CryFs uses
one key for all encryptions, but OutFS generates separate keys per file. The
creators of EncFS expanded their work to make it a multi-user filesystem by
applying Unix local permissions to the encrypted files before being stored
on remote servers [31]. However, EncFS and OutFS are not practical for
multi-user environments with non-local users.

CageCoach [18] is another distributed and cryptographic filesystem that
builds on features of UPSS that were introduced in [17]. CageCoach makes
the first step towards partial sharing via redaction over encrypted read-only
data. CageCoach is, as yet, a pre-publication prototype under development.

Ori [35], IPFS [12] and Perkeep [33] (formerly known as Camlistore) con-
nect multiple devices with a filesystem that users can access anywhere. IPFS
synthesizes key ideas from DHTs [48], BitTorrent [19], Git [34] and self-
certifying pathnames [36] to create a peer-to-peer version-controlled filesys-
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tem. Both Ori and IPFS reduce the data inconsistency problem to a version
control problem by storing new versions of files upon modification; Ori han-
dles updates with the CoW technique. Synchronization, failures handling,
data recovery and sharing/grafting are key Ori features. Perkeep uses open
protocols to create a unified store for user data from different sources such as
Twitter or a local hard drive. Similar to UPSS-FUSE, Perkeep can be backed
by a memory store, a local store or a cloud account. However, none of Ori,
IPFS or Perkeep provide a mechanism for sharing redacted file and directory
hierarchies. Moreover, Perkeep leaves the directory structure unprotected on
the backing service.

MetaSync [26] and DepSky [13] are synchronization services that store
confidential data on untrusted cloud storage providers. MetaSync synchro-
nizes multiple cloud storage providers using pPaxos and a deterministic repli-
cation algorithm to maintain a globally consistent view of the synchronized
files. DepSky provides availability, integrity and confidentiality of data stored
on four different cloud storage servers, replicated by quorum techniques. It
uses symmetric-key encryption and distributes the key between clouds using
a secret sharing scheme, so no individual cloud service can recover the key
alone. However, these two systems cannot be used as a platform for novel
applications that UPSS can support and they just synchronize multiple cloud
services.

Tahoe [52] and UtahFS [4] are cryptographic filesystems with the goal
of storing user data on untrusted storage servers. As in UPSS, Tahoe and
UtahFS store content encrypted in Merkle DAGs and provide access con-
trol by cryptographic capabilities. Unlike UPSS, however, Tahoe’s replica-
oriented design lends itself more readily to storage of shared immutable data
than to the use cases of a general-purpose filesystem. In Tahoe, files are
encrypted with a symmetric key, the ciphertext is erasure-coded using Reed-
Solomon codes [41] and split into N shares to be written to N servers. Mu-
table files are signed and verified with a public/private key pair, which is
stored alongside the file. Mutation of the file requires knowledge of this
private key, and mutation by multiple collaborators can cause data inconsis-
tency. Furthermore, mutation requires copying and encrypting entire files,
which does not lend itself to the frequent mutation that is found in practical
filesystems. By contrast, UPSS’s blocks, block pointers and Version struc-
ture allow arbitrarily-small ranges of files to be mutated frequently without
overly-zealous copying or re-encryption. UtahFS encrypts files with one sym-
metric key; files larger than a predefined size are broken into fixed-size blocks.
UtahFS supports hiding access patterns by Path ORAM [47], but this feature
is disabled by default as it degrades performance significantly [5].
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7. Future work

7.1. FFI

Currently, applications integrating the UPSS library access it via Rust
linkage and calling conventions [50]. However, UPSS supports compilation
into WebAssembly [2]; this will allow us to explore Web-based experiences
in which user data is decrypted within a user’s browser only. In the future
we will also support other programming languages such as C and Python via
foreign function interfaces.

7.2. Structured files.

Files in classical filesystems are unstructured byte arrays. However, the
internal DAG structure of UPSS blocks should allow UPSS to naturally de-
fine structured files to better represent complex data without serialization
or deserialization [8]. In this way, multi-user data on different replicas are
guaranteed to be in the same state, without data loss and without requiring
users to resolve conflicts manually. Automatic filesystem-level conflict reso-
lution has been explored before in filesystems such as Coda [43], but UPSS’
internal block structure naturally lends itself to a reinvigorated exploration
of these ideas, defining files as Conflict-free Replicated Data Types (CRDT)
[29, 45, 44].

7.3. Blind auditing

Systems in security- and privacy-conscious settings require the ability to
audit accesses to data, ideally without opening a large attack surface by
exposing all plaintext data to auditors. Treating backend storage as a sea
of encrypted blocks provides an opportunity for auditing accesses to data
without revealing that data to auditors: users might authenticate to a future
block store to allow their access patterns to be observed without revealing
private data. In such an environment, authorization systems could produce
sets of permissible-to-access blocks to be compared with actual block ac-
cesses, and “honeypot” records could be monitored by block hash without
revealing their plaintext.

8. Conclusion

UPSS: the user-centric private sharing system provides data availability,
strong confidentiality and integrity properties while relying only on untrusted
backend storage (local or remote). Data is encrypted at rest, named cryp-
tographically and store within a content-addressable sea of blocks, so no file
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or directory structure can be discerned directly from the contents of an en-
crypted block store. Cryptographic capabilities are used to authorize access
to arbitrarily-sized DAGs of files and directories without centralized access
control. Convergent encryption enables data de-duplication for large files
among even mutually-distrustful users while avoiding the common pitfalls of
the technique for small, low-entropy files.

UPSS wraps copy-on-write operations with a conventional filesystem API,
accessible directly as a library or proxied via a FUSE interface. Although
UPSS-FUSE’s performance is lower than that of direct API usage, it exceeds
that of comparable cryptographic filesystems and is within an order of magni-
tude of that of the mature copy-on-write filesystem ZFS. When using remote
storage, UPSS’s performance exceeds that of UtahFS, Google’s Perkeep and
even, for some benchmarks, unencrypted NFS.

Beyond performance comparison with conventional filesystems, we have
also demonstrated that UPSS’s design provides useful primitives for build-
ing novel privacy- and security-conscious applications. Specifically, we have
demonstrated that UPSS can be used to build systems that support redaction
with integrity as well as least-privileged revision control. Such systems would
be prohibitively expensive to build without the unique features afforded by
UPSS.

UPSS demonstrates that it is possible to achieve both strong security
properties and high performance, backed by untrusted local, remote or global
storage. UPSS’s performance is comparable to — or, in some cases, superior
to — mature, heavily-optimized filesystems. Adoption of UPSS will lay the
foundation for future transformations in privacy and integrity for applications
as diverse as social networking and medical data storage, providing better
opportunities for users — not system administrators — to take control of
their data.
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