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Tissue homeostasis, the biological process of maintaining a steady state in tissue via control of cell
proliferation, death, and metabolic function, is essential for the development, growth, maintenance,
and proper function of living organisms. Disruptions to this process can lead to serious diseases and
even death. In this study, we use the vertex model for the cell-level description of tissue mechanics
to investigate the impact of the tissue microenvironment and local mechanical properties of cells
on homeostasis in confined epithelial tissues. We find a dynamic steady state, where the balance
between cell divisions and removals sustains homeostasis. By characterising homeostasis in terms
of cell count, tissue area, and the cells’ neighbour count distribution, we identify the factors that
govern regulated and ordered tissue growth. This work, therefore, sheds light on the mechanisms
underlying tissue homeostasis and highlights the importance of mechanics in the control of biological
processes such as tissue development and disease pathology.

I. INTRODUCTION

Cell proliferation, the process by which cells grow and
multiply through division, is essential for various biolog-
ical functions such as tissue development, growth, and
maintenance [1]. For example, during the early stages of
embryonic development cells rapidly proliferate, differen-
tiate, and position themselves to lay out the body plan
for the development of a new organism [2]. Through-
out adult life, maintaining tissue homeostasis involves a
balance between cell proliferation and cell death. This
is essential for tissue upkeep, repair, and regeneration
in response to injury [3–5]. Disruptions of this balance
can lead to serious diseases such as cancer [6], atheroscle-
rosis [7], and rheumatoid arthritis [8]. Therefore, a key
question is how tissues maintain the balance between cell
division and cell death to ensure homeostasis.

Tissue homeostasis relies on the delicate balance be-
tween cell proliferation and cell death, which are regu-
lated not only by biochemical factors but also by me-
chanical cues [9, 10]. Cells experience forces from their
microenvironment, provided by the surrounding tissues
and extracellular matrix [11]. These mechanical forces
are often converted into intracellular biochemical signals
that influence critical biological processes such as cell ad-
hesion, migration, differentiation, and growth [12]. One
such regulatory mechanism exemplifying how mechan-
ical cues influence cellular behaviour is contact inhibi-
tion, a process that halts cell division in dense environ-
ments to prevent tissue overcrowding and maintain in-
tegrity [13, 14]. However, in many cancers, control of cell
growth is disrupted, leading to a complex, heterogeneous
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mixture of actively dividing and quiescent cells, along
with the necrotic tissue [15, 16]. In addition, the mechan-
ical forces exerted by the microenvironment strongly im-
pact cancerous growth by regulating the stresses imposed
on a tumour, highlighting the critical role of mechanics in
tumour progression [17]. Despite its central importance,
our understanding of the mechanical processes that con-
trol tissue homeostasis remains limited.

Furthermore, understanding the mechanical regulation
of cell proliferation is important for identifying physical
mechanisms that underlie the development of higher or-
ganisms. For example, in amniotes such as birds and
reptiles, embryos before gastrulation [2] (i.e. the devel-
opmental process in which an embryo transforms into a
multilayered three-dimensional structure) are a flat disk
of epithelial cells consisting of two main tissue types,
the epiblast or embryonic tissue in the centre, and the
extra-embryonic tissue encircling it [18]. Cell divisions
and ingressions (i.e. removal of the cells into the region
below the epiblast) occur throughout the epiblast, effec-
tively maintaining its integrity during gastrulation [18–
20]. The extra-embryonic tissue, on the other hand, pro-
vides mechanical tension to the epiblast [21], which is
essential for the proper execution of gastrulation. It also
serves critical roles in nutrient transport, waste elimina-
tion, and providing protective barriers [22].

In this paper, we explore how the tissue microenviron-
ment and cell mechanical properties contribute to estab-
lishing and maintaining homeostasis in confined planar
epithelia. Various approaches have been proposed to sim-
ulate the mechanics of epithelial cells, including particle-
based approaches [23–25], phase-field methods [26–29],
cellular Potts models [30, 31], Voronoi models [32, 33],
and, notably, vertex models [34–37]. Here, we use the
vertex model to investigate homeostasis in confined ep-
ithelial tissues with two coexisting components, an ac-
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tive proliferating tissue surrounded by a passive non-
proliferating tissue.

We demonstrate that mechanical forces suffice to sus-
tain homeostasis, resulting in a dynamic steady state
characterised by a balance between the number of cell
divisions and ingressions. We find that the homeostatic
state is sensitive to the mechanical properties of both
the active and passive tissues as well as the strength
of the confinement. In particular, the steady-state area
of the proliferating part decreases with decreasing stiff-
ness of the proliferating tissue and increasing stiffness of
the surrounding non-proliferating tissue. Furthermore,
growth can also be regulated by increasing the confine-
ment strength for a given set of mechanical properties
of the tissue. These findings highlight the potential for
manipulating the characteristics of the tissue microenvi-
ronment to regulate its growth and emphasize the signif-
icance of mechanics in regulating tissue-scale processes.

This paper is organised as follows: In Sec. II, we pro-
vide details of the two-dimensional vertex model for ep-
ithelial tissue mechanics, including the implementation
of cellular processes within this framework. In Sec. III,
we present our findings by characterising homeostasis in
terms of the variation in the (i) number of active cells, (ii)
area occupied by active cells, (iii) polygonal distribution
of the active cell shapes, and (iv) realised shape index
(i.e. the ratio of cell perimeter to the square root of its
area) of the active tissue. Specifically, Sec. III A describes
the temporal dynamics as the system progresses towards
homeostasis, and Sec. III B discusses the sensitivity of
the homeostatic state to the target shape indexes of ac-
tive and passive cells. Then, in Sec. III C, we present the
analysis of the effect of confinement on homeostasis.

II. MODEL

A. Two-dimensional vertex model for epithelial
tissue mechanics

Epithelial cells are tightly packed to form a confluent
monolayer (e.g. epiblast of amniote embryos, the lining
of blood vessels, kidney tubules, intestine, etc.) or a mul-
tilayer (e.g. skin, excretory ducts of sweat glands, etc.)
sheet [38]. The tissue cohesion is achieved by an adhesion
belt formed of clusters of E-cadherin molecules concen-
trated in the adherens junctions [39], giving epithelial
tissues elastic properties. While the shapes of cells in an
epithelial monolayer resemble prisms, the molecules pri-
marily responsible for the generation and transmission
of mechanical forces are located close to the apical side
(i.e. the top surface) of the cells. Therefore, a com-
mon approach is to focus on the apical side alone and
approximate the tissue as a two-dimensional polygonal
tiling. Cells are thus represented as polygons that share
junctions, and three or more junctions meet at a vertex.
This description is known as the two-dimensional vertex
model [34, 35, 37].

The mechanical energy of the model epithelium is de-
termined by cell shapes, and it is given as

E =
∑

c∈ cells

[
KA

2
(Ac −Ac,0)

2 +
KP

2
(Pc − Pc,0)

2

]
, (1)

where the sum is over all the cells in the tissue. The first
term is the penalty associated with changes in the cell’s
area, Ac, from a reference value Ac,0, and it accounts for
the volume conservation and preferred height of actual
cells. The second term penalises deviations in the cell’s
perimeter, Pc, from a reference value, Pc,0, and mod-
els the mechanical properties of the adhesion belt. The
associated elastic moduli are KA and KP , respectively.
In general, the reference areas and perimeters, as well
as the two elastic moduli, can be cell-type dependent.
In Eqn. (1), the dependence of the moduli is, however,
omitted to declutter the notation.
Equation (1) can be transformed into a dimensionless

form using a characteristic length scale l∗, the choice of
which will be discussed below. One then divides both
sides of Eqn. (1) with KP l

∗2 to obtain

e =
1

2

∑
c∈ cells

[
kA(ac − ac,0)

2 + (pc − pc,0)
2
]
, (2)

where kA =
(
KAl

∗2) /KP , ac = Ac/l
∗2, ac,0 = Ac,0/l

∗2,
pc = Pc/l

∗, and pc,0 = Pc,0/l
∗. For convenience, we

did not absorb the prefactor 1/2 into the definition of
dimensionless constants. Therefore, the product KP l

∗2

sets the unit of energy.
If all cells have the same target areas, A0, and perime-

ters, P0, a typical choice of length scale is l∗ =
√
A0. In

this case, Eqn. (2) can be further simplified as,

e =
1

2

∑
c∈ cells

[
kA(ac − 1)2 + (pc − p0)

2
]
. (3)

The ratio p0 = P0/
√
A0 is called the target shape in-

dex, and it determines the tissue’s mechanical behaviour,
distinguishing fluid–like and solid–like responses. Once
p0 exceeds a critical value, the shear modulus of the tis-
sue decreases to zero, and the tissue fluidises. This is
accompanied by the disappearance of the energy barrier
for cell neighbour exchanges [40]. For a tissue made en-
tirely of hexagonal cells, the shear modulus falls to zero

at the critical value p0 = 6/
√

3
√
3/2 ≈ 3.722, i.e. the

perimeter to the square root of the area ratio of a regu-
lar hexagon. However, the energy barriers for neighbour
exchanges remains finite until p0 ≈ 3.81, the correspond-
ing ratio of a regular pentagon [41]. For random tilings,
the solid-fluid transition has been reported to be in the
range p0 ≈ 3.81 − 3.92 [42–45]. Lastly, if Ac,0 and Pc,0

are cell-dependent, a typical choice for the length scale is

l∗ =
√

Ā0, where Ā0 is the average of Ac,0 over all cells.
Cells in epithelial tissues are dynamic, but their mo-

tion is slow (∼ 10 µm/h). Therefore, the motion is over-



3

damped and can be approximated as a force balance be-
tween dissipative and mechanical forces. Under the as-
sumption that cells are supported by a substrate that
provides most of the dissipation via dry friction, the equa-
tion of motion for the vertex i at the position ri is

ζ ṙi = Fi. (4)

The overdot represents the time derivative, ζ is the fric-
tion coefficient, and Fi is the force on the vertex. If
only passive mechanical forces are present, Fi = −∇riE,
where ∇ri is the gradient with respect to the position
vector ri of vertex i, and mechanical energy E is defined
in Eqn. (1). In the presence of activity, Fi can be ex-
tended to include additional force contributions [46, 47].
Following the same steps as above, the equation of mo-
tion can be non-dimensionalised, resulting in the unit of
time t∗ = ζ/KP . Finally, we have omitted the noise term
that would normally accompany the dissipative term in
the equation of motion [48] since the effects of the mi-
croscopic noise on the long-time behaviour of cells in ep-
ithelial tissue are usually negligible.

To maintain proper function, epithelial cells rearrange
via neighbour exchanges, grow, divide, and die. There-
fore, the vertex dynamics needs to be augmented to in-
clude cellular processes such as intercalations (i.e. cell
neighbour exchanges), ingression/extrusion (i.e. removal
of individual cells from the tissue), cell division, and
cell growth. Modelling these processes requires updates
of the connectivity of the polygonal tiling via topolog-
ical changes such as T1 (intercalation) and T2 (ingres-
sion/extrusion) transitions [36].

B. An active inclusion in a passive tissue patch

We use the two-dimensional vertex model to study a
square patch of size La × La of a proliferating active ep-
ithelial tissue embedded in a passive epithelium confined
to a square box of size L × L. The passive tissue is
clamped to the edges of the box, as illustrated in Fig. 2a.
Passive cells can move and rearrange, but cannot grow,
divide, or be extruded. Active cells, however, can grow,
divide, and be extruded.

We initialise the simulation with a disordered tiling
generated by placing N points at random in a square
box. The disks act as the initial seeds for a Voronoi tes-
sellation. Upon building the Voronoi tesselation, the seed
points are moved to the centroids of Voronoi tiles, and
a new Voronoi tiling is constructed. The procedure is
repeated iteratively until the maximal relative difference
between positions of seed points in two consecutive itera-
tions is below 5·10−5. This results in a centroidal Voronoi
tesselation, which has the property that the tiling is ran-
dom, but all cells are of similar size and shape [49]. We
sample the dimensionless target areas of cells in the ac-
tive tissue (aac,0) from a normal distribution with a mean
of 1 and a standard deviation of σ. The correspond-
ing target perimeters of the active cells are determined

by pac,0 = pa0
√

aac,0, where pa0 is the target shape index
of active cells. For the passive cells, the target areas
and perimeters are set to constant values 1 and pp0 , re-
spectively. Furthermore, the vertices of the outermost
layers are fixed in position and constrained to lie along
a straight line, reflecting a clamped boundary condition
[50]. Straight boundaries are created during the initial
configuration setup by padding the simulation box and
mirroring seed points within a preset cutoff distance from
the boundaries.
Before starting the full simulation, each random initial

configuration is evolved for 104 simulation steps (i.e. time
t = 50) without cell growth, divisions, and ingressions.
This allows the cells to adapt to their assigned target ar-
eas and perimeters. Unless stated otherwise, simulations
were performed from a single initial configuration.
Cell intercalations are implemented via a T1 transi-

tion (Fig. 1a) based on a minimum junction length [51].
If the junction length drops below a specified threshold,
ℓT1, it is rotated by 90◦ counterclockwise and extended
to the length ℓnT1 = 1.02ℓT1. Then the connectivity is
updated to account for the exchange of cell neighbours.
Moreover, T1 transitions rarely result in either a passive
cell entering the proliferating region (i.e. it is surrounded
only by active cells), or an active cell entering the pas-
sive region (i.e. it is surrounded only by passive cells).
In these cases, the cell type is changed from passive to
active, or vice-versa.
For simplicity, we assume that the cell growth (Fig. 1b)

is described by a linear model, where the target area of
active cells, aac,0(t), evolves as

ȧac,0 = g, (5)

where g is a constant growth rate. The target shape in-
dex of active cells is kept constant at pa0 by adjusting

the target perimeter to pac,0(t) = pa0

√
aac,0(t). The target

area and perimeter of all passive cells are assumed to be
identical and time-independent, giving the target shape
index pp0 . Note that we use l∗ =

√
Ap

0 (i.e. square root of
the target passive cell area) in the non-dimensionalisation
procedure to avoid the problem of time-dependent simu-
lation units.
Cells in the active region can divide, and the division

mechanism is stochastic. The division probability, Pd(c),
of a cell c increases with the cell area ac as

Pd(c) =
1

1 + e−α(ac−ad)
, (6)

where ad represents the area at which the probability of
cell division is 1/2 and α regulates the sensitivity of divi-
sion probability to changes in the cell area. The division
probability is calculated for each cell at each simulation
time step, and cell division occurs if a uniformly dis-
tributed random number drawn from the interval [0, 1]
is smaller than the calculated probability Pd(c). The
division process follows Hertwig’s rule [52], i.e. a cell
is divided into two daughter cells by choosing a direc-
tion perpendicular to its long axis that passes through
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(a) (b)

(c) (d)

(e)

FIG. 1. Five morphological changes of the model tissue. (a) Intercalation (i.e. cell neighbour exchange) is implemented via a
T1 transition where a junction shorter than a threshold length ℓT1 is rotated 90◦ counterclockwise and vertex connectivity is
updated. (b) Cell growth is implemented by scaling the preferred area ac,0. (c) Cells are divided perpendicular to their long
axis along a line that passes through the centroid with a probability that is a function of the cell size [Eqn. (6)]. (d) Cells are
removed with a probability that is a function of the cell size [Eqn. (7)], by collapsing cell edges into a single vertex. (e) Vertices
with four or more neighbours are resolved by spitting them at random while ensuring that mesh connectivity is not violated.

its centroid (Fig. 1c). The long axis is determined by
diagonalising the gyration tensor [53]. The reference
areas of two daughter cells are separately drawn from
the normal distribution with unit mean and standard
deviation σ and reference perimeters are calculated as
padaughter,0 = pa0

√
aadaughter,0.

Similarly, for cell ingression, we define the probability
Pi(c) which increases with a decrease in cell area ac as,

Pi(c) =
e−β(ac−ai)

1 + e−β(ac−ai)
, (7)

where ai represents the area at which the probability of
cell ingression is 1/2 and β regulates the sensitivity of
ingression probability to changes in the cell area. Ingres-
sion of a cell typically leads to the formation of a vertex
with more than three neighbours (Fig. 1d). Such ver-
tices are resolved by picking a random “cut” direction
that does not violate the tissue connectivity and insert-
ing a new edge of length ℓnT1. The procedure is repeated
until all high-coordination vertices are resolved (Fig. 1e).

These five morphological transformations of the model
tissue are shown schematically in Fig. 1. Finally, the
equations of motion [Eqn. (4)] are solved using the first-
order Euler method with a time step δt. The parameters
and the values used are listed in Table I.

III. RESULTS AND DISCUSSION

A. Temporal dynamics of the tissue

We first study the time evolution of the tissue towards
homeostasis, as depicted in Fig. 2. Cells in the central
proliferating region grow, divide, ingress, and rearrange.
Consequently, the region expands and exerts compressive
stress on the passive cells, leading to their deformation
and intermittent rearrangements. Constrained by the
fixed boundary of the simulation box, the passive cells
get compressed. Eventually, the system reaches a steady
state (i.e. homeostasis), characterised by continuously
replenishing cells in the proliferating region.
Figure 3 shows the time evolution of the fractional

change in the number of active cells,

fN (t) =
Na(t)

Na(t = 0)
, (8)

where Na(t) is the number of active cells at time t, and
the cumulative sums, Σ(t), of cell divisions and ingres-
sions as the system reaches homeostasis. The active
cell population gradually increases until t ≈ 1500, and
reaches a dynamic steady state where fN saturates but
continues to fluctuate around a mean value (the plateau
in Fig. 3a). The state is characterised by a dynamical bal-
ance between divisions and ingressions (Fig. 3b), i.e. the
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TABLE I. Values of the dimensionless parameters

Parameter Description Value

kA Area elastic modulus 7.5
σ Standard deviation of active cells target area 2.0 · 10−5

g Growth rate 4.0 · 10−4

ad Area at which Pd(c) = 0.5 1.6
ai Area at which Pi(c) = 0.5 0.3
ℓT1 T1 transition threshold 3.17 · 10−3

δt Simulation time step 5 · 10−3

α Division probability sensitivity to cell area 20.0
β Ingression probability sensitivity to cell area 15.0
pa0 Target shape index of active cells 3.600− 3.825

pp0 Target shape index of passive cells 3.600− 3.825

FIG. 2. The snapshots of the evolution of the model tissue: (a) initial configuration with active inclusion containing 169 cells
(light grey) surrounded by passive tissue with 831 cells (black); (b) intermediate configuration showing cells born in the active
region after the first division (1st generation - blue) and subsequent divisions (≥ 2nd generation - orange); and (c) a steady-state
configuration with all initial active cells replaced by new generation cells. These snapshots correspond to La = 12.65, L = 31.62,
pa0 = 3.60, and pp0 = 3.80.

cumulative sums of cell divisions and ingressions contin-
uously grow but retain, on average, a constant difference.

B. Effects of target shape index of active and
passive cells

We characterise the homeostatic state in terms of the
steady-state mean values of the fractional change in the
number (f̄N ) and the area (f̄A) of active cells defined,
respectively, as

f̄N =
1

NT

NT∑
i=1

fN (ti) and f̄A =
1

NT

NT∑
i=1

fA(ti). (9)

Here, the averaging is done for NT = 2 · 104 simulation
steps corresponding to the time interval ∆t = 500, with
data recorded every five steps. The averaging is started
after the time t1 = 1500, which is longer than it typi-
cally takes for the system to reach the dynamic steady
state (Appendix A). fN is defined in Eqn. (8), and, anal-
ogously, fA = Aa(t)/Aa(t = 0) denotes the fractional
change in the area occupied by the active cells, Aa.

Figure 4a shows that the final cell count of active cells
measured in terms of f̄N is sensitive to the target shape
indexes of both passive, pp0 , and active, pa0, cells. Specif-
ically, for a given value pa0, the mean fractional change
of the number of active cells, f̄N , increases as pp0 is in-
creased from 3.600 to 3.825. Conversely, f̄N decreases
with increasing pa0. This dependency of f̄N on p0 can
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FIG. 3. The time dependence of (a) the fractional change in the number of active cells (fN ) defined in Eqn. (8) and (b) the
cumulative sum (Σ) of cell divisions (blue) and ingressions (red). La = 12.65, L = 31.62, pa0 = 3.60, and pp0 = 3.80.

FIG. 4. The mean fractional change of (a) the number of active cells, f̄N , and (b) the area occupied by the active cells, f̄A,
[Eqns. (9)] as a function of the target shape index of active (pa0) and passive (pp0) cells. The colour bar applies to both panels.
La = 12.65 and L = 31.62. Simulations are performed at grid points indicated by black circles, and the colour within each
square represents the average of the values at the four corners of that square. The standard deviation of the time series used
to compute the mean values is within the range of 0.01− 0.05.

be understood as follows. Increasing p0 makes the tis-
sue softer and reduces the energy costs associated with
neighbour exchanges. Therefore, an increase in pp0 soft-
ens the passive tissue, thus enabling easier deformation
of passive cells. Conversely, an increase in pa0 softens the
active cells, rendering them less effective in compressing
the passive cells.

Furthermore, the sensitivity of the mean steady area
fraction of active cells, f̄A, to variation of pa0 and pp0 ,
shown in Fig. 4b, mirrors the trends observed in the cell
count (Fig. 4a). Similar to the cell count, the area of
the active tissue increases with an increase in the tar-
get shape index pp0 of passive cells and decreases with
an increase in the target shape index pa0 of active cells.

Therefore, a stiffer proliferating tissue enclosed by softer
passive tissue results in a homeostatic state with maxi-
mum cell count and area.

1. Disorder in the active tissue

Here, we quantify the disorder in the active tissue in
terms of the distribution of the cell neighbour count and
the realised shape index of active cells.
Figure 5 shows the mean distribution of cell neigh-

bour counts averaged over five different initial configu-
rations (generated as outlined in Sec. II B) for different
combinations of target shape indexes of active and pas-
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FIG. 5. Fraction of active cells, Pn, as a function of the number of cell neighbours, n, averaged over five different initial
configurations for different target shape index combinations: (a) pa0 = 3.60, pp0 = 3.60, (b) pa0 = 3.80, pp0 = 3.60, and (c)
pa0 = 3.80, pp0 = 3.80. The initial and final distributions, averaged across all realisations, are denoted by red and blue bars,
respectively, with error bars indicating the corresponding standard deviations of the mean values. La = 12.65 and L = 31.62,
and the mean is calculated over NT = 2 · 104 simulation time steps (i.e. time interval T = 500 with the data recorded every
five simulation steps) in the steady state.

sive cells. The transition from the initial (red bars) to
the steady-state distribution (blue bars) illustrates how
cells reorganise. In agreement with the previous stud-
ies [35, 54, 55], regardless of the values of pa0 and pp0 ,
the distribution exhibits a pattern where hexagons dom-
inate the tiling, followed by pentagons, heptagons and
quadrilaterals. Furthermore, comparing the initial con-
figuration with the final dynamic configuration reveals
a decrease in the fraction of hexagons and an increase
in the fraction of pentagons, irrespective of the target
shape indexes. This suggests that the continuous di-
visions and ingressions contribute to tissue disorder by
increasing the fraction of pentagons and decreasing the
fraction of hexagons. Lastly, the final distribution of cell
neighbour counts remains qualitatively insensitive to the
cell neighbour count distribution of the initial configura-
tions that are in the class of well-centred Voronoi tilings
(see Sec. II B).

To gain further insight into the impact of target shape
indexes on tissue morphology, we explore the dependence
of the mean realised steady-state shape index of the ac-
tive tissue, p̄ar , on the input target shape indexes pa0 and
pp0 , as shown in Fig. 6. p̄ar is calculated as

p̄ar =
1

NT

NT∑
i=1

(
1

Na(ti)

∑
c

par,c(ti)

)
, (10)

where par,c(ti) = pc(ti)/
√
ac(ti) represents the realised

shape index of the cell c at simulation step ti, with pc(ti)
and ac(ti), respectively, being the perimeter and area of
the cell c, and t1 and NT are the same as in Eqns. (9).

FIG. 6. The dependence of realised steady-state shape index
of active cells, p̄ar , on the target shape indices of active, pa0, and
passive, pp0 , cells. La = 12.65 and L = 31.62. Simulations are
performed at grid points indicated by black circles, and the
colour within each square represents the average of the values
at the four corners of each square. The standard deviation of
the time series used to compute the mean values is within the
range of 0.006− 0.018.

The mean realised shape index, p̄ar , increases with in-
creasing pa0 and decreasing pp0 . Since large values of the
shape index correspond to more fluid-like tissues with less
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regular cell shapes, this indicates that the tissue becomes
more disordered as the active tissue gets softer and the
passive tissue stiffens.

In summary, the optimal configuration for efficient tis-
sue proliferation, characterised by maximum cell count
and reduced disorder, involves stiffer proliferating tissue
enclosed by softer passive tissue.

C. Effects of confinement - varying the width of
the passive tissue

Finally, we investigate the effect of confinement, quan-
tified by the ratio La/L, on the homeostatic state of the
active tissue. By keeping the initial size of the active
tissue constant at La = 12.65, we systematically vary L
to modify the thickness of the passive tissue and, thus,
the strength of the confinement. Reducing La/L corre-
sponds to weakening the confinement due to the presence
of a thick layer of passive tissue between the active tissue
and the fixed boundary, which shields the active region
from the effects of the fixed boundaries. Conversely, the
La/L → 1 case corresponds to strong confinement, as
there is only a thin layer of passive tissue, and the active
patch can easily sense the boundary of the simulation
box.

Figure 7 shows how changes in La/L impact the frac-
tional change in the number of active cells and the cell
neighbour count distribution. We choose pa0 = 3.60 and
pp0 = 3.80 as it results in efficient tissue proliferation
(Fig. 4) with less disorder (Fig. 6). As shown in Fig. 7a,
the cell count monotonically decreases with a decrease
in the thickness of the passive tissue (i.e. as confine-
ment strengthens). This is because the clamped bound-
ary emulates a fully rigid tissue, and strengthening the
confinement enhances the impact of the fixed boundary
on the active tissue. Consequently, making confinement
stronger yields effects similar to reducing pp0 (Fig. 4).
Furthermore, Figs. 7b,c show the mean distribution of

the number of cell neighbours of the active tissue aver-
aged over five different initial configurations for weaker
(La/L = 0.4) and stronger (La/L = 0.8) confinements,
respectively. In weaker confinements, hexagons domi-
nate the tiling, followed by pentagons, and then hep-
tagons, whereas in stronger confinements, there is no sig-
nificant difference between the fraction of hexagons and
pentagons (blue bars). However, comparing the initial
equilibrium configuration with the final dynamic config-
uration reveals a decrease in the fraction of hexagons
and an increase in the fraction of pentagons irrespective
of confinement. Moreover, the fraction of quadrilaterals
is higher in strong confinements compared to weak con-
finements. Thus, strong confinements favour cells with
≤ 5 neighbours in the active region, whereas weak con-
finement favours hexagonal cells. Therefore, the disor-
der in the active tissue increases as confinement becomes
stronger. This is evident in the inset of Fig. 7a, which
depicts that the realised shape index of active cells (p̄ar )

increases as the confinement becomes stronger, akin to
the effect observed when pp0 is decreased. Finally, in the
steady state, the mean distribution of the number of cell
neighbours remains qualitatively insensitive to the cell
neighbour distribution in the initial configurations that
are in the class of well-centred Voronoi tilings of the plane
(see Sec. II B).

IV. SUMMARY AND CONCLUSIONS

In this paper, we used the two-dimensional vertex
model for cell-level modelling of tissue mechanics to in-
vestigate homeostasis in confined epithelial tissues con-
sisting of a central region populated with actively prolif-
erating cells and a surrounding region occupied by non-
proliferating passive cells. We showed that the system
can reach homeostasis which is a dynamic steady state
maintained by a balance between cell divisions and in-
gressions. We characterised the homeostatic state of the
tissue in terms of the fractional change in the number
of active cells, the area occupied by the active cells, and
the distribution of cell shapes. Notably, these parame-
ters demonstrate sensitivity to the mechanical properties
of both the active and passive cells, as quantified by their
respective target shape indices. Moreover, we observed
that the strength of confinement significantly influences
the homeostatic state. Our findings illustrate a simple
mechanism that regulates the growth of a confined tissue
and establishes homeostasis.
The fractional change in the number of active cells and

the area occupied by them increases with an increase in
the target shape index of the passive cells and decreases
with an increase in the target shape index of the active
cells. Thus, an optimal layout for controlling the growth
of a confined tissue involves a softer active tissue confined
by a stiffer passive tissue characterised by a higher tar-
get shape index of active cells and a lower target shape
index of passive cells. However, this configuration results
in greater disorder within the proliferating tissue, as indi-
cated by a significantly higher realized shape index. Ad-
ditionally, the strength of confinement (i.e. the thickness
of the passive region) significantly alters the homeostatic
state. As confinement gets stronger, i.e. as the thickness
of the passive region decreases, the cell count decreases,
while the realised shape index increases, mirroring the
effect of decreasing the shape index of the passive cells.
However, strong confinement also affects the cells’ neigh-
bour count distribution, favouring cells with ≤ 5 neigh-
bours in the active region.
This study emphasizes the central role of cells’ mechan-

ical properties, alongside the tissue microenvironment, in
regulating homeostasis, providing valuable insights into
tissue maintenance. By demonstrating the sensitivity of
the homeostatic state to variations in mechanical fac-
tors, such as confinement strength and tissue stiffness,
our findings highlight the intricate interplay between me-
chanical cues and cellular behaviour. This emphasizes
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FIG. 7. (a) Dependence of the fractional change in the number of active cells, f̄N on the width of the passive region, quantified
by the ratio La/L; Inset: the realised shape index of active cells, p̄ar , as a function of La/L, for pa0 = 3.60 and pp0 = 3.80. (b)
and (c) Corresponding probability distributions of cell neighbour counts of the active tissue averaged over five different initial
configurations for weaker and stronger confinements, respectively. The error bars represent one standard deviation of the five
mean values.

that a complete description of biological processes at tis-
sue and organ scales necessitates biochemical and me-
chanical approaches, applied at the same footing.

Appendix A: Active cell count - sensitivity to initial
configuration

Here, we discuss the sensitivity of the change in active
cell count to the initial configuration. Different initial
configurations are generated according to the procedure
outlined in Section II B.

Figure 8 shows the time evolution of the fractional
change in the number of active cells for five different
realisations. Specifically, it highlights the shape index
combinations resulting in high (pa0 = 3.60, pp0 = 3.80)
and low (pa0 = 3.80, pp0 = 3.60) changes in the active
cell count. The final cell count of active cells is nearly
insensitive to the initial configuration. Additionally, as
discussed in Sec. III A, fN increases and saturates to a

mean value.
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