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Abstract 

A linear regression-based machine learned interatomic potential (MLIP) was developed for the silicon-

carbon system. The MLIP was predominantly trained on structures discovered through a genetic 

algorithm, encompassing the entire silicon-carbon composition space, and uses as its foundation the 

Ultra-Fast Force Fields (UF3) formulation. To improve MLIP performance, the learning algorithm was 

modified to include higher spline interpolation resolution in regions with large potential energy surface 

curvature. The developed MLIP demonstrates exceptional predictive performance, accurately estimating 

energies and forces for structures across the silicon-carbon composition and configuration space. The 

MLIP predicts mechanical properties of silicon carbide (SiC) with high precision and captures fundamental 

volume-pressure and volume-temperature relationships. Uniquely, this silicon-carbon MLIP is adept at 

modeling complex high-temperature phenomena, including the peritectic decomposition of SiC and 

carbon dimer formation during SiC surface reconstruction, which cannot be captured with prior classical 

interatomic potentials for this material.  

 

1. Introduction 

Traditional approaches to understand and predict material behavior involve experimentation and 

development of constitutive models. However, these approaches may not yield insight into atomic scale 

deformation mechanisms like bond breaking and phase transformations.  Consequently, computational 

tools have been developed to gain greater understanding at the atomic level. These computational 

approaches fall primarily into two categories: (i) ab initio methods based on density functional theory 

(DFT) [1] and (ii) classical atomistic simulations using an interatomic potential [2,3]. Ab initio methods 

employ a quantum mechanical approach to model the electronic structure and compute forces in many-

body systems. However, these approaches come with great computational costs – scaling approximately 

as O(N3) with N being the number of atoms – limiting their domain to a few hundred atoms and a few 

picoseconds simulation time [4]. Conversely, classical atomistic simulations are more computationally 



efficient [5] because atoms are treated as point masses, and the electronic degrees of freedom are not 

explicitly considered. This efficiency affords time and length scales orders of magnitude larger than DFT 

for the same computational resources, enabling the modeling of phenomena like shock [6] and phase 

transitions [7]. However, access to these time and length scales may come with reduced accuracy 

depending on the quality of the interatomic potential used to compute atomic forces and energies. 

  

In recent years, machine learned interatomic potentials (MLIPs) have grown in popularity as they show 

increasing promise to narrow the gap in accuracy between ab initio calculations and classical atomistic 

simulations performed with traditional interatomic potentials [8–11] . Improvements can be attributed to 

the use of machine learning (ML) methodologies (e.g., neural networks (NN)) to approximate the potential 

energy surface (PES) of a material and learn fundamental structure-energy relationships that govern 

material performance. This understanding constitutes the foundation of MLIP property prediction.  

 

Generally, MLIP development requires three main components: (i) training data, (ii) material structure 

descriptor, and (iii) learning algorithm. Typically, the training data is generated through DFT calculations, 

involving snapshots of static structures and/or snapshots extracted from ab initio molecular dynamics 

(AIMD) trajectories.  Data generation approaches must adequately sample the PES and domain of interest 

to ensure desired MLIP predictive performance for a wide range of atomic environments. Moreover, the 

generation of training data can be a product of manual selection [12], based on domain expertise, 

automated procedures such as active-learning [13,14], and/or genetic algorithms (GAs) [8,15,16] (as 

employed in this study). Next, the material structure descriptor encodes the training data into a machine 

learnable input [9–11]. Descriptors describe atomic environments with varying degrees of complexity and 

in turn impact the computational cost of a MLIP. Furthermore, descriptors feature adjustable parameters, 

which should be optimized to strike a balance between accuracy and computational cost.  The final 

component of a MLIP is the learning algorithm. Popular learning algorithms include neural networks (NN) 

[17–19], kernel methods [20–23], and linear regression [10,14,24,25]. Neural networks are popular due 

to their flexible functional form and ability to serve as universal approximators [26]. However, their 

flexibility necessitates notably more training data to safeguard against overfitting in comparison to other 

ML algorithms [5]. Additionally, the large number of fitting parameters in NNs can lead to higher 

computational costs as compared to other approaches. Kernel methods, such as Gaussian regression and 

kernel ridge regression, rely on similarity measures between a configuration and the training data, 

correlating the MLIP’s computational cost with dataset size. This correlation, as seen with Gaussian 



Approximation Potentials [20], can result in significant computational expense. Linear 

regression [10,14,24] approaches assume a linear relationship between energy and descriptor 

components, offering simplicity as well as greater computational efficiency than NN and kernel-based 

approaches. However, linear regression potentials may experience increased error as compared to a NN.  

This underperformance can be attributed to a more rigid functional form.  

 

To date, MLIPs have been developed predominately for single element metallic materials, such as 

tungsten [27,28], iron [29,30], aluminum [31,32], etc. While a few models for ceramics have been 

developed [33–35], they are not nearly as prevalent. Ceramics possess attributes such as high hardness, 

chemical inertness, low density, high temperature resistance, oxidation and corrosion resistance, etc., 

that are well suited for use in harsh environments. Consequently, precise modeling is critical for studying 

their behavior under extreme conditions. However, modeling ceramics poses challenges due to their 

multi-element structure and intricate crystal geometry, characterized by highly directional covalent 

bonds.  

 

A ceramic of increasing importance is silicon carbide (SiC) which exhibits extreme polymorphism (over 250 

polytypes) and demonstrates high-performance under extreme conditions such as ballistic impact [36–

39], high temperature  [40], and under irradiation [41,42]. Moreover, high temperature and oxidation 

resistance has promoted its use in hypersonic [43–46], and nuclear power [47–49] applications.  

Numerous computational studies [50–57] via classical atomistic simulations or ab initio methods have 

been performed on SiC to better understand its deformation behavior and phase transitions. A popular 

empirical potential for studying SiC behavior is the Vashishta potential [58], which has been used to 

investigate SiC shock response with system sizes exceeding six million atoms [53]. This potential predicts 

fitted properties such as cohesive energy, bulk modulus, and the C11 elastic constant with a high degree 

of accuracy, but fails to accurately reproduce other properties, such as shear moduli and the C33 elastic 

constant in the SiC-3C, SiC-2H, and SiC-6H polytypes (as will be discussed later in this work). Moreover, 

the Vashishta potential was not formulated to capture the physics of same atom (Si-Si or C-C) 

interactions [58]. This limitation is detrimental when evaluating non-equimolar stoichiometries, which 

may arise during simulations involving defects [59], as well as during thermal decomposition, where a 

peritectic reaction involving silicon sublimation is reported [60–63].  

 



The objective of this work is to develop a new interatomic potential for the Si-C system, using a machine 

learning method, that narrows the gap between ab initio accuracy and classical molecular dynamics 

efficiency. More specifically, the aim is to capture the physics of the Si-C system across the composition 

and temperature space, providing a simulation tool that will elucidate greater knowledge of SiC behavior 

in extreme environments. The training data was primarily generated via a GA search over the entire Si-C 

compositional space, encompassing equimolar and non-equimolar compositions. The GA was used to 

identify energetically favorable structures, maximize dataset diversity, and extend model applicability 

beyond known configurations and equimolar compositions. The model was trained using the Ultra-Fast 

Force Fields (UF3) development package [24], which employs a linear regression-based approach for PES 

modeling. The choice of linear regression over learning algorithms such as NNs was influenced by the large 

quantity of training data that would be necessary to adequately sample the Si-C system if using NNs. 

Furthermore, the versatility of linear regression was seen as advantageous for modeling SiC 

polymorphism. Modifications to the learning algorithm were made which led to significant gains in model 

predictive performance. The developed MLIP has force and energy errors comparable to single element 

metallic materials, predicts mechanical properties with a high degree of accuracy, and is adept at 

modeling complex phenomena not explicitly included in the training data.  

 

2. Methods 

In this work, the process of developing the MLIP consisted of four phases: training data generation, data 

featurization, model training, and model validation. These tasks were tailored for the Si-C system and the 

primary goal of this section is to clearly document the MLIP development approach employed. 

 

2.1 Training data  

The training data was primarily generated via the Genetic Algorithm for Structure and Phase Prediction 

(GASP) software package [15]. A GA is a heuristic optimization method that adopts an evolutionary 

approach by employing variation operators like selection, crossover, and mutation, to evolve a population 

of candidate solutions towards a near-optimal solution for a given problem [64]. As applied to materials, 

a GA is seeded with initial (parent) structures and explores a material composition space via iterative 

hybridization to identify energetically favorable structures.  

 

GAs are favorable for dataset generation as they contribute to greater dataset diversity [65,66], providing 

a  more complete representation of the PES. Importantly, GAs are free from biases, such as physical 



intuition, which may be present in approaches like AIMD sampling. The GASP generated data includes 

identified structures and their relaxation trajectories. Unrelaxed structures were included to enrich the 

dataset diversity and further define the PES via the inclusion of higher energy structures [65]. Due to 

strong correlations between structures from the same relaxation trajectory, relaxation trajectories were 

exclusively designated to either training or testing data. 

 

The GASP runs explored the entire Si-C composition space, encompassing equimolar and non-equimolar 

compositions and inclusive of the Si and C end points. Figure 1 demonstrates the diversity of structures 

identified through the GASP search, highlighting the substantial prevalence of non-equimolar structures. 

The structure searches were seeded with multiple known polytypes (e.g., SiC-3C, SiC-2H, SiC-4H, SiC-6H, 

SiC-15R, etc.), as well as Si and C lattices. In addition to providing parent structures, search settings, 

including structure constraints (e.g., minimum and maximum number of atoms), variation operator 

constraints (e.g., probability of structure mating versus mutation versus permutation), and ab initio 

calculation settings (e.g., convergence criteria), must be specified. Information related to the GASP search 

parameters can be found on GitHub (https://github.com/SubhashUFlorida/SiC-MLIP).  

 

 
Figure 1: GASP identified structures within the Si-C composition space, where a structure’s energy (stability) above 

hull is indicated by the intensity of its diamond marker. Only final (energy minimized) structures are shown.  
 
 



While no stable non-equimolar Si-C polytype is known to exist, a design space phase search (no 

stoichiometric limitations) was performed. The aim was to maximize local atomic environment diversity 

and condition the MLIP for situations where non-equimolar compositions may arise, such as melting and 

other phase transformations.  

 

To improve bulk moduli prediction, ab initio molecular dynamics (AIMD) [67] sampling was employed to 

supplement the dataset with three pertinent polytypes: SiC-3C (zinc-blende and rock salt structures), SIC-

2H, and SiC-6H. These polytypes were emphasized due to their stability and/or prevalence in extreme 

applications. Ultimately, the training data included 41225 structures, where 41145 structures were 

generated via GASP and the remaining 80 were collected via AIMD sampling. 

 

All DFT calculations were performed using the Vienna Ab initio Simulation Package  [68]  using the Perdew-

Burke-Ernzerhof (PBE) functional. KPOINTS were automatically generated with a gamma centered mesh 

and length of 30 (used for subdivision determination). The structural relaxations were carried out with 

tolerances of 10-6 eV for electronic convergence and 10-5 eV for ionic convergence, and an energy cutoff 

of 520 eV. For further information related to VASP calculation details see the data folder on the GitHub. 

 

2.2 Data featurization 

Following data generation, the training data underwent a featurization process as dictated by the UF3 

descriptor [24]. The goal of the UF3 descriptor is to efficiently capture the PES through a low-order many-

body expansion, while accurately describing energies, forces, and phonon frequencies. This many-body 

expansion is limited to two- and three-body terms, with dependencies on one and three pairwise 

distances, respectively. These two- and three-body terms are represented via a collection of cubic B-spline 

basis functions. The local atomic environment encoded by the UF3 descriptor is predominantly dictated 

by the number of cubic B-splines and the specified minimum and maximum cutoff radii over which the 

local atomic environment is defined. Cubic B-splines are advantageous due to their rapid evaluation, 

continuity, and smoothness, particularly for the first order derivative and continuous nature for the 

second order derivative, allowing them to capture phonon frequencies. 

 

In spline interpolation, the splines are connected at knot positions. In the case of UF3, the splines provide 

compact support, where they are non-zero over four adjacent knot spacings. This compact support 

promotes the computational efficiency of UF3, requiring only the evaluation of 4 or 64 basis functions to 



calculate any two or three body term, respectively. Furthermore, the endpoints are padded with 

additional basis functions. This adjustment ensures that at short distances near the minimum cutoff radii, 

interactions are strongly repulsive to prevent atoms from becoming unphysically close. Conversely, at 

greater distances near the maximum cutoff radii, the potential smoothly diminishes to zero.  

 

In this work, the minimum and maximum cutoff radii of the descriptor were determined via a convergence 

study that evaluated energy and force errors as a function of different cutoff values. The study was 

conducted with minimum cutoff radii for two- and three-body terms of 0.001 Å and (0.5, 0.5, 0.5) Å, 

respectively. Three body cutoffs are specified as a triplet of distance because a three-body term involves 

three pair interactions. The two-body minimum cutoff radii were set less than the three-body minimum 

to account for close interactions that may arise under high temperature conditions. Additionally, a 

requirement of this study was that the maximum cutoff radius for two-body interactions must be greater 

than or equal to those for three-body interactions. This condition was set due to the predominant 

influence of two-body contributions over three-body interactions and aims to reduce computational cost, 

where three-body terms are the dominant contributors to computational cost. The force error converged 

when the three-body maximum cutoff was (5.0, 5.0, 10.0) Å, hence the three-body minimum and 

maximum radial cutoffs were (0.5, 0.5, 0.5) Å and (5.0, 5.0, 10.0) Å, respectively. Thus, the two-body 

(pairwise interactions) were encoded with a minimum and maximum radial cutoff of 0.001 and 6.0 

angstroms, respectively. Figures that illustrate these findings and support the final decision on cutoffs can 

be found in the supplemental information on the GitHub.  

 



In UF3, the default knot spacing for the cubic B-splines is linear. However, linear spacing may not be the 

optimal strategy for knot placement. Upon examining the radial distribution function of C-Si pair 

interaction distances from the entire training dataset (Fig. 2a), a distinct peak occurs at ~1.90 angstroms, 

corresponding to the energy well minima of the pair interaction curve (Fig 2b). Thus, a custom knot 

strategy was developed featuring a fixed-width, gaussian-like distribution of knots centered around the 

energy well minima, with adjacent linear regions. To highlight the differences in knot strategies, the knot 

positions as dictated by the custom and linear strategies are represented as blue and red dots, 

respectively, in Fig. 2b. It is important to note that an equal number of knots are plotted for both the 

linear and custom knot strategies. The rationale behind the custom strategy was to increase knot 

resolution in regions of maximum PES curvature and high data density. Increased knot resolution 

Figure 2: (a) Radial distribution function of C-Si pair interactions for the entire training dataset, and (b) C-Si 
pair interaction and knot locations using both the linear strategy (red dots) and the custom strategy (blue 

dots). 



correlates to more model fitting parameters, providing greater flexibility in capturing energy well 

curvature. Furthermore, this custom strategy reduces the probability of overfitting as there are fewer 

knots in the adjacent linear-spaced regions. 

 

To validate the custom knot strategy, grid searches were performed for both strategies. Both searches 

explored the same model hyperparameter space, and each model’s performance was evaluated using 

error metrics and material property prediction. During model fitting, UF3 employs Tikhonov 

regularization  [69] with five regularizer hyperparameters encompassing one, two, and three body ridge 

regularizers, as well as two and three body curvature regularizers. Ridge regularizers aim to reduce 

overfitting by penalizing large spline coefficients, while curvature regularizers control the curvature and 

smoothness across neighboring spline coefficients. Additionally, UF3 employs an energy weight term that 

dictates the degree to minimize energy error relative to force error.   

 

The grid searches utilized a coarse grid of hyperparameter values. Regularization parameter values ranged 

from 10-2 to 10-12 in decrements of two orders of magnitude, while the energy/force weight parameter 

ranged from 0.05 to 1.0 in increments of 0.05. To quantitatively assess the efficacy of the two strategies, 

performance benchmarks were established, including normalized error as defined in Eq. (1) and material 

property predictions using the Large-scale Atomic/Molecular Massively Parallel Simulator 

(LAMMPS)  [70]. The normalized error is the mean of the root mean square energy and force errors 

(𝑅𝑀𝑆𝐸!  and 𝑅𝑀𝑆𝐸"), normalized by their respective standard deviations (𝜎!  and 𝜎"), 

Normalized	Error = #
$
4%&'!!
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+ %&'!"
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For a model to be considered acceptable it must pass the benchmarks shown in Table I. 

Table I: Knot strategy performance benchmarks 
Benchmark Requirement 

Normalized error < 0.20 
Cohesive energy error (SiC-3C, SiC-6H) < 10% 

Lattice constant error (SiC-3C) < 5% 
Bulk and shear moduli error (SiC-3C, SiC-6H) < 20% 
Bulk moduli – pressure relationship (SiC-3C) Positive 

 

The listed material property benchmarks were selected as they are fast to evaluate and provide insight 

into the applicability and physical interpretability of trained models. These material properties were 

evaluated for the SiC-3C and SiC-6H polytypes due to their prevalence in the literature and distinct 



features. More specifically, SiC-3C has a cubic crystal structure with carbon coordinated atoms, whereas 

SiC-6H has a hexagonal crystal structure with either cubic or hexagonal coordinated carbon. Metric 

requirements were reflective of their importance. Lattice constant prediction was given the least margin 

of error, as it directly influences density and elastic properties. Furthermore, low cohesive energy error is 

crucial for accurately capturing the ground state. In contrast, bulk and shear moduli errors were the least 

stringent, as they are more extrapolative than the previous two. 

  

Among the evaluated models, no models trained using the linear knot strategy met the full set of criteria, 

while 162 models trained using the custom knot strategy were deemed acceptable. The linear knot 

strategy may achieve success in individual metrics, but cannot simultaneously pass all set targets in Table 

1, in contrast to the custom knot strategy which proves capable of meeting these requirements. Hence, 

the custom knot strategy, newly proposed in this work, can more effectively capture the underlying 

physics.  Due to its marked performance improvements over the linear knot strategy, the custom knot 

strategy has been formalized and is now available in UF3 (https://github.com/uf3/uf3).   

 

2.3 Model fitting and validation 

To determine the optimal hyperparameter combination, the custom knot strategy grid search was refined 

to explore more effective hyperparameter domains that emerged during the initial grid search. Models 

demonstrating high performance across preliminary metrics (Table I) were chosen for further validation 

using large deformations to predict the change in bulk modulus with pressure (𝑃),  

𝐾(𝑃) = 𝐾) + 𝐾)*𝑃 (2) 

where 𝐾) is the bulk modulus at the ground state (𝑃 = 0) and 𝐾)*  is the derivative of bulk modulus with 

respect to pressure. The ground state structure of SiC-3C was deformed up to ±10% volumetric strain, the 

resulting energy and pressures were calculated using DFT and the MLIP via LAMMPS simulations. The data 

was fit using the Murnaghan equation of state (EOS) [71],   

𝑃(𝑉) =
𝐾+
𝐾+*
=>
𝑉
𝑉+
?
,-#$

− 1B 
(3) 

Here 𝑉) is the initial volume of the structure (in the ground state), and 𝑃 is the pressure of the structure 

when compressed to a final volume 𝑉. Models were filtered to include those with 𝐾)*  values close to that 

of the DFT calculations (𝐾)* = 3.76). 

 

https://github.com/uf3/uf3


Acceptable models underwent further validation by comparing their volume-pressure and volume-

temperature relationships with ab initio findings. Associated simulation data were used to fit a volume-

pressure EOS and a volume-temperature EOS as 

𝑉(𝑃) = 𝑉) + 𝑉)*𝑃 + 𝑉)**𝑃$ (4) 

𝑉(𝑇) = 𝑉) + 𝑉)*𝑇 + 𝑉)**𝑇$ (5) 

 

Models whose overall volume-pressure and volume-temperature relationships aligned with ab initio, 

were then evaluated by comparing their pair interaction energy curves to those produced by DFT. Pairwise 

interactions are another physically interpretable metric and are the dominant contributors to the total 

energy and properties of the system. Therefore, MLIPs used for meaningful simulations should resemble 

DFT predictions (e.g., relative depth of pair interaction energy wells).  

 

Finally, the highest-performing models up to this point were chosen for melting temperature prediction 

simulations. Melting simulations were conducted as the last test for two main reasons: (i) they are the 

most computationally demanding, requiring orders of magnitude longer simulation times compared to 

previous tests, and (ii) they evaluate an MLIP’s stability under extreme conditions. More specifically, we 

seek a MLIP that effectively models high energy atomic configurations, including situations not explicitly 

included in the training data, such as solid-liquid interfaces during melting. 

 

The melting temperature simulations were carried out using the coexistence method  [72], which to our 

knowledge has not been extensively used for ceramics. In brief, the coexistence method involves dividing 

a simulation cell in half, where the bottom half is heated to an equilibrium temperature, denoted as TE, 

and maintained as a solid, while the top half is heated well above the melting temperature so that it 

transitions into a liquid, and then quenched to TE. Subsequently, the two halves are brought together and 

allowed to reach thermal equilibrium. The interface between the solid and liquid halves serves as a 

nucleation site, facilitating the growth of either the solid or melted phase depending on the temperature. 

If the specified TE is below the melting temperature, the solid region will expand, whereas if TE is above 

the melting temperature, the solid region will contract. The coexistence method offers advantages over 

homogenous nucleation methods, which often lead to superheated structures and consequently 

overpredict the melting temperature. 

 



The MLIP which displayed the greatest holistic performance across all metrics described thus far is chosen 

as the final MLIP and its performance is evaluated in the following sections. The data used to train the 

model, python scripts used during featurization and MLIP training, as well as the final model can be found 

on GitHub. 

 

3. Results & Discussion 

In this section, we highlight the performance of the developed Si-C MLIP and draw comparisons with 

existing literature. When making comparisons, we reference literature values when available. In other 

cases, comparisons are made to DFT calculations and/or LAMMPS simulations using the Vashishta 

potential [58]. As described above, the MLIP was primarily evaluated on its predictions for the mechanical 

and thermal properties of interest on the most prevalent SiC polytypes. 

 



3.1 Learning energy and force errors 

The training data diversity is shown in Figs. 3(a) and 3(b), where the MLIP predicted values for energies 

and forces are plotted against the DFT values. Predictions using the MLIP align well with the DFT reference 

data over energy values ranging from 0 to approximately -8 eV/atom, and forces ranging from ~-75 to 75 

eV/Å. The root mean square force and energy errors for the MLIP are 145 meV/atom and 332 meV/Å, 

respectively, resulting in a normalized error of 167. Although the energy error may be high compared to 

some NN-based MLIPs, the normalized error is comparable to those of single element metallic 

materials [24]. The discrepancy in energy and force errors in comparison to other MLIPs can be attributed 

Figure 3: MLIP predicted versus reference (a) energies and (b) forces (inset is a close up between -10 and +10 
meV/Å). Comparison of LAMMPS energy evaluations using the (c) MLIP and (d) Vashishta potential for ~200 

structures with varied compositions against reference DFT values. 



to greater energy and force diversity within the training set. As mentioned previously, the data was 

primarily generated via a GA, which can yield a high proportion of non-energetically favorable structures. 

Other MLIPs which predominately employ sampling methods like AIMD may exhibit lower error levels 

because (i) the training and testing data tend to be highly correlated and/or (ii) AIMD simulations may be 

initialized with stable/meta-stable structures, which may constrain structural evolution and limit dataset 

diversity.   

 

In addition, LAMMPS energy evaluations were conducted on approximately 200 structures with varied 

compositions using both the MLIP and Vashishta potential, as depicted in Figs. 3(c) and 3(d), respectively. 

The MLIP demonstrates high accuracy in energy predictions compared to DFT. Notably, the MLIP’s 

performance remains consistent across compositions, whereas the Vashishta potential experiences large 

errors when evaluating structures with non-equimolar compositions. This performance disparity can be 

attributed to differences in model development practices. The MLIP was developed using a data driven 

approach aimed at learning the physics of the Si-C system, whereas the Vashishta potential was 

formulated for stoichiometric SiC only.  

 

Furthermore, the MLIP’s ability to accurately evaluate non-stoichiometric structures highlights its ability 

to capture some of the underlying physics. This capability is crucial for modeling material phenomena like 

melting [73], sublimation [63,74], etc., where non-equimolar compositions are common. Beyond 

modeling SiC in MD simulations, consistent predictive performance across the Si-C system bolsters the 

MLIP’s use as a surrogate model in GAs, where it can be used in place of costly ab initio calculations to 

expedite the discovery of next-generation 

materials. 

 

In further validation of the MLIP’s capability to 

capture same-atom interactions, along with 

C-Si bonds, the pairwise energy interactions 

for Si-Si, C-Si, and C-C were evaluated and 

compared against Vashishta predictions (Fig. 

4). Overall, the MLIP captures key attributes, 

including the presence of repulsive and 

attractive regions for each interaction and the 
Figure 4: Comparison of MLIP (solid lines) and Vashishta 
(dotted lines) predicted pair interaction energy curves. 



correct ordering of energy wells. Specifically, the energy well depths, from deepest to shallowest follow 

the sequence C-C, C-Si, and Si-Si, in agreement with our DFT calculations. In contrast, Vashishta predicts 

completely repulsive same-atom interactions. This distinction helps explain the MLIPs greater ability to 

model non-equimolar structures as compared to the Vashishta potential. Furthermore, accurately 

representing these attributes is essential for effective modeling, as the presence of attractive regions plays 

a crucial role in describing complex behaviors, such as phase separation. 

   

3.2 Property prediction 

Along with capturing energy and force errors (the data that the model was trained on), a successful MLIP 

must also be able to accurately predict properties of interest. For a hard ceramic like SiC, with applications 

in structural and refractory fields, the MLIP’s ability to accurately predict mechanical and thermal 

properties is paramount. 

  

3.2.1. Fundamental mechanical properties 

The first step towards validating the MLIP involves calculating fundamental material properties such as 

cohesive energy (𝐸.), lattice constants (𝑎, 𝑏, 𝑐), elastic constants (𝐶/0), and bulk (𝐾) and shear moduli (𝐺). 

The MLIP’s predictions are shown in Table II along with comparisons to values obtained from the Vashista 

potential, DFT, and experiments. 

  

Table II: Comparison of mechanical properties for common SiC polytypes from MLIP, DFT, experimental 

values, and the Vashista potential  

Polytype Property Unit DFT MLIP Vashishta Experiment 

SiC-3C 

(zinc-

blende) 

𝑎 = 𝑏 = 𝑐 Å 4.38 4.40 4.36 4.36  [75] 

𝐸.  eV/atom -7.53 -7.40 -6.34 -6.34  [76,77] 

𝐶## GPa 384 435 390 390  [78] 

𝐶#$ GPa 127 118 142.6 142  [78] 

𝐶11 GPa 241 210 136.9 256  [78] 

𝐾 GPa 213 224 225 225  [79] 

𝐺 GPa 187 187 131.5 192  [79] 

SiC-2H 

(wurtzite) 

𝑎 = 𝑏 Å 3.09 3.10 3.06 3.08  [80] 

𝑐 Å 5.07 5.08 5.02 5.05  [80] 



𝐸.  eV/atom -7.53 -7.33 -6.32 - 

𝐶## GPa 495 525 416 - 

𝐶22 GPa 534 553 379 - 

𝐶#$ GPa 101.1 158 158 - 

𝐶#2 GPa 49.2 135 149 - 

𝐶11 GPa 151.8 149 126.4 - 

𝐶33 GPa 196.8 183 128.7 - 

𝐾 GPa 214 273 236 - 

𝐺 GPa 185 173 125.8 - 

SiC-6H 

𝑎 = 𝑏 Å 3.08 3.10 3.08 3.08  [81]  

𝑐 Å 15.18 15.25 15.10 15.12  [81] 

𝐸.  eV/atom -7.53 -7.38 -6.33 - 

𝐶## GPa 485 498 406 501  [82] 

𝐶22 GPa 535 513 415 553  [82] 

𝐶#$ GPa 104.3 123 142.8 111  [82] 

𝐶#2 GPa 51.1 106 140.6 52  [82] 

𝐶11 GPa 160.8 166 131.1 163  [82] 

𝐶33 GPa 190.1 188 132.2 195  [82] 

𝐾 GPa 213 242 230 220  [82] 

𝐺 GPa 187 181 132.4 191a 

aCalculated using experimental values from  [82] 

 

The MLIP’s excellent ability to model the three polytypes is evident as the values are in close agreement 

to the DFT predicted values. Moreover, the MLIP captures all three polytype’s shear moduli and the C33
 

elastic constant for the hexagonal polytypes with a high degree of accuracy when compared to DFT and 

experimental data (if available), whereas Vashishta experiences larger errors.  

 

It is worth noting that disparities between experimental and DFT cohesive energy values can stem from 

several factors, including size effects, experimental controls like sample purity and preparation, and 



quantum mechanical effects difficult to 

account for during simulation. Nonetheless, 

emphasis was placed on reproducing DFT 

predictions as they constitute the training 

data.  

 

3.2.2 Equations of state 

Expanding beyond property prediction, 

molecular dynamics simulations were 

performed to derive equations of state. First, 

the high-pressure behavior of SiC-3C was 

investigated using the MLIP, Vashishta, and 

DFT. In this analysis, the ground state 

structure underwent ±10% volumetric strain. 

To address disparities in cohesive energy predictions, the predicted energies were centered at the origin 

and then plotted as a function of volume-ratio (Fig. 5). Both the MLIP and Vashishta relative energy 

predictions are in overall agreement with DFT. However, the discrepancies in relative energies tend to 

increase for both the MLIP and Vashishta as the structure is strained. Achieving comparable relative 

energies to DFT is crucial, as these energy differences influence computed forces during classical atomistic 

simulations. 

 

It is important to note that the MLIP was not fit to specific properties. Instead, the MLIP has successfully 

learned structure-energy relationships within the training data, without explicit knowledge of SiC 

deformation behavior, thereby demonstrating the transferability of the MLIP. In contrast, many potentials 

are calibrated to specific properties. For example, Vashishta potential’s parameters were determined 

using physical properties, including the C11 elastic constant and bulk modulus of SiC-3C [58]. Furthermore, 

while MLIPs are not fit to specific properties, many MLIPs are trained explicitly on strained configurations, 

similar to those assessed in a LAMMPS simulation for the determination of elastic constants. While this 

approach may yield near ab initio predictions as in the Vasishta potential (Fig. 5), it does not truly reflect 

an MLIP’s generalizability.  

 

Figure 5:  Relative energy per atom versus volume 
ratio for DFT, Vashishta, and MLIP. 



From the same simulations used to generate Fig. 5, volume and pressure data were collected and used to 

fit a Murnaghan EOS, (described in Eqs. (2) and (3)) with the parameters presented in Table III. While the 

MLIP’s fitted EOS overpredicts the bulk modulus (𝐾)) compared to Vashishta, the MLIP captures the 

pressure-volume relationships (𝐾)*) to a much better degree than Vashishta. 

 

Table III: Murnaghan Equation of State Parameters 

 DFT MLIP Vashishta 

𝐾) (GPa) 211.3 261.0 225.0 

𝐾)*  3.76 3.97 6.23 

 

To further validate the MLIP, we compared the MLIP’s volume-pressure (Fig. 6(a)) and volume-

temperature (Fig. 6(b)) relationships for SiC-3C at various temperatures (𝑇	 = 	5, 300, and	1200	K) and 

pressures (𝑃	 = 	0, 10, 20, and	70	GPa), respectively, to DFT calculations [83]. The MLIP aligns well with 

the DFT values, as the volume of the unit cell has an inverse relationship with pressure (Fig. 6(a)), and a 

positive relationship with temperature (Fig. 6(b)). The volume-pressure (Eq. (4)) and volume-temperature 

(Eq. (5)) equations of state were fit and compared to literature DFT values [83] in Table IV. The largest 

source of discrepancies in the previous volume relationships are the constant terms which stem from 

variations in lattice constant predictions shown earlier in Table 1.   

 



Table IV: Comparison of MLIP and literature volume-pressure and volume-temperature EOS 

parameters. 

 T 

(K) 

MLIP Literature   [83] 

𝑽𝟎 𝑽𝟎*  𝑽𝟎** 𝑽𝟎 𝑽𝟎*  𝑽𝟎** 

𝑉(𝑃) 

5* 21.29 
−7.29

× 10,$ 

4.30

× 10,1 
21.08 

−8.84

× 10,$ 
4.18 × 10,1 

300 21.39 
−6.97

× 10,$ 

3.58

× 10,1 
21.14 

−9.02

× 10,$ 
4.32 × 10,1 

1200 21.70 
−7.12

× 10,$ 

3.39

× 10,1 
21.83 

−1.05

× 10,# 
5.43 × 10,1 

 
P 

(GPa) 

MLIP Literature  [83]  

𝑽𝟎 𝑽𝟎*  𝑽𝟎** 𝑽𝟎 𝑽𝟎*  𝑽𝟎** 

𝑉(𝑇) 

0 21.36 
2.58

× 10,1 

0.417

× 10,5 
21.08 4.09 × 10,1 2.17 × 10,5 

10 20.55 
4.76

× 10,1 

−0.80

× 10,5 
20.15 3.77 × 10,1 1.20 × 10,5 

20 19.94 
5.515

× 10,1 

−1.15

× 10,5 
19.40 3.00 × 10,1 0.92 × 10,5 

Figure 6: (a) Volume versus pressure at different temperatures and (b) volume versus temperature at different 
pressures. 



70 18.22 
0.22

× 10,1 

0.70

× 10,5 
16.88 1.17 × 10,1 0.55 × 10,5 

*MD simulations were conducted at 5 K, whereas literature values are for 0 K. 

 

3.2.3 High temperature behavior 

In the previous section, the MLIP predictive performance was demonstrated through practices commonly 

employed by researchers while validating their MLIPs and empirical potentials [58,84–86]. In this section, 

the MLIPs performance on phenomena proven difficult to model with empirical potentials, such as 

thermal decomposition and surface reconstruction, are summarized. The aim of these studies is to 

showcase the MLIP’s ability to model complex phenomena and spur future investigations into SiC 

behaviors (e.g., silicon carbide epitaxy). It must be emphasized that the phenomena modeled may not be 

directly represented in the training data, underscoring the MLIPs ability to capture underlying physics of 

the Si-C system.  

  

Thermal decomposition 

To assess the thermal decomposition behavior of SiC as predicted by the MLIP, melting simulations were 

performed using the coexistence method. The thermal decomposition temperature was determined by 

monitoring the prevalence of cubic diamond structures during the simulation. The MLIP predicts a 

decomposition temperature of 1825 K. At temperatures exceeding this threshold, crystalline SiC 

undergoes a peritectic reaction, where silicon sublimes leaving behind solid carbon. This peritectic 

reaction is consistent with the SiC phase diagram  [60] and experimental studies  [73,87–89]. Moreover, 

the predicted temperature is in excellent agreement with experimental observations, where thermal 

decomposition has been seen to occur from 1200 K – 2100 K [60–63,87,88,90,91]. 

 



To further examine this peritectic reaction, a carbon-terminated SiC-3C (001) surface was equilibrated at 

2000 K. The simulation involved a 12x12x26 supercell, totaling 29952 atoms, with periodic boundary 

conditions in the x and y directions, and free surface boundaries in the z direction. As seen in Figure 7(a), 

the MLIP effectively captures the separation of silicon (brown atoms) and carbon (grey atoms) resulting 

from silicon sublimation.  

Additionally, polyhedral template matching [92] in Ovito [93] facilitated the identification of separated 

carbon regions as graphitic structures (Fig. 7b). Specifically, graphene sheets formed at the upper and 

lower surfaces with a characteristic honeycomb pattern (Fig. 7c). These findings are supported by studies 

on silicon carbide decomposition and graphene growth [62], where silicon carbide decomposition has 

been explored as a method for graphene synthesis [61,63,94]. The structure of these graphene sheets 

was quantitatively validated via bond length analysis of the carbon rings within the honeycomb structures. 

The average carbon ring bond length as predicted by the MLIP is 142.5 pm, closely aligning with DFT and 

experimental studies (~142 pm [95] and ~141.8 pm [62], respectively).  

 

The MLIPs capability to model thermal decomposition is seen as an advancement, where the Vashishta 

potential predicts a crystalline to liquid transition with no graphene formation [96,97], and another 

popular potential, Tersoff [98], requires the removal of a silicon atom to simulate thermal 

Figure 7: (a) Separation of silicon (brown atoms) and carbon (grey atoms), (b) demonstrating the formation of 
graphitic structures, (c) zoomed in view of graphene sheet formed due to silicon sublimation (corresponds to 

bottom sheet of carbon (grey atoms) in figure 7a).  



decomposition [99].  The MLIPs capability to capture graphene growth from silicon carbide decomposition 

presents opportunities for a deeper atomic level understanding of graphene synthesis. Moreover, it can 

enable insights on longer time and length scales than those achievable through ab initio methods and 

facilitates the assessment of atomic level behaviors that are challenging to observe experimentally. 

 

Surface reconstruction 

The MLIP’s performance to predict surface reconstruction was evaluated by building a model with a 

carbon terminated SiC-3C (001) surface and equilibrating to 1200 K. The simulation used a 13x13x6 

supercell, totaling 8112 atoms, with periodic boundaries in the x and y directions, and free surface 

boundaries in the z direction. Shown in Figs. 8(a) and 8(b) are initial and final images of the SiC surface, 

respectively. 

 

As depicted above, the surface atoms have undergone surface reconstruction. More specifically, the 

carbon atoms, initially bonded to the silicon atoms in a layer below, have formed C-C dimers. This 

reconstruction aligns with existing literature, notably demonstrating the dimer-row reconfiguration [100–

102], commonly observed in the simulated carbon-terminated SiC-3C configuration. Moreover, 

measurements of C-C and C-Si bond lengths are ~1.47 Å and ~1.84 Å, respectively. These values closely 

resemble literature findings of 1.36 Å for C-C and 1.83-1.91Å for C-Si  [100,103,104]. 

  

Figure 8:  (a) Initial and (b) final images of a carbon-terminated SiC-3C (001) surface equilibrated at 1200 K. 



The above two examples further demonstrate the range of applicability of the MLIP, where complex, 

difficult to model phenomena, were effectively modeled, in agreement with ab initio and experimental 

findings. Moreover, the MLIPs excellent performance in modeling these behaviors invites further 

investigation into material interfaces within the Si-C system like SiC/graphene. 

 

Conclusion 

A MLIP has been developed for molecular dynamics simulations of the Si-C system, achieving excellent 

accuracy relative to ab initio in reproducing mechanical properties and capturing the physics of the Si-C 

system under different thermodynamic conditions. The MLIP was trained using the linear regression 

based UF3 development package. UF3 was chosen for its computational efficiency and robustness in 

capturing the physics of a material system with minimal data compared to other approaches such as NNs. 

To enhance MLIP performance, modifications were made to the UF3
 featurization process, including 

increased model fitting parameters around pair interaction energy wells. This modification resulted in 

significant improvements in MLIP performance, particularly in the predictive accuracy of mechanical 

properties. 

 

The developed MLIP effectively learned the underlying structure-energy relationships within the Si-C 

system, experiencing normalized errors comparable to single element metal MLIPs, and demonstrated 

excellent predictive performance across stoichiometries. This robust performance was further confirmed 

through extensive evaluation of fundamental properties (e.g., elastic constants, cohesive energy) and 

volume-pressure/temperature relationships, all of which closely aligned with ab initio predictions. 

 

Furthermore, the MLIP’s predictive capabilities as well as range of applicability were highlighted through 

the simulation of complex SiC behaviors, including thermal decomposition and surface reconstruction. 

The MLIP accurately predicted SiC’s peritectic reaction at a temperature (1825 K) commensurate with 

experiments (1200-2100 K), and carbon-dimer surface reconstruction. These results highlight the MLIPs 

suitability for modeling complex phenomenon, pertinent to practical applications of SiC. Ultimately, the 

approach adopted here with genetic algorithms and UF3 potentials is shown to be a promising approach 

for developing MLIPs for ceramics with complex structures and behaviors.  
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