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The Kuramoto model has provided deep insights into synchronization phenomena and remains
an important paradigm to study the dynamics of coupled oscillators. Yet, despite its success, the
asynchronous regime in the Kuramoto model has received limited attention. Here, we adapt and
enhance the mean-field approach originally proposed by Stiller and Radons [Phys. Rev. E 58 (1998)]
to study the asynchronous state in the Kuramoto model with a finite number of oscillators and with
disordered connectivity. By employing an iterative stochastic mean field (IMF) approximation, the
complex N -oscillator system can effectively be reduced to a one-dimensional dynamics, both for
homogeneous and heterogeneous networks. This method allows us to investigate the power spectra
of individual oscillators as well as of the multiplicative “network noise” in the Kuramoto model in the
asynchronous regime. By taking into account the finite system size and disorder in the connectivity,
our findings become relevant for the dynamics of coupled oscillators that appear in the context of
biological or technical systems.

I. INTRODUCTION

The synchronization of oscillators has been a focal
point of interest for multiple scientific disciplines, with
applications spanning from neuroscience to power grids
[1–3]. While synchronized states and their properties
have been explored in depth, the asynchronous states,
which are also prevalent in many systems [4–10], remain
a less explored area of study. In particular, the classi-
cal Kuramoto model has provided a foundation for un-
derstanding synchronization in a system (or network) of
coupled phase oscillators [3, 11]. However, real-world
networks often exhibit more intricacies as e.g. disorder
in both the natural frequencies of individual oscillators
and the network topology (interaction strengths), which
can lead to more nuanced behaviors that the basic model
might lack. While the effects of different types of het-
erogeneity in the network have begun to be addressed
in earlier studies, these mostly focused on the charac-
terization of different dynamical regimes with at least
partial synchrony (see, e.g., [12]). Here, we are more
interested in the asynchronous state, which has received
relatively little attention in comparison. In particular for
neuronal networks, synchronous states can often be con-
sidered pathological, whereas the asynchronous state cor-
responds frequently to the default [13]. To advance our
understanding of network dynamics in such asynchronous
states, we therefore aim to deliver here a proper charac-
terization of such states in the paradigmatic Kuramoto
model.

Important characteristics of the asynchronous state are
the fluctuation statistics of the single oscillators as well
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as of the effective drive of individual oscillators due to
couplings. The open problem for theory is to find ap-
proximations for correlation functions or power spectra
of these observables. It is interesting to see how the fluc-
tuation statistics depends on the disorder of the oscil-
lator frequencies and the connectivity. If the dynamics
of the single oscillators is more complicated, e.g. given
by a multidimensional system of differential equations
for each oscillator, then the above questions can only
be addressed by numerical simulations of the network.
However, such simulations of a large network of oscil-
lators can be computationally expensive and do not of-
fer much mechanistic understanding of the fluctuation
statistics. In this context, the iterative mean field (IMF)
approach, which effectively reduces the N -oscillator sys-
tem to a one-dimensional self-consistent representation,
emerges as a powerful tool. It has been applied to recur-
rent network models of rate units [14–16], of integrate-
and-fire neurons [17–19], of rotator units [10, 20, 21],
and to disordered chains of Ising spins [22]. For a Ku-
ramoto model with random connectivity, the stochastic
mean field theory that underlies the iterative approach
was worked out by Stiller and Radons [23] but applied
only to the relaxation of the order parameter, but not
to the stationary fluctuations. The results of this simpli-
fied description, as we will illustrate here, agree well with
those of the full network dynamics for heterogeneous Ku-
ramoto networks with frequency and/or connectivity dis-
order. Specifically, we aim here to analyze the effects of
randomness in interactions and leverage the IMF approx-
imation to this end. We focus our investigation on the
spectra of the single oscillators and of the network noise,
presenting a fresh perspective on the asynchronous dy-
namics of oscillator networks. In addition to expanding
the theoretical framework, our investigation also serves
to fill the gaps left by previous research on the heteroge-
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neous Kuramoto model. Prior attempts have approached
the numerical integration of 1D dynamics with iteration
primarily to compute the time-dependent order parame-
ter [23, 24]. However, the main focus here is the temporal
correlation statistics of the stationary fluctuations.

Our paper is organized as follows. We start by pre-
senting the network model and the stochastic iterative
mean field (IMF) method used to compute the spectral
statistics, followed by a detailed comparison of analytical
and numerical results. We then take a detailed look at
the network noise power spectra properties, ending with
a summary and discussion of our key findings.

II. THE MODEL

We investigate a system described by the heteroge-
neous Kuramoto model, a paradigm for weakly coupled
oscillators. Each oscillator in this network is charac-
terized by the following dynamics of its phase θℓ (ℓ =
1, . . . , N):

θ̇ℓ(t) = ωℓ +

N∑
m=1

Kℓm sin (θm(t)− θℓ(t)) + ξℓ(t). (1)

Here, ωℓ are the natural frequencies of the oscillators,
Kℓm are the coupling coefficients between the oscillators,
and ξℓ are independent noise processes. The ωℓ are taken
to be Gaussian distributed with

ωℓ = Gℓσω, ⟨ωℓ⟩ = 0, ⟨ωℓωm⟩ = σ2
ωδℓm (2)

where Gℓ (for ℓ = 1, . . . , N) represents a Gaussian array
of N independent numbers with vanishing mean and unit
variance. The coupling coefficients Kℓm are also taken to
be independent Gaussian numbers with

Kℓm =
K

N
+
kGℓm√
N

, ⟨Kℓm⟩ = K

N
,

⟨KℓmKℓ′n⟩ = δℓℓ′δmn
k2

N
+
K2

N2
(3)

where Gℓm (for ℓ,m = 1, . . . , N) denotes a N ×N Gaus-
sian matrix with mutually independent entries of stan-
dard deviation 1 and mean 0. Note that in our set-
ting Kℓm and Kmℓ are uncorrelated. We consider the
ξℓ(t) to be Gaussian white noise with ⟨ξℓ(t)ξm(t′)⟩ =
2Dδ(t − t′)δℓm, i.e. uncorrelated between individual os-
cillators, with noise intensity D. We initialize the system
with all oscillator phases θℓ drawn independently from a
uniform distribution in [0, 2π].
In our study for completely deterministic network os-

cillators (D = 0), we used the Runge-Kutta method
to explicitly integrate Eqs. (1); in the stochastic case
(D > 0), we used the Euler-Maruyama method. In both
cases, we refer to the integration of Eqs. (1) in the fol-
lowing as network dynamics (ND) method. We discard
a transient simulation time of td = 103 and use a high
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FIG. 1. Synchronous and asynchronous regimes of
the model. Variation of the order parameter r as a func-
tion of coupling strength K (solid lines). There are three
scenarios: disorder in connectivity (blue), disorder in fre-
quencies (red), and concurrent disorder in both connectivity
and frequencies (green). This paper exclusively focuses on
the asynchronous regime (shaded areas). Parameters used:
N = 104, T = 103, R = 20.

relative tolerance of the Runge-Kutta method from 10−8

down to 10−14 (for D = 0). The time window of further
computations (e.g. Fourier transforms) is denoted by T
and chosen depending on parameters from 103 to 105

(see figure captions). We also performed simulations with
simple Euler-Maruyama method (for D = 0 and D > 0)
with time step dt = 0.01 and obtained (for D = 0) re-
sults that were quantitatively very close to those of the
Runge-Kutta method.
In order to distinguish synchronous and asynchronous

regimes in the model, it is useful to inspect the order
parameter of the Kuramoto model, r, defined by

reiψ =
1

N

N∑
ℓ=1

eiθℓ . (4)

For a finite network, both the phase ψ(t) and the order
parameter r will show fluctuations that can be reduced
by temporal averaging. In Fig. 1, we present the time-
averaged order parameter r obtained by averaging over
the time window T after the transient td is discarded.
Subsequently, this averaged result is further processed
by averaging over R disorder realizations of connectivi-
ties and frequencies. The figure displays the order pa-
rameter r versus the average coupling constant K for
three different cases: oscillator-frequency disorder with
σω = 1 and no disorder in the couplings (blue line), con-
nectivity disorder with k = 1 and no disorder in the
natural frequencies (red line), and a combination of both
types of disorder. As expected, the stronger disorder in
the system leads to a larger range of coupling strengths
for which the system is in an asynchronous state, i.e.,
has a small order parameter r ≪ 1. Generally, asyn-
chronous states in complex systems occur when the aver-
age coupling constant K is below a critical coupling Kc.
In the asynchronous regime, the order parameter scales
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as 1/
√
N [25]. This can be motivated by looking at the

squared order parameter’s expected value:

⟨r2⟩=

〈
1

N2

∑
ℓ

∑
ℓ′

eiθℓeiθℓ′

〉
=

1

N
+(1− 1

N
)⟨ei(θ1−θ2)⟩≈ 1

N
.

(5)
In the last but one step, we simplify the sum by choosing
two distinct oscillators (all pairs of distinct oscillators
are statistically equivalent). In the last step, we take
into account that the oscillators are asynchronous, i.e.,
θ1, θ2 are statistically independent and their phases are
uniformly distributed.

As a measure of the fluctuations in the asynchronous
state, we analyze the power spectrum Sxℓ

of individual
oscillators in networks with different types of disorder:
in the natural frequencies, in the connectivities, and in
both. An oscillator is represented here by its complex
pointer xℓ = eiθℓ , allowing us to compute its power spec-
trum with

Sxℓ
= lim
T→∞

⟨x̃ℓx̃∗ℓ ⟩
T

, x̃ℓ =

∫ T

0

dteiωtxℓ(t). (6)

We can also look at the power spectrum averaged over
all oscillators:

Sz =
1

N

N∑
i=1

Sxℓ
, (7)

which in the asynchronous state, where individual oscilla-
tors are uncorrelated, is equivalent to the power spectrum
of the observable

z(t) =
1√
N

N∑
ℓ=1

xℓ. (8)

For the numerical evaluation of the average of the power
spectra in Eq. (6) we cannot perform the limit T → ∞
but have to use a sufficiently large time window; de-
pending on the parameters, we use here time windows of
T = 104 or T = 105. The average is performed in three
ways, depending on the specific measure considered. For
the single oscillator spectra, we average only over time,
keeping the network connectivity and frequencies of the
oscillators fixed. The time average is carried out by
smoothing the raw spectrum over neighboring frequency
bins such that the resulting coarse-grained frequency bin
is ∆ω = 2π/100 (the effective time window of 103 is still
large enough for an estimation of a power spectrum). In
other situations, as indicated, we will also average over R
draws of the oscillator frequencies ωℓ and/or the coupling
coefficients Kℓm.

We are interested in the dependence of these power
spectra on the properties of the network, i.e. the disorder
in the frequencies, in connectivities, and the dynamical
noise. We study both large as well as small systems.

III. DERIVATION OF SELF-CONSISTENT
EQUATION

Stiller and Radons have developed a stochastic mean-
field theory [23] that describes the dynamics of a sin-
gle oscillator driven by a Gaussian network noise with
self-consistent autocorrelation statistics. Their deriva-
tion is based on the method of generating functionals,
and they applied their result to the problem of relax-
ation into the steady state using a method pioneered by
Eissfeller and Opper [22]. Here we give an alternative,
simplified derivation of the stochastic mean-field dynam-
ics and apply the self-consistent iterative method to the
problem of stationary power spectra of single oscillators
and network noise. Note that a similar approach has
been used for random networks of integrate-and-fire neu-
rons [17–19], pulse-coupled [10] and non-Kuramoto cou-
pled oscillators [10, 20, 21].
In our setting of the model, we deviate in two respects

from the model considered by Stiller and Radons: i) the
mean value of the interaction is not zero, i.e., we also in-
clude in this way the original Kuramoto model; ii) the in-
teraction between oscillators is completely random (this
is the special case with Stiller and Radon’s parameter
η = 0). Furthermore, we include a finite size correction
in our theory that is not present in Stiller and Radon’s
theory.
Starting from the network dynamics defined by Eq. (1),

we rewrite the sine coupling using complex exponentials,
which permits us to write the coupling term as a multi-
plicative network noise that is multiplied with a complex
exponential of the driven phase variable:

θ̇ℓ = ωℓ + ξℓ +

N∑
m=1

Kℓm

2i

(
ei(θm(t)−θℓ(t)) − e−i(θm(t)−θℓ(t))

)
= ωℓ + ξℓ + Im

(
e−iθℓ(t)ζℓ(t)

)
. (9)

Here we introduced the network noise

ζℓ(t) =
∑
m

Kℓme
iθm . (10)

For a large network in the asynchronous state, this noise
comprises many independent stochastic processes, a su-
perposition with Gaussian statistics by virtue of the cen-
tral limit theorem. For the correlation function of this
noise, we find

⟨ζ∗ℓ (t)ζℓ(t′)⟩ =
∑
m,n

〈
KℓmKℓne

i(θm(t′)−θn(t))
〉

(11)

=
∑
m,n

(
k2

N
δmn +

K2

N2

)〈
ei(θm(t′)−θn(t))

〉
, (12)

where we have used that the connection strengths Kℓm

and Kℓn are uncorrelated with the phases of the driv-
ing (mth and nth) oscillators, and thus the exponential
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term and the product of coupling strengths can be sep-
arately averaged, which also eliminates the explicit de-
pendence on ℓ (the correlation statistics of the network
noise is the same for all oscillators). Taking into account
that different oscillators will be uncorrelated in the asyn-
chronous state, ⟨ei(θm(t′)−θn(t))⟩ = δmn⟨ei(θm(t′)−θm(t))⟩,
we can carry out the sum and arrive at

⟨ζ∗(t)ζ(t′)⟩ =
(
k2 +

K2

N

)〈
ei(θ(t

′)−θ(t))
〉
. (13)

Importantly, on the right-hand side, we find essentially
the autocorrelation function of the pointer eiθ(t) of a sin-
gle phase variable, but averaged over all oscillators; note
that we therefore suppressed the indices on both sides.
In Fourier space, the same relation reads

Sζ(ω) = (k2 +K2/N)Sz(ω). (14)

The network noise power spectrum is directly propor-
tional to the power spectrum of the single oscillator’s
pointer, averaged over all oscillators, which reflects the
self-consistence between the activity of the single rotator
and the fluctuation by which it is driven.

To summarize, in the large-N limit, we can transform
the N oscillator problem Eq. (1) into a single oscillator
problem with self-consistent noise statistics:

θ̇ = σωξω +
√
2Dξ(t) + Im

(
e−iθζ(t)

)
(15)

where ξ(t) is a Gaussian white noise with correlation
function ⟨ξ(t)ξ(t′)⟩ = δ(t − t′) and ξω is a static noise
obeying ⟨ξω(t)ξω(t′)⟩ = 1. The real-valued Gaussian
noise processes ξω and ξ(t) and the complex-valued net-
work noise ζ(t) have all zero mean. While the statistics of
ξω and ξ(t) are known beforehand and can simply be sim-
ulated in Eq. (15), the statistics of the network noise has
to be determined self-consistently from the driven phase
variable via Eq. (13) or its Fourier variant Eq. (14), which
is in turn shaped by the network noise. The noise statis-
tics can be determined by an iterative procedure detailed
below. We note that the analytical approach of Ref. [10]
cannot be applied in the current case because the equiva-
lent network noise (or total input) Im

(
e−iθζ(t)

)
appear-

ing in Eq. (15) turns out to be non-Gaussian.
At the core of what we refer to in the following as iter-

ative mean field (IMF) method stands the insight that a
Gaussian noise with a prescribed power spectrum can be
easily produced by generating random numbers in the
frequency domain and subsequent Fourier transforma-
tion [26]. More specifically, if we draw Gaussian num-
bers Gℓ, G

′
ℓ with zero mean and unit variance in each

frequency bin (uncorrelated with each other and among
the frequency bins), then

ζ̃(ω) = (Gℓ + iG′
ℓ)

√
Sζ(ω)T

2
(16)

constitutes the Fourier transform of a Gaussian noise
with power spectrum Sζ(ω), the inverse Fourier trans-
form of which will provide a sample of this surrogate
noise process.
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FIG. 2. Convergence of the iterative mean field (IMF)
approach for the self-consistent noise spectrum. Noise
spectra Sζ labeled by the iterative step; we start with a
Lorentzian spectrum i.e. 2/(π2 + 20ω2) (labeled as 0) and
quickly approach a self-consistent shape (spectra for 15 and
30 steps agree within line thickness). Parameters: k = 1,
K = 0, σω = 0, T = 103, dt = 10−3, with Ntrial = 104 num-
ber of realizations.

In our iterative routine, we start with a Gaussian noise
with a Lorentzian power spectrum γ/[π(ω2 + γ2)] and
then solve Eq. (15) for a number of realizations that we
categorize as follows. For a given random value of the
frequency σωξω, we produce M trials (realizations) by
generating different realizations of the network noise. We
repeat this N times with N different frequencies, such
that the total number of trials is Ntrial = N ·M . From
the Ntrial trials, we compute the power spectrum of the
pointer eiθ(t) and determine the next (improved) version
of the power spectrum of the network noise Sζ(ω) via
Eq. (14). The latter is then used to obtain surrogate
noise samples for the next iteration step. Note that the
number of oscillators N in the network enters twice in the
IMF simulation scheme: Once by the amplitude of the
network noise in Eq. (14) (later used in Eq. (16)) and,
secondly, by the number of frequencies drawn in each
iterative step. Iterations are repeated until the spectra
converge. After convergence has been reached, we can
also obtain the spectrum of an individual oscillator with
frequency ωℓ = σωξω by simulating Eq. (15) with a fixed
eigenfrequency and subsequent Fourier transformation of
the dynamics of the pointer eiθ(t).

In Fig. 2, we illustrate the effective convergence of Sζ
using the IMF method, beginning with a Lorentzian spec-
trum (black line) as the initial state. The method reaches
stable convergence in this case at the 15th iteration (red
line), which is illustrated by its agreement with the result
for the 30th iteration (blue dashed line). We furthermore
validate the IMF approach by the systematic comparison
with numerical results from network dynamics (ND).

In the regime dominated by the intrinsic white noise
ξℓ, the system’s dynamics are described by θ̇ ≈

√
2Dξ(t)

(we can neglect all the other terms on the right-hand side
if the white noise is very strong). Under the Gaussian-
white-noise assumption, the autocorrelation function,
C(t − t′) = ⟨ei[θ(t)−θ(t′)]⟩, reduces to e−D|t−t′|, a spe-
cial case of the Kubo oscillator [27] (the general Kubo
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FIG. 3. Single-oscillator dynamics with (a) and with-
out (b) connectivity disorder. Power spectra for three
distinct oscillators with ω6 = −2.6, ω32 = 0.02, ω79 = 2.3 and
with Gaussian disorder in the connectivity (k = 1 in (a)) or
without disorder in the connectivity (k = 0 in (b)). Red solid
lines (IMF) and black dashed lines (ND) show matching re-
sults for both network types. The analysis is conducted with
a frequency variability of σω = 1, coupling strength |K| = 1,
in a system of size N = 104 and over a time window T = 104.
All results were obtained from a single realization of frequency
and connectivity disorder: R = 1,M = 1.

oscillator is driven by a temporally correlated Gaussian
noise). The power spectra, derived through the Fourier
transform, are succinctly expressed as

Sz = 2D/(D2 + ω2), (17)

providing a simple testable limit case.

IV. RESULTS

In the following, we conduct a comparative analysis of
the power spectrum obtained using two distinct methods:
(i) the iterative mean field (IMF) method, a stochastic
mean field technique that simplifies the system ofN oscil-
lators to a single effective oscillator, and (ii) the network
dynamics (ND) approach, wherein we solve the differen-
tial equations for N oscillators, Eq. (1). All the IMF
results, depicted as colored lines, agree with the ND re-
sults, shown as dashed lines, confirming the validity of
the mean-field approach.

Figure 3 displays the spectra Sxℓ
of individual oscil-

lators, contrasting a Kuramoto model with disordered
connectivity (k = 1, panel a) with a uniformly connected
one (k = 0, panel b), while the frequency variability σω
is set to 1 in both cases. We examine the spectra of three

10
-2

10
-1

10
0

10
1

10
2

S
x
ℓ

0, D=0.5
0.1
0.5
1
2

k=(a) σ
ω
=1

-2 -1 0 1 2
ω

10
-2

10
-1

10
0

10
1

10
2

S
x
ℓ

0, D=0.5
0.1
0.5
1
2
ND

k=(b) σ
ω
=0

FIG. 4. Dependence of single-oscillator power spec-
trum on network disorder with (a) and without (b)
frequency variability. Power spectrum of 32nd oscillator
Sxℓ for increasing values of the Gaussian network disorder k
as indicated (a) with natural frequency ω32 = 0.02 (same as
the middle curve in Fig. 3) and with a variability in natural
frequencies of the network oscillators of σω = 1. In (b), the
same spectra but without frequency variability (all oscillators
ωℓ = 0). Dashed lines represent the full network dynamics
(ND) for a single realization (R = 1) with N = 10000. Solid
lines depict the IMF approach after iterations within I = 20
in (a) and I = 50 in (b), both with M = 1, N = 104, T = 105.
All data correspond to D = 0, except the cyan line (IMF)
and its corresponding black dashed line (ND) for D = 0.5 in
both panels and cyan circles (Eq. 17) in (b). In (a), |K| = 1;
in (b), |K| = 0.

oscillators with distinct natural frequencies {ω6, ω32, ω79}
to show how they are differently affected by the network
noise (the latter is proportional to Sz shown in Fig. 5 by
the red curves). For the spectra in Fig. 3(a), it is impor-
tant to realize that the main share of the input network
noise that shapes these spectra is around zero frequency.
Hence the oscillator with a negative (positive) eigenfre-
quency displays a shoulder on the right (left) of its eigen-
frequency - exactly in the frequency band around zero,
whereas the oscillator with an eigenfrequency about zero
does not display such an asymmetry. Without disorder in
the network connectivity, Fig. 3(b), the oscillators’ spec-
tra become distinctly narrow with clear separation, in
contrast to the overlapping profiles seen in the heteroge-
neous network model in Fig. 3(a).

The effect of network disorder becomes clearer when
we increase k in steps from 0.1 to 2, shown in Fig. 4(a).
Here we maintain, for different values of k, the identical
disorder realization of the connectivities Gℓm and of the
frequencies Gℓ as in Fig. 3; those values where defined
in Eq. (2) and Eq. (3). In Fig. 4, we focus on the 32nd
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FIG. 5. Average power spectra Sz = ⟨Sxℓ⟩ℓ with (a)
and without (b) connectivity disorder. Spectra averaged
over all oscillators in the network with Gaussian connectivity
(k = 1 in (a)) or without (k = 0 in (b)); in both panels we
indicate increasing disorder in frequencies, σω. Dashed lines
indicate ND with N = 103. We used R = 103 realizations
with time window T = 105 (a) and R = 200 realizations
with time window T = 104 (b). Solid lines illustrate the
IMF method with I = 20 iterations, employing M = 100 and
T = 105. We set the parameter K equal to the value of |σω|.

oscillator, shown as the central curve with ω32 = 0.02
in Fig. 3, among a total of N = 104 oscillators. As the
strength of connectivity disorder, k, increases, we note a
gradual broadening of the spectra alongside a reduction
in peak amplitude, while the area beneath the curves
remains constant; this simply reflects the fact that the
variance of the pointer xℓ = eiθℓ is always one, ⟨|xℓ|2⟩ =
1. Instead of network disorder, intrinsic white noise (here
with D = 0.5) can also broaden the peak.

Going from Fig. 4(a) to (b), we examine the impact
of removing frequency variability on the power spectra.
We observe that the spectrum becomes more narrow and
its amplitude increases. However, the narrowing of the
peaks is only moderate. Therefore, the peak width seems
to be mainly determined by the heterogeneity of the con-
nectivity. While we consider N = 104 oscillators for both
Fig. 3 and Fig. 4, we obtain similar results for N = 103

oscillators, confirming that the outcomes are independent
of N as long as K2/N ≪ k2 (otherwise the network noise
Eq. (13) will depend on N).

In Fig. 5, we turn to the network averaged spectra
Sz for different frequency disorder from σω = 0.1 to
2 in the presence and absence of connectivity disorder,
k = 1 in (a) and k = 0 in (b), respectively. The red
curves for σω = 1 correspond to the network-averaged
spectra of Fig. 3. We recall that there is a simple re-
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FIG. 6. Impact of mean coupling K at finite net-
work size N on power spectra of single oscillator (a)
and network noise (b). Spectrum of the third oscillator
Sxℓ with ω3 = 0.13 in (a) and noise spectrum Sζ in (b)
for a small network with N = 8. Parameters: σω = 2,
N = 8, M = 1000, R = 1000, T = 104, frequencies
ω = [0.97, 0.26, 0.13, 2.6, 1.3,−5.1,−0.31, 1.04]. IMF results
in orange (K = 0.1, k = 0), green (K = 0, k = 0.2), and red
(K = 1, k = 0.2) lines are compared with ND (dashed lines).

lationship between the network noise and the network
averaged spectra, Eq. (13), according to which both are
proportional to each other. Put differently, in Fig. 5 we
look at scaled versions of the network noise power spectra
Sζ . We again emphasize that the IMF method (colored
solid lines) yields excellent agreement in reproducing the
spectra of the true network noise obtained from ND sim-
ulations (dashed lines).

In the absence of connectivity disorder, the spectra
in Fig. 5(b) attain the shape of a Gaussian, Sz =√
2πe−ω

2/2σ2
ω/σω. This is plausible for K = 0 where

in the network noise we add up deterministic oscilla-
tors with randomly drawn eigenfrequencies according to
a Gaussian distribution. It remains a valid approxima-
tion though for values of K below the critical value Kc.
We emphasize that in the presence of connectivity disor-
der Fig. 5(a) the shape of the spectra is neither captured
by a Lorentzian nor by a Gaussian.

So far, we have concentrated on large networks with
N ≫ 1, where finite-size corrections are negligible. One
may ask whether the theory holds equally well for smaller
networks, and if the contribution that stems from the
mean connection strength in Eq. (14) becomes relevant
in this case. In Figure 6, we analyze a system compris-
ing N = 8 oscillators with fixed natural frequencies ωℓ,
ℓ = 1, . . . , 8, and investigate the impact of varying both
the average coupling constant K and the coupling dis-



7

order strength k. In panel (a), we plot the power spec-
trum of the third oscillator for a finite network disorder
(k = 0.2) for vanishing mean connectivity (K = 0, green
line) and for a finite but subcritical value of the mean
connectivity (K = 1 < Kc, red line); clearly, the value
of the mean connectivity has an impact on the spectrum
(green and red lines differ substantially). This is due to
the finite size of the network because K enters the mean-
field theory only by a factor of K2/N that vanishes in
the thermodynamic limit. For the small number of oscil-
lators considered here, the power spectrum has a compli-
cated shape with several distinct peaks, the dominating
one being located at the eigenfrequency of the oscilla-
tor, ω3 = 0.13. The spectrum is furthermore shaped by
the input noise that is illustrated in panel (b); to deter-
mine the network noise, we average here over different
realizations of the connectivity disorder. For both the
oscillator and noise spectra, the agreement between the
stochastic mean-field IMF method and the ND simula-
tions is reasonably good; in particular, the alignment for
the oscillator spectra confirms the finite-size correction
of our theory. Our results clearly indicate the necessity
of finite size correction when the condition N ≫ 1 is
not met. We also demonstrate that our theory does not
need a nonvanishing value of the connectivity disorder
but also works for the original Kuramoto model that has
only frequency disorder (k = 0,K = 0.1, orange line);
also here the IMF result agrees fairly well with the ND
simulations.

One might wonder how mean field methods yield ac-
curate results for systems as small as comprising N = 8
oscillators. While we fixed the natural frequencies for all
N = 8 oscillators in the networks analyzed for Fig. 6, we
averaged over multiple instantiations of the connectivity
matrixKℓm, which allows us to obtain ensemble-averaged
observables that remain well described by the IMF ap-
proach. In the case of large system sizes N ≫ 1, the
network dynamics becomes self-averaging, and the IMF
approach yields correct results for observables that are
determined using ND for networks with a single instan-
tiation of the connectivity disorder (see Figs. 3-4).

In our study, for large system sizes (N ≫ 1), we ob-
serve a notable insensitivity of the system dynamics to
the coupling strength K when |K| < Kc, i.e., below the
onset of synchronization. Specifically, the resulting power
spectra do not depend on the value of K, including neg-
ative ones; for instance, spectra for K = 0,−σω,+σω
agree.

V. SUMMARY AND CONCLUSIONS

In this study, we have explored the asynchronous states
of the Kuramoto model with a specific focus on the power
spectra of individual oscillators. We comprehensively an-
alyzed how two distinct types of disorder—variations in
natural frequencies and network connectivities—uniquely
affect the dynamics of single oscillators. This approach

allows us to understand the model dynamics in a variety
of coupling conditions, including zero or non-vanishing
average coupling constants as well as homogeneous or
heterogeneous network structures, hence various situa-
tions that have previously been studied in the literature
[28–31]. Building upon the groundwork laid by Stiller
and Radons [23], we have further developed the mean-
field method to account for the finite average coupling
and also rederived the framework in a simplified manner.
The stochastic iterative method applies to the homoge-
neous network setup—the classical Kuramoto model—
and also provides an additional finite-size correction. In
both homogeneous and heterogeneous networks, we have
successfully reproduced the power spectra of large net-
work simulations by employing this stochastic iterative
method.

Our analysis reveals that all spectra exhibit a signifi-
cant decrease in peak height and a concomitant broad-
ening as we transition from homogeneous (k = 0) to het-
erogeneous (k = 1) connectivities (see Fig. 3). The vari-
ation in k increases the network noise and expands the
range of frequencies. Put differently, the static disorder
in the connectivity translates into a dynamic network
noise. This mirrors findings in physical and biological
systems, where heterogeneity in interactions often leads
to more noisy behavior [32, 33]. In ecological and so-
cial networks, for instance, the introduction of diverse
interaction strengths or patterns often leads to a richer
array of system states and behaviors, reflecting a balance
between resilience and flexibility [34, 35].

The large and small networks with heterogeneous con-
nections in our study include both positive and negative
coupling coefficients Kℓm. As we ensure the average cou-
pling is in the range from −Kc to Kc, the system is al-
ways poised in an asynchronous state. For large systems
N ≫ 1, we observe a notable insensitivity of the sys-
tem dynamics to the average coupling strength K when
|K| < Kc. However, this observation for large systems
contrasts sharply with the dynamics observed in smaller
systems, such as N = 8, where the specific value of K
(while still |K| < Kc) becomes significant, distinctly in-
fluencing the system’s behavior as shown in Fig. 6. Inter-
estingly, for N = 8, there still exists a symmetry in the
system’s response to positive and negative values of K of
equal magnitude; choosing K = 1 or K = −1 yields
identical spectra. The existence of both positive and
negative couplings prevents excessive synchronization in
neural networks [28] and maintains species diversity in
ecological and social models [36].

There are several extensions of the model that come
to mind, which could be treated with a similar stochastic
mean-field approach as applied in this paper. For in-
stance, endowing the phase oscillators with inertia pro-
vides a better network model in many situations, e.g. for
power grids [37]. Furthermore, it is of interest in many
fields, for example in neuroscience, to explore how the
network’s oscillators respond to external perturbations
(in the neural context this could be a sensory signal to
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be represented in the oscillators’ activity). The itera-
tive mean field method can certainly be generalized to
calculate the self-consistent response functions (suscep-
tibilities) of the network. Lastly, we could also consider
with the similar method a network of networks, as it has
been done previously for simple rotator networks [21].

A remaining open problem is the analytical solution
of the self-consistent network noise statistics. For simple

rotators, this can be done by solving simple differential
equations [10, 20]. For the Kuramoto model, the result-
ing noise term is multiplicative and non-Gaussian (the
noise ζ(t) is Gaussian but the last term in Eq. (15) is
not). Here a new approach is needed. So, there are
many exciting problems left for future research to bet-
ter understand the asynchronous state of the Kuramoto
model.

[1] Y. Kuramoto, Chemical Oscillations, Waves and Turbu-
lence. (Springer, New York, 1984).

[2] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchroniza-
tion: A universal concept in nonlinear sciences (Cam-
bridge Univ. Press, U. K., 2001).

[3] J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ri-
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