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Abstract. Consider a stock market following a geometric Brownian motion and a riskless asset con-

tinuously compounded at a constant rate. Assuming the stock can go bankrupt, i.e., lose all of its

value, at some exogenous random time (independent of the stock price) modeled as the first arrival
time of a homogeneous Poisson process, we study the Merton’s optimal portfolio problem consisting of

maximizing the expected logarithmic utility of the total wealth at a preselected finite maturity time.

First, we present a heuristic derivation based on a new type of Hamilton-Jacobi-Bellman equation.
Then, we formally reduce the problem to a classical controlled Markovian diffusion with a new type

of terminal and running costs. A new version of Merton’s ratio is rigorously derived using Bellman’s

dynamic programming principle and validated with a suitable type of verification theorem. A real-world
example comparing the latter ratio to the classical Merton’s ratio is given.

Keywords: Merton’s portfolio problem; Markov-switching processes; absorbing processes; Hamilton-

Jacobi-Bellman equation; logarithmic utility.

1. Introduction

In this paper, we investigate the dynamic optimal allocation problem in a situation where security
prices are subject to exogenous events like bankruptcy. The optimal portfolio problem was first considered
by R. Merton [25] for multiple stocks that follow a multi-dimensional geometric Brownian motion [27].
For a single stock, the price St at time t is modeled as a Markovian diffusion process that solves the
stochastic differential equation

(1) dSt = µStdt+ σStdBt

with a standard Wiener process (Bt)t≥0, while the risk-free asset follows the ordinary differential equation

(2) dRt = rRt

with a constant risk-free rate r. Assuming an isoelastic utility function

(3) U(W ) =

{
W 1−γ−1

1−γ , γ ≥ 0,

log(W ), γ = 1

for some γ ≥ 0, he derived [25] his, now classical, Merton ratio π of the wealth to invest in stock

(4) π =
µ− r

γσ2
,

while the remaining fraction, (1−π), of investor’s wealth at each time t is invested in the risk-free asset.
The theoretical importance of Merton ratio is that it gives investors a simple and easily interpretable,

yet rigorous rule how to allocate capital into the risky asset as to maximize the expected utility. The
practical importance of this ratio is highlighted in a recent The Economist article [30]. We note that
a similar formula exists that provides a guideline how to invest in multiple stocks. Indeed, assume the
price vector St = (S1

t , S
2
t , . . . , S

p
t )

T of p stocks follows a multivariate geometric Brownian motion

(5) dSt = diag(S)
(
µdt+Σ1/2dBt

)
with a p-variate standard Brownian motion (Bt)t≥0, where µ ∈ Rp is the vector of expected returns
and Σ ∈ Rp×p is a symmetric, positive definite covariance matrix between the p-variate innovations.
According to [25], the optimal weights π = (π1, π2, . . . , πp)T are given by

(6) π =
1

γ
Σ−1

(
µ− r1p

)
with 1p = (1, 1, . . . , 1) ∈ Rp.
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Since the groundbreaking work of Merton [25], many authors investigated various variants of Merton
optimal portfolio problem. For example, Wachter [31] considered the optimal portfolio problem for risky
assets following a mean reverting processes and obtained an exact solution for the optimal allocation
when markets are complete. Merton himself [26] applied his dynamic portfolio optimization approach to
extend the usual capital asset pricing model (CAPM) to an in-temporal CAPM. The latter generalizes the
usual CAPM model developed by Sharpe based on Markowitz portfolio problem. Efforts to incorporate
other types of risky assets (such as fixed income securities) have been attempted as well. For instance,
Brennan et al. [6] considered a Merton-type problem for fixed income securities and stocks but without
any bankruptcy assumptions on the bonds. Karatzas et al. [16] considered the optimal portfolio problem
for a general utility function and incorporated bankruptcy events. The bankruptcy event considered
in the latter paper was not modeled as an exogenous event but was rather assumed to arise from the
self-exciting (autoregressive) dynamics, i.e., the authors asked the question when it will be optimal for
the security to default given an infinite time horizon and solved this problem of optimal bankruptcy. For
applications in corporate finance, see [21] and [22].

The goal of this paper is to revisit Merton’s original problem and investigate the optimal allocation
between stock and cash as to optimize the expected logarithmic utility at a finite maturity T assuming,
however, the stock can sporadically jump into bankruptcy at an exogenous random time τ ∼ Exp(λ),
independent of the stock price, which is modeled as an exponential random variable with some parameter
λ > 0 corresponding to default intensity. The amended price dynamics reads then as

(7) dSt =

{
µSt−dt+ σSt−dBt for t < τ

0 dt, for t > τ
and ∆Sτ = −Sτ−

with the jump operator (viz. [23, Equation (1)])

(8) ∆St := St − St−

where (Bt)t≥0 is a standard Wiener process. The process in Equation (7) is a special two-state case
of a more general Markov-switching jump diffusion process considered in [4, 32]. Indeed, the random
bankruptcy time τ can be viewed as the first arrival time of a Poisson process or the jump time of a
two-state continuous time Markov process with two states: pre-bankruptcy and post-bankruptcy, where
the latter state is absorbing. The average time to bankruptcy E[τ ] is 1

λ , while the conditional probability
of banktruptcy is memoryless

(9) P
{
t ≤ τ < t+∆t | τ ≥ t

}
= λ∆t+ o(∆t) as ∆t ↘ 0 for any t ≥ 0

as it is known to be the case for Poisson processes. A stochastic dynamics similar to Equation (7),
albeit with non-random jump times, has recently been studied in [23]. Assuming the logarithmic utility
function in this paper, we obtain the Merton ratio

(10) πt =

{
µ−r+σ2−

√
(σ2−(µ−r))2+4λσ2

2σ2 , t < τ,
0, t ≥ 0.

The expression in Equation (10) is reminiscent of the multivariate optimal allocation vector obtained
in [1] in the context of portfolio choice in markets with contagion.

To some extent, our work has connection to portfolio optimization under Brownian motion perturbed
with jump processes. For example, [9] investigated optimal portfolios under Levý innovations. Their
optimization approach followed the classical Markowitz paradigm of mean variance. The authors adopted
a framework of risk constraints, which is related to our problem as we consider stocks that have a risk
of sporadic bankruptcy. An important distinction that jumps under a Levý process have an emerging
property while stocks (contrary to bonds) do not emerge from bankruptcy.

A dynamic portfolio optimization problem for a stochastic model with jumps was considered in [10].
Like other works, the processes adopted were emerging processes with regime switching regulated by a
Markov control process, which is separate from our case where the process enters an absorbing state.
Another significant work in this direction is [1], in which the authors consider asset allocation when the
stock follows a geometric Brownian motion and a jump process. Even though the stochastic processes
considered are complicated, the authors were able to obtain an exact solution to the Merton allocation
problem for logarithmic utility.

The optimization problem we consider in this work is inspired by similar problems on the bond side.
To the best of our knowledge, this type of problem was first studied in [5]. The problem considered there
was an optimization for stock cash and a bond with some default probability. The authors formulated
the underlying optimization problem and presented a solution but omitted the final derivation of the
Hamilton-Jacobi-Bellman (HJB) equation or a stochastic integral approach we employ in our paper. The
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problem was fully solved in [7, 8], where an optimal allocation problem for a bond with bankruptcy and
a stock was considered. The authors set up an HJB equation with two regimes: the post-default and
the pre-default regime. Our problem is separate from this scenario due to the fact that we consider
stocks with exogenous bankruptcy occurrence. To the best of our knownledge, this type of problems
with exogenous bankruptcies for stocks have not been previously considered. Our solution presented
in Equation (10) is interesting on its own account as it mandates that one should never allocates the
complete amount of investment into a stock with with positive bankruptcy probability or borrow money
to invest in such stocks. It is also worthwhile to note that bankruptcy is an absorbing process and, as
far as we know for optimal portfolios, such processes have not been considered before. The probability
of bankruptcy can be significant for stocks with low credit quality and, thus, our solution is not a mere
theoretical exercise but has a practically important bearing as we will show in the sequel. It should
be reiterated that the process we consider is different from conventional models based on Poisson jump
processes since the stock cannot recover from bankruptcy so that the latter is an absorbing state. On
the other hand, we note that it is possible to consider similar models (cf. [4, 32]) that would incorporate
semi-Markovian switching (viz. [24, Chapter 7]) between economic regimes that can be either absorbing
or not absorbing. In this sense, our present work provides a blueprint for investigating optimal portfolio
allocation problems for this type of models.

The rest of this paper is structured as follows. In Section 2, we introduce a probabilistic framework
and state the problem. In Section 3, a simple heuristic calculation is presented to derive the Merton
ratio from Equation (10). Without being rigorous, it is new and interesting on its own merit since
it employs a non-conventional form of the Itô’s lemma to formally derive the optimality conditions
following the idea originally presented in [19]. Similar to [4, 7], a pair of coupled HJB equations is
derived to find the optimal weights. In Section 4, a rigorous solution to the optimal portfolio problem
is obtained by reducing the expected terminal logarithmic utility objective for a stock with bankruptcy
to a combination of exponentially weighted expected terminal and running logarithmic utilities without
bankruptcy. The optimal Merton ratio (viz. Equation (10)) obtained with both approaches agree. In
Section 5, we then illustrate our approach by compute the optimal allocation for a real-world stock with
a non-trivial bankruptcy probability and confirm a material difference from the allocation produced with
the usual Merton ratio. Summary and conclusions are given in Section 6. Proofs of auxiliary results are
relegated to Appendix A.

2. Probabilistic Setup and Preliminaries

For time t ≥ 0, let St and Rt denote the price of a defaultable stock following Equation (1) driven by
a standard Brownian motion (Bt)t≥0 and and a riskfree asset satisfying Equation (2), where µ, σ > 0
and r > 0 are the drift, volatility and risk-free rate, respectively. Assuming Wt is the total wealth at
time t consisting of πtWt dollars in stock and (1 − πt)Xt dollars in the riskless asset for some πt, the
dynamics of Xt is given by equation

dWt =

{ (
µπt− + r(1− πt−)

)
Wt−dt+ σπt−Wt−dBt for 0 ≤ t < τ,

r(1− πt)Wt for τ ≤ t ≤ T,

∆Wτ = −πtWτ−,

W0 = w

(11)

where w > 0 is a (given) initial wealth. Recall that τ ∼ Exp(τ) is assumed stochastically independent
of (Bt)t≥0. To emphasize the dependence of Wt on πt and τ , we will often write Wπ,τ

t .
To put Equation (11) into a formal framework similar to [23], consider the semi-Markov process

(12) ξt := 1{t<τ}

with the non-absorbing pre-default state 0 and the absorbing post-default state 1. Introducing the drift
and volatility functions

a(t,W, π, ξ) =
(
µπ + r(1− π)

)
(1− ξ) + (1− π)ξ,

b(t,W, π, ξ) = σπ(1− ξ),
(13)

Equation (11) can be expressed as

dWt = a(t−,Wt−, πt−, ξt−)dt+ b(t−,Wt−, πt−, ξt−)dBt for 0 ≤ t ≤ T,

∆Wτ = −πτ−Wτ− if τ ≤ T,

W0 = w.

(14)

It should be emphasized that, unlike [23], the switching time in Equation (14) is random.
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Consider the filtered probability space (Ω, (Ft)t≥0,P) with the minimal σ-algebra

(15) Ft = σ(Bt, ξt) for t ≥ 0.

Arguing similar to [4], for any adapted process (πt)t≥0 with∫ T

0

π2
t dt < ∞ P-a.s.,

Equation (14) possesses a unique strong solution (being a cádlág process) denoted by (Wπ,τ
t )t≥0 on any

time interval [0, T ]. The set of admissible controls for Equation (14) can be defined as

Aw :=
{
π | (π)t∈[0,T ] is adapted with

∫ T

0

π2
t ds < ∞ P-a.s.,

(Wt)t∈[0,T ] is a unique strong solution such that Wπ,τ
0 = w,

Wπ,τ
t (ω) > 0 P⊗ ν a.e. in [0, T ]× Ω, E

[
ess sup
t∈[0,T ]

U(Wπ,τ
t )−

]
< ∞

}(16)

where x− = max{0,−x} denotes the negative part of x and ν is the Borel measure on [0,∞).
Employing the logarithmic utility function

(17) U(W ) = log(W ),

consider the terminal expected utility functional

(18) J(π) = EFT

[
U(Wπ,τ

T )
]
.

Thus, the optimal portfolio problem reads as

(19) J(π) → min
π∈Aw

, π∗ = argmax
π∈Aw

J(Wπ,τ , π), W ∗
t = Wπ∗,τ

t .

To solve the optimal control problem, we first want to explicitly characterize the forward map π 7→
Wπ,τ mapping each admissible control π ∈ Aw to the unique strong solution (Wπ,τ

t )t≥0 of Equation (11).
To this end, let (Xt)t≥0 denote the unique strong solution to the classical wealth SDE without bankruptcy

(20) dXt =
(
µπt + r(1− πt)

)
Xtdt+ σπtXtdBt for t > 0, X0 = w

explicitly given [18, Chapter 4] via

(21) Xt = Φtw − σ

∫ t

0

ΦtΦ
−1
s πsds

with

Φt = exp
(∫ t

0

((
µπs + r(1− πs)

)
− 1

2
σ2π2

s

)
ds+ σ

∫ t

0

πsdBs

)
.

With this notation, the wealth process (Wt)t∈[0,T ] solving Equation (11) can be expressed as

(22) Wt = Xt1{t<τ} + exp
(∫ t

τ

r(1− πs)ds
)
(1− πτ−)Xτ1{t≥τ}.

Indeed, if the bankruptcy has not happened at time t or before, Wt is same as Xt. Otherwise, all capital
allocated in the stock at time τ− (viz. πτ−Xτ−) will be lost, while the remaining capital allocated in
the riskless asset (viz. (1− πτ−)Xτ−) will continue accruing from time τ to time t.

As can be seen from Equation (22), the positivity of Wt > 0 P ⊗ ν-a.e. required in the definition of
Aw in Equation (23) necessitates that

πt(ω) < 1 for P⊗ ν for a.e. (t, ω) ∈ Ω× [0, T ].

Indeed, letting I = {t ∈ [0, T ] |πt ≥ 1}, we obtain

P{Wt ≤ 0} = P
{
exp

(∫ t

τ

r(1− πs)ds
)
(1− πτ−)Xτ1{T≥τ} ≤ 0

}
= P

{
(1− πτ−)Xτ1{τ∈I} ≤ 0

}
= P{τ ∈ I},

where we used the fact that Xt > 0 P-a.s. for a.e. t ∈ [0, T ]. The latter probability vanishes if and only
if ν(I) = 0.
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Thus, the admissible set in Equation (23) can be equivalently expressed as

Aw :=
{
π | (π)t∈[0,T ] is adapted with

∫ T

0

π2
t dt < ∞ P-a.s., πt(ω) < 1 P⊗ ν a.e. in Ω× [0, T ],

(Wt)t∈[0,T ] is a unique strong solution with Wπ,τ
0 = w, E

[
ess sup
t∈[0,T ]

U(Wπ,τ
t )−

]
< ∞

}(23)

Analyzing Equation (22), we easily observe that any wealth fraction πt invested into stock after
bankruptcy (i.e., t ≥ τ) in lieu of the riskfree asset can only reduce the terminal wealth, WT , and, thus,
the expected utility J(·). Therefore, without loss of generality, we can assume πt = 0 for t ≥ τ leading
to state-switching controls

(24) πt = π∗
pre1{t<τ} + π∗

post1{t≥τ} =

{
πpre,t, t < τ,
πpost,t, t ≥ τ

with πpost,t ≡ 0.

This furnishes a simplified version of Equation (22) given by

(25) Wt = Xt1{t<τ} + er(t−τ)(1− πτ−)Xτ1{t≥τ}

without violating any admissibility conditions.

3. Heuristic Derivation

We begin with a heuristic calculation of the optimal allocation strategy. To this end, we define the
admissible set

At,w :=
{
π | (π)s∈[t,T ] is adapted with

∫ T

t

π2
sds < ∞ P-a.s., πs(ω) < 1 for P⊗ ν a.e. in Ω× [t, T ],

(Ws)s∈[t,T ] is a unique strong solution with Wπ,τ
t = w, E

[
ess sup
s∈[t,T ]

U(Wπ,τ
s )−

]
< ∞

}
where (Wπ,τ

s )s∈[t,T ] solves the jump SDE in Equation (11) over [t, T ]. Further, consider the value function

(26) V (t, w) = sup
π∈At,w

EFT

[
U(Wπ,τ

T ) |Wπ,τ
t = w

]
.

In spirit of [4], we also introduce two auxiliary “conditional” value functions

V pre(t, w) = sup
π∈At,w

EFT

[
U(Wπ,τ

T ) | t < τ
]
,

V post(t, w) = sup
π∈At,w

EFT

[
U(Wπ,τ

T ) | t = τ
]
= EFT

[
U(Wπ=0,τ

T ) | t = τ
](27)

corresponding to the case no bankruptcy has occurred at time t or before and the case the bankruptcy
occurs at time t, respectively. It should be noted that this framework allows for default-specific optimal
control processes πt, i.e.,

Using the law of total probability, the total value function in Equation (26) can be expressed as

V (t, w) = V pre(t, w)P{τ < t}+ V post(t, w)P{τ ≥ t}
= (1− e−λt)V pre(t, w) + e−λtV post(t, w).

(28)

Arguing similar to Equation (25), we can explicitly compute the “post” conditional value function via

(29) V post(t, w) = U
(
er(T−t)(1− πt−)w

)
= r(T − t) + log(1− πt−) + log(w),

recalling that U(·) is the logarithmic utility function (viz. Equation (17)).
As for the “pre” conditional value function, on the strength of Equation (9), the conditional probability

of no crash occurring in [t, t+dt] assuming no crash has occurred until time t is (1−λdt)+o(dt), while the
conditional probability of crash is λdt+o(dt). Thus, using an argumentation similar to [4, Theorem 3.3],
we can heuristically derive an infinitesimal recursive formula for V pre(t, w) reading as

dV pre(t, w) = (1− λdt)dV pre(t, w) + λdt
(
V post(t, w)− V pre(t, w)

)
+ o(dt)

= (1− λdt)dV pre(t, w) + λdt
(
r(T − t) + log(1− πt−) + log(w)− V pre(t, w)

)
+ o(dt)

(30)

Let πt ∈ At,w. For a wealth process (Wπ,τ
s )s∈[t,T ] solving the jump SDE in Equation (11) subject to

the initial condition Wπ,τ
t = w, we evaluate the differential dV pre(s,Ws) for t ≤ s ≤ T . According to

Equation (20), the wealth process satisfies

dWs = Ws (πsµds+ πsσdBs + (1− πs)rds) ,

(dWs)
2 = W 2

s π
2
sσ

2ds.
(31)
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Assuming V pre(·) is a smooth function, Itô’s rule (cf. [4, Theorem 3.5]) furnishes

dV pre(t, w) = ∂wV
pre(t, w)(w (πtµdt+ (1− πt)rdt) +

1

2
∂2
wV

pre(t, w)w2π2
t σ

2dt+ ∂tV
pre(t, w)dt

+ λdt (r(T − t) + log(1− πt) + log(w)− V pre(t, w)) ,
(32)

where we assume the continuity of πs (and, therefore, that of πpre,s) for t ≤ s < τ implying πs− = πs.
Dividing by dt and passing to the limit dt → 0, we obtain an HJM-type equation for the “pre” conditional
value function

(33) ∂tV
pre +H(t, V pre, πt, ∂wV

pre, ∂2
wV

pre) = 0

where

H(t, w, π, V pre, ∂wV
pre, ∂wwV

pre) = sup
πt<1

(
∂wV

pre(w (πtµ+ (1− πt)r) +
1
2∂

2
wV

prew2π2
t σ

2

+ λ (r(T − t) + log(1− πt) + log(w)− V pre)
)
.

(34)

In contrast to the usual HJB equation, we can observe that our HJM operator H(·) additionally depends
on the derivatives of the value function but also the value function itself.

Using the ansatz

(35) V (t, w) = log(w) + f(t),

the first-order Fermat optimality condition for g(·) reads as

(36) (µ− r)− πtσ
2 − λ

1− πt
= 0.

Recalling π∗
t = 0 for t ≥ τ (viz. Equation (24)), the optimal allocation (cf. Equation (10)) is given as:

π∗
t = π∗

pre1{t<τ}

with

π∗
pre =

µ− r + σ2 −
√

(σ2 − (µ− r))
2
+ 4λσ2

2σ2
.

Plugging π∗
t back into Equation (34), the latter can be explicitly solved using the ansatz from Equa-

tion (35) yielding the value function V = V (t, x). One would naturally expect the latter to satisfy

max
π∈At,w

J(π) = V (t, x) = J(π∗).

Unfortunately, the optimal control problem in Equation (34) is not directly covered by the verification
theorem for Markov-switching SDEs established in [4]. While latter results can likely be extended to
our situation, an simpler strategy to avoid laborious proofs and calculations is to transform the problem
in Equation (34) to a conventional controlled Markovian diffusion and invoking one of several rigorous
verification theorems known in the literature for this class of optimal control problems.

4. Reduction to Controlled Markovian Diffusion

In this section, we present an alternative derivation that reduces the non-conventional optimal control
problem discussed in Section 2 to the classical case. For the sake of simplicity, with some abuse of
notation, we will write πt to denote πpre,t for the most part of this section until Equation (45), where πt

reclaims its original meaning (cf. Equation (24)).
Our approach is inspired by [17]. Assuming the conditions of Fubini & Tonelli’s theorem are satisfied,

we can write

EPW⊗Pτ

[
u(Y π

T )
]
= EPW

[
Eτ

[
u(Y π

T )
]]

= EPW

[ ∫ ∞

0

u(Y π
T )φ(t)dt

]
= EPW

[ ∫ ∞

0

(
u(XT )1{T<t} + u

(
er(T−t)(1− πt)Xt

)
1{T≥t}

)
φ(t)dt

]
= EPW

[ ∫ ∞

T

u(XT )φ(t)dt
]
+ EPW

[ ∫ T

0

u
(
er(T−t)(1− πt)Xt

)
φ(t)dt

]
= EPW

[( ∫ ∞

T

φ(t)dt
)
u(XT )

]
+ EPW

[ ∫ T

0

u
(
er(T−t)(1− πt)Xt

)
φ(t)dt

]
= PPτ

{τ ≥ T}EPW

[
u(XT )

]
+ EPW

[ ∫ T

0

u
(
er(T−t)(1− πt)Xt

)
φ(t)dt

]
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where PPτ
{τ ≥ T} =

∫∞
T

φ(t)dt solely depends on T with φ(·) denoting the probability density function
of τ . As before, we choose u(x) = log(x) to be the logarithmic utility and assume τ ∼ Exp(λ) is
exponentially distributed with some known intensity λ > 0, i.e., φ(t) = λ exp(−λt)1{t≥0}. Then the
expected utility can be further simplified as

EPW⊗Pτ

[
u(Y π

T )
]
= EPW

[ ∫ T

0

λe−λt log
(
(1− πt)Xt

)
dt
]

+ EPW

[
e−λT log(XT )

]
+ rλ

∫ T

0

(T − t)e−λtdt

= EPW

[ ∫ T

0

λe−λt log
(
(1− πt)Xt

)
dt
]

+ EPW

[
e−λT log(XT ) + r

(
T − 1− e−λT

λ

)]
(37)

where τ is completely eliminated from the latter equation.
Therefore, we were able to reduce the original control problem with sporadic bankruptcy in Equa-

tions (11), (17), (18) and (19) to a classical stochastic control problem in Equations (20) and (37) with
running and terminal costs for wealth Wt so that the usual Bellman’s principle for Markovian diffusions
can now be applied. Throughout the rest of the section, we adopt the notation of [13, Chapter IV]. Note
that maximization of expected utility is equivalently expressed as minimimization of negative utility
within this framework. Thus, we seek to minimize the functional

(38) J(π) = E
[
−
∫ T

0

λe−λt log
(
(1− πt)Xt

)
dt
]
+ E

[
− e−λT log(XT )− r

(
T − 1− e−λT

λ

)]
.

Since the terminal cost function in Equation (38) cannot be continuously extended to x = 0, classical
results (viz. [12, 13]) cannot be directly applied to our problem. Instead, we will employ the verification
theorem proved in the recent work [2]. Other known results, e.g., [14, 15, 29], do not appear to be directly
applicable in our situation.

The set of admissible controls is defined as

At,x :=
{
π | (π)s∈[t,T ] is adapted with

∫ T

t

π2
sds < ∞ P-a.s.,

(Xs)s∈[t,T ] is a unique strong solution to SDE (20) with Xπ
t = x,

E
[
ess sup
s∈[t,T ]

(
log(Xπ

s )
)
−

]
< ∞

}(39)

where, unlike Equation (15), the filtration is now solely generated by the Brownian motion (Bt)t. Arguing
similar to previous sections, the last condition in the definition of At,x in Equation (39) necessitates

πt(ω) < 1 P⊗ ν a.e. in Ω× [0, T ].

Introducing the Hamilton-Jacobi-Bellman (HJB) operator

(t, V, π) 7→ H(t, π, ∂xV, ∂xxV )

with

H(t, x, p, A) = inf
π∈R

(
f(t, x, π) · p+ 1

2
σ2(t, x, π) ·A− L(t, x, π)

)
= inf

π<1

(
f(t, x, π) · p+ 1

2
σ2(t, x, π) ·A− L(t, x, π)

)(40)

where f(t, x, π) =
(
µπ + r(1 − π)

)
x, σ(t, x, π) = σπx, L(t, x, π) = λe−λt log

(
(1 − π)x

)
, consider the

terminal value problem for the HJB partial differential equation (PDE)

∂tV (t, x) +H
(
t, x, ∂xV (t, x), ∂xxV (t, x)

)
= 0 for (t, x) ∈ (0, T )× (0,∞),(41)

V (T, x) = Ψ(T, x) for x ∈ (0,∞)(42)

with the terminal value Ψ(T, x) = −e−λT log(x)− r
(
T − 1−e−λT

λ

)
. On the strength of Lemma 3 in the

Appendix, the HJB operator can be expressed as a fully nonlinear elliptic operator

(43) H(t, x, p, A) =
(
µπ∗ + r(1− π)

)
xp+

1

2
σ2(π∗)2x2 − λe−λt log

(
(1− π∗)x

)
for A > 0

with π∗ = π∗(t, x, p, A) given in Equation (50). For A ≤ 0, the HJB operator is undefined since the
underlying minimization problem is ill-posed.
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To solve the HJB Equations (41)–(42), we use the the ansatz

(44) V (t, x) = −e−λt log(x) +G(t)

with ∂xxV (t, x) = e−λt(1/x2) > 0 for t ≥ 0 and x > 0. Plugging into Equation (50) yields the (constant)
pre-default Merton ratio:

(45) π∗
pre ≡

(µ− r) + σ2 −
√
(σ2 − (µ− r))2 + 4λσ2

2σ2
.

Like the classical Merton ratio, the Merton ratio in Equation (45) neither depends on x, nor t.
See Figure 1. Moreover, for µ − r ≤ σ2, π∗

pre(λ) converges to the classical expression µ−r
σ2 as λ ↘ 0. It

−2 −1 0 1 2 3 4
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λ = 0.01σ2

λ = 0.1σ2

λ = 1.0σ2

Figure 1. Pre-default Merton ratio π∗
pre vs. λ

is also interesting to observe that our Merton ratio in Equation (45) always suggests to put less money
into the stock than the usual Merton ratio would recommend. In particular, it also encourages to short
the stock more aggressively, especially for larger λ, which makes practical sense in view of the chance
of default. For µ − r < σ2, π∗

pre(λ) ↗ 1 as λ ↘ 0. Unlike classical situation, this means the investor
should never invest all of his capital into stock or borrow from the bank to purchase stock. Indeed,
since the risk of the stock price to default sporadically over any non-trivial time interval is positive, a
Merton ratio π ≥ 1 is not admissible in the sense of Equation (39) as it renders the terminal wealth YT

in Equation (22) zero or negative with a positive probability, therefore, rendering the expected utility
equal −∞. This is a major qualitative difference to the classical scenario.

Proposition 1. The value function is given by

(46) V (t, x) = −e−λt log(x)− C∗(λ)

λ

(
e−λt − e−λT

)
− r

(
T − 1− e−λT

λ

)
for t ≥ 0, x > 0

with π∗
pre from Equation (45) and

C∗(λ) =
(
µπ∗

pre + r(1− π∗
pre)

)
− 1

2
σ2(π∗

pre)
2 + λ log(1− π∗

pre).

Proof. Plugging

∂tV (t, x) = λe−λt log(x) + Ġ(t), ∂xV (t, x) = e−λt(1/x), ∂xxV (t, x) = −e−λt(1/x2)

into HJB Equation (41), we obtain

λe−λt log(x)+ Ġ(t)−
(
µπ∗

pre+ r(1−π∗
pre)

)
e−λt+

1

2
σ2(π∗

pre)
2e−λt−λe−λt log(1−π∗

pre)−λe−λt log(x) = 0

or, equivalently,

(47) Ġ(t) = Ce−λt for t ≥ 0

with

(48) C =
(
µπ∗

pre + r(1− π∗
pre)

)
− 1

2
σ2(π∗

pre)
2 + λ log(1− π∗

pre).
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Integrating Equation (47), we obtain G(t) = −C
λ e

−λt + c for some constant c. On the strength of
Equation (42), we have the terminal condition

−C

λ
e−λT + c = −r

(
T − 1− e−λT

λ

)
,

whence c = C
λ e

−λT − r
(
T − 1−e−λT

λ

)
and

G(t) =
C

λ

(
e−λT − e−λt

)
− r

(
T − 1− e−λT

λ

)
for t ≥ 0 and x > 0. □

Interestingly, the following observations can be made. For µ−r < σ2, using L’Hôpital’s rule, V (t, x;λ)
can be shown to converge to the classical Merton value function, i.e.,

lim
λ↘0

V (t, x;λ) = − log(x)−
(
r +

(µ− r)2

σ2

)
(T − t).

In contrast, for µ− r > σ2,

lim
λ↘0

V (t, x;λ) = − log(x)−
(
µ− 1

2
σ2

)
(T − t).

since limλ↘0 π
∗
pre(λ) = 1 and limλ↘0 C

∗(λ) = µ− 1
2σ

2.
Observing

V (t, x), ∂tV (t, x), ∂xxV (t, x) ∈ C0([0, T ]× (0,∞),R) with ∂xxV (t, x) = e−λtx−2 > 0 and π∗
t ∈ Atx,

the conditions of Verification Theorem [2, Theorem 3] are met, furnishing the following optimality result.

Proposition 2. Let the wealth process be given by Equation (22).

• The Merton ratio
π∗
t = π∗

pre1{t<τ}

with π∗
pre given in Equation (45) minimizes the negative expected utility J(π) in Equation (38)

over all admissible controls π ∈ Atx and satisfies

J(π∗) = inf
π∈Atx

J(π) = V (t, x).

• The optimal wealth process, W ∗
t , is given by Equations (20)–(22) with π∗

t as above.

5. Example: Bombardier Stock Data Analysis

To illustrate our proposed methodology, we consider the B-rated stock of Bombardier Inc. (BBD-B.TO),
a Canadian aerospace and transportation company, quoted by Toronto Stock Exchange. The annualized

rating default probability is estimated as λ̂ = 2.99% [20, Table 23]. For simplicity, we use λ̂ = 3% in our
calculations. Downloading a three years’ worth of daily closing prices from Friday 29th January, 2021
to Monday 29th January, 2024 from Yahoo! Finance [11], we compute the log-differenced returns

Xi = log(Sti+1)− log(Sti) for i = 1, 2, . . . , n

with n = 751 furnishing the the annualized drift and volatility estimates (cf. [3, 28])

(49) µ̂ =
ntrade

n

n∑
i=1

Xi, σ̂ =
√
ntrade

( 1

n− 1

∑
i=1

X2
i − n

n− 1

( 1

n

n∑
i=1

Xi

)2)1/2

where ntrade = 252 stands for the number of trading days. See columns 1 and 2 in Table 1.

µ̂ σ̂ λ̂ π̂∗
classic π̂∗

pre π̂∗
post

40% 60% 3% 101.12% 74.21% 0%

Table 1. Estimated model parameters µ̂, σ̂, λ̂ (annualized) and resulting optimal
allocations π̂∗

classic (both pre- and post-default) according to Merton and π̂∗
pre and π̂∗

post

derived in this paper.

Using Equations , the classical Merton’s ratio π̂∗
classic recommends to invest 101.12% of capital in

stock while only 74.32% of capital is allocated in stock pre-default under our new ratio π̂∗
pre. In addition

to offering a much less conservative investment strategy, classical Merton ratio is not even admissible
(cf. Equation (39)) in the presence of a sporadic bankruptcy as it renders the expected terminal utility
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equal negative infinity. Therefore, the difference between our framework and the classical framework of
Merton is not merely quantitative, but qualitative.

6. Summary and Conclusions

In this work, we presented an explicit solution to the optimal wealth allocation problem between a
stock and a cash bond assuming the stock bankruptcy is an exogenous event with a constant intensity
λ. To the best of our knowledge, neither this type of problems, nor the solution we developed for the
log-utility have previously appeared in the literature. The stochastic integral derivation for this type
of processes appears to be new as well. Our solution has an interesting feature that one should never
allocates all money in a stock that can go bankrupt to hedge against an entire loss of one’s money. This
seems to correlate with the investor behavior in real market. The framework we developed is not limited
to bankruptcy events only. In fact, stochastic control problems with regime or security changes can be
solve using a similar method. These examples include convertible bonds (i.e., bonds with a conversion
feature), bonds with embedded options assuming the probability of embedded options are governed by
an exogenous probability, mortgage bonds, etc. Our framework can also be applied in the context of
switching between economic regimes caused by exogenous events in the market. We intend to investigate
these and other scenarios in subsequent work.

Supplementary Materials

The following materials are available at https://github.com/mpokojovy/MertonAbsorbing:

(1) Python code to produce Figure 1.
(2) R code implementing the results of Section 5.

Appendix A. Auxiliary Results

Lemma 3. Let g(t, x, π, p, A) = f(t, x, π) · p+ 1
2σ

2(t, x, π) ·A− L(t, x, π) with

f(t, x, π) =
(
µπ + r(1− π)

)
x, σ(t, x, π) = σπx, L(t, x, π) = λe−λt log

(
(1− π)x

)
.

Assuming x > 0 and A > 0,

argmin
π<1

g(t, x, π, p, A) = π∗(t, x, p, A),

inf
π<1

g(t, x, π, p, A) = g
(
t, x, π∗(t, x, p, A), p, A

)
with

(50) π∗(t, x, p, A) =
−(µ− r)xp+ σ2x2A−

√
((µ− r)xp+ σ2x2A)2 + 4λe−λt(σ2x2A)

2(σ2x2A)
.

Proof. The function

g(t, x, π, p, A) =
(
µπ + r(1− π)

)
x · p+ 1

2
σ2π2x2 ·A− λe−λt log

(
(1− π)x

)
is smooth with respect to all of its arguments t ≥ 0, x > 0, π < 1, p ∈ R and A > 0. Since
limπ↗0 g(t, x, π, p, A) = ∞, no minimum can be attained in a vicinity of π = 1.

Computing the derivative

∂πg(t, x, π, p, A) = (µ− r)xp+ σ2πx2A+
λe−λt

1− π
,

the Fermat first-order optimality equation ∂πg(t, x, π, p, A) = 0 reads as

σ2πx2A+ (µ− r)xp+
λe−λt

(1− π)
= 0

or, multiplying with (π − 1),

(51) P (π;λt) ≡
(
σ2x2A

)
π2 +

(
(µ− r)xp− σ2x2A

)
π −

(
(µ− r)xp+ λe−λt

)
= 0.

Solving the former quadratic equation, we obtain two roots given by

π1,2 =
−
(
(µ− r)xp− σ2x2A

)
±
√(

(µ− r)xp− σ2x2A
)2

+ 4
(
σ2x2A

)(
(µ− r)xp+ λe−λt

)
2
(
σ2x2A

)

https://github.com/mpokojovy/MertonAbsorbing
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=
−
(
(µ− r)xp− σ2x2A

)
±
√(

(µ− r)xp+ σ2x2A
)2

+ λe−λt
(
σ2x2A

)
2
(
σ2x2A

) .

In view of A > 0, both roots are real and satisfy π1 ≤ π2. Moreover, since P (π;λ, t) > P (π; 0, t) for
λ > 0 and t ≥ 0, we observe

π1(λt) < π1(0) and π2(λt) > π2(0) for λ > 0 and t ≥ 0.

Consider the following two cases.

• Assuming (µ− r)xp ≤ σ2Ax2, we obtain

π1(λt) < π1(0) ≡ −µ− r

σ2

( p

Ax

)
≤ 1 and π2(λt) > π2(0) ≡ 1 for λ > 0 and t ≥ 0

and, thus, ∂πg(t, x, π, p, A) ≤ 0 for π < π1(λt) and ∂πg(t, x, π, p, A) ≥ 0 for π1(λt) < π < 1.
• Otherwise, (µ− r)xp > σ2Ax2, which implies

π1(λt) < π1(0) ≡ 1 and π2(λt) ≥ π2(0) ≡ −µ− r

σ2

( p

Ax

)
> 1 for λ > 0 and t ≥ 0

and, thus, again ∂πg(t, x, π, p, A) ≤ 0 for π < π1(λt) and ∂πg(t, x, π, p,A) ≥ 0 for π1(λt) < π < 1.

Therefore, in either scenario, the global minimum of g = g(π) is attained at π = π1(λt) for λ > 0, t ≥ 0
and x > 0 assuming A > 0. □
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