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4 Optimal lower estimate for the first eigenvalue of the

p-Laplacian in the Euclidean sphere

Fábio R. dos Santos∗ and Matheus N. Soares

Abstract. An integral inequality is derived for compact submanifolds (with or without

boundary) in the unit sphere. This result leads to a characterization of spheres.

1. Introduction and statements of the main result

Given a compact Riemannian manifold Mn we define the p-Laplacian on Mn as the

second order quasilinear elliptic operator

∆pf = −div(|∇f |p−2∇f), 1 < p < ∞.

When p = 2, it is the usual Laplacian. In a similar way, we can consider the eigenvalue

problem of ∆p. We say that a real number λ is a Dirichlet (or Neumann) eigenvalue if there

exists a non-zero function f satisfying the following equation with Dirichlet boundary

condition f = 0 on ∂M (or Neumann boundary condition u = ∂f/∂η = 0 on ∂M):

∆pf = λ|f |p−2f in Mn, (1.1)

where η is the outward pointing normal unit vector field to ∂M .

According to [6], these numbers λ forms a non-increasing sequence such that there

exists an isolated minimum eigenvalue called the first eigenvalue of the p-Laplacian (see

also [3]). So, the first nontrivial Dirichlet and Neumann eigenvalue of Mn are given by

µ1,p(M) = inf

{

∫

M
|∇f |pdM

∫

M
|f |pdM ; f ∈ W 1,p

0 (M)\{0}
}

,

and

λ1,p(M) = inf

{

∫

M
|∇f |pdM

∫

M
|f |pdM ; f ∈ W 1,p(M)\{0} and

∫

M

|f |p−2f dM = 0

}

.

Since λ1,p(M) is obtained by imitating the closed case proof (see [11]), we will use the

same notation to denote the first eigenvalue of p-laplacian of Mn in the closed case.
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In the geometric analysis theory, a natural way exists to relate the geometric properties

of a Riemannian manifold and the p-Laplacian through its eigenvalues. The interaction

between these objects and the geometry were approached in Matei [8] which generalized

many geometric intrinsic results involving the first eigenvalue of the p-Laplacian that,

in principle, was proved only for the usual Laplacian. Among these results we highlight

the generalization for p > 2 of the Chern’s comparison of geodesic balls, an extension of

Faber-Krahn inequality and a generalization of Lichnerowicz-Obata theorem.

On the other hand, in the context of isometric immersions in the unit sphere S
N ,

Leung [5] established a sharp estimate between the eigenvalues of the usual Laplacian for

minimal submanifolds of sphere through an integral inequality. In fact, Leung presented

a lower bound for the square length of the second fundamental form S via any eigenvalue

of the Laplace-Beltrami operator. Besides that, he showed that spheres are obtained

when the equality happens. Years later, Liu and Zhang [7] proved a similar estimate for

arbitrary submanifolds of sphere. More precisely, they proved

Theorem 1.1. Let Mn be an n-dimensional compact orientable submanifold im-

mersed in the standard Euclidean sphere S
N . Let f be an eigenfunction associated to

λ1,2(M), then

∫

M

(
√
n− 1

2
S − (n− 1)(n− λ1,2(M))

n

)

|∇f |2dM ≥ 0,

where dM is the volume element on Mn. In particular, if S is a constant, then

S ≥ 2
√
n− 1

n
(n− λ1,2(M)).

We emphasize that, unlike the estimate obtained by Leung, the theorem above does

not describe which geometric object achieves equality in integral inequality.

In a recent paper [1], the authors considered compact minimal submanifolds in the

unit sphere. They defined a divergence type operator and developed Bochner and Reilly

formulas for it. As an application, they obtained integral inequalities involving the squared

norm of the second fundamental form which extended the previous result due to Leung [5]

to the first eigenvalue of the p-Laplacian and for manifolds with boundary. Here, our aim

is to use the machinery developed in [1] in order to generalizes the Liu-Zhang result to

the context of the p-Laplacian as well as to compact manifolds with nonempty boundary

and possibility convex1. In other words, we prove

1We say that ∂M is convex if the second fundamental form is negative semi-definite with respect to

η the outward-pointing unit normal vector.
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Theorem 1.2. Let Mn be a compact (with possibly convex boundary) submanifold

immersed in the standard Euclidean sphere S
N . Let f be an eigenfunction of the p-

Laplacian of Mn associated to λ given by equation (1.1). Then

∫

M

(√
n− 1

2
S − (n− 1)(n− b(n, p)λ

2

p )

n

)

|∇f |2p−2dM ≥ 0, (1.2)

for p ≥ 2, where

b(n, p) =
n(p− 1)2 − 1

(n− 1)(p− 1)
2

p

. (1.3)

If the equality happen, then p = 2. In this case, by assuming in addition that Mn has

parallel mean curvature vector field in S
N , then Mn is isometric to

i. the sphere S
2(
√

q(q + 1)/2), with λ being the first eigenvalue and N = 2q, for

the closed case if n = 2;

ii. the great sphere S
n(1), with λ being the first eigenvalue, for the closed case if

n ≥ 3;

iii. the upper hemisphere S
n
+(1), with λ being the first eigenvalue, corresponding to

Dirichlet and Neumann problems.

The proof of Theorem 1.2 is given in Section 3. As a direct consequence of Theorem 1.2

we get the following Leung’s type estimate:

Corollary 1.3. In the context of Theorem 1.2, if S is constant, then

S ≥ 2
√
n− 1

n

(

n− b(n, p)λ
2/p
1,p (M)

)

.

2. Some preliminaries and key lemmas

Let Mn be an n-dimensional connected submanifold immersed in a unit Euclidean

sphere S
N . Let {ωB} be the corresponding dual coframe, and {ωBC} the connection 1-

forms on S
N . We choose a local field of orthonormal frame {e1, . . . , eN} in S

N , with dual

coframe {ω1, . . . , ωN}, such that, at each point of Mn, e1, . . . , en are tangent to Mn and

en+1, . . . , eN are normal to Mn. We will use the following convection for indices

1 ≤ A,B,C, . . . ≤ N, 1 ≤ i, j, k, . . . ≤ n and n+ 1 ≤ α, β, γ, . . . ≤ N.

With restricting on Mn, the second fundamental form A and the curvature tensor R

of Mn are given by

ωiα =
∑

j

hα
ijωj , A =

∑

i,j,α

hα
ijωi ⊗ ωj ⊗ eα,

dωij =
∑

k

ωik ∧ ωkj −
1

2

∑

k,l

Rijklωk ∧ ωl.
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The Gauss equation is

Rijkl = (δikδjl − δilδjk) +
∑

α

(hα
ikh

α
jl − hα

ilh
α
jk).

In particular, the components of the Ricci tensor Rik and the normalized scalar curvature

R are given, respectively, by

Rik = (n− 1)δik + n
∑

α

(

∑

j

hα
jj

)

hα
ik −

∑

α,j

hα
ijh

α
jk

and

R =
1

(n− 1)

∑

i

Rii.

From (2.1) and (2.2), we get the following relation

n(n− 1)R = n(n− 1) + n2H2 − S,

where

S =
∑

α,i,j

(hα
ij)

2 and h =
1

n

∑

α

(

∑

k

hα
kk

)

eα,

denotes, respectively, the squared norm of the second fundamental form and the mean

curvature vector field. Also, we define H = |h| as the mean curvature function of Mn. In

particular, we say that a submanifold Mn immersed in the unit Euclidean sphere S
N has

parallel mean curvature vector field if h is parallel as a section of the normal bundle of

Mn. It is clear that this condition implies in H constant.

In order to proof our main results, we need of the following two results. The first one

is a Ricci low estimate due [4, Main Theorem].

Lemma 2.1. Let Mn be a submanifold of the Riemannian manifold S
N . Let Ric

denotes the function that assigns to each point of Mn the minimum Ricci curvature. Then

Ric ≥ −n− 1

n

(

S +
n(n− 2)
√

n(n− 1)
H
√
S − nH2 − n− 2nH2

)

.

Before to present the second result, we will recall some facts about isometric immer-

sions with nonempty boundary. Let us consider η the outer unit normal field of ∂M . We

define the shape operator Aη and the mean curvature function of ∂M in Mn, respectively,

by

Aη(X) = −∇Xη and H =
1

n− 1
tr(Aη),

for any X ∈ X(∂M). Let us denote by ∇∂ and ∆∂ the covariant derivative and the

Laplacian operator on ∂M with respect to the induced Riemannian metric. In this picture,

the second key result is a suitable version of [1, Proposition 4.1] for our interest.



OPTIMAL LOWER ESTIMATE FOR THE FIRST EIGENVALUE OF THE p-LAPLACIAN 5

Lemma 2.2. Let Mn be a compact manifold with boundary ∂M . If f is an eigen-

function on Mn of the p-Laplacian corresponding to a non-zero eigenvalue λ, then

∫

M

Ric(∇f,∇f)|∇f |2p−4dM ≤ λ
2

p c(n, p)R(f, z, u)
2p−2

p +

∫

∂M

|∇f |2p−4Q(u, z)dσ, (2.4)

where

R(f, z, u) = ‖∇f‖p2p−2 − ‖f‖2−p
2p−2

∫

∂M

|f |p−2|∇f |p−2zu dσ (2.5)

and

Q(u, z) = u∆∂z + (n− 1)u2H + 〈∇∂z,∇∂u〉+ 〈Aη(∇∂z),∇∂z〉, (2.6)

with z = f
∣

∣

∂M
, u = ∂f/∂η and dσ denotes the Riemannian volume element on ∂M .

Moreover, the equality holds in (2.4) if p = 2.

Proof. From [1, Proposition 4.1], we have

∫

M

Ric(∇u,∇u)|∇u|2p−4dM

=

∫

M

(

(∆pu)
2 − |∇u|2p−4|Hess u|2

)

dM +

∫

∂M

|∇u|2p−4Q(u, z)dσ

− (p− 2)

∫

M

|∇u|2p−6
(

(p− 2)(∆∞u)2|∇u|2 + 2|Hess u(∇u)|2
)

dM,

(2.7)

where Q(u, z) is given in (2.5) and |∇f |2∆∞f = 〈Hess f(∇f),∇f〉.
On the other hand, we note that holds the following algebraic inequality [1, Equa-

tion 3.7]

|∇f |2p−4|Hess f |2 ≥ (∆pf)
2

n(p− 1)2
, (2.8)

with equality holding if and only if

(p− 2)|∇f |p−4〈Hess f(∇f), X〉∇f + |∇f |p−2Hess f(X) = −1

n
(∆pf)I(X), (2.9)

for all X ∈ X(M). Besides these, the Cauchy-Schwarz inequality guarantees

|∇f |4(∆∞f)2 = 〈Hess f(∇f),∇f〉2 ≤ |∇f |2|Hess f(∇f)|2 (2.10)

and consequently

p(∆∞f)2|∇f |2 ≤ (p− 2)(∆∞f)2|∇f |2 + 2|Hess f(∇f)|2. (2.11)
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Hence, by inserting (2.8) and (2.11) in (2.7),
∫

M

Ric(∇f,∇f)|∇f |2p−4dM

≤
(

n(p− 1)2 − 1

n(p− 1)2

)
∫

M

(∆pf)
2 dM +

∫

∂M

|∇f |2p−4Q(u, z)dσ

− p(p− 2)

∫

M

|∇f |2p−4(∆∞f)2dM

≤
(

n(p− 1)2 − 1

n(p− 1)2

)
∫

M

(∆pf)
2 dM +

∫

∂M

|∇f |2p−4Q(u, z)dσ,

(2.12)

with equality occurring if and only if either p = 2 or ∆∞f = 0.

On the other hand, by combining (1.1) with divergence’s theorem and Hölder’s in-

equality, we get

λ

∫

M

|f |2p−2dM = (p− 1)

∫

M

|f |p−2|∇f |pdM −
∫

∂M

|f |p−2|∇f |p−2uzdσ

≤ (p− 1)

(
∫

M

|∇f |2p−2

)
p

2p−2

(
∫

M

|f |2p−2

)
p−2

2p−2

−
∫

∂M

|f |p−2|∇f |p−2uzdσ.

(2.13)

By this, a direct computation gives

∫

M

|f |2p−2dM ≤
(

p− 1

λ

)
2p−2

p

R(f, z, u)
2p−2

p , (2.14)

where R(f, z, u) is defined in (2.5). Since (∆pf)
2 = λ2|f |2p−2, from (2.14)

∫

M

(∆pf)
2dM = λ2

∫

M

|f |2p−2dM ≤ λ
2

p (p− 1)
2p−2

p R(f, z, u)
2p−2

p . (2.15)

Therefore, by inserting (2.15) in (2.13), we obtain
∫

M

Ric(∇f,∇f)|∇f |2p−4dM ≤ λ
2

p c(n, p)R(f, z, u)
2p−2

p +

∫

∂M

|∇f |2p−4Q(u, z)dσ, (2.16)

where

c(n, p) =
(n− 1)

n
b(n, p).

If the equality holds in (2.16), then all the inequalities along the proof become equali-

ties. In particular, the equality holds in (2.12) and (2.10) which implies that p = 2 or

Hess f(∇f) = 0. Thus, from (1.1) and (2.9), if Hess f(∇f) = 0,

0 = (p− 2)|∇f |p−4〈Hess f(∇f),∇f〉∇f + |∇f |p−2Hess f(∇f) = −λ

n
|f |p−2fI(∇f).

Consequently, since f 6= 0 and ∇f 6= 0 we obtain that λ = 0, a contradiction. Therefore,

if the equality in (2.16) holds, p must be 2.

�
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3. Proof of Theorem 1.2

From Lemma 2.1, we have that the Ricci curvature of Mn satisfies:

Ric ≥ n− 1 +
n− 1

n

(

nH2 − n− 2√
n− 1

√
nH

√
S − nH2 − (S − nH2)

)

. (3.1)

In order to estimate (3.1) from below, let us the following quadratic form with eigenvalues

± n

2
√
n− 1

:

F (x, y) = x2 − n− 2√
n− 1

xy − y2.

We note that the orthogonal transformation
{

w = 1

2n

[

(1 +
√
n− 1)x+ (1−

√
n− 1)y

]

v = 1

2n

[

(
√
n− 1− 1)x+ (1 +

√
n− 1)y

]

is such that x2 + y2 = w2 + v2. Thus, by taking x =
√
nH and y =

√
S − nH2 we have

x2 + y2 = S. Hence,

F (x, y) = x2 − n− 2√
n− 1

xy − y2 =
n

2
√
n− 1

(w2 − v2)

≥ − n

2
√
n− 1

(w2 + v2)

= − n

2
√
n− 1

S,

(3.2)

with equality holding if and only if v = 0. So, by inserting (3.2) in (3.1),

Ric ≥
(

n− 1−
√
n− 1

2
S

)

. (3.3)

By replacing (3.3) in Lemma 2.2,
∫

M

(

n− 1−
√
n− 1

2
S

)

|∇f |2p−2dM ≤ λ
2

p c(n, p)R(f, z, u)
2p−2

p +

∫

∂M

|∇f |2p−4Q(u, z)dσ,

where R(f, z, u) and Q(u, z) are defined in (2.5) and (2.6), respectively.

On the other hand, if the boundary ∂M is empty or satisfies the Dirichlet or Neumann

boundary condition,

R(f, z, u) =

(
∫

M

|∇f |2p−2dM

)
p

2p−2

and

∫

∂M

|∇f |2p−4Q(u, z)dσ ≤ 0,

and thus (2.13) becomes
∫

M

(

n− 1−
√
n− 1

2
S

)

|∇f |2p−2dM ≤ λ
2

p c(n, p)

∫

M

|∇f |2p−2dM.

Therefore
∫

M

(

(n− 1)(n− b(n, p)λ
2

p )

n
−

√
n− 1

2
S

)

|∇f |2p−2dM ≤ 0,
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where b(n, p) is given by (1.3). This proves the inequality in (1.2).

Moreover, the equality

∫

M

(

(n− 1)(n− b(n, p)λ
2

p )

n
−

√
n− 1

2
S

)

|∇f |2p−2dM = 0 (3.4)

holds, then by Lemma 2.2 we must have p = 2. In particular, b(n, 2) = 1 and (3.4) turns

in
∫

M

(

(n− 1)(n− λ)

n
−

√
n− 1

2
S

)

|∇f |2dM = 0.

Beyond that, from (2.9) we have

Hess f = −λ

n
fI.

Hence, if ∂M = ∅, by applying Obata’s theorem [9, Theorem A], it follows that Mn

is isometric to the sphere S
n(λ/n). In the case where the boundary ∂M is nonempty

and convex, we can apply [2, Theorem 4.3] in order to obtain that Mn is isometric a

hemisphere S
n
+(λ/n). Since the equality (3.4) imply in the equality (3.2), we get v = 0.

Thence,

nH2 =

(
√
n− 1− 1√
n− 1 + 1

)2

(S − nH2). (3.5)

First we observe that if n = 2, then H = 0 and Mn is a minimal submanifold of SN .

Hence, by using a similar argument to made in [5, Theorem 3] we conclude that N = 2q

and Mn is isometric to S
2

(

√

q(q + 1)/2
)

.

From now on, we will assume that n 6= 2. In this case, (3.5) becomes

S =
2n2

(
√
n− 1− 1)2

H2. (3.6)

Being Mn is isometric to S
n (λ/n) (similarly for Sn

+(λ/n)), by putting (3.6) in (2.3), we

have

λ = n+
n2

n− 1

(

1− 2

(
√
n− 1− 1)2

)

H2. (3.7)

Since H is constant, from identity (3.5) we must have that S is constant. So, (3.7) can

be rewrite as follows

λ− n = − n

2
√
n− 1

S. (3.8)

Hence, by inserting (3.6) and (3.8) in (3.7) we get

n2

n− 1

(

1− 2

(
√
n− 1− 1)2

)

H2 = − n

2
√
n− 1

2n2

(
√
n− 1− 1)2

H2.

Thus,
(

1

n− 1

(

(
√
n− 1− 1)2 − 2

)

+
n√
n− 1

)

H2 = (n− 2)(
√
n− 1 + 1)H2 = 0.
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Once that n 6= 2, it follows H = 0 and hence, S = 0, from (3.6). Therefore, by returning

to (3.8), we conclude that n = λ and consequently Mn is isometric to S
n(1) if ∂M = ∅

and isometric to S
n
+(1) otherwise.

To ends this proof, we will assume that ∂M is nonempty, convex and satisfy the

Dirichlet boundary condition. Since v = 0, from (3.1)

Ric ≥ n− 1 +
(n− 1)(λ− n)

n
=

(n− 1)λ

n
> 0.

Being ∂M convex, follows that H is nonpositive. Hence, we can apply the classical

result [10, Theorem 4] in order to obtain that Mn is isometric to S
n
+(λ/n). By thinking

as before, we conclude that Mn is isometric to S
n
+(1).
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