
GEOMETRIC SIGNALS
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Abstract. In signal processing, a signal is the graph of a function. We define a signal as a
submanifold of a Riemannian manifold (with corners). We obtain inequalities that relate the energy
of the signal and the energy of its Fourier transform. We quantify noise and filtering.

1. Introduction.

This paper is about a geometric generalization of the concept of signal. The goal is to build an
abstract mathematical model of transmitting information via geometric objects which are, infor-
mally speaking, higher dimensional analogues of sound waveforms. We are not taking the most
obvious path to defining a signal as an Rn-valued function on an open subset of manifold. Instead,
we are taking a more intuitive approach with cobordisms. This would allow to treat quite general
geometric objects as information.

In practical applications, signal processing involves sampling, analog to digital conversion, quan-
tization, and mathematical techniques that are needed because of the hardware used to receive and
analyze the signal. We will concentrate our attention on the geometric concept of signal, rather
than being concerned with digitizing such a signal or further processing the resulting data.

For background discussion, let’s consider the word ”dot”. It can be transmitted as a finite
sequence of three images, of the letters ”D”, ”O”, ’T”, respectively. Each of the three images can
be converted into digital data (e.g. by drawing the letters on the grid paper via shading appropriate
squares and entering 1 in the corresponding matrix for each shaded square, 0 for every blank square
Fig. 1).

Figure 1. The ”empty squares” are the zero entries of the rectangular matrix.

Alternatively, the three letters can be represented by the binary representations of the numbers
4, 15, 20 (their positions in the English alphabet). Or, instead, one can send the word ”dot” as
an audio file ( a recording of a person saying this word), or the wave soundform of this recording
(which can be subdivided into three parts, each for one of the three letters of the word Fig. 2).

The mathematical aspects of these processes depend on the choice of sampling, quantization,
encoding, transmission, other procedures related to speech processing, as well as the linguistics
aspects such as the language and the alphabet (if the written language is based on an alphabet).
For details see [1, 2].

Instead of doing all that, we can concentrate only on the geometric aspects and consider the
immersed submanifolds of R2 (with the standard Riemannian metric) that correspond to the data
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Figure 2. A soundform of the word ”dot”.

on Fig. 1, 2. This is the general point of view in this paper. In order to account, intuitively, for a
”process” or ”evolution” taking place, without explicitly defining a time variable, we bring in the
concept of cobordism.

2. Cobordisms as signals

Let k ≥ 0 be an integer. Let (X;X1, X2) be a (k + 1)-dimensional (oriented) cobordism, i.e. a
compact (k + 1)-dimensional oriented manifold X with boundary

∂X = X1 ⊔X2

where X1 and X2 are closed k-dimensional oriented manifolds.

Figure 3. A cobordism (X;X1, X2).

Let (Y ;Y1, Y2) be a (k + 1)-dimensional cobordism. Let (M ;X, Y,Σ; ∂X, ∂Y ) be a (k + 2)-
dimensional cobordism of manifolds with boundary in the sense of [3], i.e. (Σ, ∂X, ∂Y ) is a (k+1)-
dimensional cobordism, and

∂M = X ∪ Σ ∪ Y.
Assume, moreover, that

Σ = A ⊔B
and (A;X1, Y1), (B;X2, Y2) are (k + 1)-dimensional cobordisms. M is a manifold with corners [5].
Figure 4 shows an example where k = 0, the boundary of X consists of two points and the boundary
of Y consists of two points.

Example 2.1. For applications, a simplest typical example would be k = 1, X is a compact smooth
surface with the boundary which is the disjoint union of n1+n2 circles (n1, n2 ∈ N), X1 is a disjoint
union of n1 circles, X2 is a disjoint union of n2 circles, Y = X, M = X × [0, 1]. In Figure 5, X has
values n1 = 2 and n2 = 3.
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Figure 4. A cobordism (M ;X, Y,Σ; ∂X, ∂Y ), k = 0.

Figure 5. A cobordism (X;X1, X2), n1 = 2, n2 = 3.

Let (M̃, g̃) be a Riemannian manifold such that M ⊂ M̃ (a subset of M̃ which is an embedded
submanifold via the identity map). We will write Mg for M equipped with the Riemannian metric
g induced by g̃. Unless explicitly stated otherwise, we will also assume that the Riemannian metric
on every submanifold of M is the one induced by g. In Figure 4, M ⊂ R2 = M̃ . Figure 6 shows a
cobordism as an Example 2.1, with k = 1, n1 = n2 = 1, and M ⊂ R3 = M̃ .

Denote by dVg the volume form of g and by ρg the Riemannian distance with respect to g. Define

fX :M → R



4 TATYANA BARRON

Figure 6. A cobordism (M ;X, Y,Σ; ∂X, ∂Y ).

by fX(x) = ρg(x,X). Since X is compact, fX is well defined and continuous onM . Similarly, define

fA :M → R
by fA(x) = ρg(x,A).

Remark 2.2. Regularity of the distance function to a submanifold is treated in [4]. In [4], the
discussion is for Rn and it is noted that the proofs are similar for submanifolds of Riemannian
manifolds.

Remark 2.3. The reason to keep track of orientation is for calculation of volumes.

Remark 2.4. We are able to complete the proofs of the theorems below with the standard techniques
of Riemannian geometry. For further work, the methods developed by R. Melrose would be useful
(b-calculus and analysis on manifolds with corners).

Denote W = X ⊔ Y . Define

• the energy of the signal Mg

(1) E(Mg) =

∫
M

fA(x)dVg(x)

• the Fourier transform F of the signal Mg as the map of cobordisms of manifolds with
boundary

(M ;X, Y,Σ; ∂X, ∂Y ) → (M ;A,B,W ; ∂X, ∂Y )

induced by the identity map M →M
• the energy of the Fourier transform of the signal F (Mg)

E(F (Mg)) =

∫
M

fX(x)dVg(x).

• a noise (U, h) where U ⊂ M is an open set and h is a Riemannian metric on M such that
h = g on M − U . Then

E(Mh) =

∫
M

ρh(x,A)dVh(x)
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E(F (Mh)) =

∫
M

ρh(x,X)dVh(x).

• a filter a signal M ′ = (M ′;X ′, Y ′,Σ′; ∂X ′, ∂Y ′), such that ∂X ′ = X ′
1 ⊔X ′

2, ∂Y
′ = Y ′

1 ⊔ Y ′
2 ,

Σ′ = A′ ⊔B′, M ′ ⊂M , X ′ ⊂ X and Y ′ ⊂ Y .
• composition of two signals M = (M ;X, Y,Σ = A ⊔ B; ∂X, ∂Y ), M ′ = (M ′;X ′, Y ′,Σ′ =
A′ ⊔B′; ∂X ′, ∂Y ′) such that Y = X ′ and M ∩M ′ = X ′ is the signal

M ′′ = (M ′′;X, Y ′,Σ′′; ∂X, ∂Y ′)

where

M ′′ =M ∪M ′

A′′ = A ∪ A′

B′′ = B ∪B′

Σ′′ = Σ ∪ Σ′ = A′′ ⊔B′′

Remark 2.5. If there is no ambiguity about the metric and the metric is presumed to be the one
induced by g, then we will sometimes omit g from notation and write E(M) = E(Mg), similarly
for volume, diameter etc.

Remark 2.6. In signal processing, a discrete signal is represented by a finite sequence of real numbers
(xn). These come (via sampling) from the sound waveform and should be understood as the numbers
that represent the air pressure at time n. The signal is characterized by its energy∑

n

|xn|2

and magnitude max{|xn|}. The energy of a continuous one-dimensional signal is

(2)

∫
|x(t)|2dt.

Our definition of energy (1) is the integral of the distance function. Intuitively, this makes sense,
as the integrand is a second order quantity as in (2).

Remark 2.7. To give an example of noise, one can consider a local diffeomorphism φ of a small ball
that is the identity map on the boundary of this ball, and the metric h = φ∗g. The unit ball in Rn

admits a diffeomorphism that is identity on its boundary and extends smoothly (by the identity
map) to a neighborhood of the boundary.

Theorem 2.8. Let M = (M ;X, Y,Σ = A ⊔B; ∂X, ∂Y ) be a signal.
(i) There is a constant r > 0 such that

1

1 + 3 diam(M)vol(M)
r vol(X)

≤ E(F (M))

E(M)
≤ 1 +

3 diam(M)vol(M)

r vol(A)
.

(ii) Let (U, h) be noise, where

U = {x ∈M | ρg(x, p) < δ}
for some p ∈M and δ > 0. Let 0 < δ0 < δ and let 0 < ε < 1.
Then there is a smooth function aε :M → R such that

(3) aε(x) =

{
ε, if x ∈ {x ∈M | ρg(x, p) ≤ δ0}
1, if x ∈ {x ∈M | ρg(x, p) ≥ δ}

(4) 0 < aε(x) < 1 for all x ∈ {x ∈M | δ0 < ρg(x, p) < δ},
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and as ε→ 0
E(F (Mhaε))

E(Mhaε)
=
β

γ

(
1 + Cε

k+2
2 +O(εk+2)

)
where

β =

∫
{x∈M |ρg(p,x)>δ0}

ρhaε(x,X)aε(x)
k+2
2 dVh(x)

γ =

∫
{x∈M |ρg(p,x)>δ0}

ρhaε(x,A)aε(x)
k+2
2 dVh(x)

C =

∫
{x∈M |ρg(p,x)<δ0}

ρhaε(x,X)dVh(x)

β
−

∫
{x∈M |ρg(p,x)<δ0}

ρhaε(x,A)dVh(x)

γ
.

(iii) Let (U, h) be noise as in (ii) and let M ′ be a filter such that X ′
1 = X1, Y

′
1 = Y1, A

′ = A,
U ⊂M −M ′. Then

E(M ′
g) ≤ E(Mg)

E(M ′
g) ≤ E(Mh).

Remark 2.9. In Theorem 2.8 (ii) the function aε, in a sense, modulates the noisy signal, from Mh

to Mhaε . In (iii), M ′ filters out the noise.

Theorem 2.10. Let M ′′ be the composition of signals M and M ′. Then

(5) E(M ′′) ≤ E(M) + E(M ′)

(6) E(F (M ′′)) ≥ E(F (M)).

3. Proofs

Proof of Theorem 2.8. By the mean value theorem, there is a0 ∈M such that

E(M) =

∫
M

fA(x)dVg(x) = fA(a0)volg(M)

and there is x0 ∈M such that

E(F (M)) =

∫
M

fX(x)dVg(x) = fX(x0)volg(M).

Since A and X are compact, there are a1 ∈ A and x1 ∈ X such that ρg(a0, a1) = ρg(a0, A) and
ρg(x0, x1) = ρg(x0, X) . Let b ∈ A ∩X. Then

E(F (M))

E(M)
=
fX(x0)

fA(a0)
=
ρg(x0, X)

fA(a0)
≤ ρg(x0, b) + ρg(x1, b)

fA(a0)
≤

ρg(a0, x0) + ρg(a0, b) + ρg(x1, b)

fA(a0)
≤ ρg(a0, x0) + ρg(a0, a1) + ρg(a1, b) + ρg(x1, b)

fA(a0)
≤

(7) 1 +
diam(M) + diam(A) + diam(X)

ρg(a0, A)
.

By the collar neighborhood theorem, there is ε > 0, an open neighborhood Aε of A in M and a
diffeomorphism

α : Aε → A× [0, 1).
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Let U = {U1, ..., Um} be an open cover of A by manifold charts {Ui, φi} and let {ψ1, ..., ψm} be a
smooth partition of unity subordinate to U . Then

fA(a0) =

∫
M
fA(x)dVg(x)

vol(M)
≥ 1

vol(M)

∫
Aε

fA(x)dVg(x) =
1

vol(M)

∫
Aε

fA(x)
m∑
j=1

ψj(x)dVg(x) =

(8)
1

vol(M)

m∑
j=1

∫
Uj×[0,1)

fA(α
−1(a, t))ψj(α

−1(a, t))dVg(α
−1(a, t)),

where a ∈ A, t ∈ [0, 1). Denote by a
(i)
1 , ..., a

(i)
k+1 the coordinates in the i-th chart. Using the Fubini

theorem, we get that (8) equals

1

vol(M)

∫
[0,1)

m∑
i=1

∫
φi(Ui)

fA(α
−1(φ−1

i (a1, ..., ak+1), t))ψi(α
−1(φ−1

i (a1, ..., ak+1), t))

√
det g(a1, ..., ak+1, t)da1...dak+1dt.

By the mean value theorem, there is 0 < t0 < 1 such that∫
[0,1)

m∑
i=1

∫
φi(Ui)

fA(α
−1(φ−1

i (a1, ..., ak+1), t))ψi(α
−1(φ−1

i (a1, ..., ak+1), t))

√
det g(a1, ..., ak+1, t)da1...dak+1dt =

(9)
m∑
i=1

∫
φi(Ui)

fA(α
−1(φ−1

i (a1, ..., ak+1), t0))ψi(α
−1(φ−1

i (a1, ..., ak+1), t0))

√
det g(a1, ..., ak+1, t0)da1...dak+1.

Then

fA(a0) ≥
1

vol(M)

m∑
i=1

∫
φi(Ui)

fA(α
−1(φ−1

i (a1, ..., ak+1), t0))ψi(α
−1(φ−1

i (a1, ..., ak+1), t0))

√
det g(a1, ..., ak+1, t0)da1...dak+1 =

1

vol(M)

m∑
i=1

∫
Ui

fA(α
−1(a, t0))ψi(α

−1(a, t0))dµA(a) =

1

vol(M)

m∑
i=1

∫
A

fA(α
−1(a, t0))ψi(α

−1(a, t0))dµA(a) =
1

vol(M)

∫
A

fA(α
−1(a, t0))dµA(a)

where dµA is the measure on A induced by the Riemannian metric. Hence there is r1 > 0 such that

ρg(a0, A) = fA(a0) ≥ r1
vol(A)

vol(M)
.

Then, with (7),
E(F (M))

E(M)
≤ 1 +

3 diam(M)vol(M)

r1vol(A)
.

Repeating the argument for E(M)
E(F (M))

, we get: there is r2 > 0 such that

E(M)

E(F (M))
≤ 1 +

3 diam(M)vol(M)

r2vol(X)
.
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Set r = min{r1, r2}. Since diam(A) ≤ diam(M) and diam(X) ≤ diam(M), (i) follows.
Proof of (ii). Let {φ, ψ} be a smooth partition of unity subordinate to the open cover

{{x ∈M |ρg(p, x) < δ}, {x ∈M |ρg(p, x) > δ0}}.
Then the function aε defined by

aε(x) = εφ(x) + ψ(x)

satisfies (3), (4). We have:

E(F (Mhaε))

E(Mhaε)
=

∫
M
ρhaε(x,X)dVhaε(x)∫

M
ρhaε(x,A)dVhaε(x)

=

∫
M
ρhaε(x,X)aε(x)

k+2
2 dVh(x)∫

M
ρhaε(x,A)aε(x)

k+2
2 dVh(x)

=

∫
{x∈M | ρg(x,p)>δ0} ρhaε(x,X)aε(x)

k+2
2 dVh(x) + ε

k+2
2

∫
{x∈M | ρg(x,p)≤δ0} ρhaε(x,X)dVh(x)∫

{x∈M | ρg(x,p)>δ0} ρhaε(x,A)aε(x)
k+2
2 dVh(x) + ε

k+2
2

∫
{x∈M | ρg(x,p)≤δ0} ρhaε(x,A)dVh(x)

=

β

γ

1 + ε
k+2
2

1
β

∫
{x∈M |ρg(p,x)<δ0} ρhaε(x,X)dVh(x)

1 + ε
k+2
2

1
γ

∫
{x∈M |ρg(p,x)<δ0} ρhaε(x,A)dVh(x)

.

The Maclaurin series for
1

1 + ε
k+2
2

1
γ

∫
{x∈M |ρg(p,x)<δ0} ρhaε(x,A)dVh(x)

yields the desired statement.
Proof of (iii).

E(M ′
g) =

∫
M ′
ρg(x,A

′)dVg(x).

Since A′ = A, M ′ ⊂M , and U ∩M ′ = ∅, both inequalities follow. □
Proof of Theorem 2.10.

E(M ′′) =

∫
M ′′

ρg(x,A
′′)dVg(x) =

∫
M

ρg(x,A
′′)dVg(x) +

∫
M ′
ρg(x,A

′′)dVg(x)

Since for every x, ρg(x,A
′′) ≤ ρg(x,A) and ρg(x,A

′′) ≤ ρg(x,A
′), the inequality (5) follows.

E(F (M ′′)) =

∫
M ′′

ρg(x,X)dVg(x) =

∫
M

ρg(x,X)dVg(x) +

∫
M ′
ρg(x,X)dVg(x)

The inequality (6) follows. □
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