arXiv:2403.15986v1 [cond-mat.stat-mech] 24 Mar 2024

Exact Work Distribution and Jarzynski’s Equality of a Relativistic Particle in an
Expanding Piston

Xianghang Zhang (K1)
School of Physics, Peking University, Beijing, 100871, China and
Fakultat fir Physik, Ludwig-Mazximilians-Universitdt, Minchen, 80333, Germany

Tingzhang Shi (f1 & &)
School of Physics, Peking University, Beijing, 100871, China

H. T. Quan (% %)
School of Physics, Peking University, Beijing, 100871, China
Collaborative Innovation Center of Quantum Matter, Beijing 100871, China and
Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing, 100871, China
(Dated: March 26, 2024)

We study the non-equilibrium work in a pedagogical model of relativistic ideal gas. We obtain the
exact work distribution and verify the Jarzynski’s equality. In the non-relativistic limit, our results
recover the non-relativistic results [Lua et al, J. Phys. Chem. B, 109, 6805(2005)]. We also find
that, unlike the non-relativistic case, the work distribution no longer has zeros and the number of
collisions in this relativistic gas model is finite. In addition, based on an analysis of the experimental
parameters, we conclude that it is difficult to detect the relativistic effects of the work distribution
of the ideal gas in a piston system with the current experimental techniques.

I. INTRODUCTION

The Jarzynski’s equality (JE) [I] is one of the most
elegant results in the field of non-equilibrium statistical
physics. While being a direct result from Liouvelle’s the-
orem and supposed to hold in arbitrary Hamiltonian sys-
tems including relativistic systems, the work distribution
of a relativistic system under an arbitrary work protocol
has not been explored so far. In this article, we study
the work distribution of a simple relativistic model con-
sisting of only a one-dimensional cylinder, a piston and
relativistic ideal gas. Previous work on this model has
been done and the JE verified, but in a very limited range
of parameters [2] such that the collision only happens no
more than once for all particles. Moreover, we still lack
the detailed information of work distribution of the sys-
tem giving rise to various fluctuation theorems, which
plays a fundamental role in non-equilibrium statistical
physics. A Newtonian approximation of our model [3],
however, has yielded analytic results both for the JE and
the work distribution, suggesting the solvability in the
relativistic regime. Relevant to the non-relativistic ideal
gas in a piston, the non-equilibrium work distribution of
quantum gas in an expanding piston [4][5] has been stud-
ied and the JE verified. It is desirable to extend those
studies to the relativistic regime. In this article, we an-
alytically compute the work distribution and verify the
JE in this simple setup. Our model can be viewed as a
relativistic generalization of the one in Ref. [3] and recov-
ers it in the low-speed and low-temperature limit. Such
a toy model would be helpful for understanding more
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complicated and more realistic systems’ behavior under
relativistic conditions. As we will see in this paper, al-
though the work distribution changes drastically in the
extreme relativistic regime, the equality itself is indepen-
dent of the microscopic dynamics. In the following, we
will study the non-equilibrium work distribution of rela-
tivistic gas in an expanding piston. The results can serve
as a pedagogical example and provide intuitive insights
to the robustness of the JE. Also, we will show that it is
difficult to detect the relativistic effect of the work dis-
tribution with the current experimental techniques.

The article is organized as follows: In Sec. [[I, we
demonstrate the validity of the JE under the framework
of relativistic mechanics. In Sec. [T} we analytically cal-
culate the work distribution of a relativistic particle in
an expanding piston system. In the non-relativistic limit,
we recover the results in Ref. [3]. In Sec. we give the

discussion and summary.

II. JARZYNSKI’'S EQUALITY UNDER THE
FRAMEWORK OF RELATIVISTIC MECHANICS

The original proof of the JE was based mainly on the
classical Hamilton mechanics and its corollary, i. e., Li-
ouville’s theorem [1]. In this section, we extend the proof
to the framework of relativistic mechanics. We take the
spacetime dimension to be 14 1 to suit our model. Note
that the generalization to higher spacetime dimensions is
straightforward. The manifestly covariant dynamics for
a particle of the static mass m can be formulated as

(1)
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where f*, u*, ¢ denote the 2-force, 2-velocity and proper
time respectively. To be clear, we fix our frame of refer-
ence to the laboratory frame, where the relativistic dy-
namics can be expressed more conveniently in the form
of a 1-vector,
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where V' denotes the potential, ¢ the speed of light, and
q,u,t are the position, velocity and time measured in the
laboratory frame. With this form of dynamics, we can
easily construct the Hamiltonian of a system of IV par-
ticles of mass mi, ma, ..., my. Furthermore, we let the
Hamiltonian be controlled by an external agent via the
parameter A = A(t) of the potential V. The Hamiltonian
reads

N
HA = Z \/m+ VA(Qla 42, -y QN)v (3)
i=1

where ¢; is the position of the i-th particle and p; its
conjugate momentum.
The canonical equations are
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which is exactly the relativistic velocity-momentum rela-
tion that reproduces Eq. .

As long as the canonical equations are formulated, one
can easily generalize Liouville’s theorem to relativistic
regime [6]. The theorem states that the Jacobian deter-
minant of the canonical coordinates (p; ¢, ¢;¢) at time ¢
as functions of the initial canonical coordinates (p;,o, ¢i,0)
at time O is

‘ a(pi,ta Qi,t) -1 (6)
(pi,0,4i,0)

The initial equilibrium state of the inverse tem-
perature [ is determined by a probability distribu-
tion p(pi0,qi0) = exp[—BH(pio,qi0)]/Zo with Zy =
J dpi,0dgi,0 exp[—BH o) (pi,0, ¢i,0)] being the initial par-
tition function. We will see in the following (Sub-
sec. that for ideal gas the distribution is the so-
called Maxwell-Jiittner distribution [7]. The proof of the
JE follows by calculating the expectation value of the
exponential work exp [W(p;, ¢;,7)] done by the system
along the trajectory up to time 7. By definition we have
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Note that our definition is different from the usual one
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where the Liouville’s theorem is used for the third equal-
ity and Z, denotes the final equilibrium state partition
function. The partition functions can be expressed in the
form of free energy (see, for example, [§]), resulting in

<€ﬁW> — efB(FTfFo), 9)

where F, and Fj are the free energy of the equilibrium
states corresponding to A(7) and A(0). Thus, we demon-
strate the validity of the JE under the framework of rel-
ativistic mechanics.

III. A RELATIVISTIC PISTON MODEL

The model we consider here is nothing more than some
ideal gas inside a one-dimensional cylinder. Suppose ini-
tially the length of the vessel is L, and the gas is of the
inverse temperature 5. We now expand the piston out-
wards at the speed v,, and stop it after a time interval
T.

Under the assumption that the gas is ideal, all particles
contribute to both the work W, done by the system up
to time 7 and the difference between the final and the
initial free energy AF independently. Consequently, the
JE can be rewritten as

(<6W1/kBT>)N — (efAFl/kBT)N’ (10)

where W7 and AF; denote the work and the change of
the free energy per particle. We can now see that for
the ideal gas, the single-particle quantities W7 and AF}
also satisfy the JE. Thus, we limit our ideal gas to just a
single particle, and from now on we omit the subscript 1
for the discussion of the single-particle quantities.

A. Trajectory of a Single Particle

To calculate the trajectory work as a function of the
initial state, one must at first figure out how the trajec-
tory of a single particle is like.

Let us denote the velocity of the particle after the n-
th collision with the moving piston as v,. Following the
moving of a particle, we find out that after the (n+ 1)-th



collision with the moving piston, the speed of the particle
is reduced to
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This result can be derived simply by performing Lorentz
transformation twice, noting that the piston is an inertial
reference frame during the whole process and the colli-
sions are elastic collisions. The solution to the recurrence
relation of the particle’s speed v,, after the n-th collision
can also be derived
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where v is the initial speed of the particle and o, is a
parameter pertaining to the velocity v, of the moving
piston,
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Another thing we must figure out is the time ¢,, when
the n-th collision with the moving piston takes place. We
have the recurrence relation
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from which we can derive the expression of t,,
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Here x denotes the initial position of the particle. Note
that the sign of x can be either positive or negative due
to the initial velocity can be either towards or away from
the moving piston. So from now on we simply extend
the range of z from [0, L] to [—L, L] to remove the nega-
tive sign (for details, please see Appendix . With the
expression of v,,, the product of a sequence can be sim-
plified

n
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Finally, we have

which is the time of the n-th collision between the particle
and the moving piston. It is obvious that n can not
take an arbitrarily large number, and the n-th collision
is guaranteed if and only if both

tn < Tandv,_1 > v, (18)

are fulfilled.

The first requirement ensures that the collision hap-
pens before the ending time 7, and the second that the
particle can catch up with the moving piston. These re-
quirements give a maximum number of collisions
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where [- - -] denotes the integer part of - - -

Having obtained the number of collisions of every tra-
jectory, we are able to calculate the trajectory work which
is a functional of the trajectory and can be determined
by the difference of the initial and the final energy of the
system.

B. A Direct Verification of Jarzynski’s Equality in
the Expanding Relativistic Piston Model

It is worth emphasizing that the model we considered
here is not characterized by a time-dependent Hamil-
tonian, but by a parameterized boundary condition [9].
Thus the proof of the JE in Sec. [ is inapplicable to the
expanding rigid piston system. Still, we can demonstrate
that the JE is valid in the expanding rigid piston system.
In order to do so, we focus on the Jacobian determinant
between the initial and the final state and show it to be
unity.

Unlike the case of the low-speed limit, where the initial
state satisfies the classical Maxwellian distribution, now
the initial state distribution (Maxwell-Juittner distribu-
tion [7]) at the temperature T' = 1/(kp/) is
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where K is the modified Bessel function of the second
kind, (z,p) are the initial position and the initial momen-
tum, and kp is the Boltzmann’s constant. This distribu-
tion can also be expressed in the position-velocity space,
with the initial velocity denoted by v, as
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The exponential work can be averaged over the initial
distribution
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Here W, can be uniquely determined by the initial state
(z,p).

What can be easily derived from our analysis is that a
particle with an initial momentum p can hit the moving
piston for n times and its momentum diminishes to

muvy,
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It is clear to see that the initial state, (z,p), turns into
the final state

(@7,pr) = (1L = o + (vn +0p)tnl,pn)  (24)

at time 7. The Jaccobian determinant can be directly
computed from Eq. ,

d(p, x)

and thus the JE can be verified in this expanding piston
model.

—1, (25)

C. Distribution of Work

There are three dimensionless parameters in our
model: kgT/(mc?), L/(cr) and v, /c. Therefore it is con-
venient to set m = ¢ = kp = L = 1, leaving only v, 7
and 8 = 1/T as free parameters.

Using the probability distribution Eq. , we can
evaluate the distribution of work W
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where W, = 1/v/1 —v2—1//1 — v2 is the work done by
the particles that have experienced n collisions.

After some tedious calculations (see Appendix (B| for
details), the distribution function of W can be analyti-
cally expressed as
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Here the overlap factor ¢, (v) is a trapezoid-shaped func-
tion
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where v,, as an inverse function of W, can be expressed
as
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Here, &, (v) is a function of v and denotes the initial po-
sition of the particles that happen to collide with the
moving piston exactly n times within time 7 with the
initial velocity v. For a pictorial explanation, please see
Appendix [B|l Note that &,(v) is a linear function of v.
This is not as obvious as in the non-relativistic regime.
For an intuitive explanation, please see Appendix [A]

Just like the case in Newtonian mechanics, we expect
the work distribution to have a Dirac § peak at W = 0.
Its amplitude can be simply evaluated as

po(v)e Vi

1
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where the overlap function ¢o(v) is piecewise linear. It
can be evaluated analytically, although it is quite in-
volved.
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D. Non-relativistic Limit

In the non-relativistic limit, we expect our results to
recover those in Ref. [3]. For our choice of units, where
the speed of light is set to be 1, the Newtonian mechanics
is recovered by taking v, < 1 and W ~ 1/5 ~ v2.

We will deal with the exponential part in Eq. sep-
arately. For now we can expand the rest part of the work
distribution except the exponential and the normaliza-
tion constant at v, around 0 and W around 0. We have

1
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as all pieces of the trapezoid-shaped function ¢, .

temperature 3 is of the order v, 2 50

2
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where a temperature dependent constant e~ ? appears.
The low-temperature limit also affects the constant fac-
tors, yielding
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as (3 approaches oo, which is exactly the Maxwellian nor-
malization constant.

To conclude, we are able to recover the non-relativistic
results in Ref. [3] ( 7 = 1 is chosen in accordance with

Ref. [3] )
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The exponential term left in Eq. 7 together with the T /210, ’
normalization constant K7 (f), needs to be treated with
extra care. We start by noting that the thermodynamic with
|
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as a low-speed limit.

In Fig. we plot the work distributions of the ex-
panding relativistic piston model and its non-relativistic
limit. The deviations of the relativistic results from the
non-relativistic ones with different choices of parame-
ters are shown. One can see that as expected, the rela-
tivistic results deviate more prominently from the non-
relativistic results at high temperature and fast speed.
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FIG. 1: Relativisitic and non-relativistic work
distribution with different parameters. Take hydrogen
atoms as an example. Supposing that the length of the
cylinder is L = lecm (which is much larger than the
thermal length of the atoms). The parameters are
chosen to be 7 = 0.3ns,v, = 3 x 10"m/s, T = 3 x 102K
in (a), 7= 3ns,v, =3 x 10m/s, T =1 x 102K in (b),
and 7 = 30ns,v, = 3 x 10°m/s, T = 3 x 101K in (c).

E. Limit of Fast-moving Piston

We have already known that in Newtonian mechanics,
at a very large vp, the validity of the JE relies on the
far tails of the Maxwellian distribution [3]. It is thus in-
triguing to also think of this problem in special relativity,
where every speed has the speed of light ¢ as its upper
bound. The main obstacle to the application of the JE
is that to measure the average of exponential work, one
must repeat the experiment a certain number of times.
The exponent makes sure that the contribution of the
tail of the distribution, while its probability goes to zero,
is non-vanishing [10]. Specifically in our model, when
the speed of the moving piston approaches the speed of
light, the fraction of particles that can collide with the
piston approaches 0. In such a case an experiment with
non-zero work is of probability

__B

_ Mg 1@ Vi
P(W>O)_/vpd 2K (B)(1 —v?)5

2

(41)
The expectation value of the exponential work is
(ePV) =Py - e”?
s

1 eyt (42)
dv pr(v)e Vit PV,
v 2K1(8)(1 - v?)

lw

P

The first term is approximately equal to 1 (P(W > 0) <
1, Py = 1). From the value of exp (—fAF) = 1+uv,T, one
can expect that, although the probability P(W > 0) is

vanishingly small, the contribution of the second term is
non-zero. This result can be demonstrated transparently
in the low-temperature limit. Noticing that
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with v1 derived from Eq. , the particles with small v
after one collision contribute the most to the exponential
work. When v; = 0, the corresponding initial velocity is
20, /(1 +02).
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Together with Eq. and Eq. , the second term in
Eq. becomes
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This result demonstrates that when the piston moves at a
very large vy, particles with high initial velocities around
2v,/(1 + v2) contribute most significantly to the expo-
nential work even if the probability is extremely small.
Please note that in Newtonian mechanics particles with
initial velocities around 2v,, contribute most significantly
to the exponential work [4][10], even if the probability is
extremely small. It can be seen that the results of the rel-
ativistic piston model recover those of the non-relativistic
piston model as expected.

IV. DISCUSSION AND SUMMARY

Let us look further into the main results we obtained.
We see that, as a consequence of the relativistic energy-
velocity relation, the trapezoid-shaped work distribution
no longer has a series of zeros. Moreover, the number
of peaks becomes finite because the speed of light places
an upper bound on all speeds. The apparent paradox
of the fast-moving piston in Ref. [3] can be reformulated




as when the piston is moving at the speed of light in-
stead of infinity. No particle would be able to catch up
with the piston and the average exponential work is unity
whereas the free energy change is non-zero. We would
like to point out that although light-like worldlines exist,
we can not make it stop before and after the moving time
period, because such a worldline configuration would vio-
late causality. The best we can do is to take the limiting
process of letting the speed of the piston approach the
speed of light. Then the order of limit becomes crucial,
as we have to integrate out the work W to infinity, and
then take the speed limit [4]. This limiting procedure
ensures the validity of the JE.

In order to observe a distinct deviation of the relativis-
tic work distribution from its non-relativistic limit, the
speed of the piston should be large enough and the tem-
perature of the ideal gas should be extremely high. Take
hydrogen atoms as an example, to observe the features
of the relativistic work distribution, the piston should be
as fast as about 3 x 10m/s, and the temperature of the
atoms should be about 10'?2K. When the speed of the
piston is about 3 x 10°m/s (faster than the Parker Solar
Probe, which is the fastest object human ever built) and
the temperature of the atoms is 10''K(10* times hotter
than the central temperature of the Sun), the deviation of
the relativistic work distribution from the non-relativistic
result becomes barely detectable. Even in such a cir-
cumstance, the boundary condition is still difficult to be
realized. Because the energy scale of the kinetic energy
of the atoms is much larger than the energy scale of the
chemical bond, the boundary can not be built by any ma-
terials we have already discovered. Based on these facts,
we conclude that it is difficult to detect the relativistic
effects of the work distribution of ideal gas in a piston
system with the current experimental techniques.

In summary, we study a simple model of a piston and
ideal gas in the framework of the special theory of rel-
ativity. We obtain an analytical result of the work dis-
tribution and verify the JE. Using our result it is
possible to see the deviation of relativistic work distribu-
tion from the non-relativistic one [B]. In prin-
ciple, these relativistic corrections become non-negligible
in the high-temperature and fast-speed limit. However,
the range of parameters where relativistic effects are ob-
servable would already be far beyond the current exper-
imental techniques. Our results show that the JE holds
true in a wide range of systems with generality and serve
the pedagogical purpose.
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Appendix A: A Covariant Description of the
Trajectory

In Eq. 7 we extend the range of the initial position
x from [0, L] to [—L, L] in order to remove the negative
sign related to the direction of v. We also notice that
in Eq. 7 when t,, happens to be 7, the critical initial
position and the initial velocity satisfy a linear relation.
We will introduce a coordinate transformation method to
describe the trajectory of a particle, which will provide
pictorial intuition of the two facts.

To begin with, let us consider the collision between the
particle and the fixed boundary. In the reference frame
of the fixed boundary (which is the same as the labora-
tory frame), the coordinate frame consists of z-axis and
t-axis, and the world line of the moving piston is [ (see
Fig. . We could draw an auxiliary world line of the
moving piston, named !’. The auxiliary world line I’ and
the real world line [ are mirror-symmetric about the ¢-
axis. The world line of the particle is a polyline line
I — A — B. Point I denotes the initial condition of the
particle, point A denotes the collision event between the
particle and the fixed boundary, and point B denotes the
next collision event between the particle and the moving
piston. Transformation of the particle’s world line works
as follows: the auxiliary event of event B is point B’.
B and B’ are mirror-symmetric about the t-axis. The
auxiliary world line of the particle is I — A — B’. The
real world line’s AB part and the auxiliary world line’s
AB'’ part are also mirror-symmetric about the t-axis. As
a result of such transformation, the auxiliary world line
of the particle ] — A — B’ is a straight line, which elimi-
nates the world line’s direction change during a collision.
Meanwhile, in the frame of the fixed boundary, the aux-
iliary collision event B’ has the same time coordinate as
event B. Therefore, we could use an auxiliary event to
evaluate the time when a real collision takes place.

We may also map the initial condition I(z, —v) to an
auxiliary initial condition I'(—x, v), which is the same as
the treatment for Eq. . The real motion is that a
particle starts from the initial position I with a positive
initial position x but a negative initial velocity —v (the
particle moves away from the moving piston), and then
the particle collides with the fixed boundary at event A.
Meanwhile, the auxiliary motion is that a particle starts
from I’ with a positive initial velocity v but a negative
initial position —z. The auxiliary particle passes through
the fixed boundary at event A without any collision. Af-
ter event A, both the particle and the auxiliary particle
move towards the moving piston, and finally collide with
the piston at the same event B. The rest trajectories are
equivalent, for both the particle with the initial condition
(z, —v) and the auxiliary particle with the initial condi-
tion (—z,v). Because there is no work done during the
collision event A, it is convenient to extend the range of
z from [0, L] to [—L, L] while limiting the range of v from
[—c¢, c] to [0, ] in the calculation of the work distribution.
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FIG. 2: Transformation of a world line. For details,
please see the main text of Appendix @

After explaining the treatment in Eq. 7 we now
continue to the understanding of Eq. (30). Similar to
the mirror-symmetric operation in the laboratory refer-
ence frame, we could deal with the collision between the
particle and the moving piston by carrying out a mirror-
symmetric operation in the reference frame of the piston.
After a Lorentz transformation back to the laboratory
reference frame, the result is shown in Fig. Points
I,A,B denote the initial state of the particle, a collision
between the particle and the moving piston, and the next
collision between the particle and the fixed boundary. B’
is the auxiliary event of B. Just like the case in Fig.

in the reference frame of the moving piston, the auxil-
iary world line of the particle is a straight line. There-
fore, after a Lorentz transformation the auxiliary world
line of the particle is still a straight line I — A — B’.
The auxiliary world line of the fixed boundary is denoted
as t'. The velocity of ' is 2v,/(1 4 v2), according to
the Lorentz transformation. The intercept of the line ¢’
can be determined as follows: the world line of the fixed
boundary and moving piston intersect at point R with
space and time coordinate (0, —L/v,). In the reference
frame of the moving piston, the auxiliary world line of
the fixed boundary and the moving piston intersect at
the same point R. Therefore, in the laboratory reference
frame, the auxiliary world line of the fixed boundary ¢’
also passes through R, and the intercept of ¢ must be
—L/vp.

The mirror-symmetric operation transforms not only
the world lines, but also the coordinate frames. In the ref-
erence frame of the fixed boundary, the t-axis is the world
line of the boundary itself. After a coordinate transfor-
mation related to a collision with the moving piston, the
auxiliary world line of the fixed boundary represents the
auxiliary #’-axis. The auxiliary z’-axis should be orthog-
onal to t’-axis, and the origin of coordinates (point O)
should be transformed accordingly: z-axis and [ inter-
sect at Py, and thus z’-axis also passes through Py (see
Fig. The intersection of the auxiliary z’-axis and t'-
axis is the auxiliary origin O’. If we denote the time
coordinate of event B in the coordinate frame zOt as tp
and the time coordinate of event B’ in the coordinate
frame 2’O’t" as t/5,, then, as a result of such coordinate
transformation, ¢z, = tp. The method that we evaluate
the time coordinate of a real event with the help of an
auxiliary event is still valid when dealing with the colli-
sion with the moving piston.

By performing the coordinate transformation repeat-
edly, we could figure out the complete auxiliary world
line of the particle and every auxiliary coordinate frame.
The possible space-time region is Sy = {(z,1)|0 < t <
7,0 < x < L+ vyt}, and the auxiliary regions can be de-
termined accordingly: each gray line segment represents
t; =0 or t; = 7, t; is the time coordinate of an auxiliary
event in the i-th auxiliary coordinate frame. In Fig.
regions between gray line segments are possible auxiliary
regions. The red dot C represents the event that a par-
ticle happens to collide exactly ¢ + 1 times when ¢t = 7.
The position and time coordinate of C in the initial coor-
dinate frame xOt is denoted as (z¢,t¢). Every auxiliary
world line IC with the initial condition I(xj,vs) that
passes through C' satisfies the critical condition

xr=zc —vr-to (A1)

which is the same as Eq. when n = ¢+ 1. Such
world lines lie between the two orange dashed lines L_C'
and LyC where L_ and L, denote the particles with
the initial position —L and L. It is clear that the initial
positions and velocities of auxiliary world lines satisfy a
linear relation if every world line passes through a fixed



A possible
auxiliary
world line

(b)

FIG. 3: Transformation of the coordinate frame and the
complete world line. For details, please see the main
text of Appendix [A]

point C, which explains the pictorial intuition mentioned
above.

Appendix B: Details of the Integration

Here we explain the computational details of deriving
Eq. from Eq. and give a pictorial explanation
for the overlap factor ¢,,. The integration

e \/ﬁé(W W, (x,v))
/ dx/ AT

can be separated into parts
—_B8
e Vi-26(W — W (v
- [ TS~ W)
/D, 2K1(B)(1 —v?)2

where D,, is the domain of integration for all the (z,v)
values that the particle collide n times. Note that within
each domain D,,, the trajectory work becomes indepen-
dent of x. Recall that those particles that collide exactly
n times lie in a straight line on the x — v plane, with the
equation

&n(v) = —Thv+ X, (B3)
where
—(n—1) n —(n—1) n
o —-1l—-ay,+ « + «
T, =" A L.r (B4)
1—q 1+ a,
and
—(n—1) n —(n—1) n
« -« « -«
X, = 2 L L.r (B5)
1—a 1+«

are the slopes and the intercepts of the lines respectively.
The separation of the domain of the integration is de-
picted in Fig. [

1.0
Dn+1
0.8
D,
0.6
0.4
0.2 \
Dy
0.0
10 05 0.0 05 10

T

FIG. 4: Dividing the domain of integration into parts
and meaning of the overlap factor, where the length of
the red dashed line is the value of ¢, at the same v

We see that, since in each part the integrand is inde-
pendent of x, we can integrate it out first, giving rise
to

W)

3
2

__ B8
Vi1i—v2
/ dxdve ow

2K1( )(1 =
:/dv

v?)
e Vi S(W — Wy(v)

2K1(5)(1—v2) on(v),



where the value of ¢, (v) is the length of the line segment
shown in Fig.[d] With the equation of all the lines known,
we can compute the overlap factor as Eq. .

What is left involves integrating a Dirac § function, we
have

K1(B)(1 —v?)3
__5
e Vi-o2 <dWT>1
= n (v
T AT
W, (v)=W
Y
(v (7)) e
= Pn\Un — .
(ap" 1) [1+af — va(W)(1 - ap)]
(B7)
The n = 0 case should be treated separately. This
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is because all particles that can not catch up with the
piston contribute to the probability at W = 0, resulting
in a 0 peak with the amplitude

_ [ g, pwe Vi
n=[a 2K (B)(1— 2)F (%)

Summing up all the pieces at hand we have the result

Eq. .
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