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Aperiodic crystals constitute a fascinating class of materials that includes incommensurate (IC)
modulated structures [1, 2] and quasicrystals (QCs) [3–8]. Although these two categories share
a common foundation in the concept of superspace, the relationship between them has remained
enigmatic and largely unexplored. Here, we show “any metallic-mean” QCs [9–11], surpassing the
confines of Penrose-like structures, and explore their connection with IC modulated structures. In
contrast to periodic approximants of QCs [12, 13], our work introduces the pivotal role of “aperiodic
approximants” [14], articulated through a series of k-th metallic-mean tilings serving as aperiodic
approximants for the honeycomb crystal, while simultaneously redefining this tiling as a metallic-
mean IC modulated structure, highlighting the intricate interplay between these crystallographic
phenomena. We extend our findings to real-world applications, discovering these unique tiles in a
terpolymer/homopolymer blend [15] and applying our QC theory to a colloidal simulation displaying
planar IC structures [16, 17]. In these structures, domain walls are viewed as essential components
of a quasicrystal, introducing additional dimensions in superspace. Our research provides a fresh
perspective on the intricate world of aperiodic crystals, shedding light on their broader implications
for domain wall structures across various fields [18, 19].

Prior to the discovery of quasicrystals (QCs) as the ad-
vent of aperiodicity in materials science, incommensurate
(IC) modulated structures and IC composite structures
were investigated, wherein IC spatial modulations were
added to the background crystalline structures [1, 2].
Then, the concept of superspace and additional degrees
of freedom known as phasons were introduced. After
Shechtman’s discovery [3], aperiodic crystals, including
IC modulated structures and QCs, emerged as an impor-
tant class of materials [4–8]. Aperiodicity is characterized
by irrational numbers, thereby making a distinction be-
tween the two. In QCs, the irrational numbers are locked
by two-length scales [9–11, 20] in geometry, whereas in IC
modulated structures, these numbers remain unlocked.
QCs typically consist of concentric shell clusters arranged
quasiperiodically, locking in the golden mean in icosa-
hedral QCs. In certain alloys, such as Au-Al-Yb [12],
periodic approximants are synthesized, where the clus-
ters are arranged periodically. Consequently, “periodic
approximants” have been extensively studied to gain a
better understanding of QCs. A crucial aspect of peri-
odic approximants is that they exhibit local quasiperiod-
icity (resembling QCs), but globally display periodicity.
Moreover, as the degree of approximation increases, these
periodic approximants converge towards QCs [13].

A complementary treatment has been explored where
a quasiperiodic structure approaches the periodic one by
varying the characteristic irrational. Such treatments are
known as “aperiodic approximants” [14]. An elementary
example of aperiodic approximants is the generalized Fi-
bonacci sequence, which comprises two letters, A and
B. The sequence is generated by the substitution rules:
A → AA · · ·AB(= AkB) and B → A, where k is a nat-
ural number. The numbers of the letters A and B at

iteration n (N
(n)
A and N

(n)
B ) satisfy

(
N

(n+1)
A

N
(n+1)
B

)
=

(
k 1
1 0

)(
N

(n)
A

N
(n)
B

)
, (1)

where the maximum eigenvalue of the matrix is given by
the metallic-mean: τk = (k +

√
k2 + 4)/2. When k = 1,

the sequence is the conventional Fibonacci one with the
golden mean. The eigenvector of the matrix is given by

(τk, 1)
T , indicating N

(n)
A /N

(n)
B → τk as n → ∞, where

the sequence is filled with the letter A for large values
of k. In the limit k → ∞, the sequence converges to a
crystal consisting of consecutive “A”s. Hence, the gen-
eralized Fibonacci sequence with the metallic-mean can
be considered as the aperiodic approximants of the one-
dimensional crystal AAA · · · .
Similarly, aperiodic approximants of triangular lattices

were proposed. These metallic-mean quasiperiodic tilings
start from the bronze-mean tilings [10]. Majority tiles
increase with increasing k, and eventually, the systems
converge to the triangular lattices in the limit k → ∞.
A crucial aspect of these is that they are locally peri-
odic, but globally quasiperiodic, in other words, they are
considered as planar IC modulated structures.
Here we present hexagonal metallic-mean approxi-

mants of the honeycomb lattice, which bridge the gap
between QCs and IC modulated structures. Schematic
of our view is presented in Fig. 1. As the metallic-mean
increases, the size of honeycomb domains bounded by
the parallelograms also increases, and the whole tiling
converges to the honeycomb lattice. Conversely, the
metallic-mean IC modulation is introduced to the honey-
comb crystals in terms of the metallic-mean tilings. The
domain walls composed of parallelograms in the honey-
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Fig. 1. Aperiodic approximants. Schematic showing the
role of aperiodic approximants as a link between quasicrystals
and periodic crystals. The link is a series of k-th metallic-
mean tilings as an aperiodic approximant of the honeycomb
crystal (top arrow), which is simultaneously regarded as a
metallic-mean (incommensurate) modulated honeycomb crys-
tal (bottom arrow).

comb crystal are regarded as ingredients of a quasicrys-
tal adding superspace dimensions. Significantly, we show
that the metallic-mean tiling scheme is applicable to a
polymer system [15] and colloidal systems [16, 17] in soft-
matter self-assemblies.

Metallic-mean tilings
We construct the metallic-mean approximants of the hon-
eycomb lattice, which are composed of large hexagons
(L), parallelograms (P) and small hexagons (S) shown in
Fig. 2a. The ratio between the long (ℓ) and short (s)
lengths is given by the metallic-mean τk(= ℓ/s). Conse-
quently, the ratio of areas for the three tiles is given by
3τ2k : τk : 3. We elaborate the substitution rules for these
tiles as a natural extension of those for the hexagonal
golden-mean tiling [11] (Fig. 2b). The substitution rules
for k = 2 and k = 3 are illustrated in Figs. 2c and 2d,
respectively. Notice that the matching rule of the tilings
are introduced by solid and open circles. When the de-
flation rule is applied to an L tile, an S tile is generated
at the center of the original L tile, thereby, six zig-zag
chains of P tiles emanate from the central S tile, which
is clearly found in the case with k = 3. The rest region
is filled by L tiles. Upon one deflation process, a P tile is
changed to one P tile and L tiles, and an S tile is changed
to one L tile. Hence, one can construct the substitution
rules of three tiles for any k, which are subjected to the
substitution rule for the generalized Fibonacci sequence:
ℓ → ℓks and s → ℓ. See also Supplementary Fig. 1 show-
ing how these rules are extended to the cases of k = 4
and k = 5.

Two-dimensional space is covered without gaps after
iterative deflation processes, as shown in Figs. 2e-g and
Supplementary Fig. 2 for k = 1 − 5. Because of the de-
flation process, self-similarity is an inherent property of
the metallic-mean tilings: Supplementary Fig. 3 exem-

plifies exact self-similarity for k = 2 and k = 3. We find
that a finite number of adjacent L tiles are bounded by
the P tiles, which can be regarded as an isolated “hon-
eycomb domain”. For examples, in the case with k = 2,
the domains are composed of one, three, or six L tiles,
as shown in Fig. 2f. We confirm that each honeycomb
domain bounded by the P tiles is composed of ak−1, ak,
or ak+1 adjacent L tiles in the kth metallic-mean tiling,
where ak = k(k+1)/2, see Supplementary Note 3. There-
fore, increasing k, the number of the L tiles in each hon-
eycomb domain quadratically increases. On the other
hand, the S and P tiles are located around the corners
and edges of the honeycomb domains, and thereby their
numbers should be O(1) and O(k), respectively. These
suggest that the L tiles become majority in the large k
case and the single honeycomb domain is realized in the
limit k → ∞, as shown in Fig. 2h. Using a deflation
matrix described in Method, it is easy to evaluate the
frequencies of tiles (fL, fP, and fS) and the ratio of the
corresponding areas (SL, SP, and SS) rendered in Fig. 2i
and its inset. For k = 5, more than ninety percent of the
two-dimensional space is occupied by L tiles. See Method
in details.

The tiling has eight unique types of vertices as shown
in Fig. 3a classified by their coordination numbers and
their circumstances. The frequency of each type can be
exactly computed, and the explicit formulae for any k are
presented in Supplementary Note 2. Figure 3b shows
the frequencies of the vertex types as a function of k.
As expected, the frequencies of the C0 and C1 vertices
monotonically increase and approach 1/2 implying the
convergence to the honeycomb lattice.

The metallic-mean tilings are bipartite since they are
composed of hexagons and parallelograms. As shown in
Fig. 3a, the vertex types C1-C3 belong to the A sublattice
and the others belong to the B sublattice, as depicted by
open and solid circles, respectively. We find that the
sublattice imbalance in the system given as ∆ = fA −
fB = 1/(3+

√
k2 + 4), where fA(= fC1

+ fC2
+ fC3

) and
fB(= fC0

+fD0
+fD1

+fE+fF) are the fractions of the A
and B sublattices, respectively. This distinct property is
in contrast to those for the bipartite Penrose, Ammann-
Beenker, and Socolar dodecagonal tilings where each type
of vertices equally belongs to both sublattices [21].

As shown in Fig. 3c, we can distinguish two kinds of
L tiles denoted by L△ and L▽, introducing up and down
triangles located at their centers so that three corners
of each triangle point the filled circles on the vertices of
the L tile. In Fig. 3d, we find the following properties:
(1) Two kinds of honeycomb domains composed of L△
or L▽ tiles are alternatively arranged. (2) The shape of
L△ domains is up-triangular and that of L▽ domains is
down-triangular. (3) Domain walls are composed of con-
secutive zigzag P tiles. (4) Three domain walls should
meet at a point of S hexagons. (5) Intervals between
domain walls are not periodic, but metallic-mean incom-
mensurately modulated, as shown in Method and Sup-
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Fig. 2. Metallic-mean tilings. a, Large hexagons (L), parallelograms (P) and small hexagons (S) with edge lengths ℓ and s.
Vertices are decorated with open and solid circles alternatively to introduce the matching rule of the tiling. b-d, Substitution
rules for the golden-mean tiling (k = 1)(b), silver-mean tiling (k = 2)(c), and bronze-mean tiling (k = 3)(d). e, Golden-mean
tiling. f, Silver-mean tiling. g, Bronze-mean tiling. h, Honeycomb lattice. i, Frequencies of L, P, and S tiles as a function of
k, and the corresponding fraction for each area (inset). The convergence to the periodic honeycomb lattice is assessed.

plementary Fig. 6.

Superspace representation
To provide a theoretical basis for the metallic-mean
tilings, we construct their higher-dimensional descrip-
tion. In this powerful method, the superspace is divided
into the physical space and its complement, known as
the perpendicular space. A tiling is viewed as a projec-
tion of a hypercubic crystal in the superspace onto the
two-dimensional physical space. The projections onto the
perpendicular space are densely filled in specific areas, as
illustrated in Fig. 3f, which are referred to as windows.
These windows are derived from sections perpendicular
to the threefold axis of a rhombohedron (octahedron)
that is the projection of the hypercubic unit cell, show-
casing hexagonal and triangular shapes in Extended Data
Fig. 1. The figure also highlights the regions associated
with the eight vertex types, as detailed in the Method
section and Supplementary Fig. 8.

Application to soft matter
The metallic-mean tilings are physical entities in two soft-
matter systems. We consider self-assembled crystalline
structures obtained in soft materials with the P31m plane
group, as illustrated in Fig. 4a, which belongs to the two-
dimensional hexagonal Bravais lattice but lacks hexago-

nal rotational axes. Further crystallographic description
is given in Supplementary Notes 8 and 9 for colloidal
particles and polymer blends, respectively.

The first application of the metallic-mean tiling is a
polymer system reported by Izumi et. al., who found a
complex ordered structure in an ABC triblock terpoly-
mer/homopolymer blend system [15]. Sample prepara-
tion is provided in Method. Figure 4b illustrates the
decoration of L, P, and S tiles by three kinds of polymers.
In the previous study, regular large domains consisting of
only L tiles were observed. It is noticed that the triangle
inside a hexagon has two directions, up and down. In
the present study, we searched samples again and found
P tiles in a TEM picture rendered in Fig. 4c. In Fig. 4c,
a regular region of an extended L▽ area in the center
and a domain wall represented by a row of zigzag P tiles
on the left-hand side. We can interpret the rows of P
tiles within the L sea as twin boundaries, which mark a
transition between different crystal orientations, L△ and
L▽. It’s worth emphasizing that a row of P tiles physi-
cally changes the crystal orientations, demonstrating the
tangible properties of P tiles beyond mathematical con-
cepts. We note that the decoration of S tile (Fig. 4b) is
hypothetical and it has not been observed in the samples.

The second application of the metallic-mean tiling is a
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Fig. 3. Vertex types. Vertices are alternatively decorated
with the open and solid circles to define A and B sublat-
tices, respectively. a, Eight types of vertices. b, Frequen-
cies of the vertex types. Dashed line represents the sublat-
tice imbalance ∆. c, Two kinds of the L tiles, L△ and L▽.
d, Honeycomb domain structures for the hexagonal bronze-
mean tilings. L△ tiles form up-triangular domains, and L▽
tiles form down-triangular domains. e, Projected basis vec-
tors ei (i = 0, · · · , 5) from fundamental translation vectors in
six dimensions. f, Windows in the perpendicular space. Each
area shows the vertex types.

colloidal particle simulation in two dimensions conducted
by Engel [16]. It utilizes a Lennard-Jones–Gauss (LJG)
potential [22] that has two distinct length scales. In
Method, we have reproduced his result. We find that the
LJG particles occupy the same positions as the dark gray
circles in Figs. 4a-c. Moreover, in Fig. 2 of the Engel’s
paper and his Supplementary Figure S1 in particular, it
was shown to form twin-boundary superstructures on a
scale much larger than the potential range: the size of
superstructures depends on the temperature reversibly;
the lower the temperature, the larger the size. One finds
that regular L△ or L▽ domains form triangle shapes of
several sizes, which property is also characteristic of the
metallic-mean tiling. Additionally, it was observed that
twin boundaries only intersect at triple junctions, which
situation mimics the metallic-mean tilings, where triple
rows consisting of the P tiles meet at the location of an S
hexagon, though the correspondence between the P tiles
and domain walls in the LJG system is not always exact.
Nonetheless, the metallic-mean scheme mimics Engel’s
modulated superstructures with changing scale ratios or
k values.

In Fig. 4d, an ideal decoration model for the particle
system generated by the higher-dimensional quasicrystal
theory with the 5-th metallic-mean modulation (Supple-
mentary Note 12). In these cases, as shown in Figs. 4e

and 4f, the structure factor S(q) =
∣∣ 1
N

∑
i e

iq·ri
∣∣2 theo-

retically calculated in terms of the superspace represen-

tation dramatically reproduces the numerical FFT for
the diffraction images shown in Fig. 3 of the Engel’s pa-
per. As clearly shown in the magnified views (Fig. 4f),
the prominent peaks appear at almost the same posi-
tions, while the aperiodic modulation of the metallic-
mean tiling yields the satellite peaks in the vicinity of
the main peaks, which is the characteristic property of
IC structures.

Discussion
Our previous study has covered the multiples-of-3
metallic-means, through the hexagonal aperiodic approx-
imants of the triangular lattice [14]. The present work
broadens the scope of aperiodic approximants. Firstly,
our tiling serves as the approximant of the honeycomb
lattice. Secondly, it enables an inflation ratio of any
metallic-mean, thereby enhancing the applicability.
In fact, we have applied the tiling concept to explore

real materials, such as polymer and colloidal systems.
Our analysis successfully identifies large hexagons as reg-
ular structures and parallelograms as twin boundaries.
It is noted that similar IC triangular domain structures
were discovered in quartz and aluminum phosphate long
time ago [18, 19], known as Dauphiné twins in trigonal
quartz. We surmise that there is a similar mechanism
behind the formation.
We emphasize that the decorated perpendicular space

windows in 6D generate the 2D IC structures, whose
method has been developed in the field of QC stud-
ies. It is striking that the satellite peaks can be calcu-
lated not by direct real-space Fourier transform, but by
perpendicular-space Fourier transform of the windows.
By comparing these peaks with those observed in two-
dimensionally IC modulated structures, we establish a
foundation for analysis of IC structures in terms of the
QC methodology.
One of the origins of the P31m plane group demon-

strated here is the aggregation tendency of pentagons.
Regular pentagons cannot tile the entire plane without
gaps, as shown by Dürer-Kepler-Penrose, however, there
are pentagon-related tilings if we abort five-fold sym-
metry. In Supplementary Note 10, we demonstrate the
accommodation of pentagons within both a square and
a hexagon. Using 4-fold symmetry, the Cairo pentag-
onal tiling and its dual, i.e., the 32.4.3.4 Archimedean
tiling with the P4gm have been considered [23]. The
latter Archimedean tiling is associated with the σ phase
found in complex metallic and soft-matter phases, which
is recognized as a periodic approximant of dodecagonal
QCs [24–29]. It is noteworthy that P31m plane group
structure is a 3-fold variant of the Cairo tiling and the σ
phase.
Our study highlights the effectiveness of aperiodic

approximants in inducing modulations within self-
assembled soft-matter systems employing the P31m
plane group. Specifically, we utilized the rows of P tiles
as domain boundaries in the honeycomb lattice, thereby
bridging metallic-mean hexagonal QCs and IC modu-
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Fig. 4. Application to soft matter. a, Diagram of the P31m plane group. b, Schematic decoration of L, P, and S
tiles by ABC triblock terpolymer/homopolymer blend ISP-III/S. Dark gray circles indicate polyisoprene (PI), light gray circles
indicate poly(2-vinylpyridine) (PVP), and the other matrix region is polystyrene (PS). c, TEM image from the ABC triblock
terpolymer/homopolymer ISP-III/S. d, Ideal particle decoration for a colloidal system generated by the 5-th metallic-mean
tiling. Up and down triangles form blue and yellow triangular domains reproducing colloidal simulations. e, Each sector shows
the structure factor for the decorated k-th metallic-mean tiling when k = 1, 3, 5, 7, 9, and ∞. f, Magnified views of slices of the
structure factor indicated by a dashed rectangle in e. In the vicinity of main peaks, the aperiodic modulation yields satellite
peaks characterizing IC structures. g, Six reciprocal vectors qi (i = 0, 1, · · · , 5) for k = 1, 3, 5, 7, and 9.

lated honeycomb lattices. The dynamic movement of
domain walls while maintaining triple junctions can be
explained by the phason flips of L, S, and P tiles, as illus-
trated in Extended Data Fig. 3 and Supplementary Note
4. In this context, the colloidal system appears to be a
phason-random tiling version of the metallic-mean tiling

system. Lastly, applying the deterministic growth rules,
known as OSDS rules [30], reveals that dead surfaces con-
sist of these domain walls. Overall, our research offers a
fresh perspective, providing novel insights into the realm
of both aperiodic crystals and their broader implications
for domain wall structures across various fields.
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Methods
Deflation matrix of the metallic-mean tiling
The metallic-mean tilings are regarded as the aperiodic
approximants of the honeycomb lattice. To discuss quan-
titatively how the metallic-mean tilings approach the
honeycomb lattice with increasing k, we construct the
deflation matrix. At each deflation process, the increase
of the numbers of L, P, and S tiles is explicitly given by

vn+1 = Mvn with vn = (N
(n)
L N

(n)
P N

(n)
S )T and

M =




k2
k

3
1

6k 1 0
1 0 0


 , (2)

where N
(n)
α is the number of the tile α, which stands for

L, P, or S at iteration n. The maximum eigenvalue of
the matrix M is τ2k , and the corresponding eigenvector
is given as (τ2k 6τk 1)T . We evaluate the frequencies
for these tiles in the large k limit approach fL = τ2k/Z,
fP = 6τk/Z, fS = 1/Z, where Z = τ2k + 6τk + 1. The k-
dependent frequencies for three tiles are shown in Fig. 2i.
Increasing k, the frequency of the L tiles monotonically
increases and approaches unity.

Domain boundaries
The domain boundaries composed of consecutive zig-zag
P tiles intersect at small hexagons and pass through the
opposite edge of the small hexagons with keeping alter-
nating directions of P tiles. If we ignore these slithering
configuration of P tiles, there are three sets of parallel
domain walls, as displayed in Fig. 3d. Focusing on a set
of parallel domain walls, we observe two types of inter-
vals between the domain walls denoted by SS and SL,
as shown in Supplementary Fig. 6 for silver- and bronze-
mean tilings. There are intriguing properties for the in-
tervals. First, for the k-th metallic-mean tilings, the in-
terval SS and SL consists of k and k + 1 consecutive L
tiles. Second, upon the deflation, we find the substitution

rules: SL → S
1
2

LSk
SS

1
2

L , and SS → S
1
2

LSk−1
S S

1
2

L . The num-

bers of intervals N
(n)
SS

and N
(n)
SL

of the n-th generation
satisfy

(
N

(n+1)
SS

N
(n+1)
SL

)
=

(
k − 1 k
1 1

)(
N

(n)
SS

N
(n)
SL

)
, (3)

where the maximum eigenvalue of the matrix is given by
the metallic-mean τk. The eigenvector of the matrix is

given by (τk−1/τk, 1+1/τk, )
T , indicating N

(n)
SS

/N
(n)
SL

→
τk as n → ∞, where the sequence is filled with SS inter-
vals for large k values. Therefore, we conclude that the
intervals between domain walls are metallic-mean modu-
lated.

Superspace representation
We outline main steps of the construction of the metallic-
mean tiling by projection of a higher-dimensional hyper-
lattice onto the physical space. Let ℓ and s be the lengths

of the long and short edges of the tiling. We here assume
that the ratio η = s/ℓ is a variable to apply the tiling to
soft-matter systems, while the ratio in the perpendicular
space is set to be 1/τk to keep the arrangement of the
metallic-mean tiling. When η = 1/τk, the tiling is the
exact self-similar metallic-mean tiling generated by the
deflation rules.

(1, 0)

(1, 1)

(0, 0)

(0, 1)

C0
∆

C0
∇

C1
∆

C1
∇

C2
∆

C2
∇

C3
∆

C3
∇

D1
∆

D1
∇

D0
∆

D0
∇

E∆

E∇

x

y
z

a b

Extended Data Fig. 1. Superspace perspective. a,
the perpendicular space for the bronze-mean tiling. b, Four
windows on the right-hand side are obtained from a regular
octahedron (middle part of a rhombohedron) of edge length√
3(1 + τ−1

k ). The top (1, 0) and bottom (0, 1) windows are
equilateral triangular faces of the solid, and hexagonal win-
dows indicated by (0, 0) and (1, 1) are the sections of the oc-
tahedron. In the solid, blue and red colors correspond to
honeycomb domains with L△ and L▽, respectively. In each
window, each color corresponds to the vertex type rendered
in Fig. 3b.

Each vertex site in the tiling is described by a six-
dimensional lattice point n⃗ = (n0, n1, · · · , n5)

T , labeled
with integers nm. Let the six-dimensional lattice point
r⃗ h in the six-dimensional space Sh as r⃗ h = Rn⃗:

R =




ℓc6 −ℓc6 0 sc6 −sc6 0
ℓs6 ℓs6 −ℓ ss6 ss6 −s
τ−1
k c6 −τ−1

k c6 0 −c6 c6 0
τ−1
k s6 τ−1

k s6 −τ−1
k −s6 −s6 1√

2τ−1
k

√
2τ−1

k

√
2τ−1

k 0 0 0

0 0 0 −
√
2 −

√
2 −

√
2



,(4)

where R is the mapping matrix and c6 = cos(π/6), s6 =
sin(π/6). Namely, the matrix is represented by the six-
dimensional basis vectors e⃗h

i (i = 0, 1, · · · , 5): (e⃗h
i )j = Rji.

The vertex site r in the physical space S is given by the
first two components of the vector: r =

(
(r⃗ h)0, (r⃗

h)1
)

=∑5
m=0 nmem, where the projected vectors of the form em =

(R0m, R1m) with lengths ℓ and s are displayed in Fig. 3e.
The remaining four-dimensional perpendicular space is split
into two-dimensional spaces S̃ and S⊥, and the correspond-
ing coordinates r̃ and r⊥ are given as r̃ =

(
(r⃗ h)2, (r⃗

h)3
)
=∑5

m=0 nmẽm, r⊥ =
(
(r⃗ h)4, (r⃗

h)5
)

=
∑5

m=0 nme⊥
m, where

ẽm = (R2m, R3m) and e⊥
m = (R4m, R5m).
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Note that r̃ points are densely filled on four planes with
r⊥ = {(

√
2τ−1

k , 0), (0, 0), (
√
2τ−1

k ,−
√
2), (0,−

√
2)} denoted

by {(1,0), (0,0), (1,1), (0,1)}, having polygonal windows
shown in Extended Data Fig. 1. Notice that the windows
are faces and sections for a regular octahedron. This octa-
hedron is the middle part of a rhombohedron of edge length√
3(1 + τ−1

k ), which is the projection of the hypercubic unit
cell. In Extended Data Figure 1, r̃ is plotted in the (x, y)-
directions, while for r⊥ both (r⃗ h)4 and (r⃗ h)5 are projected
onto the z component. We find that in the limit k → ∞, the
upper and lower hexagons get closer to the top and bottom
faces, respectively, and finally they become the equilateral tri-
angles. The explicit sizes of hexagonal windows are presented
in Supplementary Fig. 8.

The six-dimensional reciprocal lattice vectors q⃗ h
i are de-

fined to have the following property e⃗h
i · q⃗ h

j = 2πδij with δij
is the Kronecker delta. It is easy to find (q⃗ h

j )i = Qij , where

RQT = 2πδij and

Q = C




c6 −c6 0 τ−1
k c6 −τ−1

k c6 0
s6 s6 −1 τ−1

k s6 τ−1
k s6 −τ−1

k

sc6 −sc6 0 −ℓc6 ℓc6 0
ss6 ss6 −s −ℓs6 −ℓs6 ℓ
ψ ψ ψ 0 0 0
0 0 0 −ψτ−1

k −ψτ−1
k −ψτ−1

k




(5)

with C = 4π/[3(ℓ + sτ−1
k )] and ψ = (ℓτk + s)/(2

√
2).

q =
(
(q⃗ h

i )0, (q⃗
h
i )1

)
=

∑5
m=0 nmqm, where the projected

vectors qm = (Q0m, Q1m) with lengths 1/ℓ and 1/(ℓτk)
are displayed in Fig. 4g. The remaining four-dimensional
perpendicular space is split into two-dimensional reciprocal
spaces and the corresponding reciprocal vectors q̃ and q⊥

are given as q̃ =
(
(q⃗ h

i )2, (q⃗
h
i )3

)
=

∑5
m=0 nmq̃m, q⊥ =(

(q⃗ h
i )4, (q⃗

h
i )5

)
=

∑5
m=0 nmq⊥

m, where q̃m = (Q2m, Q3m) and

q⊥
m = (Q4m, Q5m). The detailed procedure is given in Sup-

plementary Note 5.
When computing the Fourier transforms, we rely on the

following identity for any pair of vectors in the superspace
lattice r⃗ h and in the corresponding reciprocal lattice q⃗ h:
1 = exp(iq⃗ h · r⃗ h) = exp(iq · x) exp(iq̃ · x̃) exp(iq⊥ · x⊥). If
particle’s positions are described by δ-functions so that the
density reads f(r) =

∑N
j=1 δ(r − rj), then the Fourier trans-

form of the density is calculated as

∫
dre−iq·rf(r) =

N∑

j=1

e−iq·xj =

N∑

j=1

eiq̃·x̃jeiq
⊥·x⊥

j ,

in the last step, we resorted to the above identity.
To construct decorated tilings (Fig. 4d) for soft-matter sys-

tems, we set η = s/ℓ = 0.6249. In this case, we employ sec-
tions of a rhombohedron as extensional windows. Detailed
procedures are presented in Supplementary Notes 8 and 12.

Polymer details
An ISP (I: polyisoprene, S: polystyrene, P: poly(2-
vinylpyridine)) triblock terpolymer sample was prepared
by a sequential monomer addition technique of an an-
ionic polymerization from cumyl-potassium as an initia-
tor in tetrahydrofuran (THF), while styrene homopolymer
was synthesized anionically with sec-butyllithium in ben-
zene. The average molecular weight of the terpolymer is
161k and the composition is ϕI/ϕS/ϕP = 0.25/0.53/0.22,
whereas that of the styrene homopolymer is 9k. The

overall composition of the blend sample is ϕI/ϕS/ϕP =
0.17/0.68/0.15, where polystyrene block/styrene homopoly-
mer ratio of wS(b)/wS(h) = 1.4. The sample film was ob-
tained by casting for two weeks from a dilute solution of THF
followed by heating at 150◦C for two days. The specimens
for morphological observation were cut by an ultramicrotome
of Leica model Ultracut UCT into ultrathin sections of about
100 nm thickness and stained with OsO4 for the TEM ob-
servation. Further details are provided in the previous refer-
ence [15].

Extended Data Fig. 2. Colloidal simulation. Monte
Carlo simulation for the Lennard-Jones-Gauss potential at
T = 0.270.

Simulations of colloidal particles
We used NPT Monte Carlo simulations of N = 10000 col-
loidal particles interacting with the Lennard-Jones-Gauss po-
tential [16, 22] given by

V (r) =
1

r12
− 2

r6
− ϵ exp

(
− (r − r0)

2

2σ2

)
, (6)

with parameters σ2 = 0.042, ϵ = 1.8, r0 = 1.42 at T = 0.270,
P = 0.0. There are slight differences between simulations
(Extended Data Fig. 2) and the metallic-mean tiling model
(Fig. 4): (1) Dynamically, P tiles are not always perfect. (2)
There are five particles in an S tile in simulations, while six
particles in the latter. The effect of these is negligible in the
structure factor. Further data including diffraction images is
provided in Supplementary Note 11.

Phasons
Domain walls dynamically move with keeping triple junctions
can be explained by the phason flips of L, S and P tiles, as
shown in Extended Data Fig. 3. In this sense, the colloidal
system appears to be a phason-random tiling version of the
metallic-mean tiling system. The existence and the conserva-
tion of S tiles in the phason flips is the key of triple junctions
of domain walls at moderate thermal excitations. See also
Supplementary Note 4.
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a

b L   S S   L

c

Extended Data Fig. 3. Phason flips. a, Schematic phason
move in self-assembled pattern from ABC triblock terpoly-
mer/homopolymer blend. b, Two types of phason flips in the
metallic-mean tiling. c, Move of a twin boundary by a row of
phason flips.

Data availability
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Supplementary Note 1 Substitution rules for the hexagonal metallic-mean tilings

The hexagonal metallic-mean tiling we propose in the main text is composed of large hexagons (L), parallelograms

(P), and small hexagons (S). The length ratio is given by the metallic mean τk, with τk = (k+
√
k2 + 4)/2. Extending

the rule for the hexagonal golden-mean tiling1, we propose the substitution rules for the metallic-mean tilings, which
are explicitly shown in Supplementary Fig. 1. When the deflation rule is applied to an L tile, an S tile is generated

a b

c d

e f

L P S

2 3

54

Supplementary Fig. 1. a Large hexagon, parallelogram, and small hexagon. b-f Substitution rules for the golden-mean, silver-
mean, bronze-mean, 4th metallic-mean, and 5th metallic-mean tilings.

at the center of the original L tile. Furthermore, six chains sharing a short edge of k P tiles are adjacent to the S tile
and are located along six directions (cosπi/3, sinπi/3) (i = 0, 1, · · · , 5). The rest region is filled by k2 L tiles. As for
a P tile, k/3 L tiles are generated along the longer edge of the original P tile, and one P tile is generated around the
center. Note that there are two kinds of the P tiles: a P tile shown in Supplementary Fig. 1a and its reflected tile
(P̄ tile). We find that the P (P̄) tile appears for odd (even) k case when the substitution rule is applied to a P tile.
An S tile is replaced to one L tile under one deflation operation. We find the triple periodicity in k for the deflation
process of the S tile. These allow us to generalize the substitution rules for any metallic-mean tilings.

We obtain the hexagonal metallic-mean tilings, applying the substitution rule to a certain tile iteratively. The
metallic-mean tilings for k = 1, 2, 3, 4, 5, and the honeycomb lattice, which can be regarded as the tiling with k → ∞,
are shown in Supplementary Fig. 2. When one deflation operation is applied to the tilings, the number of tiles increases
and the self-similar structure appears, which are shown in Supplementary Figs. 3a and 3b.
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a. b. c.

d. e. f.

Supplementary Fig. 2. Hexagonal metallic-mean tilings. a Golden-mean tiling (k = 1)1, b silver-mean tiling (k = 2) and c
bronze-mean tiling (k = 3). d and e represent metallic-mean tilings with k = 4 and k = 5. f represents the honeycomb lattice
with k → ∞.

a b

Supplementary Fig. 3. Self-similarity of hexagonal metallic-mean tilings. a Silver-mean tiling. b Bronze-mean tiling. The
colored tilings are obtained by applying the deflation operation to the tilings shown as the black lines.
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Supplementary Note 2 Fractions of the vertices

We derive the fractions of vertices for k ̸= 1 (the fractions for k = 1 have been given in Ref1). In the case of k ̸= 1,
we could not find the F vertex shared by six P tiles (fF = 0). This is because vertices shared by two adjacent P
tiles are always shared by the L or S tile according to the substitution rules for k ̸= 1, as shown in Supplementary
Figs. 1c-1f. When one evaluates the fractions for certain graphs such as vertices and domains, it is convenient to
consider the ratio between numbers of tiles and vertices for the hexagonal metallic-mean tiling in the thermodynamic
limit. Supplementary Figure 1a clearly shows that the net numbers of sites in L, P, and S tiles are two, one, and two,
respectively. Therefore, we obtain the ratio rk as

rk = 2fL + fP + 2fS =
Pk

τ2k + 6τk + 1
, (1)

where Pk = 2τ2k +6τk +2. We first focus on the bipartite structure. The sublattice structures for the L, P, and S tiles
are shown as the open and solid circles in Supplementary Fig. 1a, where these are referred to as A and B sublattices.
By counting the net numbers of the site belonging to each sublattice in L, P, and S tiles, we obtain its fractions as,

fA =
1

rk

(
fL +

2

3
fP + fS

)
=

1

2
+

τk
Pk

, (2)

fB =
1

rk

(
fL +

1

3
fP + fS

)
=

1

2
− τk

Pk
. (3)

This naturally leads to the sublattice imbalance in the hexagonal metallic-mean tilings,

∆ = fA − fB =
1

3 +
√
k2 + 4

. (4)

Since the sublattice A (B) is composed of C1, C2, and C3 (C0, D0, D1, and E) vertices, we obtain the following
equations,

fA = fC1
+ fC2

+ fC3
, (5)

fB = fC0
+ fD0

+ fD1
+ fE. (6)

In the tilings, two adjacent tiles share the edge, which is connected between the neighboring sites in A and B sublattices.
Therefore, we obtain the equations for the total number of longer and shorter edges,

3fC1
+ 2fC2

+ fC3
= 3fC0

+ 3fD0
+ 2fD1

+ 3fE, (7)

fC2
+ 2fC3

= fD0
+ 2fD1

+ 2fE, (8)

where the left (right) hand side of the equations represents the total number of edges, which is expressed by the
numbers of vertices belonging to the A (B) sublattice. According to the substitution rule, the C3, D1, and E vertices
always appear around the S tile for k ̸= 1. Therefore, these fractions are then given as

fC3
= fD1

= fE =
3fS
rk

=
3

Pk
. (9)
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From these equations, we obtain the exact fractions of vertices in the hexagonal metallic-mean tilings as

fC0 =

{
0 (k = 1)
1

2
− 7

4τk
+

1

2Pk
(27− 7k) (k ̸= 1)

, (10)

fC1
=

1

2
− 5

4τk
+

5

2Pk
(3− k), (11)

fC2 =
3

2τk
− 3

Pk
(4− k), (12)

fC3
=

3

Pk
, (13)

fD0 =





3

4τ51
(k = 1)

3

2τk
− 3

Pk
(6− k) (k ̸= 1)

, (14)

fD1 =
3

Pk
, (15)

fE =





3
√
5

4τ51
(k = 1)

3

Pk
(k ̸= 1)

, (16)

fF =





1

4τ71
(k = 1)

0 (k ̸= 1)
. (17)

The average of the coordination number is given by

zk = 3
∑

i

fCi + 4
∑

i

fDi + 5fE + 6fF

= 3 +
3

2τk
+

3(k − 3)

Pk
. (18)

In the hexagonal metallic-mean tilings, the average of the coordination number depends on k. zk → 3 when the
system approaches the honeycomb lattice k → ∞.
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Supplementary Note 3 Honeycomb domain

α β0 β1 β2 γ

Supplementary Fig. 4. Upper panels: α, β0, β1, β2, and γ domains in the hexagonal silver-mean tiling, which are bounded by
some P and S tiles. Circles and squares indicate E and D1 vertices at the corners of the honeycomb domains. Lower panels:
the red lines represent the results of the inflation operation applied to the tiles around the honeycomb domains shown in the
upper panels. Red open (solid) circles at the vertices indicate the A (B) sublattice in the inflated tiling.

Here, we focus on the honeycomb domain in the hexagonal metallic-mean tilings with k ̸= 1, which is composed of
finite number of the L tiles and is bounded by the P and S tiles. As seen in Supplementary Fig. 2, in the hexagonal
metallic-mean tiling with k ̸= 1, there exist three kinds of domains composed of ak−1, ak or ak+1 L tiles, where
ak = k(k + 1)/2. These are referred to as α, β and γ domains. Supplementary Figure 4 shows α, β, and γ domains
in the silver-mean tilings, as an example. We find that in the α domain, the E vertex shared by one L tile and four
P tiles, which is shown as the circle, is located at each corner site. In the γ domain, the D1 vertex shared by one L
tile, two P tiles and one S tile, which is shown as the square, is located at each corner site. On the other hand, the
β domains can be divided into the βi(i = 0, 1, 2) domains, where i E vertices and (3 − i) D1 vertices are located at
three corner sites, as shown in Supplementary Fig. 4. The absence of the β3 domains will be proved below.

To examine the fraction of each domain, we consider the substitution rule for the tiles. In the lower panels of
Supplementary Fig. 4, we show the tiling structure obtained by the inflation operation as the red lines. We find that
the C1, C0, D0, E vertices, and S tiles generated by an inflation operation are located at the center of the α, β0, β1,
β2, and γ domains. Therefore, we obtain the following equations as

fα =
rkfC1

τ2k
, (19)

fβ0
=

rkfC0

τ2k
, (20)

fβ1 =
rkfD0

τ2k
, (21)

fβ2
=

rkfE
τ2k

, (22)

fγ =
fS
τ2k

, (23)

where fX is the ratio of the number of X(= α, βi, γ) domains to the total number of tiles. Since fL = ak−1fα +

ak
∑2

i=0 fβi
+ ak+1fγ , we prove that each L tile belongs to α, βi (i = 0, 1, 2) or γ domain, and β3 domains never

appear in the hexagonal metallic-mean tiling with k ̸= 1. As for the golden-mean tiling with k = 1, α and β0 domains
do not appear, but β3 domains appear due to the existence of the F vertices. The fractions of the β1, β2, and γ
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domains are given by Eqs. (21), (22), and (23), and the fraction of the β3 domains is given as

fβ3
=

r1fF
τ21

=
5 + 3τ1
31τ91

. (24)

We show in Supplementary Fig. 5 the fraction of the L tiles which belong to each domain. When k is small, the

 0
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k

ak+1fγ
akfβ3
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α 

Supplementary Fig. 5. a Fractions of α, βi (i = 0, 1, 2, 3), and γ domains for the total number of the domains are shown as the
cumulative bar chart. b Fraction of the L tiles belonging to each domain are shown as the cumulative bar chart.

β1, β2, and γ domains are majority in the tilings. On the other hand, when the system approaches the honeycomb
lattice, α and β0 domains become dominant in the system. This originates from the fact that, in the large k case,
the vertices are almost composed of the C1 and C0 vertices, and thereby α and β0 domains, which are generated by
applying the deflation operation to the above vertices, become dominant.
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Supplementary Note 4 Domain boundaries

Honeycomb domains are separated by the P and S tiles and are distributed like triangular structure, as shown in
Supplementary Fig. 2. This may allow us to regard the hexagonal metallic-mean tilings as the honeycomb lattice
modulated by the one-dimensional domain boundaries along three directions with the angles θ = 0 and ±π/3. Here,
we clarify how the domain boundaries are distributed in the metallic-mean tilings with k ̸= 1.

Supplementary Figures 6a and 6c show the domain boundaries along the horizontal direction as colored tiles for
k = 2 and k = 3. Each domain boundary is composed of the P and S tiles, and adjacent P tiles always share their
shorter edges. We find that each P tile is adjacent to its reflected P tile (P̄ tile) or an S tile. Therefore, the zigzag
chains of P tiles appear in the domain boundary. We note that three domain boundaries with distinct directions do
not share any P tiles, but always cross at a certain S tile.

Now, we discuss how the domain boundaries along a certain direction are arranged in the metallic-mean tilings. We
find in Supplementary Figs. 6a and 6c that the spaces between the domain boundaries are classified by two groups
SS and SL. In the smaller space SS , there exist the α and β honeycomb domains, and in the other space SL, β and γ
domains appear. To clarify the distributions of these spaces, we use the substitution rule of the tiles. Supplementary
Figures 6b and 6d show the deflations of the tilings shown in Supplementary Figs. 6a and 6c, respectively. When
the deflation operation is applied to the tiling, k and k + 1 domain boundaries are equally-spaced generated in the
original SS and SL spaces, respectively. Namely, k−1 and k SS are generated. On the other hand, under one deflation
operation, one SL is generated at each domain boundary. Therefore, the numbers of SS and SL at iteration n (NSS

and NSL
) satisfy

(
N

(n+1)
SS

N
(n+1)
SL

)
=

(
k − 1 k
1 1

)(
N

(n)
SS

N
(n)
SL

)
, (25)

where the maximum eigenvalue is given by τk and the corresponding eigenvector (kτk, 1 + τk)
T . This means that the

self-similarity inherent in the metallic ratio τk appears in the tiles, honeycomb domains, and spaces between adjacent
domain boundaries.

a b

c d

a b

c d

a b

c d

a b

c d

1---
----------

----------
---23

----------
----------

------4

SS

SL

SS

SL

SS

SL

SS

SL

SS

SL

SS

SL

SS

SS

SL

SL

SL

SS

SS

SS

SS
SS

SS

SS

SL

SL

SL

SL

SL

SS

SS

SS

SS

SS

SS

SS

SL

SL

Supplementary Fig. 6. a (c) The colored tiles represent the domain boundaries along the horizontal direction for the hexagonal
silver-mean (bronze-mean) tiling with k = 2 (k = 3). b (d) The tilings are obtained by applying the deflation operation to the
ones shown in a (c). The transparent tiles represent the original domain boundaries along the horizontal direction.
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Supplementary Note 5 Higher-dimensional representation

Perpendicular space

In this section, we consider the perpendicular space, introducing the six-dimensional representations of the vertices.
First, we describe the vertex site in the two-dimensional physical space S by six vectors em and six integer indices
n⃗ = (n0, n1, n2, n3, n4, n5)

T , as

r = (x, y) =
5∑

m=0

nmem, (26)

with

em =





(
ℓ cos(mϕ+ θ), ℓ sin(mϕ+ θ)

)
m = 0, 1, 2(

s cos(mϕ+ θ), s sin(mϕ+ θ)
)

m = 3, 4, 5
, (27)

where ϕ = 2π/3 and θ is constant. ℓ and s are the lengths for longer and shorter edges of the tiles. The vectors em
are schematically shown in Supplementary Fig. 7.

Supplementary Fig. 7. Real space basis e0, · · · , e5 and perpendicular space basis ẽ0, · · · , ẽ5.

In Eq. (26), the vertex site r can be regarded as the projection from a six-dimensional lattice point, where the
vectors em are the projections from the six-dimensional basis vectors. Thereby one can define the projections onto
the other four-dimensional space (perpendicular space). For a unified understanding of the projection, it is convenient
to introduce the six-dimensional space Sh including the physical and perpendicular spaces. Then, n⃗ is mapped to the
six-dimensional lattice point r⃗ h in Sh as,

r⃗ h = Mn⃗, (28)

M =




ℓ cos θ ℓ cos(ϕ+ θ) ℓ cos(2ϕ+ θ) s cos θ s cos(ϕ+ θ) s cos(2ϕ+ θ)
ℓ sin θ ℓ sin(ϕ+ θ) ℓ sin(2ϕ+ θ) s sin θ s sin(ϕ+ θ) s sin(2ϕ+ θ)

τ−1
k cos θ τ−1

k cos(ϕ+ θ) τ−1
k cos(2ϕ+ θ) − cos θ − cos(ϕ+ θ) − cos(2ϕ+ θ)

τ−1
k sin θ τ−1

k sin(ϕ+ θ) τ−1
k sin(2ϕ+ θ) − sin θ − sin(ϕ+ θ) − sin(2ϕ+ θ)√

2τ−1
k

√
2τ−1

k

√
2τ−1

k 0 0 0

0 0 0 −
√
2 −

√
2 −

√
2




,

(29)

where M is the mapping matrix. Then, one can discuss vertex properties in both physical and perpendicular space.
Namely, in the physical space S, the vertex site r is given by the first two components of the vector as

r =
(
(r⃗ h)0, (r⃗

h)1

)
=

5∑

m=0

nmem. (30)
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The four-dimensional perpendicular space is split into two-dimensional spaces S̃ and S⊥, and the corresponding
coordinates r̃ and r⊥ are given as

r̃ =
(
(r⃗ h)2, (r⃗

h)3

)
=

5∑

m=0

nmẽm, (31)

r⊥ =
(
(r⃗ h)4, (r⃗

h)5

)
=

5∑

m=0

nme⊥m, (32)

where ẽm = (M2m,M3m) and e⊥m = (M4m,M5m). We find that r⊥ = (x⊥, y⊥) takes four values x⊥ = 0,
√
2τ−1

k and

y⊥ = −
√
2, 0 in the hexagonal metallic-mean tilings. In each r⊥ plane, the r̃ points densely cover a certain window.

We find that the window in planes r⊥ = (0, 0), (
√
2τ−1

k ,−
√
2) [(0,−

√
2), (

√
2τ−1

k , 0)] has a hexagonal (triangular)
structure. Supplementary Figure 8 shows the perpendicular spaces for the hexagonal metallic-mean tilings with

C!△ C#△

C$△

𝒓! = ( 2𝜏"#$, − 2)

𝑘 = 1 𝑘 = ∞

𝒓! = ( 2𝜏"#$, 0)

𝑘 = 2 𝑘 = 3 𝑘 = 4

𝒓! = (0, 0)

𝒓! = (0, − 2)

𝜆!

𝜆"

𝜆#

C%△

D#△
D%△

F△

E△

C%▽
D#▽

D%▽
E▽

F▽

C#▽C!▽

C$▽

Supplementary Fig. 8. Perpendicular spaces [r⊥ = (0, 0), (
√
2τ−1

k ,−
√
2), (

√
2τ−1

k , 0), and (0,−
√
2)] of the hexagonal metallic-

mean tilings for k = 1, 2, 3, 4, and ∞. Each area bounded by the solid lines is the region of one of eight types of vertices with
△ and ▽. λ1 and λ2 (λ3) are the characteristic lengths of the windows with r⊥ = (0, 0) and (

√
2τ−1

k ,−
√
2) [(

√
2τ−1

k , 0) and

(0,−
√
2)].

k = 1, 2, 3, 4, and ∞. The characteristic lengths λ1, λ2 and λ3 will be obtained in Supplementary Note 6. We
find that eight types of vertices are mapped into specific regions. This implies that the perpendicular spaces reflect
the local environments for the lattice sites. Namely, the areas of each vertex region in perpendicular spaces are
proportional to its fraction in the physical space. The region of the F (C0) vertices appears only in the case of k = 1
(k ̸= 1). This means the absence of C0 (F) vertices in the hexagonal metallic-mean tilings with k = 1 (k ̸= 1), which
is consistent with the results discussed in the main text and Supplementary Note 2. The areas of the C0, C1 vertices
(the others) monotonically increase (decrease) with increasing k. The planes r⊥ = (0, 0) and (

√
2τ−1

k ,−
√
2) [(0,−

√
2)

and (
√
2τ−1

k , 0)] are fully occupied only by the C0 and C1 vertices in the limit k → ∞ since fC0
, fC1

→ 1/2. We also

find that the vertices in the A (B) sublattice are mapped to the planes with (0, 0) and (
√
2τ−1

k ,−
√
2) [(0,−

√
2) and

(
√
2τ−1

k , 0)]. This can be explained by the following. The sublattice index for each vertex is uniquely determined,
as discussed above. Since upon moving from one site to its neighbor only one of the nm’s changes by ±1, the site



10

with an even (odd) number (τkx
⊥+ y⊥)/

√
2 corresponds to the A (B) sublattice. Correspondingly, the areas for both

sublattices are different from each other, meaning the existence of the sublattice imbalance in the system.
We wish to note that the perpendicular space analysis clarifies whether each vertex belongs to the honeycomb

domain with △ or ▽. As seen in Supplementary Fig. 9, the vertices in the space r⊥ = (
√
2τ−1

k ,−
√
2) and (0,−

√
2)

[(0,0) and (
√
2τ−1

k , 0)] belong to the honeycomb domain with △ (▽). This can be explained by the following. Each
honeycomb domain is composed of only L tiles. When one moves within the domain, the longer length appears in
the physical space, changing x⊥. Therefore, we find that vertices in a certain honeycomb domain take the common
value of y⊥. Furthermore, any honeycomb domains with α(= △ or ▽) are adjacent to the honeycomb domains with ᾱ
across the single boundary composed of the zig-zag P tiles, as discussed in the main text. When one moves from one
honeycomb domain to its neighboring honeycomb domain, one shorter length appears in the physical space, changing
y⊥ by ±

√
2. Therefore, we find that vertices of the adjacent domains take the different values of y⊥ each other, and

understand that vertices, which are mapped to the perpendicular spaces r⊥ = (
√
2τ−1

k ,−
√
2) and (0,−

√
2) [(0,0) and

(
√
2τ−1

k , 0)], belong to the honeycomb domains with △ (▽). By these reasons, the perpendicular analysis clarifies not
only the sublattice structure but also the honeycomb domain structure. One can define the vertex belonging to the
honeycomb domain with α(= △,▽) as Xα, where X(= C0,C1, · · · ,F). Namely, the fractions for X△ and X▽ are
identical since the corresponding areas are identical in the perpendicular space.

Supplementary Fig. 9. Hexagonal bronze-mean tiling with vertices classified according to their coordinates in the perpendicular
space r⊥. Red open, blue open, red filled, and blue filled circles represent the vertices, which are mapped to the perpendicular
space with r⊥ = (0, 0), (

√
2τ−1

k ,−
√
2), (

√
2τ−1

k , 0) and (0,−
√
2), respectively. The blue (red) symbols belong to honeycomb

domains with △ (▽).

Cut-and-project scheme

In the six-dimensional representations, we have introduced two lengths ℓ and s, and the metallic mean τk. Note
that, in Eq. (29), the length scale appears only in the physical space and the metallic mean appears only in the
perpendicular space. This may mean that the metallic mean is important in the perpendicular space while plays no
role in the physical space. This allows us to generate the hexagonal metallic-mean tilings with arbitrary lengths ℓ and
s, in contrast to the tilings generated by means of the substitution rule. This is known as the cut-and-project scheme,
which should be useful to clarify how relevant the tiling is for the atomic position in the MC and MD simulations
discussed in the main text.
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The six-dimensional lattice points r⃗ h with indices n⃗ relevant for the generalized hexagonal metallic-mean tiling
satisfies the condition that their projections onto the perpendicular space are located inside the windows, which are
shown in Supplementary Fig. 8. Then, projecting these six-dimensional coordinates onto the physical space, we can
obtain the generalized hexagonal tilings. Golden-mean, silver-mean, and bronze-mean tilings with ℓ/s = 1/2 and
ℓ/s = 2 generated by means of the cut-and-project scheme are shown in Supplementary Fig. 10. We wish to note that
the self-similarity in the tilings is inherent in the case ℓ/s = τk and the substitution rule cannot be defined in generic
case with arbitrary ℓ and s.
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Supplementary Fig. 10. Hexagonal golden-, silver- and bronze-mean tilings generated by the cut-and-project scheme with a
ℓ/s = 1/2 and b ℓ/s = 2.

Reciprocal vectors

Each vertex site in the tilings is described by the six integer indices n⃗ and that mapped to the six-dimensional space
Sh is represented as

r⃗ h = Mn⃗ =
∑

i

nie⃗
h
i , (33)

where e⃗h
i (i = 0, 1, · · · , 5) are the six kinds of six-dimensional basis vectors with (e⃗h

i )j [= Mij ]. The six kinds of
six-dimensional reciprocal vectors q⃗ h

i are obtained by imposing the condition e⃗h
i · q⃗ h

j = 2πδij with δij is Kronecker
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delta. These are explicitly given as,

q⃗ h
m = C




cos(mϕ+ θ)
sin(mϕ+ θ)
s cos(mϕ+ θ)
s sin(mϕ+ θ)

(ℓτk + s)/(2
√
2)

0




for m = 0, 1, 2, (34)

q⃗ h
m = C




τ−1
k cos(mϕ+ θ)
τ−1
k sin(mϕ+ θ)
−ℓ cos(mϕ+ θ)
−ℓ sin(mϕ+ θ)

0

−(ℓ+ sτ−1
k )/(2

√
2)




for m = 3, 4, 5, (35)

where C = 4π/[3(ℓ+ sτ−1
k )]. The reciprocal vectors projected onto the physical space are given as,

qm =
(
(q⃗ h

m)0, (q⃗
h
m)1

)
. (36)

The six reciprocal vectors are composed of three long vectors q0,q1,q2 and three short vectors q3,q4,q5. The ratio
of their lengths is given by τk. The longer length |q0| = |q1| = |q2| = 4π/[3(ℓ + sτ−1

k )] monotonically increases
with increasing k and approaches the constant 4π/(3ℓ) in larger k. On the other hand, the shorter length |q3| =
|q4| = |q5| = 4π/[3(ℓτk + s)] monotonically decreases and vanishes in the limit k → ∞. This is consistent with the
fact that, in the limit k → ∞, three of the reciprocal vectors are reduced to those for the honeycomb lattice and
the metallic-mean tiling can be regarded as the aperiodic approximant of the honeycomb lattice. We wish to note
that the net number of the reciprocal vectors is two due to satisfying q0 = −(q1 + q2) in the limit k → ∞. This is
consistent with the fact that the honeycomb lattice is periodic.

Supplementary Fig. 11. Reciprocal lattice basis in the real space q0, · · · ,q5 and those in the perpendicular space q̃0, · · · , q̃5.
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Supplementary Note 6 Phason flips

We examine phason flips in the hexagonal metallic-mean tilings. As seen in Supplementary Note 5, the vertices in
the metallic-mean tilings can be mapped inside of the windows in the perpendicular space. When the windows in the
perpendicular space slightly slide, positions for some vertices become located outside of the windows and those for
some vertices become located inside. This slightly changes the vertex structure in the physical space, that is, some
vertices can be regarded to move, so called, phason flips. To discuss how the phason flips occur in the metallic-mean
tiling, we show the bronze-mean tiling and the tiling with the slightly shifted windows in Supplementary Figs. 12a
and 12b. For clarify, the difference between these two tilings is shown in color. We find the phason flip along a certain
domain boundary. Furthermore, we find that this change can be described by three kinds of local flips. Note that a
single local flip never appears due to the matching rule of the tilings. One of local flips is the position change around
the C2 vertex sharing one L tile and two P tiles, as shown in Supplementary Fig. 12c, where the C2 vertex and the D0,
D1 and E vertices connected to it by the longer edges change their positions. The local flip around the C3 vertex also
occurs at the same time, as shown in Supplementary Fig. 12d, where the C3 vertex and the D1 vertices connected to
it by the shorter edges change their positions. The other flip appears at the intersection of two domain boundaries, as
shown in Supplementary Fig. 12e. In the case, some D0, D1 and E vertices change their positions. When one focuses
on the E vertex, the change in the physical space is characterized by e2−e0, as shown in Supplementary Fig. 13a. The
corresponding move in the perpendicular space appears between the corners of the triangular window for E vertices,
which is characterized by ẽ2 − ẽ0 schematically shown in Supplementary Fig. 13b. Therefore, an edge length of the
window of E vertex in the perpendicular space (if k = 1, a longer edge length of the trapezoid) is |ẽ2 − ẽ0| =

√
3τ−1

k .
We immediately obtain the characteristic lengths of the windows in the perpendicular space as,

λ1 =
√
3, (37)

λ2 =
√
3τ−1

k , (38)

λ3 =
√
3(1 + τ−1

k ). (39)

We note that the above phason flip also changes the areas of the honeycomb domains. This should be observed as
thermal fluctuations of Monte Carlo and MD simulations2 (See the main text for the details).
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Supplementary Fig. 12. Schematic pictures for the phason flips in the hexagonal bronze-mean tiling. a and b show the bronze-
mean tiling and the tiling with the slightly shifted windows, respectively. The difference is explicitly shown in color. c (d)
The local flips around the C2 (C3) vertex, e The local flip at the intersection of two domain boundaries. In c,d and e, circles
represent the vertices which move due to the phason flip.
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Supplementary Note 7 Lattice structure factors

We study the lattice structure factors of the hexagonal metallic-mean tilings in detail. Supplementary Figure 14a
shows the lattice structure factors for each k, where the circular area corresponds to the weight of the peak. It is
clearly found that the structure factor have the sixfold rotational symmetry, meaning that the metallic-mean tilings
have a hexagonal symmetry.

To clarify how the peak structure is changed with varying k, we show in Supplementary Fig. 14b (c) the crosssection
of the lattice structure factors on two mirror axes, which are explicitly shown as the yellow (red) line in Supplementary
Fig. 14a. When k → ∞, the peaks are periodically distributed since the system is reduced to the honeycomb lattice.
These positions are spanned by q0,q1 and q2, and the weights of the peaks take two values, 1 and 0.25, as shown
in Supplementary Figs. 14b and 14c. Decreasing k, main peaks remain with larger weights and satellite peaks with
smaller weights are induced slightly away from the main peaks. The main peak positions are mainly spanned by
q0,q1 and q2. On the other hand, the other peak positions are represented by six reciprocal vectors as

Q =
5∑

m=0

ñmqm, (40)

where ñm is an integer. These are consistent with the fact that the metallic-mean tilings are quasiperiodic. Fur-
thermore, the existence of the satellite peaks originates from the incommensurate modulated structure formed by
the domain boundary composed of P tiles in the real space. When k ≤ 4, the main peaks with large weights are
represented by six reciprocal vectors, which are shown as the blue circles in Supplementary Figs. 14b and 14c. This
means that the vertex structures for small k are no longer described by the modulated honeycomb lattice.

Here, we calculate the lattice structure factors. The density of the vertex sites in the tiling is given by ρ(r) =∑
j δ(rj − r), where δ is the delta function and ri represents the position of the ith vertex site. The summation is

over all vertex sites in the tiling. The lattice structure factors are give by |ρ(q)|2, where

ρ(q) =

∫
ρ(r) exp(−ir · q)dr =

∑

j

exp(−irj · q). (41)

It is convenient to make use of the higher-dimensional representation discussed in Supplementary Note 5. Since the
six-dimensional basis and reciprocal vectors e⃗h

m and q⃗ h
m satisfy the orthogonal relation e⃗h

m · q⃗ h
n = 2πδmn, we obtain

exp(ie⃗h
m · q⃗ h

n ) = exp(iem · qn) exp(iẽm · q̃n) exp(ie
⊥
m · q⊥

n ) = 1, (42)

where rm(qm), r̃m(q̃m), and r⊥m(q⊥
m) are the two-dimensional vectors in the spaces S, S̃, and S⊥, respectively. There-

fore, we obtain

ρ(q) =
∑

j

exp(ir̃j · q̃) exp(ir⊥j · q⊥), (43)

where the jth vertex site rj is mapped to r̃j and r⊥j in the perpendicular spaces S̃ and S⊥. Each vertex site is

mapped to the point in one of four domains with r⊥ = (0, 0), (
√
2τ−1

k ,−
√
2), (

√
2τ−1

k , 0), and (0,−
√
2). Therefore,

the equation (43) can be divided into four, as

ρ(q) = F00(q̃) + exp(i
√
2τ−1

k q⊥0 )F10(q̃)

+ exp(−i
√
2q⊥1 )F01(q̃) + exp(i

√
2τ−1

k q⊥0 ) exp(−i
√
2q⊥1 )F11(q̃), (44)

Fmn(q̃) =
∑

j∈(mn)⊥

exp(ir̃j · q̃), (45)

where Fmn indicates the Fourier transform of the occupation domain in the perpendicular space with (τkx
⊥,−y⊥)/

√
2 =

(m,n), which are explicitly shown as the hexagons and triangles shown in Supplementary Fig. 8. Then, we can evaluate
the lattice structure factor |ρ(q)|2.
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Supplementary Fig. 14. a The lattice structure factors for each k. b (c) The crosssection of the lattice structure factors on the
mirror axis shown as the yellow (red) line in a. The red circles show peak positions spanned by only q0,q1 and q2, and the
blue circles show the others.
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Supplementary Note 8 Crystallographic description of the P31m particle system

The particle system exhibits a regular structure with a plane group represented by P31m, as shown in Supplementary
Fig. 15. A solid bold line indicates a mirror plane, and a dashed line indicates a glide plane. A solid triangle symbol
indicates a three-fold rotation axis. This group is characterized by its 3-fold symmetry. Let A, B, C, D, E, and F be
the centers of particles. As a result of this symmetry, we observe that the distances AB, BC, and BD are all equal.
To further analyze the system, we make the assumption that there are two types of equilateral polygons present:
pentagons and triangles. By considering the equality AB = CF, we can determine the positions of all the particles
in the system. Within the unit cell, there are five particles, and their positions can be identified using the Wyckoff
Positions 2b and 3c, as shown in the Supplementary Table 1. If the coordinates of particle A in Supplementary
Fig. 15a is set to be (c, 0), we find

c =

√
33− 3

12
= 0.2287, AB = CF =

√
3c =

√
11−

√
3

4
= 0.3961. (46)

It is important to note that while the pentagon (BCFED) in the particle system is equilateral, it is not a regular
pentagon, for it is elongated along the mirror plane.

A
B

C

D

EF

Mirror

Glide

3-fold axis

O
A’

B

C’

D’

E

O

H

G

I

J

a b c

Supplementary Fig. 15. a, b, Plane group P31m for a particle system. c, Decoration of a parallelogram.

Wyckoff Position Site Sym. Points Coordinates

2b 3.. B, E
(

1
2
,
√
3
6

)
,
(
1,

√
3

3

)

3c ..m A, C, D (c, 0),
(

1
2
(1− c),

√
3
2
(1− c)

)
,
(
1− 1

2
c,

√
3

2
c
)

3c ..m A’, C’, D’ (1− c, 0),
(

1+c
2
,
√

3
2
(1− c)

)
,
(

1
2
c,

√
3

2
c
)

Supplementary Table 1. Wyckoff Position for a particle system. c =
√
33−3
12

= 0.2287.

The basis vectors a1, a2 and the corresponding reciprocal basis vectors b1, b2 are given by

a1 = a(1, 0), a2 = a

(
1

2
,

√
3

2

)
, b1 =

2π

a

(
1,−

√
3

3

)
, b2 =

2π

a

(
0,

2
√
3

3

)
,

where a is the lattice constant (rhombus edge). For the reciprocal lattice vector G = hb1 + kb2, the structure factor
is evaluated as

F (h, k) = f
∑

α=A,B,C,D,E

exp(2πiG · rα). (47)

The diffraction image calculated by this equation is shown in Supplementary Fig. 16.

Model for the metallic-mean tiling: Supplementary Figure 15c represents a decoration model for a parallelogram.
If we assume that the rectangle GHIJ is a square; i.e. AB = CF = GH = GJ, then the length ratio of the tile is

s

ℓ
= (1 +

√
3)c = 0.6249. (48)
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Supplementary Fig. 16. Diffraction image for P31m perfect crystal (k → ∞) calculated by Eq. (48) rotated 90◦. The area is
proportional to the intensity.
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Supplementary Note 9 Crystallographic description of the P31m polymer blend sys-
tem

The same plane group is adopted by an ABC triblock terpolymer/homopolymer blend, where dark gray circles rep-
resent polyisoprene (PI), light gray circles represent poly(2-vinylpyridine) (PVP), and the matrix region is polystyrene
(PS), as shown in Supplementary Fig. 17. We simply assume that domains of PI and PVP are all circles, and that
the centers of polyisoprene domains occupy the same positions as the previous colloidal particle system. Let A, B,
· · · , I be the centers of circular domains, and let the distance OG = d for the center positions of PVP. Although it is
a crude treatment, we determine d = 3

5 by minimizing the next (entropic) elastic free-energy function S(d) inside a
pentagon (BCFED):

S(d) ∝ BI
2
+CI

2
+ FI

2
+ EI

2
+DI

2
= AG

2
+ 2BG

2
+ 2DG

2
. (49)

Wyckoff Positions for a polymer blend are shown in Supplementary Table 2.
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Mirror

Glide

3-fold axis

O

PI
PVP
PS

G

H
I

Supplementary Fig. 17. Plane group P31m for a polymer blend.

Polymer Wyckoff Position Site Sym. Points Coordinates

PI 2b 3.. B, E
(

1
2
,
√

3
6

)
,
(
1,

√
3

3

)

PI 3c ..m A, C, D (c, 0),
(

1
2
(1− c),

√
3

2
(1− c)

)
,
(
1− 1

2
c,

√
3

2
c
)

PVP 3c ..m G, H, I (d, 0),
(

1
2
(1− d),

√
3

2
(1− d)

)
,
(
1− 1

2
d,

√
3

2
d
)

Supplementary Table 2. Wyckoff Position for a polymer blend. c =
√

33−3
12

= 0.2287 and d = 3
5
.
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Supplementary Note 10 Pentagon tilings

We demonstrate the accommodation of pentagons within both a square and a hexagon. Firstly, we consider a
square with two points placed inside (Supplementary Fig. 18a), and secondly, a hexagon with three points inside
(Supplementary Fig. 18b). By connecting the points, we form pentagonal tilings. In Supplementary Fig. 18c, we
present the equilateral Cairo pentagonal tiling, which serves as the dual of the 32.4.3.4 Archimedean tiling with the
P4gm plane group (Supplementary Fig. 18d). The 32.4.3.4 Archimedean tiling is associated with the σ phase found
in complex metallic and soft-matter phases. It is recognized as a periodic approximant of dodecagonal quasicrystals.
Additionally, Supplementary Figure 18e illustrates a 3-fold equilateral pentagon-triangle tiling with the P31m plane
group discussed in the present paper. Despite their distinct symmetries, these two structures are closely related and
are commonly observed in soft-matter systems.

a

b

c d

e

Supplementary Fig. 18. Equilateral pentagon tilings. a, elemental square, b elemental hexagon, c, 4-fold pentagonal Cairo
tiling, d, duality of the Cairo tiling and the 32.4.3.4 Archimedean tiling, e, 3-fold pentagon-triangle tiling.
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Supplementary Note 11 Colloidal system

Engle used the Lennard-Jones-Gauss potential of the form2,3:

V (r) =
1

r12
− 2

r6
− ϵ exp

(
− (r − r0)

2

2σ2

)
, (50)

with parameters σ2 = 0.042, ϵ = 1.8, r0 = 1.42. We have conducted Monte Carlo simulation with NPT ensemble
at T = 0.29 and T = 0.28, P = 0.0, and N = 19740. Snapshots of modulated structures quenched at T = 0.12 are
displayed in Supplementary Fig. 19 (a, T = 0.29 and b, T = 0.28). The diffraction images in Supplementary Fig. 19
(c, T = 0.29 and d, T = 0.28) are obtained by the average of 200 Fourier transforms of quenched samples at T = 0.12.
In contrast to the diffraction image for the P31m perfect crystal, satellite peaks are observed.

c

d

a

b

Supplementary Fig. 19. Colloidal simulation. Modulated domain structure (a, T = 0.29 and b, T = 0.28) and Diffraction
image (c, T = 0.29 and d, T = 0.28). The area is proportional to the intensity.
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Supplementary Note 12 Atomic decorations

In this section, we consider the decorations on the hexagonal metallic-mean tilings, which should be relevant for the
atomic structure of the MC and MD simulations2. In a certain parameter regime, MC and MD simulations show the
stable solution where the atomic structure is described by large and small hexagons, and parallelograms, as shown
in Supplementary Fig. 20. The atomic positions are given in Supplementary Note 8. We find that three atoms are

Supplementary Fig. 20. Atomic structures of the MC and MD simulations. The circles represent the locations of atoms.

located in the vicinity of each vertex in the tilings while the others are located around the center of the L tile.
To clarify how relevant the hexagonal metallic-mean tilings proposed in this study are for the atomic structure

observed in MD and MC simulations, we first introduce an auxiliary vertex C△
4 (C▽

4 ) placed at the center of the L△
(L▽) tile, as shown in Supplementary Fig. 21a. Since the number of the Cα

4 (α = △,▽) vertices corresponds to that
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-1.5-1-0.500.511.5

𝒓! = (2 2𝜏"#$, 0) 𝒓! = (− 2𝜏"#$, − 2)

𝜆!

a b
C!△ C!▽

C!△

C!▽

Supplementary Fig. 21. a C△
4 and C▽

4vertices which are defined by dividing L△ and L▽ tiles into three rhombuses. b Window

of the C△
4 (C▽

4 ) vertex in the perpendicular space r⊥ = (2
√
2τ−1

k , 0) [(−
√
2τ−1

k ,−
√
2)]. λ4 is the edge length of the triangles.

of the Lα tiles, its fraction is given as,

fCα
4
=

1

4

τ2k
τ2k + 3τk + 1

. (51)

When the Lα tile is divided into three rhombuses, as shown in Supplementary Fig. 21a, each Cα
4 vertex connects to

the corner vertices in the B sublattice (the solid circles), and it can be regarded to belong to the A sublattice. Since
the distance between the Cα

4 and corner vertices corresponds to the longer length ℓ, the set of the six integer indices
for the Cα

4 vertex is given by

n⃗Cα
4
= n⃗corner +∆n⃗, (52)

where n⃗corner is the set of the six integer indices for a certain corner vertex in the B sublattice and ∆n⃗ =

(n0, n1, n2, 0, 0, 0)
T with integer nm. This means that the C△

4 and C▽
4 vertices are clearly distinguished in the

perpendicular space since y⊥ [= −
√
2n⃗Cα

4
· (0, 0, 0, 1, 1, 1)T ] for the Cα

4 vertices is the same as that for the vertices
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belonging to the honeycomb domain with α. Namely, the window for the C△
4 (C▽

4 ) vertex appears in the perpen-

dicular spaces with r⊥ = (2
√
2τ−1

k , 0) [(−
√
2τ−1

k ,−
√
2)], as shown in Supplementary Fig. 21b. The edge length of

the windows is given by λ4 =
√
3, by taking into account the fraction of the vertices. Supplementary Figure 22

shows the hexagonal bronze-mean tiling with the C4 vertices, which is obtained by means of the cut-and-projection
scheme. We find that the Cα

4 auxiliary vertices indeed belong to the honeycomb domain with α. To discuss the spatial
structure of the vertices in the perpendicular space in detail, it is useful to consider the corresponding windows in
three dimensions (x̃, ỹ, z̃ = x⊥ + y⊥), as discussed in the main text. Supplementary Figure 23 clarifies that these

six windows are the crosssections of the trigonal trapezohedron with the edge length
√
3(1 + τ−1

k ). We find that the
vertices in the honeycomb domains with △ (▽) are located in the upper (lower) windows, which are shown as the
blue (red) triangles and hexagon. This is consistent with the fact that certain two windows belonging to the same
(different) honeycomb domains are bridged by the vectors eh0 , e

h
1 , e

h
2 (eh3 , e

h
4 , e

h
5 ). The middle four windows can be

regarded as the crosssections of the regular octahedron, which is shown in Extended Data Fig. 1 in the main text.

Supplementary Fig. 22. Hexagonal bronze-mean tiling with the C4 vertices. Open (solid) circles at the vertices indicate the
sublattice A (B). Open triangles represent the auxeliary C4 vertices. Blue (red) symbols represent the vertices belonging to
the honeycomb domains with △ (▽).

Next, we consider the atomic decorations for the hexagonal metallic-mean tilings. One can divide the atoms into
three groups with α(= △,▽), as shown in Supplementary Fig. 24. The group uα1 is composed of the atoms around
the vertex in the hexagonal metallic-mean tiling and the group uα2 is composed of the atoms around the auxeliary
vertex Cα

4 (the center of Lα tiles). The other group vα are located in the Lα tile, but far from the center.
Now, we would like to describe the atomic structures, specifying the sets of the six indices for these atoms. First, we

focus on certain atoms in the groups u△1 and u▽1 around the vertex X△ and X▽, which are pointed in Supplementary
Figs. 24a and b, respectively. We find that the atom with α = △ (▽) is located in the backward (forward) direction
of the vectors e0 from X△ (X▽). Since the atoms also belong to the honeycomb domain with α, the sets of the six
indices n⃗atom for these atoms are given as

n⃗atom = n⃗Xα + n⃗, (53)

n⃗ = (∓c, 0, 0, 0, 0, 0)
T
, (54)

where n⃗Xα is the set of the six integer indices for the Xα vertex, and the above (under) sign corresponds to α = △
(▽). In the perpendicular space S̃, the window of the corresponding atoms appears d̃ away from the window of Xα,

where d̃ = ∓cẽ0. Examining the positions for the atoms of the uα1 , u
α
2 , and vα groups, we determine the sets of the

six indices, which are explicitly shown in Supplementary Table 3. Supplementary Figure 25a (b) shows the windows

for the groups u△1 ,u△2 (u▽1 ,u
▽
2 ) in the perpendicular spaces. Supplementary Figure 26a (b) shows the windows for

the group v△ (v▽) in the perpendicular space with r⊥ = (2
√
2τ−1

k , 0) [(−
√
2τ−1

k ,−
√
2)]. We generate the hexagonal

metallic-mean tilings with the atomic decorations by the cut-and-project scheme, which are schematically shown in
Supplementary Fig. 27.
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Supplementary Fig. 23. The perpendicular space [r⊥ = (2
√
2τ−1

k , 0), (
√
2τ−1

k , 0), (0, 0), (
√
2τ−1

k ,−
√
2), (0,−

√
2), and

(−
√
2τ−1

k ,−
√
2).] of the hexagonal bronze-mean tiling with k = 3 in three dimensions with (x̃, ỹ, z̃ = x⊥ + y⊥). The col-

ored arrows indicate the projected basis vectors eh
i and the blue (red) triangles and hexagon indicate the windows for the

honeycomb domains with △ (▽).

××

×

a. 𝒓! = 0, 0 , ( 2𝜏"#$, 0) b. 𝒓! = 0, − 2 , ( 2𝜏"#$, − 2)

c. 𝒓! = 2 2𝜏"#$, 0 d. 𝒓! = − 2𝜏"#$, − 2

u!△

u!▽

u#△

u#▽

v△ v▽

×

Supplementary Fig. 24. Positions of atoms in the decorated tiling. Blue, green, and red circles represent three kinds of
the atoms in the u1 and u2 groups and gray circles represent the atoms in the v group. a (b) Red (blue) cross represents
the vertex in the honeycomb domain with △ (▽), which is mapped to the perpendicular space in r⊥ = (0, 0), (

√
2τ−1

k , 0)

[(0,−
√
2), (

√
2τ−1

k ,−
√
2)]. c (d) Atomic decorations of the L△ (L▽) tile. Red (blue) cross represents the auxiliary C△

4 (C▽
4 )

vertex, which is mapped to the perpendicular space in r⊥ = (2
√
2τ−1

k , 0) [(−
√
2τ−1

k ,−
√
2)].
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Group r⊥ Window 3n⃗T

u△
1 (−

√
2cτ−1

k , 0), (
√
2τ−1

k −
√
2cτ−1

k , 0)
Hexagon (∓3c, 0, 0, 0, 0, 0)

(0,∓3c, 0, 0, 0, 0)

(0, 0,∓3c, 0, 0, 0)

u▽
1 (

√
2cτ−1

k ,−
√
2), (

√
2τ−1

k +
√
2cτ−1

k ,−
√
2)

u△
2 (2

√
2τ−1

k −
√
2cτ−1

k , 0)
Triangle

u▽
2 (−

√
2τ−1

k +
√
2cτ−1

k ,−
√
2)

v△ (2
√
2τ−1

k , 0)

Triangle

(−1, 1, 0, 0, 0, 0)

(1,−1, 0, 0, 0, 0)

(−1, 0, 1, 0, 0, 0)

(1, 0,−1, 0, 0, 0)

(0,−1, 1, 0, 0, 0)

(0, 1,−1, 0, 0, 0)
v▽ (−

√
2τ−1

k ,−
√
2)

Supplementary Table 3. Occupied plane r⊥ and corresponding window shape in the perpendicular space. Three sets of six
indices for the u1 and u2 groups are given, where the above (under) sign corresponds to △ (▽). Six sets of six indices for the v
group are also given. c = (

√
33− 3)/12 = 0.2287.

𝒓! = (− 2𝑐𝜏"#$, 0)

𝒓! = ( 2𝜏"#$ − 2𝑐𝜏"#$, 0)

𝒓! = (2 2𝜏"#$ − 2𝑐𝜏"#$, 0)

a b

𝒓! = (− 2𝜏"#$ + 2𝑐𝜏"#$, − 2)

𝒓! = ( 2𝑐𝜏"#$, − 2)

𝒓! = ( 2𝜏"#$ + 2𝑐𝜏"#$, − 2)

�̃� �̃�

Supplementary Fig. 25. a (b) Windows for the u△
1 ,u

△
2 (u▽

1 , u
▽
2 ) groups in the perpendicular spaces for the hexagonal golden-

mean tiling with k = 1. Each layer has three distinct windows, whose colors correspond to the colors fo the atom shown in
Supplementary Fig. 24.
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a. 𝒓! = 2 2𝜏"#$, 0 b. 𝒓! = (− 2𝜏"#$, − 2)

Supplementary Fig. 26. Windows for the v△ and v▽ groups in the perpendicular spaces with a r⊥ = (2
√
2τ−1

k , 0) and b

(−
√
2τ−1

k ,−
√
2) for the hexagonal golden-mean tiling with k = 1, respectively. Insets show the positions of atoms in the v

group. Each layer has six distinct triangular windows, whose colors correspond to the colors of the atoms shown in the inset.

Supplementary Fig. 27. Decorated hexagonal silver-mean tilings.
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We calculate the lattice structure factors of the decorated tilings, extending the method shown in Supplementary
Note 7. The atoms in the decorated tiling are divided into three groups u1, u2, and v, as shown in Supplementary
Fig. 24. The density of the atoms is then given as

ρ(r) = ρu1
(r) + ρu2

(r) + ρv(r), (55)

ρu1
(r) =

2∑

n=0




 ∑

j∈(0,0)⊥

+
∑

j∈(1,0)⊥


 δ (rj − cen − r)




+
2∑

n=0




 ∑

j∈(0,1)⊥

+
∑

j∈(1,1)⊥


 δ (rj + en − r)


 , (56)

ρu2
(r) =

2∑

n=0


 ∑

j∈(2,0)⊥

δ (rj − cen − r)


+

2∑

n=0


 ∑

j∈(−1,1)⊥

δ (rj + cen − r)


 , (57)

ρv(r) =
5∑

n=0




 ∑

j∈(2,0)⊥

+
∑

j∈(−1,1)⊥


 δ

(
rj +Rn

{
e1 − e0

3

}
− r

)
 , (58)

where ri represents the position of the vertex site in the tiling and the operator R rotates the vectors by the angle
π/3, as

R =

(
cos(π/3) − sin(π/3)

sin(π/3) cos(π/3)

)
. (59)

The operation is represented as Rei = −ej (i = 0, 1, 2), where j = i − 1 + 3δ0i. We have used the position of
atoms, which are explicitly shown in Supplementary Table 3. In the lattice structure factors, the peak positions are
represented as q =

∑5
m=0 ñmqm, where ñm is an integer and qm is the reciprocal vector derived in Supplementary

Note 5. The Fourier transform of the density ρ(q) =
∫
ρ(r) exp(−ir · q)dr can be represented in terms of the Fourier

transform of the occupation domains Fmn as,

ρ(q) = exp(−i
√
2cτ−1

k q⊥0 )

2∑

n=0

exp(−icẽn · q̃)
[
F00(q̃) + exp(i

√
2τ−1

k q⊥0 )F10(q̃) + exp(i2
√
2τ−1

k q⊥0 )F20(q̃)
]

+ exp(i
√
2cτ−1

k q⊥0 )

2∑

n=0

exp(icẽn · q̃) exp(−i
√
2q⊥1 )

[
F01(q̃) + exp(i

√
2τ−1

k q⊥0 )F11(q̃) + exp(−i
√
2τ−1

k q⊥0 )F−11(q̃)
]

+
5∑

n=0

exp

(
iRn

{
ẽ1 − ẽ0

3

}
· q̃

)[
exp(i2

√
2τ−1

k q⊥0 )F20(q̃) + exp(−i
√
2τ−1

k q⊥0 ) exp(−i
√
2q⊥1 )F−11(q̃)

]
. (60)

Then, we obtain the lattice structure factors |ρ(q)|2.
Supplementary Figure 28 shows the decorated tilings and the corresponding lattice structure factors for k = 3 and

k = 5. We confirm that the peak structures of the decorated tilings are in a good agreement with the MC results
shown in Supplementary Fig. 19.
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a

b

c

d

Supplementary Fig. 28. The decorated tilings (a, k = 3 and b, k = 5) and the lattice structure factors (c, k = 3 and d, k = 5).
The area is proportional to the intensity.


