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Abstract—Audio-visual target speech extraction (AV-TSE) is
one of the enabling technologies in robotics and many audio-
visual applications. One of the challenges of AV-TSE is how
to effectively utilize audio-visual synchronization information in
the process. AV-HuBERT can be a useful pre-trained model for
lip-reading, which has not been adopted by AV-TSE. In this
paper, we would like to explore the way to integrate a pre-
trained AV-HuBERT into our AV-TSE system. We have good
reasons to expect an improved performance. To benefit from the
inter and intra-modality correlations, we also propose a novel
Mask-And-Recover (MAR) strategy for self-supervised learning.
The experimental results on the VoxCeleb2 dataset show that
our proposed model outperforms the baselines both in terms of
subjective and objective metrics, suggesting that the pre-trained
AV-HuBERT model provides more informative visual cues for
target speech extraction. Furthermore, through a comparative
study, we confirm that the proposed Mask-And-Recover strategy
is significantly effective.

Index Terms—target speech extraction, mask, audio-visual, AV-
HuBERT

I. INTRODUCTION

The quest for the understanding of human’s cocktail party
effect and the implementation of automatic speech separation
has never stopped. On one hand, a speech separation system
is generally seen as the front-end for some downstream tasks
such as speech recognition [1], speaker verification [2], speech
translation [3], speech synthesis [4], etc. On the other hand,
speech separation technology is often inspired by findings in
auditory cognition of the human brain [5].

With the advent of deep learning, effective speech separation
models are proposed, such as uPIT [6], and Conv-TasNet [7],
which shown good performance. However, as the number of
speakers in a cocktail mixture is often required in advance for
speech separation to work, this limits the scope of applications.
Furthermore, a typical speech separation system seeks to
disentangle multiple speakers from a cocktail mixture, speech
separation sometimes suffers from speaker permutation prob-
lem [6]. The target speaker extraction (TSE) seeks to extract
target speaker’s voice from a mixture speech conditioned on
certain cues [8]. Such a task is more consistent with the human
selective auditory attention process in a cocktail party [9].

For effective TSE, the choice of proper speaker cues remains
a topic of study. There have been studies to utilize a pre-
recorded speech sample from the target speaker as such
speaker cue [10]. More recent studies utilize the speaker
embedding extracted from the pre-recorded speech as the
speaker cues that have improved the performance [11] [12]
[13]. However, such techniques suffer from some mismatch
between the provided speech cue and the target speech in the
mixture, such as different recording scenarios and different
speech semantics from the same speaker, which is also called
the intra-speaker variety problem in the TSE system [8].
To tackle such intra-speaker variety, more stable and noise-
invariant visual cues are expected.

Among all the visual cues, lip movement could be recog-
nized as the most informative cue [14]. Nonetheless, visual
occlusion problems may still occur in practical application
scenarios. When the camera moves or the target speaker turns
around, the target speaker’s frontal view changes. To deal with
such challenges, ImagineNET [15] utilized some extra visual
refiner blocks and visual decoders to overcome the missing
visual cues. Considering the noise and reverberation invariant
properties as well as the advanced solutions towards visual
occlusion, lip movements remain the most effective target
speaker cue for the TSE systems.

In terms of network architecture, there are generally two
types, namely time-frequency domain and time domain [8]
systems. VisualVoice is a typical time-frequency domain sys-
tem and utilizes the U-Net architecture as the backbone of
the separation module [16]. Such time-frequency domain TSE
systems typically suffer from performance issues such as
imperfect phase recovery. Most current TSE systems adopted
time-domain methods such as Conv-TasNet [7]. Conv-TasNet
utilized the original mixture speech signal as input and passed
it to the convolution layers to get the speech embeddings
[7]. Such convolution filters are designed to simulate the
human auditory system and the obtained speech embeddings
approximate spectrogram in the time-frequency domain. In this
paper, we adopt a time-domain backbone architecture.
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Currently, speech foundation models have shown dominant
performance in many speech tasks such as speech recog-
nition [17] and speech synthesis [18] [19]. Thanks to the
self-supervised learning strategy and a plentiful of unlabeled
speech data, noise robust speech representations could be ob-
tained from speech foundation models than just using convo-
lution blocks in a supervised way [20]. Although most speech
foundation models are pre-trained on speech recognition tasks
such as wav2vec 2.0 [21] and HuBERT [22], recent studies
have also proven the feasibility of using the speech foundation
models for speech separation tasks. In [23], the author in-
vestigated the performances of 13 different speech foundation
models on speech separation tasks and verified the robustness
of the self-supervised speech features for such waveform
generation tasks. To obtain better performance, more recent
work concatenated both spectrogram and speech embeddings
obtained by WavLM [24] as input for downstream separation
modules, which also achieved significant improvements with
scaled-up training data [25]. Despite some exploration of
speech foundation models for speech separation tasks, speech
foundation model has not been utilized in the current TSE
system.

Recently, AV-HuBERT achieved great success in lip-reading
tasks [26], showing its strong ability of capturing audio-
visual synchronization [27]. To benefit from such robust audio-
visual synchronization knowledge, we integrate pre-trained
AV-HuBERT layers into our TSE system. Furthermore, to
facilitate the alignment between audio feature space and visual
feature space, a novel Mask-And-Recovery (MAR) strategy
has been applied to our TSE system. With the integrated AV-
HuBERT layers and additional MAR strategy, we propose the
AVHuMAR-TSE system. The contributions of this paper could
be summarized in three folds:

• First, we integrate the pre-trained AV-HuBERT layers
into our proposed audio-visual TSE system, which is
called the AVHuBERT-TSE system. To the best of our
knowledge, this is the first attempt to combine the
AV-TSE system with the audio-visual foundation model.

• To enhance both intra and inter-modality alignments,
we further propose the AVHuMAR-TSE system, which
jointly optimizes the pre-trained AVHuBERT-TSE
system and the integrated MAR block. Experimental
improvements demonstrate the effectiveness of the
proposed Mask-And-Recovery (MAR) strategy.

• To verify the effectiveness of the proposed MAR strategy,
we experiment with different mask durations for the
mixture speech and find the best configuration for our
AVHuMAR-TSE system.

II. METHOD

A. AVHuBERT-TSE System
1) Overview of the AVHuBERT-TSE System: AVHuBERT-

TSE system followed the general framework of the mask-
based time domain TSE system, which consists of three parts

including the speech encoder, speech decoder, and speaker
extractor, To obtain iteratively refined visual cues, the cue
encoder will be integrated into the the speaker extractor in
our AVHuBERT-TSE system.

More specifically, as shown in Fig. 1, the speech encoder
takes mixture speech signal x0

(t) as input and outputs the mix-
ture speech embedding X0

(t). The visual encoder takes corre-
sponding visual frames v0(t) as input and outputs target speaker
lip embedding V 0

(t). Note that the visual encoder follows the
structure in MuSE [28]. The visual encoder is pre-trained on
the visual speech recognition task and weights are frozen in
our AVHuBERT-TSE system. The obtained target speaker lip
embedding V 0

(t) is supposed to encode the viseme-phoneme
correspondence. Similar to [29] [9] [30], a visual adapter is
followed after the visual encoder to obtain refined visual cue
embedding V 0

(t). The visual adapter follows the structure in
reentry [9]. As for the speaker extractor, it perceives both V 0

(t)

and X0
(t) to estimate the final target speaker’s speech mask

MR
(t). Note that the final refined visual cue V R

(t) will also be
output for further use in a more advanced AVHuMAR-TSE
system. The final estimated mask MR

(t) will then element-wise
multiplied with X0

(t) to get the final estimated target speech
embedding XR(t). The speech decoder takes XR

(t) as input and
reconstructs the final extracted target speech ŝ(t). Note that all
the speech encoders and speech decoders of the AVHuBERT-
TSE system keep the same structure and share weights during
training.

2) Speaker Extractor: The speaker extractor aims at es-
timating the target speech mask from the mixture speech
embedding X0

(t) guided by the visual cue. As shown in Fig. 2,
the speaker extractor mainly consists of two parts, i.e. mask
estimator and cue encoder. Since the iterative mask estima-
tors have been shown effective for TSE systems [28] [29],
AVHuBERT-TSE also follows this structure. More specifically,
the speaker extractor takes X0

(t) and V 0
(t) as initial input. Then

X0
(t) and V 0

(t) will be concatenated on channel dimension. A
coarse target speech mask M0

(t) will be predicted by the first
mask estimator conditioned on the concatenated audio-visual
embedding. For simplicity and consistency, this initial mask
estimating process is not drawn in Fig. 2 but described with
M0

(t) = MASK ESTIMATOR(V 0
(t), X

0
(t)). More generally, each

speaker extractor receives both Mr−1
(t) and V r−1

(t) from the last
speaker extractor. The intermediate estimated speech Sr−1

(t) will
be first predicted by the element-wise multiplication of Mr−1

(t)

and X0
(t) and then generated through speech decoder.

The intermediate estimated speech Sr−1
(t) will be utilized for

two branches. For the first branch, Sr−1
(t) will be passed to the

cue encoder to obtain the refined visual cue V r
(t). Considering

of computing efficiency, Sr−1
(t) will be passed through five

Conv1d layers called duration adapter to align with V r−1
(t)

temporally. The duration adapter structure is similar to the
HuBERT front-end while the kernel sizes for Conv1d layers
are changed to (2,2,2,2,2). After alignment, V r−1

(t) and Sr−1
(t)
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Fig. 1: The overall architecture of the proposed AVHuMAR-TSE system. The system (a) on the left is the basic
AVHuMAR-TSE system without MAR block, which is called the AVHuBERT-TSE system. The system (b) on the right is

the complete AVHuMAR-TSE system.

are concatenated temporally and passed into a Conv1d layer
before input to the AV-HuBERT layers. Such a design aims at
mitigating the adverse effect caused by front-end mismatch
with the original AV-HuBERT. Besides, it will convert the
channel dimension of the audio-visual cue embedding to adapt
the transformer layer channel dimension. Previous works have
shown that for the self-supervised speech foundation models,
the acoustic features are learned in the shallow layers while
high-level linguistic features are encoded by the deeper layers
[31] [32]. Motivated by this conclusion, AVHuBERT-TSE only
adapted the first four layers of pre-trained AV-HuBERT to
obtain refined visual cues. Another symmetric Conv1d layer
is followed by the AV-HuBERT layers to transfer the cue em-
bedding channel back. Note that the two additional symmetric
Conv1d layers could be helpful to mitigate the “transplant
rejection” problem found in [32]. Besides, the visual cue
embedding V r

(t) refined by the cue encoder is expected to
contain rich audio-visual correspondence for the target speaker
and have a similar resolution with the intermediate estimated
speech embedding Xr−1

(t) .
As for the second branch of intermediate estimated speech

Sr−1
(t) , it will be passed through the speech encoder to obtain

the intermediate estimated speech embedding Xr−1
(t) . The

intermediate estimated speech embedding Xr−1
(t) is then con-

catenated with the refined visual cue V r
(t) and passed into the

mask estimator to predict the refined target speech mask Mr
(t).

Note that the speaker extractor will be repeated R times
to learn hierarchical target speech features. To mitigate the
adverse effect caused by model intrinsic uncertainty, all R
speaker extractors will share the same weights during training.

B. AVHuMAR-TSE System

1) Mask-And-Recovery Strategy: The extraction perfor-
mance of the AV-TSE system guided by lip movement severely
relies on the viseme-phoneme mapping correspondence in the
feature space as well as the audio-visual temporal synchroniza-
tion [33] [34]. As a result, visual cues have been hierarchically
refined in our AVHuBERT-TSE system to enhance robust-
ness. More specifically, for the visual front-end, certain prior
knowledge about viseme-phoneme mapping has been learned
during the visual speech recognition pre-task. The visual
cues obtained from such a visual front-end will be further
adapted by the powerful lip-reading expert in our proposed
cue encoder. However, since the viseme-phoneme mapping is
not bijective [35] [36], such an AV-TSE system is imperfect.
Although the lip movement cue could be noise and reverbera-
tion invariant, the model may still be confused when different
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Fig. 2: The Speaker Extractor will be repeated R times. For
r − th Speaker Extractor, it mainly contains a Cue Encoder

to refine the target speaker’s visual cue V r
(t) and a Mask

Estimator to predict the target speech mask Mr
(t). The

Speech Decoder and Speech Encoder are utilized to
reconstruct and encode the intermediate estimated speech
Ŝr
(t), respectively. Note that the initial target speech mask

M0
(t) will be predicted conditioned on the initial visual cue

V 0
(t) and mixture speech embedding X0

(t).

speakers have similar lip movements in the same mixture
frame. Besides, the continuous intermediate estimated target
speech frames contain rich context information, which has not
been fully utilized as extraction guidance in the previous TSE
systems. To fully use such intra-modality correlation in speech
contexts and alleviate the extraction performance degradation
caused by the viseme-phoneme mapping ambiguity, a novel
Mask-And-Recover strategy has been applied to the proposed
AVHuMAR-TSE system.

2) Overview of the AVHuMAR-TSE System: The
AVHuMAR-TSE system is modified based on the
AVHuBERT-TSE system. More specifically, as shown
in Fig. 1 (b), compared to the AVHuBERT-TSE system
shown in (a), the visual encoder, visual adapter, speech
encoder, speech decoder, and speaker extractor will keep the
same architecture while an additional Mask-And-Recover
(MAR) Block will be inserted between the final speech
decoder and the last speaker extractor. As the name described,
the MAR strategy will mask certain frames of the mixture
speech waveform x0

(t) temporally. Then the masked mixture
speech waveform x0

(t) together with the corresponding intact
lip frames v0(t) will be used as input for training AVHuMAR-
TSE system.

Note that the masked region of the mixture speech
embedding X0

(t) may be temporally compressed by the
speech encoder. For generalization consideration, an
automatic masked frame detection step is necessary before
passing masked X0

(t) into the speaker extractor. Since the
speech encoder consists of a Conv1d layer followed by a
Relu activation function, to avoid confusing the masked
and non-masked region, such an automatic masked frame
detection step will be conducted before the Relu operation.
Note that the embedding value of the masked region will be
the global extreme minimum after passing through Conv1d
layers without bias, the detection step only needs to find
the continuous indexes with global extreme minimum. To
filter out those potential non-artificial small masked regions,
further detection will be conducted with a proper threshold.
According to the detected masked regions of X0

(t), a mask
I(t) and an inverse mask I(t) with the same temporal shape
with X0

(t) will be generated for loss computation. As shown
in Fig. 1 (b), the masked region in target speech embedding
XR

(t) keeps consistent with X0
(t). Instead of passing XR

(t) into
the speech decoder directly, the XR

(t) will be concatenated
with the last refined visual cue V R

(t) on channel dimension
and then be passed into MAR Block.

The MAR Block plays two roles in the AVHuMAR-TSE
system. First, it will be used to predict the masked target
speech embedding. To predict the masked region, both
unmasked target speech embedding region and refined
visual cues will be utilized as guidance. The unmasked
target speech embedding region could provide rich speech
context information and push the model to learn intra-
modality correlation. The refined visual cues could help the
model to learn a direct mapping from the target speaker’s
lip movements to the masked speech embedding region.
Second, the MAR Block will be jointly optimized with
the AVHuBERT-TSE system shown in Fig. 1 (a), thereby
enabling further refinement of the target speech embedding
estimated by the AVHuBERT-TSE system.

The structure of the MAR Block simply consists of 4
transformer layers. To perform the embedding level loss,
the ground truth of the target speech waveform y(t) will be
input to a speech encoder to get its embedding Y(t). With
the automatically detected mask I(t) and inverse mask I(t),
the masked region loss and the unmasked region loss will be
computed, respectively.

C. Two-Stage Training Strategy

The AVHuMAR-TSE system contains two training stages.
In the first training stage, the intact mixture of speech and
intact visual frames will be used for training. The system does
not contain a MAR Block at this stage. The overall architecture
of the system has been shown in Fig. 1 (a). The goal of the
first training stage is to obtain a well-trained AVHuBERT-
TSE system. In the second training stage, the masked mixture
speech and intact visual frames will be used for training, which
is shown in Fig. 1 (b). In addition to the AVHuBERT-TSE



system, an additional speech encoder and the MAR Block
will be added in the second training stage. The additional
speech encoder will share the same weights with other speech
encoders. All the modules in the AVHuBERT-TSE system,
including the additional speech encoder will be fine-tuned
based on the first training stage, while only the MAR block
will be trained from scratch.

D. Loss Functions

Both the first and second training stages will perform SI-
SDR loss between the predicted target speech signal and the
ground truth of the target speech signal, which is shown in
(1),

LSI−SDR(yt, ŝt) = −10 log10(

||<ŝt,yt>yt||2
||yt||2

||ŝt − <ŝt,yt>yt

||yt||2 ||
). (1)

During the second training stage, two extra mean squared
error (MSE) [37] loss functions will be added. To recover
the masked embedding region, one of the MSE loss functions
will be calculated for the masked region of X̂R

(t), which is
called LRECOV ER. To keep and refine the TSE extraction
performance, another MSE loss will be calculated for the un-
masked region of X̂R

(t), which is called LTSE Embedding . The
calculation details for the MSE loss functions are described in
(2),

LRECOV ER(X̂
Rm

(t) , Y m
(t)) = MSE(X̂Rm

(t) , Y m
(t)),

LTSE Embedding(X̂
Ru

(t) , Y
u
(t)) = MSE(X̂Ru

(t) , Y
u
(t)),

where,

X̂Rm

(t) = X̂R
(t) ⊙ I(t),

X̂Ru

(t) = X̂R
(t) ⊙ I(t),

Y m
(t) = Y(t) ⊙ I(t),

Y u
(t) = Y(t) ⊙ I(t).

(2)
Specifically, X̂Rm

(t) and Y m
(t) denote the masked region of

predicted target speech embedding and corresponding ground
truth embedding. X̂Rm

(t) and Y m
(t) are obtained by the element-

wise multiplication of the inverse mask I(t) and X̂R
(t), Y(t), re-

spectively. On the contrary, X̂Ru

(t) and Y u
(t) denote the unmasked

region of predicted target speech embedding and unmasked
region of corresponding ground truth embedding. X̂Ru

(t) and
Y u
(t) are also obtained with the similar way.
The loss function for the AVHuMAR-TSE system in the

second training stage contains three parts and is denoted in
(3),

L(yt, ŝt, X̂
Rm

(t) , Y m
(t), X̂

Ru

(t) , Y
u
(t))

=α ∗ LSI−SDR(yt, ŝt) + β ∗ LRECOV ER(X̂
Rm

(t) , Y m
(t))

+ γ ∗ LTSE Embedding(X̂
Ru

(t) , Y
u
(t)),

(3)

We use α, β, γ as scale factors to balance the three loss
function parts, respectively.

III. EXPERIMENTAL SETTING

A. Dataset

To evaluate the performance of the AVHuMAR-TSE sys-
tem, we simulate 2-speaker mixture dataset from the Vox-
Celeb2 [38] dataset. Similar to [28], 48,000 utterances from
800 speakers are selected for the training set and 36,237
utterances from 118 speakers are selected for the test set. More
specifically, we simulate 20000, 5000, and 3000 utterances for
the training set, validation set, and test set, respectively. Each
target speech utterance has been mixed with the interfering
speech utterance at a random Signal-to-Noise ratio (SNR)
between -10 dB and 10 dB. The speech sampling rate is
16000 and the video frame is 25 FPS. Note that compared
to the training set and validation set, all speakers in the test
set are unseen speakers. Additionally, all the utterances are
clipped to 4 seconds during training and 4-6 seconds during
inference. For the second training stage, a random segment of
each utterance in the training set will be masked with zero
value. To find the optimal mask duration of the proposed
AVHuMAR-TSE system, we simulate the mask duration gap
equal to 100ms, 200ms, 300ms, 400ms, 500ms, and 600ms,
respectively. Each mask duration gap is applied to the entire
training set.

B. Baseline and Evaluation Metric

Since the AVHuMAR-TSE system is a time-domain audio-
visual TSE system. To make a fair comparison, we also select
three time-domain AV-TSE systems including AV-ConvTasNet
[29], USEV [30], and MuSE [28] as our baseline systems.

For the evaluation metrics, we select the scale-invariant
signal-to-noise ratio (SI-SDR) [39], the SI-SDR improve-
ment (SI-SDRi), and the signal-to-noise ratio (SDR) [39] as
subjective metrics, which are normally used to evaluate the
separation quality of extracted target speech. To evaluate the
speech quality and intelligibility, we also use the perceptual
evaluation of speech quality (PESQ) [40] and the short term
objective intelligibility (STOI) [41] as objective metrics. The
higher the better for all metrics.

C. Implementation Details

We re-implement three baseline systems with float32 preci-
sion. All the baseline results are reported on our test set. For
the proposed AVHuMAR-TSE system, all speech encoders,
speech decoders, and visual encoders follow the settings in
[28], while the mask estimator follows the structure from [29].
The model parameters (N, L, B, H, P, X, R) are set to (256,
40, 256, 512, 3, 7, 4), respectively. The threshold for detecting
masked regions is set to 20 continuous waveform samples. The
scale factors (α, β, γ) of the loss function are set to (1,5,1).

For the first training stage, we train 150 epochs with a
learning rate of 0.00015 and select the best checkpoint depend-
ing on the performance of the validation set. For the second
training stage, we load the best pre-trained checkpoint from the
first training stage and then train for another 30 epochs with
the same learning rate. In the second training stage, we utilize
the mixture speech with different mask duration gaps as input



TABLE I: AVHuMAR-TSE and Baseline Performances on Test Set.

System Model Cue Type SI-SDR (↑) SI-SDRi (↑) SDR (↑) PESQ (↑) STOI (↑)
Baseline 1 AV-ConvTasNet [29] Lip 10.725 10.771 11.099 2.592 0.859
Baseline 2 USEV [30] Lip 10.785 10.829 11.332 2.646 0.862
Baseline 3 MuSE [28] Lip + Speaker 11.458 11.506 11.836 2.706 0.873

Proposed 1 AVHuMAR-TSE(w/o MAR) Lip 11.728 11.771 12.043 2.765 0.878
Proposed 2 AVHuMAR-TSE Lip 12.331 12.379 12.726 2.922 0.887

and select the checkpoint with the best validation performance
as our final system. After the second training stage, we report
the test set performance of our final AVHuMAR-TSE system.
For GPU, all the individual experiments of the AVHuMAR-
TSE system are trained on 3 V100 GPUs, and the batch size
is set to 2.

IV. EXPERIMENTAL RESULTS

A. Comparison with Different Baseline Systems

As shown in TABLE I, we report test set results of three
baseline systems and our proposed AVHuMAR-TSE system.
Among all the systems, only MuSE uses both the target
speaker’s lip movements and speaker labels as cues while the
others only use the target speaker’s lip movements as the cue.
Among all the baseline systems, MuSE is the best baseline
system in terms of both subjective and objective metrics, which
could achieve 11.458 on SI-SDR, while AV-ConvTasNet and
USEV could only achieve 10.725 and 10.785 respectively.
The credits are given to the iterative mask estimators and
additional target speaker labels. Compared to the baseline
results, our proposed AVHuMAR-TSE could achieve the best
performance on all the metrics with 12.331 on SI-SDR, 12.726
on SDR, 2.922 on PESQ, and 0.887 on STOI. Such results
are significantly higher than MuSE, and demonstrate the
effectiveness of the AV-HuBERT cue encoder and the proposed
MAR strategy.

To explore the improvements brought by each module,
we also report the test set performance of AVHuMAR-TSE
without MAR blocks. As shown in TABLE I, the system
could still achieve 12.043 on SDR, 2.765 on PESQ, and
0.878 on STOI, respectively. The performances on both sub-
jective and objective metrics are better than MuSE. Note that
MuSE utilizes the same visual cue for all mask estimators
and still needs additional target speaker labels as input.
The proposed AVHuMAR-TSE utilizes the pre-trained AV-
HuBERT layers to refine visual cues during each iteration
and does not require additional target speaker labels. The
improved experimental results demonstrate that employing an
iterative cue encoder, which integrates AV-HuBERT layers,
yields more robust audio-visual correspondence compared to
solely utilizing viseme-phoneme visual embeddings.

It is worth noting that after utilizing the MAR strategy, the
SI-SDR can be further improved from 11.728 to 12.331 while
PESQ improved from 2.765 to 2.922, and STOI improved
from 0.878 to 0.887. Both the intelligible and comprehensible
improvements could indicate that the final estimated target

TABLE II: The first column is different mask duration gaps
in the mixture speech waveform, the SI-SDR, and SI-SDRi

are reported with AVHuMAR-TSE System.

Mask Duration (ms) SI-SDR (↑) SI-SDRi (↑)
100 12.292 12.338
200 11.956 12.012
300 12.331 12.379
400 11.925 11.973
500 11.826 11.873
600 11.695 11.742

speech embedding becomes much clearer and more accurate
after undergoing refinement using the proposed MAR strategy.
It could also verify the rationality of the designed loss function,
which jointly optimized three tasks, including masked region
prediction, unmasked region prediction, and final target speech
signal prediction.

B. Effect of Different Mask Duration for MAR Strategy

To investigate the effects of varying mask duration gaps on
the final target speech extraction performance of the proposed
AVHuMAR-TSE system, we present the SI-SDR and SI-SDRi
values as the mask duration gaps increase from 100 ms to 600
ms, using 100 ms intervals. As shown in TABLE II, when the
mask duration gap is set to 300 ms, AVHuMAR-TSE could
achieve the best performances in both SI-SDR and SI-SDRi.
Furthermore, the results with mask duration gaps of 100 ms
and 200 ms exhibit marginally better performances compared
to those with mask duration gaps of 400 ms and above. Except
for the 600 ms mask duration gap, both SI-SDR and SI-SDRi
results are higher than those obtained without employing the
MAR strategy. Such experimental results are reasonable, as the
total duration of the input mixture waveform is 4 seconds, and
recovering a mask duration gap of 600 ms is relatively chal-
lenging. More specifically, the MAR strategy aims at learning
speech context features via explicit mask-recover embedding
loss LRECOV ER and TSE embedding loss LTSE embedding .
With guidance from both intermediate estimated target speech
context and the target speaker’s lip movements, the boundary
of the masked region could be relatively easy to recover.
However, the center area of the masked region could still
be hard to recover even with guidance from both modalities.
Based on this analysis, too much mask gap duration could
not be conducive to the MAR strategy. On the contrary, it
may even bring some adverse effects. The model may learn
some corrupted audio-visual correlations and the overall model



weights might be biased towards the recovery task and forget
the TSE knowledge learned in the first training stage.

C. Case Study

To explore the performance improvement details and show
the effectiveness of the MAR strategy more intuitively, we
visualize the extracted target speech spectrograms. As shown

Fig. 3: Comparison of target speech spectrograms extracted
by AVHuMAR-TSE system and MuSE system.

in Fig. 3, we visualize two cases. For each column, the
spectrograms from top to down are raw mixture speech, the
target speech extracted by the best baseline MuSE system,
the target speech extracted by our proposed AVHuMAR-
TSE system, and the target speech ground truth. For case
1, AVHuMAR-TSE could achieve 13.943 on SI-SDR while
MuSE could only achieve -0.105. We marked three obvious
extraction failed regions with green boxes in the second
spectrogram from MuSE. As we can observe, in the top-
left box, MuSE incorrectly extracted high-frequency voice
segments from another speaker, while the two bottom boxes
show that MuSE mistakenly extracted low-frequency parts
belonging to another speaker. Compared to MuSE, the third
spectrogram obtained from AVHuMAR-TSE appears to be
very close to the ground truth. For case 2, MuSE achieves
SI-SDR with 7.931 while the AVHuAMR-TSE system could
achieve 12.993. In this case, MuSE manages to extract coarse
target speech but still misses some low-frequency parts for
target speech, which is marked in the left-bottom box. Besides,
MuSE also falsely extracted some high-frequency parts from
another speaker, which is marked in the right-top box.

V. CONCLUSION

In this work, we integrate pre-trained AV-HuBERT layers
into an AV-TSE system, which is called the AVHuBERT-TSE
system. To further enhance both intra and inter-modality align-
ments, thereby improving the overall extraction performance,
we propose the AVHuMAR-TSE system. Compared to the

three time-domain AV-TSE baseline systems, the proposed
AVHuMAR-TSE system shows significant performance im-
provements in terms of both subjective and objective metrics
on the VoxCeleb2 dataset. Such results prove that both the pre-
trained AV-HuBERT layers and the proposed MAR strategy
could enhance audio-visual correspondence and speech context
correlation. Experimental results with different mask duration
gaps show that it is critical to select an appropriate mask for
the input mixture speech waveform. In the future, we plan to
delve deeper into how the MAR strategy can align the audio-
visual latent feature space and expand our AVHuMAR-TSE
system to different mixture scenarios.
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