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ABSTRACT

One of most important applications of microlensing observations is detecting free-floating plan-

ets(FFPs). The time scale of microlensing due to FFPs (tE) is short (a few days). Discerning the

annual parallax effect in observations from these short-duration events by one observer is barely pos-

sible, though their parallax amplitude is larger than that in common events. In microlensing events

due to FFPs, the lens-source relative trajectory alters because of the observer’s motion by δu. This

deviation is a straight line if tE ≪ P⊕, and its size is δu ∝ πrel (P⊕ is the observer’s orbital period).

So, most of observed microlensing events due to close FFPs have simple Paczyńsky lightcurves with

indiscernible and valuable parallax. To evaluate destructive effects of invisible parallax in such events,

we simulate ∼ 9650 microlensing events due to FFPs with tE < 10 days that are observed only by

The Nancy Grace Roman Space Telescope(Roman). We conclude that in half of these microlensing

events the missing parallax alters the real lightcurves, changing their shape and derived properties(by

∆χ2 ≳ 100). By fitting Paczyński lightcurves to these affected events we evaluate the relative and

dimensionless deviations in the lensing parameters from their real values (δtE, δρ⋆, ...). We conclude

that around 46 FFPs which are discovered by Roman have lightcurves highly affected by invisible

parallax with δtE > 0.1 and δρ⋆ > 0.1. Our study reveals the importance of simultaneous and dense

observations of microlensing events viewed by Roman by other observers rotating the Sun in different

orbits.

Keywords: gravitational lensing: micro — planets and satellites: detection — parallaxes —methods:

numerical

1. INTRODUCTION

The annual parallax effect is refereed to the Earth

(the observer) rotation around the Sun which makes ad-

ditional and apparent motions for close stars on the sky

plane. Due to the parallax effect, the angular position of

a star at the distance one kpc from us will alter by 2 mas

during 6 months as measured from the Earth. Based on

these apparent displacements of close stars in the sky

plane, people even determine their distance from the

Earth. Therefore, in astrophysical text books, the par-

allax effect has been introduced as one of primary meth-

ods for measuring distances of close stars (e.g., Carroll

& Ostlie 2006). In this way, the Hipparcos and Gaia

telescopes have measured the distances of over a hun-

dred thousand stars, and around 1.5 billion stars in the

Galaxy based on the parallax measurements (Perryman

et al. 1997; Gaia Collaboration et al. 2023).

1 ⋆e-mail : s.sajadian@iut.ac.ir

Additionally, the parallax effect alters the transient

astrophysical events from the Galactic stars, because it

alters stellar trajectories from straight to cycloid ones

(see, e.g., Alcock et al. 1995). The parallax-induced de-

viations in such events depend on two factors: (a) the

stellar distances from the observer, and (b) durations

of events. The angular extra motions of stars due to

the parallax effect are scaled by π⋆ = au/D, where D is

the stellar distance from the observer. Also, the max-

imum displacements owing to the parallax effect occur

during 6 months. Hence, in short-duration events (e.g.,

1-2 days) from far stars the parallax-induced deviations

and bending of stellar trajectories from straight ones are

barely recognizable.

One example of transient astrophysical phenomena is

the gravitational microlensing. It refers to the tempo-

rary brightness increase of a background star in the

Galaxy, because its light is passing from the gravita-

tional potential of a foreground and collinear object

(Einstein 1936; Refsdal 1964; Liebes 1964). The most-
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common lenses in the Gravitational microlensing events

toward the Galactic bulge are M-dwarfs with the masses

∼ 0.3 M⊙. These lens objects make microlensing events

which last on average ∼ 20-30 days (see, e.g., Gaudi

2012; Dominik et al. 2008). In a simple microlensing

event the magnification factor depends on three param-

eters which are: (i) ρ⋆ the source radius normalized to

the Einstein radius and projected on the sky plane, (ii)

the brightness profile of the source disk, and (iii) u the

lens-source relative trajectory normalized to the Ein-

stein radius. Here, the Einstein radius is the radius

of the images’ ring at the time of complete alignment

between the lens, source and the observer lines of sight.

In these events, the parallax effect alters u from a

straight line to a cycloid one. The amplitude of parallax-

induced deviations in the lens-source trajectory is πE

(the so-called parallax amplitude). Discerning this par-

allax amplitude helps to resolve the known microlensing

degeneracy, since πE is a degenerate function of the lens

mass and its distance (e.g., Refsdal 1966; Gould 1992;

Smith et al. 2005). In joint ground-based and space-

based observations from microlensing events, measuring

up to three physical parameters of lenses is possible be-

cause of different parallax effects from different observers

(Gould 1994, 1995, 1999). As some examples of realizing

satellite parallax in real microlensing observations one

can study An et al. (2002); Shvartzvald et al. (2019);

Zang et al. (2020); Hirao et al. (2020).

One special class of microlensing events are the ones

due to free-floating planets (FFPs) which have short du-

rations (up to a few days) (e.g., Sumi et al. 2011; Mróz

et al. 2017, 2020a,b; Koshimoto et al. 2023). In these

events (i) the parallax amplitude is larger than that in

common microlensing events due to M-dwarfs, and (ii)

the observer trajectory with respect to the Sun is al-

most a straight line with ignorable bending. Therefore,

in such events the straight lens-source relative trajec-

tory varies with a considerable and straight deviation,

i.e., u⊙ + δu. Accordingly, the parallax effect in these

events alters the real light curves to other simple ones

with indistinguishable parallax effects.

A considerable number of short-duration microlens-

ing events due to FFPs will be discovered by the Roman

Space Telescope during its microlensing survey (see, e.g.,

Penny et al. 2019; Johnson et al. 2020). We note that

Sumi et al. (2023) presented the first measurement of the

mass function of free-floating planets and predicted that

Roman could detect a significant number of these ob-

jects with masses down to that of Mars. Since measuring

their parallax effects is crucial to correctly extract the

lens mass and its distance, possible joint observations by

Roman, LSST (LSST Science Collaboration et al. 2009),

Euclid, and Chinese Space Station telescopes from these

events were proposed by Bachelet & Penny (2019); Ban

(2020); Bachelet et al. (2022); Yan & Zhu (2022). Also,

Hamolli et al. (2013) simulated microlensing events due

to FFPs by considering the parallax effect and discussed

on the best position of the Earth in its orbit around the

Sun for measuring the parallax effect.

Simultaneous observations are not possible for some of

short-duration microlensing events. For instance, for the

ones that either (i) their durations are very short, or (ii)

their observing field is not observable by two telescopes

simultaneously, or (iii) other telescopes have other pri-

orities for their observations. Modeling such microlens-

ing events leads to lensing parameters somewhat devi-

ated from their real amounts. We study this point (how

much invisible parallax is destructive while interpreting

short-duration events due to FFPs) in this work numeri-

cally, and statistically evaluate the parallax-induced de-

viations on the inferred lensing parameters from obser-

vations.

In Section 2, we review the formalism for microlens-

ing light curves by considering the parallax effect. In

Section 3, we generate short-duration (tE < 10 days)

microlensing events due to FFPs toward the Galactic

bulge, and assume these events are observed only by the

Roman telescope during one 62-day observing season.

We extract the parallax-affected events by evaluating

∆χ2 values. To calculate the parallax-induced devia-

tions in their lensing parameters, we fit simple Paczyński

microlensing models to their simulated synthetic data.

The statistical results are explained in Section 4. In the

last section, we explain the results and conclusions.

2. FORMALISM: MICROLENSING AND

PARALLAX

In a microlensing event due to a point-like source star,

the magnification factor only depends on the lens-source

relative distance projected on the sky plane and normal-

ized to the Einstein radius, u, as given by:

A(u) =
u2 + 2

u
√
u2 + 4

. (1)

We first assume the observer is on the Sun’s center

(the so-called heliocentric frame). The heliocentric co-

ordinate system is specified by three normal axes, i.e.,

(n̂1, n̂2, ẑ), where ẑ is in the line of sight direction and

toward the source star. (n̂1, n̂2) describe the sky plane,

where n̂1 is in the direction of increasing the Galactic

longitude, and n̂2 is toward the Galactic north pole. In

this system, the components of lens-source relative tra-

jectory projected on the sky plane u⊙ are given by:

u⊙,n̂1 =
t− t0
tE

cos ξ − u0 sin ξ,
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u⊙,n̂2
=

t− t0
tE

sin ξ + u0 cos ξ, (2)

where, u⊙ =
(
u2
0+(t− t0)

2/t2E

)1/2

, t0 is the time of the

closest approach, u0 is the lens impact parameter, ξ is

the angle for projection of the lens-source relative tra-

jectory on the n̂1 axis. tE is the time to cross the angular

Einstein radius with the lens-source relative velocity:

tE =
θE

µrel,⊙
, θE =

RE

Dl
=

√
4 G Ml

c2
Dls

DlDs
(3)

where, G is the Gravitational constant, c is the speed of

light, Dl, and Ds are the lens and source distances from

the observer, and Dls = Ds−Dl. µrel,⊙ is the size of the

lens-source angular velocity vector as measured in the

heliocentric reference frame, which is given by:

µrel,⊙ =
vs,p − v⊙,p

Ds
− vl,p − v⊙,p

Dl
, (4)

where vl,p, vs,p, and v⊙,p are the lens, source and the

Sun velocity vectors projected on the sky plane. Since

the Sun motion around the Galactic center during a lens-

ing event is linear, the lens trajectory with respect to the

source star (as measured in the heliocentric coordinate

frame) is a straight line with a constant relative velocity

µrel,⊙.

Now, we assume the observer is rotating the Sun. The

annual motion of the observer around the Sun changes

µrel,⊙ by:

µrel, o = µrel, ⊙ +
πrel

au
vo,p, (5)

where vo,p is the observer velocity with respect to the

Sun projected on the sky plane, and πrel = au/Dl −
au/Ds is the relative parallax amplitude. Accordingly,
the observer motion around the Sun changes two com-

ponents of uo as:

uo,n̂1
=u⊙,n̂1

+ πE

∫ t

t0

vo,n̂1

au
dt,

uo,n̂2
=u⊙,n̂2

+ πE

∫ t

t0

vo,n̂2

au
dt. (6)

These parallax-induced deviations alter periodically

(same as a sine function) with the known amplitude

πE = πrel/θE =
√
πrel

/
κ Ml, where κ is a constant.

2.1. Case study: Short-duration Microlensing due to

FFPs

Here, we aim to evaluate the second terms in Equa-

tions 6 (the parallax-induced deviations) in short-

duration microlensing events due to FFPs. To project

the observer velocity vector on the sky, we first specify

its components in the Galactic coordinate system. The

Galactic coordinate system is described with three nor-

mal directions (U, V, W ), which are radial toward the

Galactic center, clock-ward tangential in the Galactic

plane, and normal to the Galactic plane and toward the

Galactic north pole, respectively. The observer velocity

components in this coordinate system is given by:

vo,U=+Vo sinΩ cos θ⊕,

vo,V=−Vo cosΩ,

vo,W=−Vo sinΩ sin θ⊕, (7)

where, θ⊕ = π/3 is the angle between the Earth orbital

plane around the Sun and the Galactic plane, Vo = Ro ω,

Ω = ω(t− t0) + ϕ0, ω = 2π/P⊕ is the Earth angular ve-

locity around the Sun, and P⊕ = 365.25 days. ϕ0 is an

initial phase which describes the Earth velocity’s vector

at the time of the closest approach in the lensing formal-

ism. Ro is the orbital radius of the observer around the

Sun, which is the astronomical unit (au) when the ob-

server is the Earth and 1.01 au for the Roman telescope

(from L2 Lagrangian point). Here, we assumed that the

observer is rotating the Sun in the Earth orbital plane

and in a circular orbit.

According to the formalism introduced in Appendix of

Sajadian & Sahu (2023), we derive the projected com-

ponents of the Earth velocity on the sky plane (in the

directions n̂1, n̂2) as:

vo,n̂1
=sinα vo,U − cosα vo,V,

vo,n̂2 =sin b
[
cosα vo,U + sinα vo,V

]
+ cos b vo,W. (8)

Here, b is the Galactic latitude of the line of sight of

the source star, α ≃ π − l, and l is the Galactic lon-

gitude of this line of sight. Toward the Galactic bulge,
l ≃ 0, b ≃ 0, and so α ≃ π. Additionally, for short-

duration microlensing events due to FFPs,
∣∣t−t0

∣∣ ≪ P⊕.

Considering these features and using Equations 8, two

parallax-induced deviations (given in Equations 6) are:

δun̂1
≃−R′

oπE

(
sinΩ− sinϕ0

)
≃−R′

oπE

[
ω(t− t0) cosϕ0 −

1

2
sinϕ0ω

2(t− t0)
2
]
,

δun̂2
≃

√
3

2
R′

oπE

(
cosΩ− cosϕ0

)
≃

√
3

2
R′

oπE

[
− ω(t− t0) sinϕ0 −

1

2
ω2(t− t0)

2 cosϕ0

]
,(9)

where R′
o = Ro/au, and uo = u⊙ + δu. In these rela-

tions, although ω(t−t0) ∼ tE/P⊕ is very small, in short-

duration microlensing events due to FFPs the parallax

amplitudes (πE ∝ 1/
√
Ml) are considerable and larger
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Figure 1. Left panels show two examples of microlensing light curves due to FFPs in which the parallax effects are not
discernible. Right panels contain their lens-source relative trajectories projected on the sky plane without (black solid lines u⊙)
and with (blue dashed lines uo) considering the parallax effect. In these panels, the dark-red dot-dashed lines are δu. The
index r for parameters refers to their values in the real models.

than those in the common microlensing events by 5 up

to 3000 times for Ml ∈ [0.01 M⊕, 15 MJ].

Hence, the parallax effect in microlensing events due

to FFPs is not discernible, because two parallax-induced

deviation terms (Equation 9) as far as tE ≪ P⊕ behave

linearly versus time without any bending and acceler-

ation (by considering only first-order terms). In that

case, uo will be a straight line and the offered light

curve will be symmetric with respect to its peak. How-

ever, if πE × tE has the same order of magnitude with

P⊕, i.e., πE × tE(= πrel/µrel,o) ∼ P⊕, then δu alters u⊙
considerably, which means A(uo) and A(u⊙) are differ-

ent whereas both of them are simple and symmetric. In

such events parallax effect is indistinguishable and invis-

ible, whereas it changes the observed light curve and its

parameters considerably. Accordingly, in short-duration

events due to FFPs, δu ∝ πrel which means parallax can

make large deviations when FFPs are close to the ob-

server with high πrel values. We examine these points

in the next section based on a Monte Carlo simulation.

3. MONTE CARLO SIMULATION:

MICROLENSING DUE TO FFPS BY Roman

In this section we do a Monte Carlo simulation from

microlensing events due to FFPs that can be detected

during the Roman microlensing Survey. We assume that

the Roman telescope is taking data from these events

during one 62-day observing season in 7 lines of sight

toward the Galactic bugle and there are no follow-up

observations for these events.

The details of these simulations can be found in the

previous papers (see, e. g., Sajadian 2021a; Sajadian

et al. 2023; Sajadian & Sangtarash 2023), so we briefly
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Figure 2. The light purple histograms are the normalized distributions of some parameters due to all simulated microlensing
events which are described in Section 3. The normalized distributions of the events whose light curves are (and are not) affected
with parallax effects are shown with green (and black step) histograms.

Table 1. Tha average values from the parameters whose distributions are shown in Figure 2.

Parameters
/
from events log10[Ml] Dl log10[tE] log10[ρ⋆] mbase fbl log10[πrel] log10[θE] vrel

M⊕ kpc days mag mas mas km/s

All events 2.33 6.58 −0.16 −0.14 20.02 0.53 −1.12 −2.09 159.10

Parallax− affected events 2.46 5.86 0.07 −0.40 19.60 0.61 −0.88 −1.90 120.91

Not affected events 2.16 7.19 −0.55 0.01 20.38 0.45 −1.55 −2.39 192.05
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explain them here. To generate a microlensing event, we

should choose (i) a source star in a given line of sight,

and (ii) a lens object, and then (iii) determine the lens-

ing parameters. We specify the distances of source stars

(Ds) based on the overall mass density versus the dis-

tance from the observer in a given line of sight. Then, we

determine the photometry properties of the source stars

using the Besançon model, and according to the Galac-

tic structure to which the source star belong (Robin

et al. 2003, 2012). In the next step, we indicate the lens

distance from the observer (Dl) using the microlensing

event rate function. We limit the masses of lenses to

the mass range Ml ∈ [0.01M⊕, 15MJ] and select them

using a log-uniform mass function dN/dMl ∝ M−1
l ,

in the same way with Johnson et al. (2020); Sajadian

(2021b). We determine the lens and source disper-

sion velocity components using the normal distributions

whose widths given by Robin et al. (2003). In the short-

duration microlensing events due to FFPs, the finite-

source effect (Witt & Mao 1994) is considerable, since

the angular source radius θ⋆ normalized to the angu-

lar Einstein radius is ρ⋆ = θ⋆
/
θE ∝ M

−1/2
l . Therefore,

we determine the microlensing magnification factor by

considering finite-source size and using the RT-model

(Bozza 2010; Bozza et al. 2018). For these events we

consider the parallax effect based on the formalism ex-

plained in the previous section. Since we aim to fo-

cus on the events affected by the parallax whereas this

effect is unrecognizable while modeling (or when this

effect should be ignored while inferring the lensing pa-

rameters), we exclude the events have tE > 10 days.

However, in the simulation 99% of simulated events due

to FFPs with a log-uniform mass function had tE less

than 10 days.

In the next step, for each light curve we produce the

synthetic data points taken by the Roman telescope.

We consider an observing season with the duration

Tobs = 62 day, and uniformly choose t0s from the range

[0, Tobs]. For each data point we determine the error bar

in the magnification factor using σA = A
∣∣1−10−0.4 σm

∣∣,
where A is the magnification factor. σm is the Roman

photometric error which is a function of the apparent

magnitude in the Roman filter (W149) (Fig. 4 in Penny

et al. 2019). The cadence between data is fixed to 15.16

min.

In the simulation we determine the number of blending

stars by integrating over the Galactic number density in

a given line of sight to determine the projected surface

one (Eq. 2, 3 in Sajadian & Poleski 2019). This surface

density indicates the number of blending stars whose

lights enter the source PSF (Point Spread Function).

The blending in the lensing formalism is usually evalu-

ated by the factor fbl which is the ratio of the source

flux (itself) to total baseline flux enters the source PSF.

The higher fbl value, the less number of blending stars.

We perform this Monte Carlo simulation, and generate

9646 microlensing events due to FFPs with tE < 10

days which potentially are discernible by the Roman

telescope. The detectability criteria were explained in

Sajadian (2021b).

For some of these events, the parallax effect does not

change the light curve shape and so ignoring the parallax

effect for these events does not alter the inferred lens-

ing parameters significantly. To extract these events we

consider a criterion, i.e., the difference between χ2
real and

χ2
without values from fitting the real model with parallax

and the real model without parallax (respectively) be

less than 100, i.e., ∆χ2 =
∣∣χ2

real −χ2
without

∣∣ < 100. Most

of these events have either very short time scales (with

sparse data points), or large finite-source sizes or faint

source stars with high photometric error bars which all

result small ∆χ2 values. Additionally, when Dl ≃ Ds

which results very small πrel values, the parallax am-

plitude decreases, and this effect will not change the

microlensing light curve.

Two examples of these events can be found in Figure

1. In this figure, for two light curves (shown in the

left panels), their lens-source relative trajectories with

(blue dashed line uo) and without (black solid line u⊙)

parallax effects are represented in their right panels.

The parallax-induced deviations in the lens-source rela-

tive trajectories δu are depicted with the dark-red dot-

dashed lines. The lensing parameters used to these light

curves are mentioned at the top of plots. In these light

curves high photometric errors and low number of data

points cause the parallax-induced deviations to be un-

detectable.

46.3% of all simulated events have ∆χ2 > 100 and

tE < 10 days. For these events the parallax effect is

invisible, but changes their observed light curves con-

siderably.

In Figure 2, we show the normalized distributions

of some parameters from simulated microlensing events

due to FFPs with light purple color. To study what

kinds of simulated events are more affected with the

parallax effect, in these plots the distributions of events

with ∆χ2 > 100 (and ∆χ2 < 100) are plotted with green

(and black step) histograms. To better compare these

distributions, in Table 1 we report the average values of

the parameters whose distributions are plotted in Figure

2. In this table three rows (from top to bottom) con-

tain the average values due to all simulated events (with

light purple histograms), parallax-affected events (green
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Figure 3. Similar to Figure 1. In these two short-duration microlensing light curves the parallax changes their widths
significantly. The index b for tE and ρ⋆ refers to their values in the best-fitted simple microlensing models. The best-fitted light
curves are depicted by green dotted curves. In the titles ’dof’ refers to the degree of freedom.

histograms) and not affected ones (black step ones), re-

spectively.

Accordingly, most of events in which Dl ≲ 3 kpc (or

πrel ≳ 0.2 mas), and tE ≳ 3 days (which have more

number of data points) are affected by parallax with

∆χ2 > 100. Also, the events due to faint or highly

blended source stars, or the ones with ρ⋆ ≳ 3 are less

affected with parallax (e.g., the top event in Fig. 1).

In fact, when the normalized source radius is large, the

magnification factor is low as it is estimated by 1+2
/
ρ2⋆

(Gould & Gaucherel 1996; Agol 2003), so variations in

the lens-source relative trajectory does not change the

light curve much.

In the next section, we focus on the microlens-

ing events with ∆χ2 > 100 and study the parallax-

induced deviations in their lensing parameters by finding

the best-fitted simple Paczyński light curves for these

events.

3.1. Fitting simple Paczyński microlensing models

For each of the simulated microlensing events due to
FFPs with tE < 10 days and ∆χ2 > 100, we find

the best-fitted simple Paczyński microlensing models us-

ing the python-based package emcee1(Foreman-Mackey

et al. 2013). For fitting a simple microlensing model

there are 5 parameters which are tE, ρ⋆, t0, u0, and

fb. We exclude the apparent baseline magnitude due to

all blending stars in the W149 filter, mbase, because the

parallax does not change this parameter. For finding the

best-fitted microlensing models with 5 free parameters,

40 chains (i.e., Nwalkers= 40 in the emcee code) and

each chain with 10000 steps were sufficient. We ignore

the limb-darkening effect for source stars, and simulate

synthetic data points for light curves with ρ⋆ < 1 in the

1 https://emcee.readthedocs.io/en/stable/

https://emcee.readthedocs.io/en/stable/
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Figure 4. Similar to Figure 3. In these two microlensing events the parallax-induced deviations are significant, because in
these events the lens object is close to the observer which results large πrel values.

Table 2. The statistical results from the Monte Carlo
simulation.

δtE δρ⋆ δu0 δt0 δfbl δtE and δρ⋆

> 0.02 73.7 83.6 63.2 3.6 52.1 62.6

> 0.05 46.7 75.6 43.3 1.5 31.8 36.8

> 0.1 26.8 68.8 29.4 0.7 18.6 19.8

> 0.3 8.0 56.9 14.7 0.2 4.8 4.9

> 0.5 3.8 48.7 10.1 0.1 1.9 1.9

> 0.7 1.9 41.3 7.5 0.1 0.8 0.8

Note—Each entrance is the fraction of simulated events
with ∆χ2 > 100 in which the given relative deviations
(its column) are larger than the given threshold (its
row).

time interval [−2.5 tE + t0, 2.5 tE + t0], and the others

in the time interval [−2.5 t⋆ + t0, 2.5 t⋆ + t0], where

t⋆ = tE × ρ⋆.

Two parameters tE and ρ⋆ are functions of the lens

mass and its distance. Hence, the parallax-induced de-

viations from these two parameters directly lead to mis-

interpretation of the lens object. From simulations, we

found that in events that u⊙ and δu are parallel, i.e.,∣∣ξ − ϕ0

∣∣ ≃ 0, 180◦ the widths of observed light curves

change significantly and lead to the highest deviations

in either tE or ρ⋆. Two examples of such events are

represented in Figure 3. In these light curves the best-

fitted light curves are shown with green dotted curves.

tE, b and ρ⋆, b are the Einstein crossing time and the

normalized source radius due to the best-fitted models

which are mentioned in the second lines of the left pan-

els’ titles. To evaluate the goodness of the fitted mod-

els, we report the χ2
real, and χ2

best values due to the real,

and best-fitted models (blue dashed, and green dotted

curves respectively), and the number of degrees of free-

dom (dof) in the titles.
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Figure 5. The fraction of the simulated events due to FFPs which are affected by parallax in percent. Here, we have three
definitions to extract the parallax-affected events: (i) ∆χ2 > 100 (gray solid lines), (ii) ∆χ2 > 100 and δtE > 0.02 (red dashed
lines), and (iii) ∆χ2 > 100 and δρ⋆ > 0.02 (green dot-dashed lines).

As mentioned in the previous section, when πrel is

large (the lens object is close to the observer) the

parallax-induced deviations in the microlensing light

curves are relatively large so that most of lensing param-

eters due to the best-fitted models are different from real

ones. Two examples of such events are represented in

Figure 4. The statistical results from this Monte Carlo

simulation are reported in the next section.

4. STATISTICAL RESULTS

After indicating the best-fitted simple models for the

simulated events with ∆χ2 > 100, we statistically in-

vestigate the fractions of events in which the best-

fitted lensing parameters are considerably different from

the real ones. These fractions are reported in Table

2. In this regard, we define the relative variations in

the lensing parameters, e.g., δtE = |tE, r − tE, b|/tE,r.

Here, tE, r, and tE, b are the Einstein crossing times

from the real lensing model with parallax and the best-

fitted simple model, respectively. Hence, the indexes r

and b (throughout the paper) are referred to the real

and best-fitted models. In the same way, we define

the relative deviations in other lensing parameters as:

δρ⋆ = |ρ⋆, r − ρ⋆, b|/ρ⋆,r, δu0 = |u0, r − u0, b|/u0,r,

δt0 = |t0, r − t0, b|/t0,r, and δfbl = |fbl, r − fbl, b|/fbl,r.
According to Table 2, the fraction of events in which

the times of closest approach are shifted by δt0 ≳ 0.3 is

only 0.2%. The most-affected parameter (by parallax)

is ρ⋆. In 56.9% of events with ∆χ2 > 100 the relative

deviation δρ⋆ is larger than 0.3. 8.0% of the parallax-

affected events have δtE > 0.3. Deflections in tE, and

ρ⋆ lead to misinterpreting the lens object (its mass and

distance). According to the simulation, we found that in

4.9% of simulated parallax-affected events with ∆χ2 >

100, both relative deviations δtE and δρ⋆ were greater

than 0.3.
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Figure 6. The scatter plot of the relative deviation in the
Einstein crossing time δtE versus two parameters Dl, and
log10[Ml(M⊕)].

The fraction of parallax-affected events as a function

of four relevant parameters are plotted in Figure 5. In

each panel, three depicted lines are corresponding to

three different criteria to extract the affected events

which are: (i) gray solid lines show the fractions of

events with ∆χ2 > 100, (ii) red dashed lines represent

the fraction of events with ∆χ2 > 100 and δtE > 0.02,

and (iii) green dot-dashed lines reveal the fraction of

events with ∆χ2 > 100 and δρ⋆ > 0.02. Four points

from different panels of this figure are mentioned in the

following.

• According to the top-left panel: the events with higher

πrel values (due to closer lens objects) are more affected

by the parallax effect. According to the discussion in

the previous sections, in short-duration microlensing

events due to FFPs the parallax-induced deviation δu

is almost a straight line, and δu ∝ πrel. By increasing

πrel, the relative deviations in both tE, and ρ⋆ enhance.

We also represent the scatter plot of δtE versus Dl in

the top panel of Figure 6 which emphasizes this point

as well.

• More massive lens objects produce longer microlens-

ing events with lower finite-source size and lower πE.

Hence, the lens mass has three effects on parallax-

induced deviations. (i) Generally, longer events have

higher numbers of data points, and ∆χ2 values. (ii)

For longer microlensing events the approximations in

Equations 9 are not valid, and by considering more

terms in these expansions, δu will reduce by the lens

mass. (iii) The events with lower ρ⋆ values have on

average higher magnification factors and are more sen-

sitive to variations in parameters, specially ρ⋆. Con-

sidering all of these points, longer events due to more

massive lens objects have lower δtE (see also the bot-

tom panel of Figure 6), but higher δρ⋆, as depicted in

the top-right panel of Figure 5.

• According the bottom-left panel of Figure 5, the events

with larger finite-source sizes (with smaller θE values)

are less affected by parallax. As discussed in the previ-

ous section, magnification factor due to large ρ⋆ is low

and depends approximately on the source size itself

(Gould & Gaucherel 1996; Agol 2003), and different

lens trajectories passing from large source disks have

almost similar light curves. On the other hand, the

magnification factor for such events is not high (very

close to one) which causes on average higher photo-

metric errors, and lower ∆χ2 values. We note that

considering (i) θE =
√
κ Ml πrel, and (ii) two factors

of the lens mass and the relative parallax have inverse

effects on δtE, hence δtE is not much sensitive to θE.

• The last panel of Figure 5 emphasizes that the rel-

ative deviation δtE additionally depends on the angle

between the lens-source relative trajectory and the par-

allax vector (|ξ − ϕ0|). When u⊙ and δu are parallel

(|ξ − ϕ0| ≃ 0, 180) the width of light curves and spe-

cially tE changes considerably.

There are some other correlations between the real

parameters and the relative deviations in the lensing

parameters. These correlations reveal in what kind of

short-duration microlensing events the indiscernible par-

allax effect rather changes each of lensing parameters. In

Figure 7 we show the correlation matrix between relative

deviations in the lensing parameters in the logarithmic

scale (i.e., log10[δtE], log10[δρ⋆], log10[δu0], log10[δt0],

and log10[fbl]) and the eight relevant and physical pa-

rameters of simulated events (include log10[Ml], Dl,

log10[tE], mbase, log10[πE], log10[πrel], log10[θE], and

log10[ρ⋆]). The correlation coefficients which are men-

tioned in the color bar are in the range [−1, + 1]. The

positive and negative correlations between two entrances

mean values of the first one are rising as those in the
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Figure 7. The correlation matrix between the relative deviations in the lensing parameters (the first five rows) due to the
indiscernible parallax effects and the relevant and physical parameters of simulated events(the other rows).

second one increase, and vice versa. The zero correla-

tion coefficient means there is no correlation between

the given entrances.

The highest correlation for the relative deviations for

the Einstein crossing time is 0.5 and with Dl, and as

a result log10[πrel] and log10[πE], as emphasized in the

previous section.

The relative deviation in the source radius is highly cor-

related with log10[θE] and log10[ρ⋆] with the correlation

coefficient ±0.6. There are weaker and positive correla-

tions between it and log10[tE], and the lens mass.

The relative deviation in the lens impact parameter

(δu0) is correlated with log10[πE] and log10[Ml] with the

correlation coefficients ±0.5.

In the regard of relative deviation in the time of clos-

est approach, the highest correlation is 0.6 and with

log10[tE]. Finally, the relative deviation in the blend-

ing factor is highly correlated with δu0 which is 0.6. We

note that the blending effect makes a degeneracy be-

tween parameters in microlensing events due to FFPs

specially the ones with considerable finite-source sizes

(Mróz et al. 2020a; Sajadian 2023), which makes these

correlations between relative deviations.The microlens-
ing events due to fainter source stars have higher relative

deviations in tE, ρ⋆, t0, and fb.

To estimate the number of FFPs will be detected

by the Roman telescope through its microlensing sur-

vey so that their parameters are misinterpreted because

of the indiscernible parallax effect, we use the predic-

tions offered by Johnson et al. (2020). Accordingly,

the Roman telescope will detect NFFP = 897 FFPs

in the mass range [0.1M⊕, 1000M⊕] by assuming a

log-uniform mass function for them (see Table (2) of

Johnson et al. (2020)). According to our simulation in

the same mass range, f1 = 36.5% of such events have

∆χ2 > 100. In f2 = 13.9, 3.1, 1.1% of these events,

indistinguishable parallax effects make the relative de-

viations in both tE and ρ⋆ larger than 0.1, 0.3, and 0.5

respectively. The number of parallax-affected FFPs de-

tectable by the Roman telescope can be estimated by
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N = NFFP × f1 × f2. Hence, 46, 10, 4 of these FFPs

which are discovered through Roman microlensing sur-

vey are affected by invisible parallax so that both δtE,

and δρ⋆ are larger than 0.1, 0.3, 0.5, respectively.

5. CONCLUSIONS

Our Galaxy contains trillions of FFPs(Sumi et al.

2023). Gravitational microlensing is the powerful tech-

nique to discover such isolated and dark objects even

low-mass ones (see, e.g., Sumi et al. 2011; Mróz et al.

2017). Although, the James Web Space Telescope

(JWST) can find planetary-mass objects as small as 0.6

Jupiter-mass which are very young and located in ac-

tive stellar formation regions (Pearson & McCaughrean

2023), gravitational microlensing is still the only way to

find cold and dark small bodies in our Galaxy regardless

to their ages and locations.

In the short-duration microlensing events due to FFPs

with planetary masses (i.e., Ml ∈ [0.01M⊕, 15MJ]

where, MJ is the Jupiter’s mass), the parallax ampli-

tudes are higher than those in common events (due to

M-dwarfs with the mass ∼ 0.3M⊙) by [5, 3000] times.

On the other hand, the duration of such events is very

short as it is scaled by tE ∝
√
Ml, mostly up to a few

days. Considering the orbital period of the Earth rota-

tion around the Sun (P⊕), in such short-duration events

discerning parallax effect is barely possible.

In the first glance, the parallax effect is not recogniz-

able in such events and can not help resolving the mi-

crolensing degeneracy. In another glance, although the

duration of these events are short and we can not model

and discern the annual parallax, this effect changes the

shapes of observed light curves and their lensing param-

eters, because of large πE values in these events.

In a short-duration microlensing events due to FFPs,

if tE ≪ P⊕ we can expand the parallax-induced devia-
tion in the lens-source relative trajectory (δu). By con-

sidering only the first-order term in tE/P⊕, this devia-

tion makes a straight line without bending whose size

is ∝ πrel. Hence, the observer motion around the Sun

alters the lens-source relative trajectory in this event as

uo = u⊙ + δu, and as a results its light curve. The

point is that both light curves A(uo) and A(u⊙) are

simple with different lensing parameters. If only one ob-

server takes data from these short-duration events due

to FFPs, the indiscernible parallax effect deviates the

best-fitted lensing parameters from their real values.

In this work, we evaluated the parallax-induced de-

viations in these events statistically. We simulated mi-

crolensing events due to FFPs which have tE < 10 days

and assumed that the Roman telescope would be the

only observer for these events. We expect that some of

short-duration microlensing events which will be alerted

by Roman are not followed up by other telescopes (rotat-

ing the Sun from different orbits), for instance the events

with very short time scales, or follow up telescopes may

have other priorities at the time of the Roman observa-

tions.

46.3% of these simulated events had ∆χ2 = |χ2
real −

χ2
without| > 100 (where χ2

real and χ2
without are the χ2 val-

ues from fitting the real model with and without the

parallax effect). These events mostly were due to FFPs

close to the observer Dl ≲ 3 kpc (which had πrel ≳ 0.2

mas). Also the events due to either faint or highly

blended source stars, or ones with ρ⋆ ≳ 3 are less af-

fected by parallax (see Figure 2). We found that when

the parallax vector and the lens-source trajectory were

parallel, the widths of light curves changed significantly

(see Figure 3).

For parallax-affected events with δχ2 > 100, we

inferred the best-fitted simple Paczyński microlensing

models and evaluated the relative deviations in the lens-

ing parameters, i.e., δtE, δρ⋆, δu0, δt0, and δfbl. We

concluded that ρ⋆ is the most-affected parameter so that

δρ⋆ was > 0.3 in 56.9% of events. Also, the time of the

closest approach t0 was the least-affected parameter, so

that δt0 > 0.3 occurred only in 0.2% events.

We estimated that 46 of microlensing events due to

FFPs which will be discovered by Roman are affected

by missing parallax so that both relative deviations in

tE and ρ⋆ are larger than 0.1. This number of FFPs

whose light curves (and their lensing parameters) are

affected by the parallax effect reveals the importance

of doing simultaneous and dense (with a short cadence)

observations from microlensing events alerted by Roman

to capture the parallax deviations in short-duration mi-

crolensing events due to FFPs. In this regard, the extra

observations should be done with the observers rotating

the Sun in different orbits from the Roman orbit.
All simulations that have been done for this paper are

available in the GitHub and Zenodo addresses: https://
github.com/SSajadian54/FFPs parallax/, and and https://
zenodo.org/record/8342045(sajadian 2024).
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