
Can Language Models Pretend Solvers?
Logic Code Simulation with LLMs

Minyu Chen∗, Guoqiang Li∗B, Ling-I Wu∗, Ruibang Liu∗, Yuxin Su∗, Xi Chang†, Jianxin Xue†
∗Shanghai Jiao Tong University, Shanghai 200240, China
{minkow, li.g, edithwuly, 628628, sshirley}@sjtu.edu.cn

†Shanghai Polytechnic University, Shanghai 201209, China
{changxi, jxxue}@sspu.edu.cn

Abstract—Transformer-based large language models (LLMs)
have demonstrated significant potential in addressing logic prob-
lems. capitalizing on the great capabilities of LLMs for code-
related activities, several frameworks leveraging logical solvers
for logic reasoning have been proposed recently. While existing
research predominantly focuses on viewing LLMs as natural
language logic solvers or translators, their roles as logic code
interpreters and executors have received limited attention. This
study delves into a novel aspect, namely logic code simulation,
which forces LLMs to emulate logical solvers in predicting the
results of logical programs. To further investigate this novel
task, we formulate our three research questions: Can LLMs
efficiently simulate the outputs of logic codes? What strength
arises along with logic code simulation? And what pitfalls? To
address these inquiries, we curate three novel datasets tailored
for the logic code simulation task and undertake thorough
experiments to establish the baseline performance of LLMs
in code simulation. Subsequently, we introduce a pioneering
LLM-based code simulation technique, Dual Chains of Logic
(DCoL). This technique advocates a dual-path thinking approach
for LLMs, which has demonstrated state-of-the-art performance
compared to other LLM prompt strategies, achieving a notable
improvement in accuracy by 7.06% with GPT-4-Turbo.

Index Terms—Large Language Models, Logic, Solvers, Code
Generation, Code Simulation, Code Understanding, Evaluation

I. INTRODUCTION

Logic serves as the foundation for the majority of formal
methodologies in software engineering. By translating speci-
fications, constraints, and test cases into logical frameworks
like First Order Logic (FOL) or Satisfiability Modulo The-
ories (SMT), logic solvers can precisely judge arguments in
problems or check the satisfiability of problems. Thus, state-
of-the-art solvers including Z3 [1] and cvc5 [2] are applied
in wide aspects of software engineering, including software
verification [3], software testing [4], program synthesis [5],
and program analysis [6]. However, logic remains a complex
subject within human cognition, presenting several challenges
to the deployment of logic solvers in software engineering.
One key obstacle is the gap between natural language (NL)
and the solver language (SL) of logical problems, impeding not
only the programming process but also the comprehension of
code segments within existing software systems. Besides, de-
spite advancements, solvers encounter difficulties in effectively
and precisely resolving logical problems, including those that
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are straightforward for humans. Furthermore, the integration
of logic in software engineering often involves various exten-
sions like arrays, integers, reals, strings, and bit-vectors. This
diversity has led to the development of specialized solvers [6],
[7] tailored to different logical scopes.

Recent advances in transformer-based large language mod-
els (LLMs) such as GPT [8] and LLaMA [9] have showcased
their ability to perform logic reasoning akin to humans [10],
[11]. By incentivizing LLMs to translate natural language into
solver languages with in-context learning (ICL) [8] or model
fine-tuning [12], LLMs can successfully solve simple propo-
sitional logic questions in NL form [13], [14]. When faced
with intricate logic-based queries in forms such as FOL [15]
and SAT [16], LLMs exhibit challenges in direct problem-
solving and show low successful execution rates of code gen-
eration. LLMs also fail to conduct relational reasoning [17].
Nonetheless, it is crucial to recognize the valuable bridge
LLMs establish between natural language and solver language,
along with the code intelligence LLMs bring to various
aspects of software engineering, such as code generation [18]–
[20], documentation [21], [22], code understanding [23], and
others [24]–[28]. On the other hand, a novel line of research,
code simulation, is raised to discover the ability of LLMs to
simulate the execution of code and algorithms. Preliminary
research reports that the LLMs struggle to execute long and
complex procedures [29].

Logical    
Solver   

Language

LLMs

Natural
Language

Logic
Answer

Fig. 1. An overview of concepts in our research. The solid line illustrates
current research methods, encompassing two approaches to natural language
problem-solving: LLM-based logic reasoning and solver-augmented LLM
reasoning. Both methods leverage logic understanding with LLMs (indicated
by the black solid line) but diverge in their reliance on logic solvers. The dotted
lines represent crucial issues discussed in this paper that are not mentioned
in previous studies.

This research addresses previously overlooked areas that
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Propositional Logic

Reggae is music. Music is can express feelings.
Can Reggae express feelings?

∧(Reggae x → Music(x))
∧(Music x → ExpressFeelings(x))
∧(Reggae x → ExpressFeelings(x))

SATTrue
First-Order Logic

Some musicians loves reggae. Mozart is a musician.
Does Mozart love reggae?

∧(∃Musician x → Love(x, Raggae))
∧(Music(Mozart))
∧(Love(Mozart, Raggae)

SATUNK

SMT-BitVec

v = BitVec(ʹvʹ, 32)
Mask = v >> 31
¬( v>0 ?v:−v) == (v+mask)^mask)

UNSATFalse
SMT-Real Arithmetic

x = Real(ʹxʹ)
2∗∗x == 3

UNKSAT

Ground
Truth

Solver
Output

Fig. 2. Samples of logical problem to be studied in our research. The light gray boxes display the ground truth of the given problems, while the results given
by the SMT solver are presented in the dark grey boxes. ‘UNK’ denotes unknown.

have been left unexplored by prior studies. While previous
works have predominantly focused on directly solving logic
problems presented in natural language (NL) form or employ-
ing external logical solvers, Large Language Models (LLMs)
have primarily served as NL reasoners or NL-SL translators
in those endeavors. Given that LLMs have been extensively
utilized for logic reasoning in NL, it prompts the question:
What about code simulation? As logic is always inherently
implicit within code and is manifested through the code’s
execution, it serves as a fundamental component that guides
the analysis process and influences the identification of defects,
verification of correctness properties, and generation of test
cases. To solve logic problems encoded within it, LLMs
must comprehend implicit logic, engage in logic reasoning,
and translate the results of reasoning back into the code’s
execution outcome, which constitutes the entire process of
LLMs’ simulation of logic codes.

Thus, our study delves into the realm of LLMs’ simulation
of logic codes to ascertain whether LLMs can retain their
proficiency in logic reasoning when applied to code as LLM-
based logical solvers. To distinguish our work from others, we
propose the first research question: (RQ1)Can LLMs efficiently
simulate the outputs of logic codes? Through experiments,
we demonstrate LLMs’ competence in inferring the outcomes
of codes that incorporate logical reasoning. Furthermore, we
investigate the effectiveness of various prompt techniques,
such as PS, CoSm, and COT, in enhancing LLMs’ perfor-
mance in simulating code. To fully harness the potential of
LLMs in logic code simulation, we introduce our framework,
Dual Chains of Logic (DCoL), which stands as the first
framework specifically tailored for LLM-based logic solvers.
DCoL takes the code directly as input and guides LLMs to
adopt a dual-path thinking approach, enabling them to draw
conclusions for the code’s result. This framework assists LLMs

in effectively navigating through reasoning traps, such as
multiple assignment problems, and reducing confusion during
logic problem-solving. Then, we raise the rest of our research
questions: (RQ2)What strength and (RQ3)pitfalls arise along
with logic code simulation? To this end, we conduct a thor-
ough examination of the effectiveness, strengths, and potential
pitfalls of LLM-based logic solvers, offering a comprehensive
analysis of their performance and identifying potential aspects
for refinement and enhancement in the future.

We highlight our contributions as follows:
• We are the first to propose a novel task, logic code

simulation, for accessing LLMs’ capability of directly
solving logic problems encoded in programs with model
inference.

• We collect three new datasets for the logic code simula-
tion task. We also conduct comprehensive evaluations on
different LLMs.

• We propose a novel LLM-based code simulation tech-
nique, DCoL, resulting in a notable improvement in
accuracy by 7.06% with GPT-4-Turbo.

II. BACKGROUND AND RELATED WORK

A. Large Language Model

Large Language Models (LLMs) are generative models
based on the pre-trained Transformer architecture. Most LLMs
utilize a generative model architecture, where given a sentence
of n tokens, the model is trained to maximize the likelihood
of the ground-truth token ti at the current time step t based
on its preceding sequence ti−1, ..., t1. The training of LLMs
typically follows three main processes: unsupervised training
on large amounts of unlabeled text data without explicit human
annotations, supervised fine-tuning on labeled data relevant
to specific tasks or domains, and reinforcement learning on
feedback from human annotators or evaluators. Leveraging



extensive multimodal data and employing pre-training and
fine-tuning techniques, LLMs have demonstrated state-of-the-
art performance across various downstream tasks, such as
machine translation, numerical reasoning, and code clone
detection, with minimal examples (few-shot) or task-specific
prompt instructions (zero-shot).

B. Logical Problems Solving with LLMs

We begin by identifying logical problems to be addressed
in this work. Generally speaking, the hardest logical prob-
lem underlies the framework of satisfiability modulo theories
(SMT). SMT is a variation of the SAT problem for first-order
logic (FOL), with the interpretation of symbols constrained
by specific theories, such as real arithmetic and bit vectors.
Our study encompasses several subsets of SMT problems,
including propositional logic, SMT problems themselves, and
a segment of first-order logic within the solving ability of
SMT, along with external theories defining constraints. Thus,
we focus on SMT-based languages and solvers, to universally
encode and solve those logical problems.

We elaborate on several samples to be solved in Fig 2. In the
realm of propositional logic, we incorporate variables like x
to enhance conceptual clarity. The proposed hypothesis, Reg-
gae(x) → ExpressFeelings(x), can be derived with deductive
reasoning. We transform the judgment process into a satis-
fiability dilemma by treating the assumption as a constraint.
FOL supports quantifiers ∀ and ∃ on the basis of propositional
logic, introducing uncertainty into problems. In this case,
the assumption remains indeterminate. We check both the
affirmation and negation hypotheses with SMT solvers, to
align with the True/False/Uncertain output form. The uncertain
cases are equivalent to UNSAT for both affirmation and nega-
tion hypotheses. Concerning SMT-based problems, theories
also contribute to their complexity. In the SMT-BitVec case,
the target is to ascertain whether the Left-Hand-Side (LHS)
equals the Right-Hand-Side (RHS) for a bit-operation-oriented
issue. The true/false corresponds to SAT/UNSAT. Conversely,
the SMT-Real-Arthmetic is drawn from the Z3py manual.
The Z3 solver produces an unknown result as x is involved
in the exponentiation of 2x, rendering this problem non-
polynomial. In contrast, individuals can readily find a solution
as x = log2 3.

Despite directly solving reasoning problems in natural lan-
guage [30]–[33], several researches are interested in symbolic-
based logic solving triggered by the improvement in code
generation ability of LLMs. These works are implemented
within a two-step paradigm: initially translating language-
based reasoning tasks into codes suitable for logical solvers,
followed by calling external solvers to execute generated
codes. To address potential issues like syntax errors and
missing elements in the codes, Logic-LM [10] iteratively
refines generated logical form with error messages, while
LINC [34] utilizes a voting mechanism to filter out errors and
provide robust results. Additionally, SATLM [35] parsing all
problems into FOL formulas and solving with Z3 solver. Be-
sides, LoGiPT [12] is a fine-tuned LLM aiming for deductive

reasoning, whereas SymBa [11] leverages backward chaining
to conduct logic reasoning reversely. SoLA [36] combines
LLMs and differential solver layers to address SAT problems.

Our work differs from prior works in various aspects. First,
The source inputs are not limited to natural language ques-
tions, but also logic codes generated from the software testing
or verification procedure in a real-world setting. Second, the
key factor in our research is how LLMs directly comprehend
and simulate the code rather than on code translation and
generation from natural language. Third, we aim to provide
extensive evaluations of various problem types instead of one
specific genre of questions.

C. Code Simulation with LLMs

Code simulation is a relatively new topic of interest. It
is defined as predicting the concrete outputs of codes align-
ing with the execution results. Recent studies on Tuning-
completeness of transformers and LLMs [37]–[40] have sug-
gested that LLMs are capable of interpreting instructions from
code, showing potential to simulate the execution of code and
algorithms as analog models. The previous works encourage
LLMs to simulate a variety of tasks, such as keyboard and
mouse actions on computers [41] and optimizers [27]. While
transformer-based models are trained to predict the execution
traces of codes [42] and UNSAT cores [43], a recent attempt at
simulating code with LLMs has been proposed [29]. Their re-
sults indicate that LLMs can execute instructions sequentially.
When facing long programs and complex procedures, several
tackles such as memorization. The setting of our proposed
logic code simulation focuses on simulating specialized codes
of logical solvers instead of codes for general purposes. The
potential outcome space is limited to either SAT or UNSAT,
making it more favorable for obtaining accurate predictions
since logical codes can be more easily expressed and compre-
hended in natural language.

III. METHOD

In this section, we first introduce related LLMs and the
data-collecting procedure. Afterward, we present a new prompt
technique, Dual Chains of Logic (DCoL), aiming to improve
the accuracy, reasoning process, and robustness of the logic
code simulation task.

A. Involved LLMs

The objective of this study is to assess LLMs’ reliability and
limitations in simulating various forms of logic codes com-
pared to conventional logical solvers like Z3. To accomplish
this, we employ both open-source LLMs such as the LLaMA
family [9], [44], and close-source but strong LLMs such as the
GPT family as our base models. We present details of these
models as follows:

GPT-3.5 Turbo: GPT-3.5 Turbo, also known as ChatGPT, is
a decoder-only network based on the Transformer architecture,
comprising 175 billion parameters. It has undergone pretrain-
ing on 45 terabytes of text data gathered from diverse sources
like books, articles, and websites. Moreover, GPT-3.5 Turbo



is optimized for invoking its capability with Reinforcement
Learning from Human Feedback (RLHF) technique. The GPT-
3.5 Turbo-0125 supports a context window of 16,385 tokens.

GPT-4 Turbo. GPT-4 Turbo is an advancement of GPT-
4, offering increased capabilities with an updated knowledge
cutoff extended to April 2023. It also features a 128k context
window, equivalent to 300 pages of text in a single prompt.

LLaMA-2. LLaMA-2, an open-source foundational model
introduced by Meta Platforms, Inc., has been trained on 2
trillion tokens and is designed to accommodate a context
length of 4096 by default. LLaMA-2 models have been refined
with the input of more than 1 million human annotations,
specifically tailored for chat purposes. LLaMA-2 offers four
model sizes: 7B, 13B, 34B, and 70B. This study focuses on
the evaluation of the 13B model.

Code LLaMA. Code LLaMA is a refined version of
LLaMA-2 designed to support various code-related activities
like coding, testing, explaining, and finishing code segments.
We also deploy CodeLLaMA-13B for our evaluation.

B. Datasets
In contrast to prior research focusing on natural language-

based issues, our study aims to investigate the capability of
Large Language Models (LLMs) in emulating logic code exe-
cution. Some existing datasets are unsuitable for our research
due to challenges and inaccuracies encountered during the
code translation process. Translation challenges in datasets like
FOLIO and AR-LSAT have been only partially resolved, with
successful translation rates reaching 66.7% and 21.8% [14],
respectively. Therefore, we have opted for ProntoQA, a syn-
thetic propositional-logic QA dataset that can be translated
into logic form nearly perfectly, providing a benchmark for
comparison with translation-centric approaches. Nevertheless,
it is notable that the execution accuracy by GPT-4 of ProntoQA
reported is 83.2%, suggesting the persistence of translation
inaccuracies. We apply the hardest 5-hop subset selected in
LogicLM [10]. The questions such as ‘True or false: Alex is
not shy.’ are encoded into solvers by treating it as a constraint
‘IsShy(Alex)’, then the SAT/UNSAT is mapped to True/False.

TABLE I
DATASET INFORMATION PROVIDED. FORMAT MEANS THE INPUT FORMAT

OF QUESTIONS. Z3PY IS BASED ON PYTHON, WHILE SMTLIB IS THE
STANDARD LANGUAGE OF SMT SOLVERS. MEAN LOC REPRESENTS THE

AVERAGE LINES OF CODE (LOC) OF EXAMPLES.

Dataset Formulation Format # of Samples Mean LoC

ProntoQA PL NL 500 -
Z3Tutorial SMT Z3Py 37 9.90

Z3Test SMT Z3Py 85 8.37
SMTSIM SMT SMTLIB 104 14.36

To delve deeper into simulating real-life logical codes, we
propose 3 new datasets from various sources. (1) We gathered
31 code examples from the Programming Z3 tutorial [45],
culminating in a new dataset named Z3Tutorial. (2) Addi-
tionally, the Z3 official repository, Z3test1, offers a range of

1https://github.com/Z3Prover/z3test

test samples for the Z3 solver, from which we extracted 167
Python cases to form the Z3Test dataset. These cases were then
categorized into three question types: logic-only, arithmetic,
and type-inference. We discard the type-inference questions
such as is add(x+y) in our primary experimental setting, but
will be introduced as a challenge for logic code simulation. (3)
we included several codes in SMT-LIB format from the SMT-
COMP 2023 [46]. These instances are predominantly derived
from industrial software or established logical problem col-
lections. We have chosen various external theories to enhance
the intricacy of the problems, including real arithmetic (both
linear and non-linear), bit vectors, uninterpreted functions, and
strings. Our SMTSim dataset consists of 102 samples in total.
For further insights, we present a comprehensive overview of
our curated dataset in Table I. Note that the complexity of a
logic problem is determined by both the quantity of constraints
and the difficulty of logic expressions. The number of lines
is only a partial factor of the overall complexity. All those
code snippets are ensured to only produce the result of SAT
or UNSAT.

C. Prompting Baselines

The baseline Prompting methods considered in this work
are listed below:

• Standard Prompting (SD) [8]. SD straightly asks LLMs
to predict the execution results of logic codes. The
LLMs will return only SAT/UNSAT, sometimes with
short explanations.

• Chain-of-Thought (COT) [30]. COT encourages LLMs
to generate a systematic solution by explaining each step
before presenting the final answer. The LLMs will return
a reasoning path tackling the issue raised.

• Plan-and-Solve Prompting (PS) [47]. PS instructs LLMs
to devise a detailed plan for addressing issues and solve
plan targets sequentially.

• Chain of Simulation (CoSm) [29]. The CoSm method
enhances the conventional Chain of Thought prompting
technique by circumventing the drawbacks associated
with memorization in code simulation tasks. It aims to
track the program trace and forces LLMs to simulate each
instruction sequentially.

Besides, Self-Consistency (SC) [48] employs a majority
voting mechanism on different reasoning paths for robust
prediction. The insight behind this method is maintaining a
consistent As SC is a parallel prompting method to those
above, it can be applied in conjunction with prompting meth-
ods including ours. Thus, we evaluate it as a stand-alone
plugin.

Note that our proposed task is a novel one focusing on
codes as initial input. Thus, methods for processing natural
language problems [10], [35], [36], are no longer compatible
with our framework. Furthermore, these approaches are limited
in their ability to address a specific portion of the task we have
outlined, such as SAT [36] and SMT-Int (SMT questions with
integer computing theory) [10], [35]. As a result, we do not
include them as baselines in our study.



SAT

UNSAT

Logic Codes

y == x + 1, 
ForAll([y], 
Implies(y <= 0, x > y)

If we substitute y = x + 1 into the second 
constraint, we get x + 1 <= 0 implies x > x + 1, 
which is a contradiction. [Wrong]

IF UNSAT

- If y = 3, then x = 2, which satisfies the first 
constraint.
- For the second constraint, if y = 3, then x = 2, 
which also satisfies the constraint. [Correct]

IF SAT

Based on the above analysis, 
it is more reasonable to 
conclude that the result will 
be 'sat' as assignment [y = 
3, x = 2] makes both 
constraints true

Merge

If we substitute y = x + 1 into the second 
constraint, we get x + 1 <= 0 implies x > x + 1, 
which is a contradiction. [Wrong]

COT

Reasoning Path

Chain-of-Thought

Dual Chain-of-Logic

Logic Codes

y == x + 1, 
ForAll([y], 
Implies(y <= 0, x > y)

Fig. 3. Overview of the DCoL method: DCoL offers two hypotheses, SAT (satisfiable) and UNSAT (unsatisfiable), for logic code simulation. The LLMs
verify these hypotheses individually before combining them to reach the final decision, while the COT method only outputs one possible reasoning path.

A notable observation is that the typical few-shot prompt,
which is also known as in-context learning is ineffective in
our experimental setting, which is also reported in similar
tasks such as code simulation [29] and discussed in several
works [49]. Few-shot prompt learning may not work on a
task whose input-label correspondence is not already captured
in the LLMs. In our logic code simulation task, elementary
operations in different subtasks such as different function calls
and various theories can be challenging for in-context learning.
Besides, considering the intricate nature of logic problems, the
templates heavily exceed the LLMs’ context limit. Thus, we
focus on the zero-shot prompting scheme in this research.

D. DCoL: Dual Chains of Logic

Among these approaches, the concept of reasoning paths
is crucial, as they lead to more precise outcomes. Neverthe-
less, when dealing with general questions like mathematical
computations and text generation, the answer search space is
practically infinite, posing challenges in constructing reasoning
paths. In contrast, logic problems that can be converted into
solvers typically result in dual possible outcomes: SAT or
UNSAT. The reasoning paths of humans for determining
whether a set of constraints is SAT or UNSAT are diverse:

(1) If the result is SAT, we should find a legal assignment
of variables to verify it. Consider the case presented in
Figure 4. Assuming that the given codes produce the
output SAT, an arrangement of variables that fulfills all
constraints serves as compelling evidence. One possible
assignment is x = 2, y = 3, which satisfies the first
constraint y ≡ x+ 1. In regard to the second constraint,
∀y [(y ≤ 0) =⇒ (x < y)], y is a independent

variable2, unrelated to the y defined in y ≡ x + 1.
Therefore, only x = 3 is relevant in this context, and
this assignment meets the second constraint.

(2) If the result is UNSAT, we should find a set of minimal
constraints where conflicts always exist, which is also
known as UNSAT core. Replacing x > y with x < y
in the second constraint transforms the problem into
an UNSAT one. The UNSAT core solely consists of
the second constraint because, regardless of the value
assigned to x, there exists a value for y that is non-
positive and less than the given x value. Such that the
second constraint does not always hold.

However, LLMs cannot fully grasp the dual implicit rea-
soning chains for logic problems during one execution time.
Among the dual paths, at least one leads to an accurate solu-
tion. Thus, by guiding LLMs to reason via both SAT/UNSAT
paths, LLMs can produce different reasoning paths for con-
trary goals, and generate promising answers with explanations.

To this end, we propose a novel prompt method, Dual
Chains of Logic (DCoL). Fig. 3 illustrates our proposed DCoL
approach. DCoL encourages LLMs to discard incorrect wrong
prediction UNSAT after integrating dual paths of thinking,
while COT only generates a wrong reasoning path, leading to
the prediction error. As illustrated in the template of DCoL
from Fig. 4, the initial step involves instructing LLMs to
extract variables and constraints for reference. Subsequently,
we present the dual assumptions individually and task LLMs
with solving them for different targets. The COT technique is
leveraged in this step to provide more specific explanations.
At last, LLMs combine these chains and opt for the more

2Independent variable y can be replaced with any symbol, such as ∀z [(z ≤
0) =⇒ (x < z)]



precise and rational one along with corresponding explanations
as their final prediction.

DCoL, in contrast to COT, steers clear of falling into the
erroneous reasoning trap illustrated in Fig. 3. Since y functions
as an independent variable, it is inaccurate to interchangeably
use y = x + 1 in the second constraint, given the realm that
y in both constraints does not hold the same significance.
This error, albeit subtle, often goes unnoticed even by humans
lacking specialized knowledge. However, DCoL consistently
provides a precise reasoning approach for obtaining accurate
outcomes by thinking on the dual side of logic problems.

DCoL Prompt

Given the following code in Z3 solver, you are 
asked to determine the output of the code with 
#sat or #unsat. Follow instructions below:

1. List and understand variables and 
constraints added to the solver.

2. Based on the constraints, if I say the 
result is 'sat', is it correct? Can you find 
satisfied assignments for variables? Let's 
think step by step.

3. Based on the constraints, if I say the 
result is 'unsat', is it correct? Can you find 
conflict constraints? Let's think step by step.

4. Which is more correct and reasonable based 
on the above aspects? Answer your preferred 
hypothesis with #sat or #unsat. Let's think 
step by step.

Code：[[CODE]]

Fig. 4. Prompting template of the DCoL method. Prompts can be modified
slightly according to specific tasks.

IV. EXPERIMENTAL RESULTS

In this section, we will revisit the research questions raised
above and examine them by breaking them down into more
manageable parts.

A. Effectiveness on Logic Code Simulation (RQ1)

We employ four LLMs, GPT-3.5-Turbo, GPT-4-Turbo,
LLaMA-2-13B, and CodeLLaMA-13B, with different prompt-
ing methods, to explore their capability of them on simulating
logic codes. The results are provided in Table II. Two datasets
based on Z3Py are utilized for a comprehensive analysis.

We utilize two additional metrics, namely ”unknown rate”
and ”execution accuracy” to further investigate the effective-
ness of logic code simulation.

Unknown rate indicates the percentage of instances such
as ‘If a solution exists, the output will be SAT; otherwise
UNSAT’, where LLMs struggle to provide a definitive answer.
An unknown output can also be caused by errors in the
program, such as ‘The code should output ERROR rather than
SAT or UNSAT’.

Execution accuracy refers to the precision among instances
that LLMs confirm to be SAT/UNSAT. This measure aids in
assessing the reliability of the outputs generated by LLMs,
The execution accuracy EA is calculated with:

EA =
Acc

1− UNK
(1)

A model can have low accuracy while obtaining a high
execution accuracy. If we apply a random guessing procedure
on those unknown examples, the accuracy will be acceptable
then. Note that all methods obtain execution accuracy greater
than 50%, which means LLMs can perform at least stronger
than random guessing.

The main observations are summarized below:
GPT can pretend logic solvers. As shown in Table II, GPT

shows its capability to simulate logic codes even with the
standard prompting method (SD). In the Z3Tutorial dataset
analysis, it is evident that employing standard prompts can
yield an accuracy exceeding 80% when utilizing GPT-4 Turbo,
known for its high resilience among LLM options. Even when
employing SD prompts with GPT-3.5, an accuracy of 67.74%
can be attained. As for the Z3Test dataset, GPT-3.5 achieves
over 70% accuracy, while GPT-4 successfully solved 80%
logic problems in this dataset. This phenomenon comes from
the combination of code understanding and logical reasoning
for GPT models.

LLaMA is not confident to make predictions. In contrast to
GPT models, LLaMA models often produce more ’unknown’
outcomes, despite having comparable or better performance
accuracy. In the case of the Z3Tutorial dataset, approximately
one-third of the predictions result in unknown outcomes. This
occurrence may stem from the LLaMA models’ limitation in
comprehensively grasping the code, leading them to address
relatively straightforward questions in the dataset. Further-
more, our research reveals that LLaMA exhibits weaknesses
in adhering to instructions, yielding challenging responses to
interpret and analyze. Therefore, we prioritize GPT families
to convey our research better.

COT is a strong baseline. We conducted a thorough study
of different prompting techniques to enhance logical code
simulation. Among these methods, Chain-of-Thoughts (COT)
serves as a strong baseline. Table II shows that COT boosts
standard prompting with 1.18% on the Z3Tutorial dataset and
3.92% on the Z3Test dataset. The superior performance on
COT demonstrates the effectiveness of the reasoning path.

Think on logic rather than think on code. A representative
method performing ‘Think on Code’ is Chain of Simulation
(CoSm), which forces LLMs to simulate the program instruc-
tion by instruction. However, this method is only suitable for
simulating problems with sequential execution paths. Logic



TABLE II
PERFORMANCE OF LLMS WITH DIFFERENT PROMPT TECHNIQUES. THE BOLDED NUMBERS DENOTE THE BEST PERFORMANCE IN THIS DATASET, WHILE

RESULTS IN GREY BOXES REPRESENT THE BEST RESULT AMONG ALL THE PROMPT METHODS. ALL EXPERIMENTS ARE CONDUCTED THREE TIMES.

Method Z3Tutorial Z3Test

Accuracy Unknown Exe. Acc. Accuracy Unknown Exe. Acc.

Z3 100.0 - 100.0 98.80 1.20 100.0

GPT-3.5
Turbo

SD 67.74 - 67.74 70.59 - 70.59
PS 67.74 - 67.74 72.54 3.52 75.19

CoSm 63.44 - 63.44 71.76 - 71.76
COT 68.82 - 68.82 74.11 0.39 74.40

DCoL 70.97 70.97 74.90 - 74.90

GPT-4
Turbo

SD 84.95 - 84.95 76.47 3.53 79.27
PS 86.02 - 86.02 82.35 - 82.35

CoSm 81.72 - 81.72 80.39 2.35 82.32
COT 86.02 - 86.02 81.18 2.35 83.13

DCoL 86.02 - 86.02 83.53 1.76 84.52

LLaMA
2-13B

SD 35.48 36.55 55.91 49.90 17.76 58.78
PS 44.09 36.55 69.49 51.69 29.54 66.46

CoSm 32.25 37.63 51.71 47.70 31.33 63.37
COT 45.16 35.48 70.00 44.11 37.92 63.07

DCoL 51.61 34.40 78.67 54.69 24.95 67.16

Code
LLaMA

13B

SD 44.08 33.33 60.75 44.31 28.00 61.07
PS 46.23 43.01 67.74 45.90 42.71 67.26

CoSm 43.01 36.55 61.29 46.50 39.12 66.06
COT 39.78 47.31 63.44 41.71 48.10 65.76

DCoL 52.68 34.40 69.89 49.30 36.32 67.46

reasoning is a more complex issue as the execution chain
of logic codes is hidden under external solver libraries such
as the Conflict Driven Clause Learning algorithm applied in
Z3 solver. To solve logic problems, LLMs should pay more
attention to logical reasoning to derive the correct execution
path. Nevertheless, the execution of code should not be ignored
in our task. A typical error case involves adding constraints to
a solver that are never actually verified, where LLMs should
disregard these constraints.

DCoL prompt is effective. Our proposed prompt method,
Dual Chains of Logic, offers LLMs the idea of trying two
separate ways of problem-shooting. We observe that among
all LLMs, DCoL can steadily enhance the performance of
logic code simulation across all datasets. The baseline COT is
less competitive on GPT models than DCoL. However, when
utilizing LLaMA models, our proposed DCoL significantly
outperforms all baselines. The explanation lies in behind the
phenomenon can be that with the evolving of LLMs, they
also acquire the ability for implicitly multi-way reasoning.
Furthermore, GPT models have shown a tendency to deviate
from our guidelines in experiments by producing a single
reasoning process directly, resulting in less impact of our
proposed DCoL prompting while reasoning.

Bi-directional Self-Consistency improves performance. A
recent study suggests that the sequence in which premises

are given to LLMs significantly impacts their performance in
natural language reasoning tasks [50]. The Dual Chains of
Logic prompt we introduced will present SAT and UNSAT
questions to LLMs in a successive manner. By swapping
the order of SAT/UNSAT reasoning path in DCoL, LLMs
can show different tending for the final prediction. Inspired
by the idea of self-consistency, To explore this further, a
validation experiment was designed based on the concept
of self-consistency. The experiment involved sending 3 SAT-
first and 3 UNSAT-first DCoL prompts to Z3Test via GPT-
3.5-Turbo separately, followed by aggregating the responses
using a majority voting approach. The experimental results
are depicted in Fig. 5, showing that the bi-directional Self-
Consistency (Bi-SC) mechanism resulted in a 3.34% improve-
ment to the average performance by bridging the gap between
execution orders.

Answer to RQ1: LLMs, especially GPT families, can
effectively stimulate the reasoning results of logic solvers.
The simulation accuracy can be further improved with our
proposed DCoL prompt and Bi-directional Self-Consistency
mechanism.
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Fig. 5. Prompting template of the DCoL method. Prompts can be modified
slightly according to specific tasks.

B. What are the strengths of LLM-based logic code simula-
tion? (RQ2)

Besides conducting comprehensive experiments on Z3-
based programs, we further explore the promises of logic code
simulation to answer this research question.

LLM can simulate generated logic codes. This part is
motivated by the failure reported by Logic-LM [10]. Logic-
LM tackles logic inference challenges in natural language
employing a translation-solver framework. While Logic-LM
demonstrates high proficiency in generating symbolic codes
for the ProntoQA dataset, achieving close to 100% success-
ful execution rate, its precision drops to 61% when calling
the symbolic solvers. The root cause should be LLMs can
generate unreliable codes, leading to incorrect results or
even worse cases. We point out that the consistency for code
generation and code understanding can resolve this issue, by
leveraging logic code simulation procedure on generated code.
To this end, we conduct a comparative study on the basis of
the failure of Logic-LM, as shown in Table III. The approach
of COT + CodeGen regards code generation as an auxiliary
in-context learning task, while NL + Code involves providing
the original language input along with the generated codes
in the previous step. We observe that even with low-quality
codes, direct simulation achieves a performance similar to that
of standard prompting for natural language problems, whereas
NL + Code obtains a comparable accuracy of 75.80% to COT
+ CodeGen when provided contexts, surpassing the Logic-LM
baseline that depends on an external solver.

LLMs are robust simulators. We have already demonstrated
the capability of Large Language Models (LLMs) in code
simulation, indicating that LLMs can comprehend our inten-
tions based on the provided code. Since LLMs can predict the
outcome of code without actually executing it, they are more
tolerant of syntax errors compared to logic solvers. To assess
the robustness of code simulation in LLMs, we conducted an
experiment involving four distinct syntax error patterns:

TABLE III
PRONTOQA COMPARISON

Method Accuracy

Direct Solving

SD 51.20
COT 72.00

COT + CodeGen 76.80

Tranlation + Solver

Logic-LM 61.00

Tranlation + Simulation

Code Only 50.20
NL + Code 75.80

• Mismatched Parentheses: there is an inconsistency in the
placement of parentheses, such as an unequal number
of opening and closing parentheses or improper nesting,
such as (a+ b or func(a, b)).

• Misspelled Variable or Function Names: incorrect
spelling or naming of variables or functions within the
code, such as x1 and xl.

• Mixing Z3 Library Grammar: elements specific to the
SMT-LIB, such as (declare−fun ⟨symbol⟩⟨sort⟩∗), are
incorrectly integrated into the code syntax.

• Mixing First-Order Logic Grammar: elements of first-
order logic grammar, such as quantifiers ∀ and ∃, are
incorrectly incorporated into the code syntax.

For each syntax error pattern, we randomly selected 10 cases
from the Z3 Test dataset to introduce errors. Subsequently,
we applied both COT and our proposed method (DCoT) on
the poisoned Z3 Test dataset. As illustrated in Fig. 6, the
code simulation of LLMs with COT was significantly misled
by the introduced syntax errors, leading to a decrease in
accuracy of approximately 40%. In contrast, syntax errors had
minimal influence on the effectiveness of our method, which
demonstrates LLMs are robust simulators.
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Fig. 6. Performance drop against code-level modifications



LLMs exceed some theoretical limitations of solvers A mo-
tivated example of this strength is showcased in Fig. 2. Con-
straints like 2x == 3 go beyond the representation capability
of SMT theories. Although it remains such a simple question
for humans, typical solvers like Z3 output UNKNOWN in this
case.

LLMs leverage explainable knowledge for reasoning. We
provide an interesting example in Fig. 7 targeting checking
the satisfiability of De Morgan’s Law. Despite enumerating
all assignments for proving, LLMs build the connection from
logic codes to De Morgan’s Law and make the correct pre-
diction with this external knowledge. We suggest that lever-
aging formulas and theorems is a good manual for complex
problem-solving, and LLMs show their capability of utilizing
knowledge for more explainable reasoning.

Input

p, q = Bools('p q’)

demorgan = 
And(p, q) == Not(Or(Not(p), Not(q)))

1. The constraint states that the logical AND of p and q should be 
equal to the logical NOT of the OR of the negations of p and q. 
This is a fundamental property of boolean logic.

2. We need to consider all possible assignments.

3. Since the constraint is based on De Morgan's law, it is 
reasonable to assume that there are no conflicts in the constraint. 
Therefore, the output of the code should be SAT.

.

Output

Fig. 7. An example of De Morgan’s Law

Answer to RQ2: LLMs demonstrate the capability to
process a wider range of input types with a margin for error.
Furthermore, they hold promise in addressing theories that
logical solvers are unable to tackle.

C. RQ3: Pitfalls

To address this research question, we conduct an error
analysis to discover the mistakes in LLMs’ behavior when
facing code simulation challenges. Besides, we report the
experimental result on a challenging dataset, SMTSim, to
investigate the ability of LLMs for solving

Error analysis. We performed a comprehensive analysis
of the findings derived from the Z3Test dataset utilizing three
prompt methods: CoSm, COT, and DCoL, to discover the error
types that occur in different reasoning paths. Our examination
identified six categories of errors present in the unsuccessful
results:

• Inferring error: inferring error pertains to errors in causal
deduction. For instance, if variables a and b are both
true, but equations a ∧ b are deduced as false, this
constitutes an inferring error. Another example is when

the reasoning process leads to contradictory conclusions,
such as inferring a > 10 initially but later treating it as
a < 10 in subsequent references, leading to misjudgment
of results.

• Misunderstanding Satisfiability (SAT) error: occasionally,
LLM accurately identifies a solution set for a problem
expected to yield a satisfiable (SAT) result but instead
returns unsatisfiable (UNSAT). This misunderstanding
arises when the LLM erroneously treats an SAT problem
as if it requires further solving, mistakenly assuming the
presence of multiple solutions and consequently misclas-
sifying it as UNSAT, leading to a misjudgment of the
problem.

• Partial UNSAT error: In some instances, when the ground
truth of SAT is considered, LLM may detect conflicting
assignments while disregarding certain existing ones,
leading to the classification of the problem as unsatis-
fiable. For instance, the formula {x = 1, x > y} is
deemed satisfiable because a suitable set of assignments
like {x = 1, y = 0} can fulfill all the criteria. However,
LLMs may occasionally identify assignments such as
{x = 1, y = 2} which conflict with the mentioned
formula. In such cases, these assignments are designated
as a UNSAT core by LLMs and consequently marked as
UNSAT.

• Bit-vector arithmetic error: Issues have been identified in
managing bitwise operations on bit vectors, particularly
with certain operations posing challenges for the LLM.
For example, when attempting to shift 3 (binary 11) to
the left in a bit vector, the LLM might either provide an
accurate outcome or misinterpret it as overflow, resulting
in incorrect output.

• Real arithmetic error: This category pertains to com-
putational mistakes involving real numbers. It differs
from the abstract division in SMT-LIB by encompassing
errors in both integer and floating-point computations.
For instance, it addresses issues such as establishing the
equality of positive and negative zeros in floating-point
numbers, where the response from the software may lack
clarity and may not guarantee the intended result.

• Commonsense error: LLM sometimes commits basic
mathematical mistakes, like mistakenly equating 1 with
2 during calculations, or not identifying well-known
library functions by their names, potentially affecting
their intended use. This classification also encompasses
situations where LLM misinterprets formulas or code, or
struggles to grasp them fully.

From our analysis, it is evident that our method, DCoL,
aids the LLM in understanding satisfiability problems, thereby
reducing the occurrence of misinterpretation of sat problems
as equation-solving problems, and subsequently decreasing the
incidence of misjudgment of problems. Moreover, in arith-
metic problems, DCoL assists the large model in decomposing
the initial arithmetic steps, resulting in significant performance
improvements.
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Fig. 8. Error analysis among different methods

It’s noteworthy to mention certain examples that, although
not within the purview of our research, are prevalent within
the industry but may not fare well with LLMs. One such
example is the type judgment commonly utilized in Z3Py,
exemplified by the function is_add() as we will mention
later. In Z3 Python code, is_add() discerns whether the
expression within parentheses denotes an addition operation.
For instance, is_add(a + b) is expected to return true,
while is_add(a) should return false. Because this function
type isn’t directly linked to logic but rather to language charac-
teristics, it lies beyond the scope of our research. Nonetheless,
focusing solely on such functions, it is interesting that this kind
of example may lead to suboptimal performance for LLMs.
For instance, is_add(1 + 2) is anticipated to return false
because 1 + 2 is interpreted as a constant number in Z3Py,
which may not only confuse LLMs but also confuse many
people who are not familiar with language features.

Another type of example originates from the SMTSim
dataset collected from SMT-COMP 2023. Some SMT files
are generated by intricate backend libraries, resulting in a
significant number of variables and formulas within these
examples. However, considering the token limit for each query
of LLMs, we had to filter SMT files, removing examples
surpassing a certain threshold of code lines or tokens per
line. Nonetheless, many of these filtered examples contain
queries that cannot be resolved by Z3 or other solvers, yielding
unknown results. These instances hold potential value for
research in this domain, and we aspire to delve deeper into
this issue in future investigations.

Hard problems. SMTSim dataset contains complicated logic
code, with more lines of codes, variables, and theories. We
regard it as a challenge for logic code simulation. We report
the performance of GPT families in Table IV.

TABLE IV
SMTSIM RESULTS

Method ACC. UNK. Exe. Acc

Z3 Solver 97.06 2.94 100.0

GPT-3.5
Turbo

COT 5.88 85.29 33.33
CoSm 14.71 78.43 68.20
DCoL 54.9 6.86 58.94

GPT-4
Turbo

COT 51.96 19.61 65.92
CoSm 50.98 23.53 66.67
DCoL 58.82 5.82 62.45

We observe that COT and CoSm suffer from UNKNOWN
prediction, while our proposed DCoL achieves over 50%
accuracy even with GPT-3.5-Turbo. However, the relatively
low execution accuracy reveals that LLMs struggling to solve
such complex datasets. This issue may stem from the abun-
dance of variables and constraints present. In the SMTSim
dataset, numerous instances occur infrequently but are deeply
intertwined. Due to their limitations in handling extensive con-
texts, LLMs struggle to address complex logical compositions
effectively.

Answer to RQ3: Although LLMs demonstrate satisfactory
performance on several datasets, the potential drawbacks and
limitations of LLMs for logic code simulation should not be
underestimated.

V. CONCLUSION AND FUTURE WORK

In this work, we introduce the novel concept of logic code
simulation to evaluate the ability to comprehend, analyze, and
simulate logic problems encoded in programs. We release three
datasets collected from the solver community and perform an
extensible assessment to evaluate the capability of logic code
simulation for various LLMs. Furthermore, we propose DoCL,
a novel prompt fashion, to improve the reasoning performance
on code-based logic problems.

In the future, we are committed to further enhancing our
DoCL, recognizing that there is considerable room for ad-
vancement. Leveraging the principles of DoCL, numerous
techniques can be implemented to drive significant improve-
ments. Moreover, we aim to broaden the application of DoCL
beyond conventional logical solvers, which typically provide
limited outcomes such as SAT or UNSAT. By expanding its
usage to encompass a wider array of logic code scenarios,
we can ensure that DoCL remains effective across diverse
problem-solving domains. Besides, through integration with
research endeavors focusing on the conversion of natural
language into logical code, DoCL stands poised to establish
a groundbreaking paradigm in logic-based problem-solving
methodologies. Furthermore, by combining LLMs with knowl-
edge retrieval and storage techniques, we look forward to
the real-life application of LLM-based logic solvers, which
can provide incredible efficiency in simulating complex logic
programs.
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[37] J. Pérez, P. Barceló, and J. Marinkovic, “Attention is turing-complete,”
Journal of Machine Learning Research, vol. 22, no. 75, pp. 1–35, 2021.

[38] C. Wei, Y. Chen, and T. Ma, “Statistically meaningful approximation:
a case study on approximating turing machines with transformers,” Ad-
vances in Neural Information Processing Systems, vol. 35, pp. 12 071–
12 083, 2022.

[39] A. Giannou, S. Rajput, J.-y. Sohn, K. Lee, J. D. Lee, and D. Papailiopou-
los, “Looped transformers as programmable computers,” in International
Conference on Machine Learning. PMLR, 2023, pp. 11 398–11 442.

[40] D. Schuurmans, “Memory augmented large language models are com-
putationally universal,” arXiv preprint arXiv:2301.04589, 2023.

[41] G. Kim, P. Baldi, and S. McAleer, “Language models can solve computer
tasks,” Advances in Neural Information Processing Systems, vol. 36,
2024.

[42] C. Liu, S. Lu, W. Chen, D. Jiang, A. Svyatkovskiy, S. Fu, N. Sundaresan,
and N. Duan, “Code execution with pre-trained language models,” in
Findings of the Association for Computational Linguistics: ACL 2023,
2023, pp. 4984–4999.

[43] Z. Shi, M. Li, Y. Liu, S. Khan, J. Huang, H.-L. Zhen, M. Yuan,
and Q. Xu, “Satformer: Transformer-based unsat core learning,” in

https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=WZH7099tgfM


2023 IEEE/ACM International Conference on Computer Aided Design
(ICCAD). IEEE, 2023, pp. 1–4.

[44] B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,
J. Liu, T. Remez, J. Rapin et al., “Code llama: Open foundation models
for code,” arXiv preprint arXiv:2308.12950, 2023.

[45] N. Bjørner, L. de Moura, L. Nachmanson, and C. M. Wintersteiger, Pro-
gramming Z3. Cham: Springer International Publishing, 2019, pp. 148–
201. [Online]. Available: https://doi.org/10.1007/978-3-030-17601-3 4

[46] D. Beyer, “Competition on software verification and witness validation:
Sv-comp 2023,” in International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. Springer, 2023, pp.
495–522.

[47] L. Wang, W. Xu, Y. Lan, Z. Hu, Y. Lan, R. K.-W. Lee, and E.-P.
Lim, “Plan-and-solve prompting: Improving zero-shot chain-of-thought
reasoning by large language models,” in Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 2023, pp. 2609–2634.

[48] X. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H. Chi, S. Narang,
A. Chowdhery, and D. Zhou, “Self-consistency improves chain of
thought reasoning in language models,” in The Eleventh International
Conference on Learning Representations, 2022.

[49] S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Hajishirzi, and
L. Zettlemoyer, “Rethinking the role of demonstrations: What makes
in-context learning work?” in Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, Y. Goldberg,
Z. Kozareva, and Y. Zhang, Eds. Abu Dhabi, United Arab Emirates:
Association for Computational Linguistics, Dec. 2022, pp. 11 048–
11 064. [Online]. Available: https://aclanthology.org/2022.emnlp-main.
759

[50] X. Chen, R. A. Chi, X. Wang, and D. Zhou, “Premise order
matters in reasoning with large language models,” arXiv preprint
arXiv:2402.08939, 2024.

https://doi.org/10.1007/978-3-030-17601-3_4
https://aclanthology.org/2022.emnlp-main.759
https://aclanthology.org/2022.emnlp-main.759

	Introduction
	Background and Related Work
	Large Language Model
	Logical Problems Solving with LLMs
	Code Simulation with LLMs

	Method
	Involved LLMs
	Datasets
	Prompting Baselines
	DCoL: Dual Chains of Logic

	Experimental Results
	Effectiveness on Logic Code Simulation (RQ1)
	What are the strengths of LLM-based logic code simulation? (RQ2)
	RQ3: Pitfalls

	Conclusion and Future Work
	References

