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Abstract. We develop a non-relativistic quantum field theory of electrons and
nuclei based on the Coulomb Hamiltonian. We derive the exact equations of
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1. Introduction

The description of molecules and solids, comprising electrons and nuclei, is commonly
based on the Coulomb Hamiltonian. Moreover, the description of these systems heavily
rely on the Born-Oppenheimer approximation [1, 2], but also various approaches
beyond it have been developed [3, 4, 5, 6, 7, 8, 9]. The field theoretical many-
body Green’s function approach [7, 8, 9] treats the electrons and nuclei differently.
Namely, the electronic operators are written in terms of field operators and the
nuclear variables are in first quantization. Treating the nuclei in first quantization has
been very successful approach in explaining the properties of electron-nuclear systems
like molecules and solids. The nuclear problem can be exactly solved within the
harmonic approximation when the nuclear coordinates in the nuclear Hamiltonian are
expanded up to second order about the equilibrium positions. The resulting quadratic
Hamiltonian can be diagonalized with various methods [2, 10]. This approach is well
established for many situations in which the nuclei are rather localized close to their
equilibrium positions and consequently there are no significant overlap between nuclear
densities. The theory of molecular vibrations and lattice dynamics is well-developed
also from a computational point of view and the open source computational packages
like Quantum Espresso [11, 12] can be used to compute all the quantities needed
to solve the nuclear problem. By doing so, we can compute a number of nuclear
observables, many of them matching well to the experimental values [13, 14, 15, 16].

http://arxiv.org/abs/2403.16103v1
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Despite the success of the first quantization approach for the nuclei, we may
still ask, what is the non-relativistic quantum field theory [17] of electron-nuclei
many-body systems such that all degrees of freedom are described by field operators.
Such a theory could turn out convenient in some situations, particularly in those
when the nuclei are not well localized [18, 19]. Further, in systems where the Born-
Oppenheimer approximation breaks down [20, 21, 22] the coupling of the electron and
nuclear equations become important [8] and our approach developed here provides
an alternative way to deal with this coupling. In this work we derive the exact
non-relativistic quantum field theory of electrons and nuclei given the Coulomb
Hamiltonian. We show that the resulting equations can be written in the form of
the Hedin’s equations [23] for all different species of identical particles (electrons and
different species of nuclei).

This work is organized as follows. We write the Hamiltonian in terms of field
operators in Sec. 2. We define the Green’s functions in Sec. 3. The exact equations
of motion for the Green’s functions and related quantities are considered in Sec. 4.

2. Hamiltonian

We consider a system of Ne electrons and Nn nuclei. The position coordinates of
these particles ri, i = 1, . . . , Ne, and Rj , j = 1, . . . , Nn. We assume that these
particle interactions are Coulombic and thus the starting point is the Hamiltonian
H = T + V , where T is the kinetic energies of the electrons and nuclei and V the
potential energy originating from the Coulomb force. More explicitly, the Hamiltonian
can be written as

H = Tn + Te + Vee + Ven + Vnn, (1)

where the kinetic energies in position representation are

Tn = −

Nn
∑

j=1

h̄2

2Mj

∇2
Rj
, Te = −

h̄2

2me

Ne
∑

i=1

∇2
ri
. (2)

The potential energy contributions can be written as

Vee =
1

2

Ne
∑

i,i′=1

′ ς

|ri − ri′ |
, Ven =

Ne
∑

i=1

Nn
∑

j=1

−Zjς

|ri −Rj|
,

Vnn =
1

2

Nn
∑

j,j′=1

′ ZjZj′ς

|Rj −Rj′ |
. (3)

Here the primed sums are over the values i 6= i′, j 6= j′ and ς ≡ e2/ (4πǫ0). The
Hamiltonian of Eq. 1 is invariant under the translations and rotations of all particles.
This leads to subtle issues as discussed in earlier works [24, 3, 8]. These issues,
however, can vanish when simplifications, like the Born-Oppenheimer approximation
[2] are established. These mentioned issues can be solved by changing the frame of
reference from laboratory frame (in which the equations above are written) to a body-
fixed frame [24, 3, 8]. To concentrate on the new approach and to keep the notation
as simple as possible, we retain to laboratory frame formulation while we acknowledge
its limitations. The Coulomb part of the problem in body-fixed frame is still formally
of the same form [8] as it is in the laboratory frame. Thus, the results of this work
can be transformed in many cases to those in the body-fixed frame.
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To setup a many-body Green’s function theory of electrons and nuclei, the
following approach is conventionally taken [7, 8, 9]: write the electronic variables in
terms of field operators, treat the nuclei in first quantization. After that the equations
of motion are written for the electronic field operators, nuclear displacement operators
and the corresponding Green’s functions, from which the observables can be extracted.
Here we take a different route and treat electrons and different species of nuclei, on
the same footing and describe all species in terms of field operators. By using the
usual procedure of field theory [25, 26, 27] to all species of identical particles involved,
the Hamiltonian in second quantized form can then be written as

Ĥ (t) =

Ns
∑

k=1

∫

drψ̂†
k (r, t)Dk (rt) ψ̂k (r, t)

+
1

2

Ns
∑

k=1

∫

dr

∫

dr′vkk (r, r
′) ψ̂†

k (r) ψ̂
†
k (r

′) ψ̂k (r
′) ψ̂k (r)

+
1

2

Ns
∑

k,k′=1

′

∫

dr

∫

dr′vkk′ (r, r′) n̂k (r) n̂k′ (r′) , (4)

where Ns is the number of species and

n̂k (r) ≡ ψ̂†
k (r) ψ̂k (r) ,

Dk (rt) ≡ −
h̄2

2mk

∇2
k + ϕ (rt)Zk + Fk (rt) ,

vkk′ (r, r′) ≡ ZkZk′χkk′v (r, r′) , v (r, r′) = ς/ |r− r′| . (5)

Here, the indices k, k′ appear as subscripts in the interaction potentials in order to
assign appropriate charges for different species and Here Zk is the electric charge of
the species k. Moreover, χkk′ in Eq. 5 has the value 1 for k = k′ and the value 2 for
k 6= k′. We have added the external time-dependent potentials ϕ (rt)Zk and Fk (rt)
to use the functional derivative approach [28] in deriving the equations of motion.
These potentials are set to zero at the end so that the Hamiltonian of Eq. 4 gives the
matrix elements H given by Eq. 1. The field operators in Eq. 4 satisfy the following
(anti)commutation relations

[

ψ̂k (r, t) , ψ̂
†
k (r

′, t)
]

±
= δ (r− r′) , (6)

and
[

ψ̂†
k (r, t) , ψ̂

†
k (r

′, t)
]

±
=

[

ψ̂k (r, t) , ψ̂k (r
′, t)

]

±
= 0. (7)

That is, for fermionic particles the field operators anti-commute and for bosons the
commutation relations are satisfied. If the particles are of a different species, the
(anti)commutation relations are the following. Let k denote bosonic species and k′

fermionic species or let k and k′ denote two different bosonic species or two different
fermionic species (that is, in all cases when k 6= k′), then

[

ψ̂k (r, t) , ψ̂
†
k′ (r

′, t)
]

−
=

[

ψ̂k′ (r, t) , ψ̂†
k (r

′, t)
]

−
= 0,

[

ψ̂†
k (r, t) , ψ̂

†
k′ (r

′, t)
]

−
=

[

ψ̂k (r, t) , ψ̂k′ (r′, t)
]

−
= 0. (8)

We have now all necessary results to define the Green’s functions and to derive the
equations of motion for them.
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3. Green’s Functions

The one-body Green’s function for a species k is defined as

Gk (rt, r
′t′) ≡ −

i

h̄

〈

T
{

ψ̂k (rt) ψ̂
†
k (r

′t′)
}〉

, (9)

where
〈

T
{

ψ̂k (rt) ψ̂
†
k (r

′t′)
}〉

= θ (t− t′)
〈

ψ̂k (rt) ψ̂
†
k (r

′t′)
〉

− θ (t′ − t)
〈

ψ̂†
k (r

′t′) ψ̂k (rt)
〉

. (10)

The field operators ψ̂k (rt) , ψ̂
†
k (r

′t′) are assumed to be operators in the Heisenberg
picture and the subscript H is neglected for the sake of notational convenience. The
ensemble averages in Eqs. 9 and 10 are of the form

〈ô (t)〉 =
∑

n

〈Ψn|ρ̂ô (t) |Ψn〉 = Tr [ρ̂ô (t)] , (11)

and the density operator is the grand canonical statistical operator

ρ̂ =
e−βĤM

Z
, Z = Tr

[

e−βĤM
]

, (12)

where

ĤM = Ĥ − µeN̂e, N̂e =

∫

drn̂1 (r) , (13)

and µe is the chemical potential of the electrons. We thus assumed that the electrons
are species k = 1.

4. Equations of Motion

We start by writing the Heisenberg equations of motion for the field operator

ih̄
∂

∂t
ψ̂k (r, t) =

[

ψ̂k (r, t) , Ĥ (t)
]

−
. (14)

After computing the commutator of Eq. 14 we write

ih̄
∂

∂t
ψ̂k (rt) =

Ns
∑

k′=1

′

∫

dr′vkk′ (r, r′) ψ̂k (rt) n̂k′ (r′t)

+

∫

dr′vkk (r, r
′) ψ̂†

k (r
′t) ψ̂k (r

′t) ψ̂k (rt)

+Dk (rt) ψ̂k (rt) . (15)

By using Eq. 15 we can start writing the equations of motion for the Green’s functions
of Eq. 9 and determining equations for the related quantities. We derive these
equations in Appendix A and we have obtained a set of equations for the system
of electrons and nuclei with Coulomb interactions with no further approximations. To
summarize the results (Eqs. A.17, A.16, A.27, A.30, A.36, respectively)

δ (1− 2) =

[

ih̄
∂

∂t1
+

h̄2

2mk

∇2
k − Vtot (1, k)

]

Gk (1, 2) ,

−

∫

d3Σk (1, 3)Gk (3, 2) ,
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Σk (1, 4) = ih̄

∫

d3

∫

d5Wk (1, 5)Gk (1, 3)Γk (3, 4, 5) ,

Γk (1, 2, 3) = δ (1− 2) δ (1− 3) +

∫

d4

∫

d5

∫

d6

∫

d7

×
δΣk (1, 2)

δGk (4, 5)
Gk (4, 6)Gk (7, 5) Γk (6, 7, 3) ,

Wk (1, 2) = Z2
kv (1, 2)

+ Z2
k

∫

d3

∫

d4v (2, 3)
∑

k′

Pk′ (3, 4)Wk′ (1, 4) ,

Pk (1, 2) = − ih̄

∫

d3

∫

d4Gk (1, 3)Gk

(

4, 1+
)

Γk (3, 4, 2) . (16)

We call the set of equations given in Eq. 16 the multispecies Hedin’s equations. These
equations are indeed formally the same as the ones for electrons within the Born-
Oppenheimer approximation [23] and beyond it [8]. The coupling of different species
is through all terms of Eq. 16: the screened Coulomb interaction Wk (1, 2), the self-
energy Σk (1, 4), the vertex function Γk (1, 2, 3) and the polarization Pk (1, 2). We
note that we have not imposed any approximations and the relations in Eq. 16 are
exact given the Coulomb Hamiltonian. The Green’s functions are defined with respect
to states of the full electron-nuclear space. The simplest case is when we have only
one species of nuclei. In this case we only have two sets of equations k = 1, 2: one
set of equations 16 for electrons and another for the identical nuclei. The same set of
equations can thus be used to describe any system comprising the very same elements.

What is convenient from the practical point of view is that the Hedin’s equations
[23] have been a successful approach in deriving approximations to computationally
solve the electronic problem within the Born-Oppenheimer approximation. In
particular, the so-called GW-approximation [29] has become already a practical tool
for solving various electronic properties of solids and molecules [30, 31, 32, 33]. We can
use the very same machinery to derive approximations to the multispecies equations.
For example, the multispecies GW-approximation can be obtained by approximating
Γk (1, 2, 3) ≈ δ (1− 2) δ (1− 3) for all k and thus the approximate self-energy, screened
Coulomb interaction and polarization follow from Eq. 16.

5. Conclusions

We have developed an exact non-relativistic quantum field theory of electrons and
nuclei given the Coulomb Hamiltonian. We derived exact equations of motion which
can be written in a form of the Hedin’s equations. While the use of first quantization
for the nuclei has been very useful for the description of molecules and solids in the
past, we believe that our field theoretical formulation introduced here might be useful
and convenient in some situations. These include systems where the nuclei are not well
localized and we need to incorporate the (anti)symmetrization of states of identical
particles to the formalism. Here, the (anti)symmetrization is automatically included
through the use of field operators, also for the nuclei. The fact that an extensive
amount of effort has been put into solving formally similar equations for electrons alone
in the past five decades or so might render Eq. 16 beneficial from a computational point
of view. We also note that the breakdown of the Born-Oppenheimer approximation
induces coupling between the electron and nuclear equations. Here we derived an
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alternative approach, distinct from the conventional methodology, to describe the
electron-nuclei systems and to incorporate this coupling.

Appendix A. Auxillary Results

Appendix A.1. Derivation of Equations of Motion

By using Eq. 15, the equations of motion for the Green’s function of Eq. 9 can be
written as

[

ih̄
∂

∂t
−Dk (rt)

]

Gk (rt, r
′t′) = δ (t− t′) δ (r− r′)

−
i

h̄

Ns
∑

k′=1

∫

dr′′vkk′ (r, r′′)
〈

T
{

n̂k′ (r′′t) ψ̂k (rt) ψ̂
†
k (r

′t′)
}〉

. (A.1)

Define

n̂ (rt) ≡

N
∑

k=1

Zkn̂k (rt) , (A.2)

which is the total charge density and thus one may write Eq. A.1 as
[

ih̄
∂

∂t
−Dk (rt)

]

Gk (rt, r
′t′) = δ (t− t′) δ (r− r′)

−
i

h̄

∫

d3r′′v (r, r′′)Zk

〈

T
{

n̂ (r′′t) ψ̂k (rt) ψ̂
†
k (r

′t′)
}〉

. (A.3)

We use
〈

T
{

n̂ (r′′t) ψ̂k (rt) ψ̂
†
k (r

′t′)
}〉

=
〈

T
{

ψ̂k (rt) ψ̂
†
k (r

′t′)
}〉

〈n̂ (r′′t)〉

+ ih̄
δ
〈

T
{

ψ̂k (rt) ψ̂
†
k (r

′t′)
}〉

δϕ (r′′t)
,(A.4)

and write Eq. A.3 as
[

ih̄
∂

∂t
+

h̄2

2mk

∇2
k − ϕ (rt)Zk − Fk (rt)−

∫

d3r′′v (r, r′′)Zk 〈n̂ (r
′′t)〉

− ih̄

∫

d3r′′v (r, r′′)Zk

δ

δϕ (r′′t)

]

Gk (rt, r
′t′) = δ (t− t′) δ (r− r′) .

(A.5)

Define

Vtot (rt, k) ≡ ϕ (rt)Zk + Fk (rt) +

∫

d3r′′v (r, r′′)Zk 〈n̂ (r
′′t)〉 , (A.6)

and use the notation rt ≡ 1, δ (1− 2) ≡ δ (t− t′) δ (r− r′) and so on. Thus, we can
write Eq. A.5 as

δ (1− 2) =

[

ih̄
∂

∂t1
+

h̄2

2mk

∇2
k − Vtot (1, k)

− ih̄

∫

d3v (1, 3)Zk

δ

δϕ (3)

]

Gk (1, 2) , (A.7)
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where

v (1, 3) ≡ δ (t− t′′) v (r, r′′) , Gk (1, 2) ≡ Gk (rt, r
′t′) ,

Vtot (1, k) = Zkϕ (1) + Fk (1) + Zk

∫

d3v (1, 3) 〈n̂ (3)〉 . (A.8)

The so-called dielectric function for a species k, ǫk (1, 2), is defined through the
following relation for its inverse

ǫ−1

k (1, 2) ≡
δVtot (1, k)

δϕ (2)
= Zkδ (1− 2)+Zk

∫

d3v (1, 3)
δ〈n̂ (3)〉

δϕ (2)
.(A.9)

For the functional derivative appearing in Eq. A.7

δGk (1, 2)

δϕ (3)
= −

∫

d4

∫

d5

∫

d6Gk (1, 4)
δG−1

k (4, 5)

δVtot (6, k)

×
δVtot (6, k)

δϕ (3)
Gk (5, 2) . (A.10)

Define

Γk (4, 5, 6) ≡ −
δG−1

k (4, 5)

δVtot (6, k)
. (A.11)

By using Eqs. A.11 and the definition given by Eq. A.9 in A.10, we obtain

δGk (1, 2)

δϕ (3)
=

∫

d4

∫

d5

∫

d6Gk (1, 4)Γk (4, 5, 6)

× ǫ−1

k (6, 3)Gk (5, 2) . (A.12)

By using Eq. A.12 in Eq. A.7

δ (1− 2) =

[

ih̄
∂

∂t1
+

h̄2

2mk

∇2
k − Vtot (1, k)

]

Gk (1, 2)

− ih̄Zk

∫

d3

∫

d4

∫

d5

∫

d6v (1, 3)Gk (1, 4)Γk (4, 5, 6)

× ǫ−1

k (6, 3)Gk (5, 2) . (A.13)

Let further

Wk (1, 6) ≡ Zk

∫

d3v (1, 3) ǫ−1

k (6, 3) , (A.14)

and thus Eq. A.13 can be written as (some relabeling of the variables)

δ (1− 2) =

[

ih̄
∂

∂t1
+

h̄2

2mk

∇2
k − Vtot (1, k)

]

Gk (1, 2)

− ih̄

∫

d3

∫

d4

∫

d5Wk (1, 5)Gk (1, 3)

× Γk (3, 4, 5)Gk (4, 2) . (A.15)

Define the self-energy as

Σk (1, 4) ≡ ih̄

∫

d3

∫

d5Wk (1, 5)Gk (1, 3)Γk (3, 4, 5) , (A.16)

and Eq. A.15 becomes

δ (1− 2) =

[

ih̄
∂

∂t1
+

h̄2

2mk

∇2
k − Vtot (1, k)

]

Gk (1, 2)

−

∫

d3Σk (1, 3)Gk (3, 2) . (A.17)
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We have obtained the equation of motion for the Green’s function Gk (1, 2) for each
species k.

Appendix A.2. Vertex Function

Consider Eq. A.17. This equation can be rearranged by defining

h′k (1) ≡ ih̄
∂

∂t1
+

h̄2

2mk

∇2
k − Vtot (1, k) , (A.18)

and then multiplying Eq. A.17 from the right with G−1

k (2, 3̄) and integrating
∫

d2δ (1− 2)G−1

k (2, 3̄) =

∫

d2h′k (1)Gk (1, 2)G
−1

k (2, 3̄)

−

∫

d2

∫

d3Σk (1, 3)Gk (3, 2)G
−1

k (2, 3̄) ,

(A.19)

which becomes (some relabeling)

G−1

k (1, 2) = h′k (1) δ (1− 2)− Σk (1, 2) . (A.20)

By taking a functional derivate of Eq. A.20

δG−1

k (1, 2)

δVtot (3, k)
= δ (1− 2)

δh′k (1)

δVtot (3, k)
−

δΣk (1, 2)

δVtot (3, k)

= δ (1− 2) δ (1− 3)−
δΣk (1, 2)

δVtot (3, k)
, (A.21)

where the left hand side, by Eq. A.11, is the vertex function times minus unity. One
may write (Eq. A.18 is used)

Γk (1, 2, 3) = δ (1− 2) δ (1− 3) +
δΣk (1, 2)

δVtot (3, k)
. (A.22)

Since Σk (1, 2) is a functional of the Green’s functions, the chain rule may be used for
the term including self-energy, namely

δΣk (1, 2)

δVtot (3, k)
=

∫

d4

∫

d5
δΣk (1, 2)

δGk (4, 5)

δGk (4, 5)

δVtot (3, k)
. (A.23)

Further, in Eq. A.23

δGk (4, 5)

δVtot (3, k)
=

∫

d6
δGk (4, 5)

δϕ (6)

δϕ (6)

δVtot (3, k)

= −

∫

d4̄

∫

d5̄

∫

d6̄Gk (4, 4̄)
δG−1

k (4̄, 5̄)

δVtot (6̄, k)

× δ (6̄− 3)Gk (5̄, 5)

= −

∫

d4̄

∫

d5̄Gk (4, 4̄)
δG−1

k (4̄, 5̄)

δVtot (3, k)
Gk (5̄, 5)

=

∫

d4̄

∫

d5̄Gk (4, 4̄)Gk (5̄, 5)Γk (4̄, 5̄, 3) , (A.24)

where the following relation was used
∫

d6
δVtot (6̄, k)

δϕ (6)

δϕ (6)

δVtot (3, k)
= δ (6̄− 3) . (A.25)
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By using Eq. A.24 in Eq. A.23 (some relabeling)

δΣk (1, 2)

δVtot (3, k)
=

∫

d4

∫

d5

∫

d6

∫

d7
δΣk (1, 2)

δGk (4, 5)

×Gk (4, 6)Gk (7, 5)Γk (6, 7, 3) . (A.26)

Further, by using Eq. A.26 in Eq. A.22

Γk (1, 2, 3) = δ (1− 2) δ (1− 3)

+

∫

d4

∫

d5

∫

d6

∫

d7
δΣk (1, 2)

δGk (4, 5)

×Gk (4, 6)Gk (7, 5)Γk (6, 7, 3) . (A.27)

This is one of the Hedin’s equations for a species k and it is similar to the one given
in Eq. (75) of Ref. [8] for electrons only.

Appendix A.3. Screened Coulomb Interaction

By using Eqs. A.9 and A.14 [here nk (1) ≡ 〈n̂k (1)〉]

Wk (1, 2) = Z2
k

∫

d3v (1, 3)

[

δ (2− 3) +

∫

d4v (2, 4)
δ〈n̂ (4)〉

δϕ (3)

]

= Z2
kv (1, 2) + Z2

k

∫

d3

∫

d4v (1, 3)
∑

k′

Zk′

δnk′ (4)

δϕ (3)
v (2, 4)

= Z2
kv (1, 2) + Z2

k

∫

d3

∫

d4

∫

d5
∑

k′

Zk′v (1, 3)

×
δnk′ (4)

δVtot (5, k′)

δVtot (5, k
′)

δϕ (3)
v (2, 4)

= Z2
kv (1, 2) + Z2

k

∫

d3

∫

d4

∫

d5
∑

k′

Zk′

× v (1, 3)
δnk′ (4)

δVtot (5, k′)
ǫ−1

k′ (5, 3) v (2, 4)

= Z2
kv (1, 2)

+ Z2
k

∫

d3

∫

d4v (2, 3)
∑

k′

δnk′ (3)

δVtot (4, k′)
Wk′ (1, 4) . (A.28)

Define

Pk′ (3, 4) ≡
δnk′ (3)

δVtot (4, k′)
, (A.29)

and thus

Wk (1, 2) = Z2
kv (1, 2)

+ Z2
k

∫

d3

∫

d4v (2, 3)
∑

k′

Pk′ (3, 4)Wk′ (1, 4) . (A.30)

The quantity Pk (3, 4) is sometimes called the polarization or polarization propagator
(in this case for a species k). Note that only the charge Z2

k labels the screened
interaction Wk (1, 2) for the species k.
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Appendix A.4. Polarizations

Consider the polarization defined in Eq. A.29

Pk (1, 2) =
δ〈n̂k (1)〉

δVtot (2, k)
. (A.31)

The electron density can be written in terms of one-body Green’s function as

〈n̂k (1)〉 = −ih̄Gk

(

1, 1+
)

. (A.32)

Now by using Eq. A.32 in Eq. A.31

Pk (1, 2) = −ih̄
δGk (1, 1

+)

δVtot (2, k)
. (A.33)

Then, by using the result

δGk (1, 1
+)

δVtot (2, k)
= −

∫

d4

∫

d5G (1, 4)
δG−1

k (4, 5)

δVtot (2, k)
G
(

5, 1+
)

, (A.34)

we can write Eq. A.33 as

Pk (1, 2) = ih̄
∑

σ1

∫

d4

∫

d5Gk (1, 4)
δG−1

k (4, 5)

δVtot (2, k)
Gk

(

5, 1+
)

, (A.35)

and by using the definition of the vertex function given by Eq. A.11 (some relabeling
done at the end)

Pk (1, 2) = −ih̄

∫

d3

∫

d4Gk (1, 3)Gk

(

4, 1+
)

Γk (3, 4, 2) . (A.36)

Equation A.36 is similar to the one given in Eq. (75) of Ref. [8] for electrons only. It
is one of the Hedin’s equations.
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