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Granular materials are ubiquitous in nature and industry; their mechanical behavior has been
of academic and engineering interest for centuries. One of the reasons for their rather complex
mechanical behavior is that stresses exerted on a granular material propagate only through contacts
between the grains. These contacts can change as the packing evolves. This makes any deformation
and mechanical response from a granular packing a function of the nature of contacts between the
grains and the material response of the material the grains are made of. We present a study in
which we isolate the role of the grain material in the contact forces acting between two particles
sliding past each other. We use hydrogel particles and find that a viscoelastic material model, in
which the shear modulus decays with time, coupled with a simple Coulomb friction model captures
the experimental results. The results suggest that the particle material evolution itself may play a
role in the collective behavior of granular materials.

I. INTRODUCTION

Particle packings composed of soft elements are rele-
vant for many systems, from battery electrolytes to emul-
sions and biological cells. These particle packings are
found to behave very differently from packings primarily
made up of rigid particles. For instance, deformable par-
ticle packings will pack to a higher packing fraction than
equivalent packings made up of rigid particles as found
already in the classic work on pea packings by Weaire
et. al.[1] as well as in recent 2D simulations by Cardenas
et. al.[2]. The flow properties of soft particle packings
are also different from their rigid particle counterparts as
shown in studies by van der Vaart et. al. and Campbell
et. al. [3, 4]. To better understand soft particle packings,
it is instructive to understand how one particle interacts
with another via a single contact. After all, for a packing
to undergo any bulk deformation either the constitutive
grains must squeeze or extend, or the constitutive par-
ticles need to rearrange. For any sort of rearrangement
to occur, at least one of the particles must slide past at
least one of the others, as the particles deform. Addition-
ally, in packings made of grains, under any kind of slow,
quasi-static load application, force balance on particles is
maintained at all times, via an appropriate redistribution
of contact forces during the structural deformation in the
packing. Any time dependence in the contact mechanics
of the material or the contacts disrupts such force bal-
ance. The relaxation of bulk material properties that is
so typical for soft materials can so give rise to sponta-
neous force imbalance situations in static packings made
of soft grains. Soft granular packings can so experience
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particle motion, resulting in macroscopically observable
(slow) change in strain, such as creep. In this mechanism,
the observed creep would occur without any change in
grain’s arrangement or fracture of the grains constituting
the packing, which is not a mechanism that have been of-
ten associated with granular creep before in studies such
as [5–8], that mostly focus on harder grains. Particle in-
teractions studies have been conducted before such as the
ones by Nardelli. et. al. [9] in a study of the evolution of
normal and tangential forces as particles slid past each
other. However, this study was limited to relatively hard
grains and the effect of deformability could not be studied
in this experiment. Tsai et. al.[10] studied the evolution
of tangential and normal loading for deformable poly-
dimethylsiloxane (PDMS) spheres immersed in a mixture
of glycerol and water for sphere passing and fixed depth
experiments. Giustiniani et. al. [11] studied the defor-
mation evolution of two droplets enclosed in an elastic
adhesive film in shear and found a time-dependent expo-
nential decay relationship for the angle between the sur-
face of the drop and the needle holding the drop. This
study also provides insight into why such a relationship
exists for such a system and compares the deformation in
the experiment with a surface tension-driven simulation.
Louf et. al.[12] also tracked the relaxation of the shape
of a hydrogel bead in a bed of harder spheres and was
able to find a timescale associated with it. The present
study describes the experimental force response during a
sliding event for a pair of initially spherical particles ca-
pable of significant deformation. Specifically, the study
examines the evolution of horizontal and vertical forces
of low friction, highly deformable particles, immersed in
water with undetectably small interparticle adhesion.

http://arxiv.org/abs/2403.16105v1
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II. DESCRIPTION OF THE EXPERIMENT

The evolution of forces during contact formation and
contact loss between a pair of soft particle spheres was
investigated using two custom setups. A plate-plate com-
pression setup is used to look at the force response of a
particle as a function of time at a fixed overlap. In this
case, the particles were loaded normally (i.e. center-to-
center), and the evolution of the normal force was mea-
sured as a function of time. The custom inter-particle
shear setup is used to investigate the change in contact
forces as particles slide past each other, as in the case
of particle rearrangement in a packing. In this setting,
the particles are loaded obliquely (i.e. there is shear and
compression) and both components of the response forces
are expected to change in magnitude. The model mate-
rial used in this experiment were polyacrylamide hydrogel
spheres produced by Educational Innovations Inc (GB-
710). The setups used are custom-made and described in
the following sections.

A. Sample preparation

The hydrogels are grown in milli-Q water. They typ-
ically have a diameter of 18.5 mm after swelling. The
hydrogel spheres to be tested are half-dyed with Nile
blue perchlorate and their dimensions perpendicular to
the dye front are measured. Measurements of the hydro-
gel sphere diameter are taken 3 times. The gels are then
placed with the dye front visible on the shell to be de-
scribed below and fastened in place with the collar. The
dimensions from the bottom of the shell to the tip of the
gel sphere are measured with Vernier calipers.

The sample (in this case the hydrogel sphere) is placed
in a custom 3D-printed geometry. The geometry was
inspired by the container devised by Tsai et. al.[10].
The geometry consists of a cylindrical block with a hemi-
spherical cutout (shell) that fits the hydrogel sphere to be
tested. The spheres are held in place with a collar that
has a hemispherical cutout matching that of the shell.
The hydrogel sphere is held in position by screwing the
collar to the block. Measurements for 3D printed geom-
etry are provided via a 2D drawing in a supplementary
autocad file.

B. Inter particle shear

The inter-particle shear setup was built based on pre-
vious work by Workamp et. al and Rudge et. al. [13, 14].
A schematic of the setup used in the set of experiments
described in this experiment is shown in figure 1a). A
custom 3D cylindrical container is placed on the rheome-
ter (Anton Paar MCR 501). A shell described in sec-
tion II A is screwed in place to the cylindrical container.
Since the container is 3D printed and the spots to screw
in the shells are pre-determined, this fixes the position

of the shell relative to the center of the cylinder and the
rheometer tool. Another shell is screwed to a rotating
arm, which can be connected to the rheometer. The dis-
tance between the spots to screw the fixed shell and the
axis of rotation was set to 27 mm in the 3D model of the
rotating arm to ensure that the shell in the container and
the shell in the rotating arm slide over each other. The
dimensions of the rotating arm and the cylinder, along
with the position of the screws, are also provided in the
2D autocad file attached with this paper.

Protocol The cylindrical container is placed on the
rheometer and a zero gap is performed with the custom
axis fixed to the rotating arm. The tool and rotating arm
are then moved up and removed. The half-dyed hydrogel
spheres are then placed into their respective shells and
the collar is screwed into the shell. To test for a snug
fit, we manually try and rotate the hydrogel in the shell
and collar assembly. If the hydrogel sphere rotates in the
shell, a larger half dyed sphere is used. We attempt to
rotate the new hydrogel in the shell as well. The process
is repeated until we find a hydrogel sphere large enough
such that it does not rotate in the shell-collar while man-
ually tested. The manual rotation tests involve much
larger forces than the rheometric test and so establish
that no rotation of the fixed spheres occurs. Then the
shells with the spheres can be fixed onto the container
and the rotating arm and placed back into the measur-
ing system. For the measurements shown in this study,
the diameter of the upper hydrogel sphere is 18.4± 0.195
mm and the diameter of the lower hydrogel sphere is
19.1±0.265 mm, as established by caliper measurements
on different sides of the used spheres. The height of the
the shell and the upper hydrogel sphere together is 29.53
mm and the height of the shell with the lower hydrogel
sphere is 31.25 mm. Thus, the tool is brought down to a
gap of 65mm to ensure the particles are not in contact.
Milli-Q water is poured into the container until both the
shells and the rotating arm are completely immersed.

The tool is then lowered 1 mm at a time and manually
rotated to check for contact. Once contact is detected by
observing a finite torque needed to rotate the tool, the
probe is moved 1 mm up and locked at the instrument’s
deflection angle reference position.

The tool is first rotated at 0.5 rpm. During this rota-
tion, when a torque of 0.2 mN.m is detected, the rotating
arm is forced to stop. This torque is small enough to de-
tect contact but larger than the initial torque that the
rheometer has to apply in order to start the experiment
from rest. If the specified torque level is not detected, the
tool will move down 0.1 mm. This procedure was carried
out to obtain an estimate of where the contact would
occur in terms of displacement. Once the displacement
required to obtain contact is known, further testing could
be done using this displacement as a reference point. At
low rotational velocities this would mean we would only
need to conduct the test between known displacements,
avoiding extraneous movement and time. The process
is repeated until contact is detected using this proce-
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FIG. 1. a) Experimental Setup: Inter-particle shear. b)Forces in the horizontal direction (Fh) vs. linear angular displacement
(θ) in the rotational direction. As the moving particle approaches the stationary particle as shown by the diagram on the
bottom left, the Fh acts towards the right, which is defined as the positive force. As the moving particles moves away from the
stationary particle the Fh acts towards the left, which consequently gives a negative force. c)Forces in the vertical direction
(Fv) vs. linear angular displacement (θ) in the rotational direction

dure. Once contact is detected the moment arm will
rotate back to a fixed angle. Then the tool will rotate
at a speed of 2.38 × 10−5 m/s (8 × 10−4[rpm]) for 3000
seconds in the clockwise direction, stay fixed in the final
position for 1 minute, rotate back at the same speed for
the same duration, and wait another minute. This pro-
cess is repeated at speeds of 4.75×10−5, 1.19×10−4 and
2.37 × 10−4 m/s. Once a repetition is completed, the
tool is moved down 0.1mm (i.e., the overlap is increased
by 0.1 mm). The whole process is repeated at the same
set of speeds. A total of five overlap levels, each 0.1 mm
apart, were explored. A sample dataset obtained from
the measurement is shown in figure 1b), which shows the
horizontal force response(Fh) to sliding as a function of
the linear angular displacement (θ). Here θ is the prod-
uct of angular displacement (in radians) and the length
of the moment arm (which is 0.027 m). Figure 1 c) shows
the vertical force response (Fv) as a function of θ during
the same experiment.

C. Plate plate compression

The setup for the plate-plate compression was a mod-
ified version of a previously existing custom-built setup
used to conduct indentation tests on polymer samples.
A schematic of the setup is shown in figure 2a). The
setup consists of an actuator (Thorlabs Z825BV) con-
nected to a moving stage (Thorlabs MT1) controlled by
a motor controller (Kinesis KDC 101) that can interact
with a Matlab platform. The moving stage is connected
to a metallic rod with a Wheatstone bridge based S-beam
load sensor (Futek LSB200 FSH03871). The bridge is
supplied with a constant voltage, and the output bridge
signal is amplified with an amplifier, both of which were
built into a strain gauge input signal conditioner (ICP
DAS SG-3016). The amplified signal is then filtered with
a low-pass RC filter (10Ω resistor 10nF capacitor). The
filtered signal is then converted to a digital signal with a

14-bit analog-to-digital converter (ADC) present in a Na-
tional Instrument data acquisition instrument (NI DAQ
6001). The sampling frequency for the load cell was set
to 100 Hz. The digital signal can then be read into a
computer using a Matlab interface. The sampling fre-
quency for the load cell was set to 1kHz. The load cell is
attached to a flat plate that is used to press the sample.
The working of the custom-built setup is also described
by Boots et. al.[15].

Protocol The shell with the sample is held in place in
a larger container with double-sided tape. The container
is then filled with water. The compression plate with
the load cell is lowered into the container until the entire
compression plate is underwater but does not touch the
sample to be tested. An indentation test is performed
with the compression plate moving down 0.5 mm at a
speed of 0.3 mm/s to find the location of contact. The
test results in a displacement (δ) vs vertical force (Fv)
plot as shown in figure 2b). Once contact is found, the
compression plate can be retracted and the test is re-
peated to confirm the location of the contact point.

Once the point of contact is ascertained the compres-
sion plate is moved to the location of contact and a strain
of 6 percent is applied at a strain rate of 0.002/s. For
this experiment the diameter of the hydrogel sphere was
18.63±0.17 mm, as established by caliper measurements
on different sides of the used sphere. It was compressed
by 1.12 mm. The exact velocities and indentation dis-
tance are calculated based on the diameter of the par-
ticle being tested. Then the compression plate is held
static for 3000 seconds. Forces are recorded from the
load cell during this entire process at a rate of 100 Hz.
After separating the forces during indentation, a typical
force relaxation curve is observed as shown in figure 2c).
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FIG. 2. a) Experimental Setup: Particle compression. b) Typical Force (Fv) vs. displacement curves (δ) during indentation c)
Typical Force (Fv) vs. time (t) curves when compressive strain is held static

III. THEORETICAL MODEL

Here we explain the models used to analytically de-
scribe our experimental results. The following assump-
tions are applied for the model (i) the particles in contact
are perfectly spherical. (ii) the material in the experi-
ment is perfectly homogeneous. (iii) The arc of rotation
in the inter-particle shear experiment is sufficiently large
as to consider the difference between a linear particle pass
and a circular path to be negligible. With these assump-
tions, the response of the bulk volumetric strain response
of the particle is calculated as a sum of two factors; the
elastic response (modeled by a Hertzian model) and a dis-
sipative response modeled as a viscoelastic model. There
is a long history of considering viscoelastic contact me-
chanics for spheres, in particular for the use in Discrete
Element Methods [16]. For a brief discussion on the his-
tory, we refer to Brilliantov et. al. [17] The combined
model used here is based on among others that work and
the subsequent work done by Jian et. al. [16] which takes
a Kelvin-Voigt approach while also taking into account
the relaxation effect of viscoelastic materials. Here, for
simplicity it is typically assumed that there is one domi-
nant timescale. Briefly, it assumes that the effective shear
modulus of a particle is:

G(t) = Ge + Ĝ(t) (1)

F⊥(t) = Fe + F̂ (t) (2)

Where, G(t) is the total effective shear modulus, Ge

and Ĝ are the elastic and relaxable part of the shear
modulus and Ĝ is modeled as:

Ĝ(t) = Gl · e−
t
τ (3)

G(t) = Ge +Gl · e−
t
τ (4)

F⊥(t) is the net center-to-center force of repulsion be-

tween the centers of the particles. Fe and F̂ (t) are forces
due to the constant elastic part of the shear modulus
Ge and the time-dependent dissipative part of the shear
modulus, Ĝ(t). Gl is a prefactor to the exponential func-

tion corresponding to the maximum value Ĝ(t) can take.

τ refers to the relaxation time, characteristic of the ma-
terial of the grain, and t is simply the time passed since
the start of the experiment.

A. Hertz’s contact model

The elastic response resulting from the bulk compres-
sion of the particle volume is modeled with a Hertz
model:

Fe(t) =
4Ge

√
R

3(1− ν)
δ3/2(t), (5)

Ge =
E∗

2(1 + ν)
; (6)

1

E∗
=

1− ν21
E1

+
1− ν22
E2

, (7)

1

R
=

1

R1
+

1

R2
(8)

Where Ge is the elastic part of the shear modulus of
the system, R is the effective radius, δ is the overlap be-
tween the two interacting spheres in the center-to-center
direction, ν is the Poisson’s ratio of the sphere, E∗ is the
effective elastic modulus of the system, E1 is the Young’s
modulus of the upper sphere, E2 is the Young’s modu-
lus of the lower sphere. In the case of the inter-particle
shear experiment, we assume E1 = E2 = E (since the
interacting spheres are made of the same material). In
the case of the plate-plate compression experiment we
assume E1 = E and E2 =∞ assuming the plate stiffness
is infinitely larger than the hydrogel sphere stiffness. In
reality, the Young’s modulus of the hydrogel particle is
about 8 kPa and the Young’s modulus of the compress-
ing plates and the shells holding the hydrogel is about 2.8
GPa as specified by the data sheet from the 3D printing
supplies manufacturer. For both experiments, it is as-
sumed that ν1 = ν2 = ν = 0.5: hydrogels do not deswell
in the context of the modest pressures exerted; the os-
motic pressure of the gels is much higher than the local
stress Schulze at. al. [18].R1 is the radius of the upper
sphere and R2 is the radius of the lower sphere. For the
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inter-particle shear test R1 = 9.2mm and R2 = 9.96mm.
It is also to be noted that in the case of plate-plate com-
pression, R1 =∞ as the sphere is being compressed with
a flat plate and R2 = 9.3mm.

B. Viscous Dissipative model

The time-dependent response seen with the experimen-
tal data is modeled using the viscous dissipative model
from Jian et. al.[16]. Their model calculates the dissipa-
tive part of the force response as:

F̂ (t) =
4
√
R

3(1− ν)

∫ t

0

Ĝ(t− s) d[δ3/2(s)] (9)

Where s is the integration factor integrated from the mo-
ment of contact t = 0.

In addition to this model, a cutoff was implemented
in the model such that the resultant forces from center
to center Fe and F̂ (t) were always repulsive or zero to
prevent attractive forces, as was observed in all of the
experiments performed. The need for this addition is
explained in more detail together with the experimental
results described in Section IV A 1. Finally, it is assumed
that the contact resistance is purely frictional, and thus
the classical Coulomb friction model is used to interpret
the tangential interactions. It states:

Ff (t) = µF⊥(t) (10)

Where Ff (t) is the total frictional force tangential to the
surfaces in contact and µ is the coefficient of friction.

IV. RESULTS AND DISCUSSION

A. Inter-particle shear experiment results

In this section, we examine how the time scales affect
force responses in the direction of motion and perpendic-
ular to the direction of motion during a particle sliding
event. Typical force response in the direction of mo-
tion (hereafter, referred to as horizontal direction) and
perpendicular to the direction of motion can be seen in
figures 1 b) and c) respectively. The following sections ex-
amine the various characteristics to be observed in such
data and how the models described in Section III can
help us interpret the experimental results.

1. Horizontal component of forces

Constant central overlap and velocity We first exam-
ine the horizontal force response from the interparticle
shear experiment in a fixed gap and at a constant veloc-
ity, shown in figure 3a). In this figure, the upper particle
is moved in the clockwise direction. Figure 3a) plots the

change in force in the horizontal plane (Fh) as a function
of linear angular distance travelled (θ) from the rheome-
ter’s zero deflection angle reference point. Here, the in-
crease in Fh on the left marks the formation of a contact.
The detachment is marked by the return of the forces
back to a constant baseline. We can so establish a total
distance of contact as the difference between the θ value
at the point of contact and the θ value at the point of
detachment. We refer to this distance as the deformed
contact length (lc). This length, along with the points of
contact and detachment are visualized in figure 3a). We
call lc the deformed contact length, as the length deter-
mination is affected by the strain on the hydrogel sphere
and the sliding velocity. The figure also clearly shows
that the peak magnitude of the force response (indicated
with←p), as the moving particle approaches the station-
ary particle’s center, is larger than the trough magnitude
(indicated with t→) as the moving particle moves away
from the stationary particle’s center. Thus, an asymme-
try in the force response in the horizontal direction is
observed.

After the deformed contact length determination in
one rotation direction, we can rotate in the opposite di-
rection to establish the true contact length. Figure 3b)
shows the horizontal force responses (Fh) when the test
is repeated with the upper particle being moved in the
opposite direction (the anticlockwise (AC) direction) in
red, along with results from figure 3a) where the upper
particle was moved clockwise (C) in blue. The anticlock-
wise (AC) experiment measure the undeformed contact
point of the hydrogel, which is needed to establish the un-
deformed contact length, the we call undeformed contact
length (or the geometric contact length if the particle
were perfectly rigid) lg . It needs to be kept in mind
that the point of contact for the blue curve is on the
left of the curve and the point of contact for the curve
in red is on the right side. To clarify why we need two
length definitions, we can take a closer look at the data
in figure 3. Here, we notice that the point of detach-
ment as the rotating arm is moved clockwise direction
(blue data) does not spatially coincide with the position
of the point of contact detected as the rotating arm is
moved in the anticlockwise (AC) direction. The point
of detachment in AC direction is similarly different from
the point of contact in the C direction. These observa-
tions mean that lg is longer than lc in both the clockwise
and anticlockwise direction. For context, the difference
between the deformed contact lengths lc in the clockwise
and anticlockwise direction was only 5.5 µm whereas the
difference between the average contact length lc and ge-
ometric length lg was 219.2 µm for the dataset shown in
this figure.

Furthermore, if we zoom in to the center of the geomet-
ric contact in figure 3b) inset, it can be noticed that the
zero crossing in the horizontal forces (the point where the
horizontal forces change from positive to negative or vice
versa) is not at the center of the contact distance. The
zero crossing in fact moves away from the point of con-
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FIG. 3. a) Horizontal forces (Fv) at constant maximum δmax overlap and at constant rotational velocity (v) as the probe
moves clockwise b) main: Horizontal forces (Fv) at constant maximum δmax overlap and at constant rotational velocity (v) as
the probe moves clockwise (C: in blue) and anticlockwise (AC: in red); inset: force response at the center of geometric contact
length (original area highlighted in green)

tact towards the point of detachment in both directions.
This implies that there is a finite but small horizontal
force acting on the particles even when they are directly
on top of each other.

Velocity dependence of the contact force Figure 4a)
compares the horizontal force response of spherical hy-
drogels in response to sliding at different constant veloc-
ity levels. The first feature that is apparent from this fig-
ure is that the amplitude of the troughs for the different
sliding velocities do not coincide. On closer inspection,
we notice that the amplitude of these troughs is greater
for larger velocities. The same is also true for the peaks,
but this feature is less pronounced in the plot as the re-
laxation is contact duration dependent, and at the peaks,
the contact is younger. Thus, a clear velocity-dependent
response can be observed. When we recall equation 4
which essentially models the effective shear modulus as
a decaying function with time, this experimental model
makes sense. Experiments done at lower sliding veloci-
ties take a longer time and therefore work with a lower
effective shear modulus; thus their force response to the
same strain or overlap is lower.

Another feature of interest can be seen at the very end
of the contact. The force response just before the two
particles detach is highlighted in the inset in figure 4a).
Here we see that even though all of these tests were per-
formed on the same set of particles, the points of detach-
ment at different velocities do not coincide. The particle
seems to detach earlier when the particles move slower
relative to each other. This too is consistent with the
model explained in equation 4. In figure 4 b) we plot the
the geometric contact length (lg) and the deformed con-
tact length (lc) obtained at the different sliding speeds
(v) at which the experiments were performed. Here, we
clearly see that the variation in lg at different speeds is
much lower than the variation of lc. Furthermore, we
see that lc seems to grow at larger sliding speeds and
approaches lg. This trend is consistent when the experi-

ment is performed in either direction as can also be seen
in the figure 4.

Recreating experimental features with the analytical

model Figure 5 describes how the forces from the model
described in section III are vectorially resolved so that
they can be compared to the data observed in the exper-
iment. The two dimensional analytical model consists
of measuring the effective overlap of two circles moving
past each other. The upper circle is moving from left to
right at a velocity v and the lower circle is fixed. Figure
5a) shows the geometric quantities involved in calculating
the total forces in the horizontal and vertical directions
at contact. At contact, the distance between the particle
centers are R1 + R2. δmax is the the maximum overlap
between the particles. Thus the vertical distance between
the particle centers is R1 +R2− δmax. β is the angle be-
tween the horizontal plane and the line joining the two
particle centers and can be calculated using the triangle
shown in figure 5a). ψ is the horizontal distance between
the particle centers which can also be calculated from
the same figure, at the moment of contact ψ = ψ0. After
this moment (at t = 0), the overlap (δ) is zero. After this
moment, t grows from 0 and ψ = ψ0−vt. The vertical dis-
tance between the particle centers remains R1+R2−δmax

and a new distance between particle centers can be cal-
culated as

√

(R1 +R2 − δmax) + (ψ0 − vt). These quan-
tities are also used to calculate a new β. Similarly,
δ = (R1 + R2) −

√

(R1 +R2 − δmax) + (ψ0 − vt).), for
any instant of time t, when the horizontal displacement
θ = vt.

These geometric quantities are then used to calculate
the F⊥(t) values using the equations described in section
III. The values of the shear moduli Ge, Gl and timescale
τ were manually fit to the experimental vertical and hori-
zontal forces independently. The values reported here are
the ones that fit the experimental vertical and horizontal
forces best at all the velocities and overlaps explored in
this work. Figure 5b) shows the vector resolution of F⊥
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FIG. 4. a) main: Horizontal Force (Fh) response at a constant maximum overlap (δmax = 0.78 mm and mean particle diameters
of 19.1 mm and 18.4 mm, maximum strain (ǫmax) = 0.0208) but at different velocities (v)m/s in the clockwise direction; inset:
force response towards the end of geometric contact length (original area highlighted in green) b) change in contact lengths
(lmm) as a function of rotational velocity (vm/s) where, geometric contact length are lg (in yellow) and the deformed contact
lengths are lc and the directions are specified as C (clockwise) and AC (anticlockwise) at a a constant maximum overlap (δmax

= 0.78 mm)

into its horizontal component Fh
⊥

and vertical component
F v
⊥

when the upper circle approaches the fixed lower cir-
cle from the left. Figure 5c) shows the vector resolution
of F⊥ when the upper circles moves away from the pinned
lower circle. It can be noted that for undeformable circles
as assumed in his diagram, the direction of the vertical
components remain the same regardless of whether the
moving circle approaches or moves away from the pinned
circle whereas the direction of the horizontal components
reverses. As we will see, the elastic deformation of the
spheres will induce an asymmetry in the force response,
to which we will return below in the consideration of con-
tact length determinations.

Figure 5d) shows the vector resolution of Ff , which is
the frictional force between the circles calculated using
equation 10 into its horizontal component Fh

f and verti-
cal component F v

f when the upper circle approaches the

pinned lower circle from the left. Figure 5e) describes
the vector resolution of Ff as the upper moving particle
moves away from the pinned circle. Here, the direction of
the vertical component of the force Ff reverses when the
moving circle moves away from the pinned circle com-
pared to when the moving circle approaches the pinned
circle. This reversal, however will be visible in the resul-
tant vertical force as the magnitudes of Ff is linked to
F⊥, and F⊥ will be small towards the end of the contact.
The direction of the horizontal components, however re-
mains the same and leads to the offset in the Fhz at the
center of the contact as shown in the inset of figure 3b.

Figure 6 describes how each element of the model adds
up to explain the various features we see in the exper-
iment. Figure 6a) simply shows the sine-like change
in Fh as a function of the linear angular displacement
(θ=angular displacement[rad]× moment arm 0.027 [m])
after the vector resolution of the elastic force with chang-
ing β and overlap δ. In Figure 6b) we add the viscolelastic
response from Jian’s model described in section III B to

introduce the velocity dependence we observe in section
IV A 1. However using the model as is, induces an ad-
hesive force towards the end of the contact. This does
not match our experimental results as we see no adhesion.
Thus, the cutoff described in section III B is implemented
so as to remove any adhesive forces. This gives us both a
velocity dependent force response and a velocity depen-
dent contact length lc. Here, it is interesting to note that
the velocity dependent lc results as a byproduct of the
integration scheme and the adhesion cutoff. The model
itself still assumes that the overlap between the particles
is positive in this region and that the rate of change of
overlap is negative. Therefore, switching to a different
viscous force law cannot give us a zero force response
when both the overlap (δ) and the rate of change of over-

lap (δ̇) are non-zero. However, even with these models
the zero crossing in the Fh still remains at the center of
the geometric contact length lg. If we look at the inset in
figure 3b), this is not the case in our experiments, mean-
ing that Fh is not zero when the sliding particles are on
top of each other. Therefore, the center to center force
responses from the elastic and dissipative force laws are
coupled with a friction model, which allows us to model
a non zero horizontal force (Fh) at the center of the ge-
ometric contact length lg. This can be seen in figure 6
c), especially in the inset where the Fh at zero crossing
has been zoomed into. For reference, the elastic Hertzian
response is plotted in blue and we see that this response
passes through the center of lg.

Robustness with increased particle overlap Figure 7a)
shows the horizontal force response of five interparticle
shear tests carried out in incremental amounts of max-
imum overlap (δmax) at a sliding speed of 2.38 × 10−5

m/s in the clockwise direction. Similar data were also
measured for sliding speeds for all four speed levels and
in the anticlockwise direction as in the previous experi-
ments. In this figure, we see that both the contact lengths
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and the amplitude of horizontal force responses grow as
a function of maximum overlap. It is also notable to see
that the point where the sign of the amplitude flips for
all velocities almost coincides. This shows that the parti-
cles did not appreciably move in the horizontal direction
between these experiments: the shell and collar hold the
particles firmly in place.

The results obtained in figure 7a) by themselves are
expected, as the force response increases when the over-
lap or strain between two particles is increased. However,
given that we saw that the geometric contact length and
the actual length are different and velocity dependent in
figure 4b), the results of how these might scale with an in-
crease in overlap is interesting. Since the contact lengths
obviously must scale with the overlap, a direct compari-
son is difficult. Thus we normalize lc by lg (since lg is a
geometrical parameter that scales with particle radii and
the δmax). Thus lc

lg
is plotted against the sliding speed

in figure 7b). The plot reveals that the average deformed
contact length (lc) does indeed scale with sliding speed
(v) and grows towards lg as v increases.

The results seen in the experiments can also be quali-
tatively reproduced using the model described in section
III as can be seen in figures 7c) and d). These figures

can be compared directly to the experimental results in
figures 7a) and b) respectively. However, since the par-
ticles used in this experiment are not perfectly round
there are deviations in the radii of particles and maxi-
mum overlap used in the experiment and in the model.
These are clearly visible from the difference in overlaps
shown in the experimental results and the results from
the model. The parameters for obtaining these results
were: G0 = 0.4× 104Pa, Gl = 5×G0, τ = 2000sec.

2. Fv at constant overlap

Figure 8a) shows the vertical component of the force
between the particles as a function of probe displacement
for a sliding spherical hydrogel at the same maximum ex-
perimental overlap. From this figure, we see that the nor-
mal force responses for the different sliding velocities at
a constant overlap are slightly velocity dependent. How-
ever, the velocity dependence is difficult to distinguish
because of the noise level in the normal force data. The
determination of lg is similarly affected by the noise, and
hence not shown.

Figure 8b) shows the numerically obtained vertical
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FIG. 7. Results from the experiment: a) Horizontal force (Fh) response at a different maximum overlaps (δmaxm) at the sliding
speed (v) = 2.38×10−5 m/s in the clockwise direction vs. the distance at which this force was observed from the reference point
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experiments done on the same particle pairs at different maximum overlaps (δmax); Results from the numerics: c) Horizontal
force (Fh) response at a different maximum overlaps (δmaxm) at the sliding speed (v) = 2.38 × 10−5 m/s in the clockwise
direction vs. the distance at which this force was observed from the reference point d) change in the ratio of deformed contact
length (lc) and geometric contact length (lg) as a function of sliding velocities (v) for experiments done on the same particle
pairs at different maximum overlaps (δmaxm)

component of the forces using the combination of models
described in section III and is able to reproduce similar
velocity-dependent trends as shown by the experimen-
tal data in figure 8a). The parameters used to obtain
these results were: G0 = 0.4 × 104Pa, Gl = 4 × G0,
τ = 2000sec. The values of G0, Gl and τ are obtained
from a manual fit procedure to best match the experi-
mental results shown in figure 8a). Here, the Gl for the
vertical force component that resulted in the best ampli-
tude match to the experimental results was 4/5ths of the
Gl for the horizontal force components. We believe that
this anisotropy in Gl in the horizontal and vertical force
components is due to the difference in geometrical con-
straints in the two force directions. This is because, when
the upper particle slides over the fixed particle, the hori-
zontal component of the compressive forces will make the
hydrogels expand in the vertical direction, which is pos-
sible because the top of the gels are largely unrestrained.
Similarly, the vertical component of the compressive force
will try and make the hydrogels expand in the lateral
direction. This will not be possible because the gel is
restrained by the shell and collar assembly, creating a
confinement. This induces a confining stress that limits
the viscous response from the hydrogels.

Additionally, we can extract the horizontal forces at
the center of the geometric contact length (lg) shown in
figure 3c), and the vertical forces at the center of the
geometric contact length (lg) by fitting a second-degree
polynomial to 20 data points left and right of the center
of (lg). The ratio of these forces gives us a way to cal-
culate the coefficient of friction (µ) at the point where
we know the overlap (δ) and where the vertical and hori-
zontal force theoretically align with the normal and tan-
gential components of forces. Figure 8b) plots the µ ob-
tained against the sliding velocities for the different over-
laps tested. While a master curve is not obtained, the
plot does show how the µ changes at different velocities.
This is reasonable because the all the tests shown in this

study constitute of lubricated contacts as the hydrogels
used make contact underwater, and are also poroelastic.
The frictional force in lubricated contacts can be a func-
tion of normal load, viscosity and velocity in contacts, as
already experimentally shown by Stribect et. al. [29]. A
more complete treatment of the hydrogel-hydrogel fric-
tion is outside the scope of this work, but can be found
in other works, e.g. [13, 19, 20].

B. Plate-plate compression

Section IV A establishes a timescale in the force re-
sponse in the tangential and center to center direction
during a rearrangement event. In this section, we show
that a similar force response can be found when the par-
ticle is under a fixed level of vertical compressive strain.
We already see that the vertical force response decays in
time during the sliding test from figure 2c). We use the
vertical force evolution with time dataset similar to figure
2c), at a constant δ and back calculate the elastic moduli
of the material at each time step using equations 5 to 8
(assuming a linear elastic model). Thus, we get a shear
modulus G at each time step. Figure 9a) shows results
for this shear modulus (G) as a function of time for a
particle that is compressed between two flat plates. Fig-
ure 9b) plots the extracted shear modulus(G) as a func-
tion of time (t) when the same hydrogel sphere is placed
in the custom 3D printed geometry described in section
II A that was also used for the inter-particle shear ex-
periments. As can be seen by comparing figures 9a) and
b), this leads to a difference in the calculated G values,
even though the sphere being tested is the same. For the
experiments in which the hydrogel sphere is confined to
the 3D printed geometry we interpret the difference from
the fact that the sphere could not extend laterally and
had a larger contact with the 3D printed geometry.

The back calculated shear modulus G vs. time t plots
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FIG. 8. Vertical component of forces (Fv) during a shear experiment at different sliding velocities (v) in a) the experiment b)
the model c) Variation in coefficients of friction (µ) as a function of sliding velocity (v) for different overlaps

FIG. 9. a) Decay in elastic moduli vs. time when the hydrogel is compressed between two plates: blue points are the calculated
elastic moduli assuming perfect Hertzian contact and their supposed evolution with time, the red line is fit with equation 4
(in red), inset: force response towards the end of the the relaxation experiment b) Decay in elastic moduli vs. time when the
hydrogel is placed in a 3D printed shell described in section IIA and compressed with a plate: blue points are the calculated
elastic moduli assuming perfect Hertzian contact and their supposed evolution with time; inset: force response towards the end
of the the relaxation experiment; the red line is fit with equation 4 (in red), and the yellow line an additional fit with a second
exponential time to better account for the systematic deviation from the single exponent fit at the beginning and end of the
experiment that is more obviously visible in the inset

in figure 9 are then fitted to a decaying exponential func-
tion shown in equation 4. These fits are shown in red.
For figure 9a) this results in a Ge of 7146 Pa, Gl of 630 Pa
and a τ of 1413 sec. In figure 9b), for a hydrogel sphere
placed in a 3D printed custom geometry compressed by a
flat plate, we see that a single timescale is inadequate to
capture the response. The single exponent fit described
by equation 4 deviates from the data both at the start of
dataset and the end of the dataset. Thus, a second expo-
nent was added to equation 4 to fit the entire data series

changing it to Ĝ(t) = Ge+Gl1e
(− t

τ1
)
+Gl2e

(− t
τ2

)
. The fit

resulted in a Ge of 13915 Pa, Gl1 of 2540 Pa, τ1 of 1898
sec, Gl2 of 504 Pa and τ2 of 172 sec. Here, Gl1 > Gl2

so the timescale being considered is 1898 sec. Therefore,
the experiments together establish a consistent timescale
of response at the particle scale of about 1500 seconds,
which is similar to the timescale used to model the shear
experiments in section IV A.

V. DISCUSSION

Our results show that contact mechanics between soft,
almost frictionless grains even in a single contact, are af-
fected by a combination of the grain’s volumetric and sur-
face properties and its geometry. Both the inter particle
shear tests and the plate plate compression tests reveal
that there is a long relaxation timescale. We believe the
timescale to be associated with the grain material prop-
erty. The second, faster timescale seen in the plate-plate
compression tests, is not explored in the work here, as the
shear experiments were done at a very slow speed, mak-
ing the short relaxation mode unobservable in the sliding
force dynamics. It must also be noted that the velocity
and overlap ranges explored in this experiment are lim-
ited, which means that more timescales, and potentially
a whole spectrum of modes, are potentially present in the
hydrogel (contact) mechanics as can be observed in other
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studies ([21, 22]). The relaxation already observed may
be playing a role in the observed slow (creep) dynamics in
soft particle packings: slow contact force evolution affects
force balance and can so induce particle motion.[23].

VI. CONCLUSION

We constructed a custom rheometric tool to measure
the contact forces between two submersed hydrogels slid-
ing past each other at different overlap amplitudes and
different sliding velocities. We also measure the com-
pressive force response of single hydrogel beads. We use
Jian’s dissipative model [16] to rationalize the observa-
tions on center-to-center forces between particles during
shear and couple it with tangential forces using a simple
Coulomb friction. We are so able to describe our exper-
imental observations with five parameters; the constant
elastic part of the modulus, the maximum relaxable part
of the shear modulus, a single relaxation time, a Pois-
son’s ratio, and a coefficient of friction. By qualitatively
matching the data from the model to those of the experi-
ments, we can show that these five constants can describe
forces evolving in both center-to-center and tangential
directions. Our results establish a time-dependent con-
tact dynamics framework for single-hydrogel particle con-
tacts that lets the material properties of the contacting
particles evolve from the moment of contact. The re-
sults of our experimental work and numerical validation
show that in (numerical, theoretical) soft particle con-
tact mechanics, not only the particle position dynamics
should be taken into account in the evolution of the con-
tact forces and the network structure, but also relaxation
effects of the bulk material out of which the particles are
composed. Further work will concentrate on how these
moduli propagate into bulk properties. We will also in-
vestigate whether the framework described above can in-
deed be used to obtain a microscopic understanding of
properties such as creep in hydrogel packings, as was ob-

served by [23].
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