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We consider a discrete-time random walk where a cost is incurred at each jump. We obtain an
exact analytical formula for the distribution of the total cost of a trajectory until the process returns
to the origin for the first time. The formula is valid for arbitrary jump distribution and cost function
(heavy- and light-tailed alike), provided they are symmetric and continuous. The tail behavior of
the distribution is universal and independent of the details of the model. Applications are given
to the motion of an active particle in one dimension and extensions to multiple cost variables are
considered. The analytical results are in perfect agreement with numerical simulations.

Introduction - In a variety of disciplines, key events
occur when a stochastic process reaches a predefined tar-
get state for the first time [1–3]. For instance, in finance,
limit orders are employed to execute trades when a spec-
ified price level is reached. Similarly, in the study of
foraging behavior among animals [4] it is important to
estimate the typical duration of an exploration phase,
until the animal goes back to its home for the first time.

This type of problems have been thoroughly character-
ized within the theory of first passage events. Consider
the paradigmatic case of a discrete-time random walk

xk = xk−1 + ηk , (1)

with x0 = 0 and where the jumps ηk are independently
drawn from a symmetric and continuous distribution
f(η). A central quantity to characterize first-passage
events is the probability Fn that the walker crosses the
origin for the first time at step n. A cornerstone of first-
passage theory is the Sparre Andersen theorem [5], which
states that Fn is completely universal, i.e., independent of
the jump distribution f(η), as long as f(η) is continuous
and symmetric. Crucially, the universal behavior is valid
for any finite n and even for Lévy flights, corresponding
to fat-tailed f(η) ∼ 1/|η|µ+1, with 0<µ < 2. This uni-
versality extends to many quantities, e.g., the number of
records [6], and processes, including active particles [7, 8]
and resetting systems [9].

However, the classical treatment of the first-return
problems usually ignores a very important variable: there
are often costs or rewards, e.g., in terms of monetary
fees or energy consumption, associated with the change
of state of the process. For instance, in the example of
animal foraging, there is an energy cost associated to a
roaming trajectory – as well as a potential energy gain
if food is actually found along the way. Markov reward
models [10–12], where a Markov process drives an aux-
iliary cost/reward dynamics have proven useful in wire-
less communications [13, 14], biochemistry [15], insur-
ance models [16] and software development [17]. How-
ever, a general result that quantifies the cost associated
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FIG. 1. Typical trajectory of a random walk xk on a line
starting at x0 = 0 and evolving in discrete time via the jump
process (1). The process stops at step nf when the walker
crosses the origin for the first time. A cost Ck is associated
with the trajectory of the random walk up to step k.

with first-passage events (in the spirit of the Sparre An-
dersen theorem) is, to the best of our knowledge, still
missing.
In this Letter, we derive a closed formula for the distri-

bution of the total cost until first return, which is surpris-
ingly general and valid for any (continuous and symmet-
ric) jump distribution and cost function per jump. Ana-
lytical results of such breadth and generality are exceed-
ingly rare. We provide a direct and natural application
to the run-and-tumble particle (RTP) model of an active
particle in one dimension. Moreover, our results extend
naturally to describe several cost variables, with inter-
esting applications to prey-predators models [18] and ex-
cursions in environments with feedback-coupling [19].
Setting and main result - To describe the cost

associated to the process, we couple to the random walk
in Eq. (1) a cost variable Ck, evolving according to

Ck = Ck−1 + h(ηk) , (2)

with C0 = 0. The cost function h(η) > 0 is assumed
to be continuous and symmetric, i.e., h(η) = h(−η), but
is otherwise arbitrary. The function h(η) can be inter-
preted as the energy spent or the cost incurred by the
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walker in making a single jump η. Cost dynamics of the
type (2) with a non-linear function h(η) have been used
to model the fare structure of taxi rides, static friction
under random applied forces, and depinning transition
in spatially inhomogeneous media [20–28]. Additionally,
recent works have investigated the cost associated to re-
setting processes [29–31].

We focus on first-passage processes of the random walk
variable xn. The process stops when the walker, start-
ing from x0 = 0, crosses the origin for the first time at
step nf (see Fig. (1)). Note that nf itself is a random
variable that fluctuates from one trajectory to another.
Given f(η) and h(η), we are interested in computing the
distribution Q(C) of the total cost C =

∑nf

k=1 h(ηk) till
the first-passage time to the origin.

Beyond its natural interpretation as a cost function,
the variable C can describe a broad class of first-passage
functionals of discrete-time random walks. Indeed, de-
pending on the choice of h(η), C can describe different
observables of a first-passage trajectory. For instance:
with h(η) = 1 the variable C simply coincides with the
first passage time nf , with h(η) = |η|, the variable C
describes the total distance traveled by the walker, with
h(η) = θ(|η| − ηc), where θ(z) is the Heaviside step func-
tion, C describes the number of steps longer than ηc.
In the continuous-time setting, first-passage functionals
of stochastic processes have been widely studied in the
literature with many applications [32–37] (for a review
see Ref. [38]). Note, however, that most of these works
have considered functionals depending on the state of the
process xk, instead of the step size ηk, i.e., of the form
C =

∑nf

k=1 h(xk). On the other hand, for discrete-time
random walks and functionals depending on the step size,
there are, to the best of our knowledge, no general results.

In this letter, we derive an explicit exact formula for
the Laplace transform of the cost distribution Q(C) that
reads ∫ ∞

0

e−pC Q(C) dC = 1−
√

1− 2A(p) , (3)

where

A(p) =

∫ ∞

0

e−p h(η) f(η) dη . (4)

This result is valid for arbitrary jump distribution f(η)
and arbitrary cost function h(η) > 0, as long as both
functions are symmetric and continuous. Eqs. (3) and
(4) constitute our main result. In the rest of the letter,
we will discuss several applications and then provide an
intuitive derivation of this formula. Several cases where
the Laplace transform can be explicitly inverted will be
discussed in the Supp. Mat. [39].

Applications - Active particles consume energy di-
rectly from the environment and move via self-propelled
motions. For example, E. Coli bacteria typically move in

space by alternating phases of ‘run’ and ‘tumble’. Con-
sider for simplicity the standard RTP model in one di-
mension. The particle starts at the origin, say with a
positive velocity v0 and runs ballistically with speed v0
during a random time τ chosen from the exponential dis-
tribution p(τ) = γ e−γ τ where 1/γ is the persistence
time. After this initial run, the particle ‘tumbles’ in-
stantaneously, i.e., it chooses a new velocity ±v0 with
equal probability and then moves ballistically again with
this chosen velocity during another random period drawn
from p(τ). Then it tumbles again and the dynamics con-
tinues via the alternating ‘run’ and ‘tumble’ phases. A
natural question is how much energy does the RTP spend
till the first return to its starting position? This model
can be clearly mapped to the Markov jump process in
Eq. (1) where xn denotes the position of the RTP after
the n-th run – this is also known as a ‘persistent ran-
dom walk’ [40]. This mapping has been recently used
successfully to derive interesting universal results for the
survival probability of a generalized RTP model with ar-
bitrary velocity distribution after each tumbling [7, 8].
Via this mapping, the run length ℓn of the n-th run in
the standard RTP model (with ±v0 velocities) is pre-
cisely the jump length ηn of the random walk model in
Eq. (1). Since, ℓn = v0 τn where τn is the exponentially
distributed run time of the n-th run, it follows that this
RTP model then corresponds precisely to the jump dis-
tribution

f(η) =
γ

2 v0
e−

γ
v0

|η| , (5)

in the random walk model in Eq. (1). One can then asso-
ciate a cost function h(η) denoting the energy spent dur-
ing each run. Hence, Q(C) is precisely the distribution of
the total energy spent by the particle till its first return
to its starting point. For the double-exponential jump
distribution in Eq. (5) and the cost function h(η) = |η|
corresponding to energy being consumed at a constant
rate, the Laplace transform (3) can be explicitly inverted
(see [39] for details) to yield the distribution of the cost
of first return to the origin

Q(C) =
1

2
e−C/2

[
I0

(
C

2

)
− I1

(
C

2

)]
, (6)

where I0(z) and I1(z) are modified Bessel functions (see
Fig. 2). Note that, since h(η) = |η|, the variable C also
describes the total distance traveled by the particle until
first passage to the origin.
The distribution has asymptotic behaviors

Q(C) ≈


1
2 − 3

8 C + 5
32 C

2 as C → 0

1
2
√
π

1
C3/2 as C → ∞ .

(7)

The asymptotic power law decay ∼ C−3/2 for large
cost is universal for sufficiently light-tailed jump dis-
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FIG. 2. Distribution Q(C) of the cost C until first return for

jump distribution f(η) = e−|η|/2 and cost function h(η) = |η|.
The continuous blue line corresponds to the exact result in
Eq. (6) while the dots are obtained from numerical simulations
with 106 samples.

tributions (see below for details), and can be under-
stood by a heuristic scaling argument. The distribution

P (nf ) of the first-passage time nf for random walks with
symmetric and continuous jump distributions is univer-
sal and given by the Sparre Andersen law [5] (see also
Refs. [1, 2, 41, 42]). For large nf , we have P (nf ) ≈
(1/2

√
π)n

−3/2
f . Now, since the cost C in nf steps scale

typically as C ∼ nf , it follows that the distribution of C
for large C also has exactly the same power law tail. The
fact that also the pre-factors match is just a coincidence
in this special case. In general, the pre-factor is different
and nontrivial and we compute it exactly later.

Sketch of the derivation - We provide here the
main ideas behind the derivation of our main result in
Eq. (3) (see [39] for more detailed steps). To begin, it
is useful to define Q(x0, C) as the probability density
function of the total cost C until first-passage to the
origin with initial position x0. Note that by definition
Q(C) = Q(x0 = 0, C). We first derive an exact inte-
gral equation satisfied by Q(x0, C) for arbitrary choices
of f(η) and h(η). It is natural to use a backward Fokker-
Planck like approach where we examine what happens
after the first jump and then follow the rest of the tra-
jectory till the first-passage time. We can then directly
write down the following backward integral equation us-
ing the Markov property of the process

Q(x0, C) =

∫ ∞

0

dC ′
∫ ∞

0

dx1 Q(x1, C
′) f(x1 − x0)δ (C

′ + h(x1 − x0)− C) +

∫ 0

−∞
δ (C − h(x1 − x0)) f(x1 − x0) dx1 .

(8)

The two terms on the right-hand side of (8) correspond
to the two possibilities: (i) after the first jump, occurring
with density f(x1 − x0), the new position remains non-
negative, i.e, x1 = x0 + η1 ≥ 0 and then the process
continues to the next step. The total cost C is the sum
of the cost h(x1 − x0) of the first jump, and the cost C ′

of the rest of the trajectory, whose distribution until first
passage is Q(x1, C

′). (ii) the walker crosses the origin
after the first jump – whose cost is h(x1 − x0) – to a
position x1 < 0, and the process stops. Finally, one
needs to integrate over x1 in both cases, and over C ′ ≥ 0
in the first contribution. Defining

Q̃p(x0) =

∫ ∞

0

e−pC Q(x0, C) dC , (9)

and taking the Laplace transform with respect to C on
both sides of Eq. (8) we obtain

Q̃p(x0) =

∫ ∞

0

dx1 Q̃p(x1) e
−p h(x1−x0) f(x1 − x0)

+

∫ −x0

−∞
e−p h(η1) f(η1) dη1 . (10)

This equation is valid for arbitrary f(η) and h(η). This
backward equation is of the Wiener-Hopf type that are

known to be notoriously difficult to solve. However,
it turns that when both f(η) and h(η) are continuous
and symmetric functions of η, we can obtain an explicit
and general formula for Q̃p(x0) by an adaptation of the
Pollaczek-Spitzer result for the first-passage probability
of a continuous and symmetric random walk [43–45] (for
a pedagogical introduction see the review [46]).
To solve the integral equation (10), we first notice its

similarity with a well-known integral equation for the
first-passage probability. Let F (x0, n) be the probabil-
ity that the random walk xk, with x0 = 0, crosses the
origin for the first time at step n. By defining the gen-
erating function F̃ (x0, s) =

∑∞
n=1 F (x0, n) s

n, one can
show that [39]

F̃ (x0, s) = s

∫ ∞

0

F̃ (x1, s) f(x1−x0) dx1+s

∫ −x0

−∞
f(η1) dη1 .

(11)
A central result of first-passage theory is the Pollaczek-

Spitzer formula for the first-passage probability of a ran-
dom walk [43, 45]. This formula states that the generat-
ing function of the first-passage probability reads [? ]∫ ∞

0

F̃ (x0, s) e
−λx0 dx0 =

1

λ

[
1−

√
1− s ϕ(λ, s)

]
, (12)
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where

ϕ(λ, s) = exp

−λ

π

∫ ∞

0

ln
(
1− s f̂(k)

)
λ2 + k2

dk

 . (13)

In this formula, the jump distribution enters through its
Fourier transform f̂(k) =

∫∞
−∞ f(η) ei k η dη . This explicit

formula has been employed in many different contexts,
see, e.g., Refs. [46–52].

Note however that the exact solution in Eq. (12) re-
quires the step function f(η) to be continuous, symmet-
ric, and normalized to unity

∫∞
−∞ f(η) dη = 1. Therefore,

the Pollaczek-Spitzer formula cannot be immediately ap-
plied to solve the integral equation (10) for Q̃p(x0). We
first need to cast the integral equation (10) into the form
(11) by defining the auxiliary kernel

gp(η) =
e−p h(η) f(η)

2
∫∞
0

e−p h(η) f(η) dη
, (14)

parametrized by p, which is symmetric, continuous and
by construction, is normalized to unity

∫∞
−∞ gp(η) dη = 1.

This allows us to rewrite (10) in the form

Q̃p(x0) = 2A(p)

∫ ∞

0

dx1 Q̃p(x1) gp(x1 − x0)

+ 2A(p)

∫ −x0

−∞
gp(η1) dη1 , (15)

with A(p) =
∫∞
0

e−p h(η) f(η) dη. Comparing (15) and
(11), we can directly use the exact result (12) after
the replacements: F̃ (x0, s) → Q̃p(x0), s → 2A(p) and
f(η) → gp(η). This then provides the exact solution of
our integral equation (10), namely∫ ∞

0

Q̃p(x0) e
−λx0 dx0 =

1−
√

1− 2A(p)ϕ (λ, 2A(p))

λ
,

(16)
with A(p) and ϕ(λ, s) defined above. Taking the λ → ∞
limit on both sides after the change of variables λx0 =
y in the integral leads via drastic simplifications to the
Laplace transform of the special case Q̃p(x0 = 0), whose
final expression reads as in (3) - see [39] for details.

Asymptotics - Let us first consider the small p limit
of Eq. (3). By expanding in powers of p, one finds that
to leading order in small p

Q̃p(0) = 1− a
√
p+O(p) , a =

√
2

∫ ∞

0

h(η) f(η) dη .

(17)
This is quite generic as long as the constant a =

√
µ1

above exists, where µ1 =
∫∞
−∞ h(η) f(η) dη is just the

mean cost per jump. In that case, the small p expansion
in (17) indicates, by the Tauberian theorem, that Q(0, C)
has a universal power law tail for large C,

Q(0, C) ≃ a

2
√
π C3/2

as C → ∞ , (18)

as previously noted for the special case in Eq. (7).

If the mean cost per jump µ1 =
∫∞
−∞ h(η) f(η) dη is

divergent then the analysis above does not hold. Con-
sider, for instance, the case where h(η) = |η| (linear
cost) and the jump distribution has a power law tail
f(η) ∼ 1/|η|µ+1 for large |η| with the exponent 0 < µ ≤ 2
corresponding to Lévy flights. In this case, clearly µ1 is
divergent for 0 < µ < 1 and convergent for µ > 1. For
µ > 1, one will again find the C−3/2 decay of the cost
distribution for large C. However, for 0 < µ < 1, one
finds that

A(p) =

∫ ∞

0

e−p h(η) f(η) dη ∼ 1

2
− bµ p

µ as p → 0 ,

(19)
where bµ is an unimportant positive constant. Conse-
quently, from Eq. (3), we find that to leading order for
small p

Q̃p(0) ≈ 1−
√
2 bµ pµ/2 . (20)

This indicates, again via the Tauberian theorem, that
for large C, the cost distribution has a power law tail:
Q(0, C) ∼ C−(1+µ/2). Thus, summarizing for the Lévy
jump distributions with Lévy index 0 < µ ≤ 2, the cost
distibution Q(0, C) ∼ C−θ for large C where the expo-
nent θ is given by

θ =


µ
2 + 1 for 0 < µ < 1

3
2 for 1 < µ ≤ 2 .

(21)

Thus the exponent θ increases linearly with µ for µ ∈
[0, 1] and then freezes at the value 3/2 for µ > 1, with a
logarithmic correction exactly at µ = 1 (for example for
the Cauchy jump distribution f(η) = 1/[π(η2 + 1)]). We
work out an explicit example of a Lévy flight correspond-
ing to f(η) = exp(−1/(4|η|))/2

√
4π|η|3 and h(η) = |η|

in [39].

It turns out that unlike the universal behavior of
Q(0, C) for large C as discussed above, the small C
behavior is rather non-universal and it depends on the
choices of f(η) and h(η). But even these non-universal
behaviors can be extracted from our exact result (3).

Another interesting application of our formula in
Eq. (4) concerns the cost function h(η) = θ(|η| − ηc),
where θ(z) is the Heaviside step function. In this case,
the variable C describes the number of steps of length
larger than ηc until the first passage time. In [39], we
derive an exact formula for the distribution of C, valid
for arbitrary continuous and symmetric f(η).

Extensions - Our main result Eq. (3) generalizes
to the case of N cost variables Ci =

∑nf

k=1 hi(ηk) fol-
lowing Eq. (2) each with its own hi(η), and correlated
through the noise term of the random walk in Eq. (1).
The N -fold Laplace transform of the joint distribution
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Q(0, C1, . . . , CN ) of the cost variables until first return
of the master walk to the origin satisfies〈

e−
∑N

i=1 piC
i
〉
= 1−

√
1− 2A(p1, p2, . . . , pN ) (22)

where

A(p1, p2, . . . , pN ) =

∫ ∞

0

e−
∑N

i=1 pihi(η)f(η)dη . (23)

A thorough analysis of the consequences of the general-
ized formula (22) is deferred to a separate publication.

Conclusions - We have derived a general formula
Eq. (3) for the distribution of the total cost incurred by
a one-dimensional random walker until its first return to
the origin, provided the jump distribution f(η) and the
cost function h(η) > 0 are symmetric and continuous.
Several examples can be worked out exactly (see [39]),
whose asymptotic behavior for large cost is found to be
universal. Ours is one of the few exact and general first-
passage results for discrete-time random walks, and can
be generalized to the case of N cost variables that are
correlated via the noise term of a main process.

It would be interesting to consider extensions of our
setting to higher dimensions and different velocity distri-
butions for the RTP model. Nonlinear cost functions are
also particularly interesting to investigate in this context
[20, 21], as well as modified cost processes subject to an
independent noise term as well. Additionally, it would
be interesting to extend our framework to resetting pro-
cesses.
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SUPPLEMENTAL MATERIAL

EXTENDED DERIVATION OF MAIN RESULT

In this section, we derive an exact solution to the integral equation

Q̃p(x0) =

∫ ∞

0

dx1 Q̃p(x1) e
−p h(x1−x0) f(x1 − x0) +

∫ −x0

−∞
e−p h(η1) f(η1) dη1 , (24)

where the step distribution f(η) and the cost function h(η) are continuous and symmetric.

Consider our random walk in Eq. 1 of the main text, starting at x0 ≥ 0, with a continuous and symmetric jump
distribution f(η). Let S(x0, n) denote the survival probability of the walk up to step n, i.e., the probability that the
walker does not cross the origin to the negative side up to n steps, given that it starts at x0 ≥ 0. More precisely,

S(x0, n) = Prob. [x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0|x0] . (25)

It is again easy to write the backward Fokker-Planck like integral equation for S(x0, n) by examining what happens
after the first jump. One simply gets [46]

S(x0, n) =

∫ ∞

0

dx1 S(x1, n− 1) f(x1 − x0) , (26)

starting from the initial condition S(x0, 0) = 1 for all x0 ≥ 0. The solution of this Wiener-Hopf integral equa-
tion for arbitrary kernel f(η) is very hard. However, when f(η) is continuous, symmetric and normalized to unity∫∞
−∞ f(η) dη = 1, there is an explicit formula known as the Pollaczek-Spitzer formula that reads [43, 45]

∞∑
n=0

sn
∫ ∞

0

dx0 S(x0, n) e
−λx0 =

ϕ(λ, s)

λ
√
1− s

, (27)

where ϕ(λ, s) is given by

ϕ(λ, s) = exp

−λ

π

∫ ∞

0

ln
(
1− s f̂(k)

)
λ2 + k2

dk

 . (28)

In this formula, the jump distribution enters through its Fourier transform

f̂(k) =

∫ ∞

−∞
f(η) ei k η dη . (29)

This formula, though explicit, is not very user-friendly and to extract the asymptotic behavior of S(x0, n) for large
or small arguments is far from trivial. It has been analyzed in many different contexts, see e.g. Refs. [46–52].

Now, let F (x0, n) denote the first-passage probability, i.e., the probability that starting at x0 ≥ 0, the walker crosses
the origin for the first time at step n. Then F (x0, n), for n ≥ 1, satisfies the following backward equation

F (x0, n) =

∫ ∞

0

F (x1, n− 1) f(x1 − x0) dx1 + δn,1

∫ 0

−∞
f(x1 − x0) dx1 , (30)

starting from F (x0, 0) = 0. This equation can be understood again by investigating what happens after the first
jump. There are two possibilities: (i) either the walker jumps to a positive position x1 ≥ 0 and the walk continues,
explaining the first term on the r.h.s of Eq. (30) or (ii) the walker jumps to the negative side in the first step which
gives rise to the second term in Eq. (30). Let us now define the generating function

F̃ (x0, s) =

∞∑
n=1

F (x0, n) s
n . (31)
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Taking the generating function with respect to n on both sides of Eq. (30) then gives

F̃ (x0, s) = s

∫ ∞

0

F̃ (x1, s) f(x1 − x0) dx1 + s

∫ −x0

−∞
f(η1) dη1 , (32)

where we made a change of variable x1 = x0 + η1 in the second term in Eq. (30).
Can we find the solution of this integral equation (32) for arbitrary s and arbitrary f(η) that is continuous,

symmetric and normalized to unity? The answer is yes as we now show. The solution for F̃ (x0, s) can be derived
from the Pollaczek-Spitzer formula by noting that the first-passage probability F (x0, n) and the survival probability
S(x0, n) satisfy the simple relation

F (x0, n) = S(x0, n− 1)− S(x0, n) . (33)

This simply follows from the fact that the trajectories that survive up to step n− 1 may either survive till step n or
jump to the negative side at step n. Now, taking the generating function with respect to n on both sides of (33) and
using S(x0, 0) = 1 for all x0 ≥ 0 gives

F̃ (x0, s) = 1− (1− s) S̃(x0, s) where S̃(x0, s) =

∞∑
n=0

S(x0, n) s
n . (34)

Now, taking the Laplace transform with respect to x0 and using the Pollaczek-Spitzer formula (27) gives the exact
result ∫ ∞

0

F̃ (x0, s) e
−λx0 dx0 =

1

λ

[
1−

√
1− s ϕ(λ, s)

]
, (35)

where ϕ(λ, s) is defined in Eq. (28).
Hence, the point of this derivation is that, thanks to the Pollaczek-Spitzer formula for the survival probability and

the exact relation (33), we managed to find the Laplace transform of the exact solution of the integral equation (32)
for arbitrary positive s < 1 and arbitrary normalized jump distribution f(η) (symmetric and continuous) and it is
given by Eq. (35). Armed with this information, we can now go back to our actual integral equation (24) and seek
its exact solution.

The two integral equations, namely (24) and (32), look indeed superficially similar to each other. But there is an
important caveat. One of the important conditions for (35) to be an exact solution of (32) is that the kernel f(x1−x0)
that appears in Eq. (32) is not only continuous and symmetric, but also is normalized to unity, i.e.,

∫∞
−∞ f(η) dη = 1.

However, the kernel e−p h(x1−x0) f(x1−x0) that appears in Eq. (24) is not normalized to unity. So, we can not directly
lift the solution (35). To make the kernel normalized to unity we divide and multiply by the normalizing factor, i.e.,
we use

e−p h(x1−x0)f(x1 − x0) = 2A(p)
e−p h(x1−x0) f(x1 − x0)

2A(p)
where A(p) =

∫ ∞

0

e−p h(η) f(η) dη . (36)

Consequently the new kernel

gp(η) =
e−p h(η) f(η)

2
∫∞
0

e−p h(η) f(η) dη
, (37)

parametrized by p, is symmetric, continuous and by construction, is normalized to unity∫ ∞

−∞
gp(η) dη = 1 . (38)

Substituting (36) in Eq. (24) we rewrite it as

Q̃p(x0) = 2A(p)

∫ ∞

0

dx1 Q̃p(x1) gp(x1 − x0) + 2A(p)

∫ −x0

−∞
gp(η1) dη1 , (39)

with A(p) defined in Eq. (36).
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We are now ready to compare the two integral equations (32) and (39). We see that these two equations are identical
if we replace F̃ (x0, s) in (32) by Q̃p(x0), the constant parameter s in (32) by 2A(p) and the jump distribution f(η)
(symmetric, continuous and normalized to unity) in Eq. (32) by the effective jump distribution gp(η) defined in
Eq. (37) which also happens to be symmetric, continuous and normalized to unity. Now, we know the exact solution
of Eq. (32) is given by (35), and is valid for arbitrary positive parameter s and arbitrary (symmetric, continuous
and normalized to unity) jump distribution f(η). Hence, we can use the exact result (35) after the replacements:
F̃ (x0, s) → Q̃p(x0), s → 2A(p) and f(η) → gp(η). This then provides the exact solution of our integral equation (24),
namely ∫ ∞

0

Q̃p(x0) e
−λx0 dx0 =

1

λ

[
1−

√
1− 2A(p)ϕ (λ, 2A(p))

]
, (40)

with A(p) given in (36) and ϕ(λ, s) defined in (28).
In principle, by inverting this Laplace transform, one can obtain the full distribution Q̃p(x0) for arbitrary x0. For

specific choices of f(η) and h(η), this can be done. For instance, it can be checked that for the choice f(η) = (1/2)e−|η|

and h(η) = |η|, we do recover, from the general solution (40), the explicit result found in Eq. (49). However, for other
choices of f(η) and h(η), this Laplace inversion of (40) looks rather difficult.

Fortuitously, however, a simplification occurs if we choose the starting position x0 = 0, i.e., for the first return
problem. To extract this limiting result from the general expression (40) we proceed as follows. We first make the
change of variable λx0 = y on the left hand side (l.h.s) of Eq. (40) and then take the large λ limit. Assuming Q̃p(0)
exists, the l.h.s. behaves for large λ as ∫ ∞

0

Q̃p(x0) e
−λx0 dx0 → 1

λ
Qp(0) . (41)

Now we take the λ → ∞ limit on the r.h.s. of (40). Now, from the definition of ϕ(λ, s) in (28), it is easy to see that
ϕ(λ, s) → 1 as λ → ∞. Comparing the l.h.s. in (41) we then obtain the simplified result mentioned in Eq. (3) in the
main text, namely,

Q̃p(0) =

∫ ∞

0

e−pC Q(0, C) dC = 1−
√
1− 2A(p) = 1−

√
1− 2

∫ ∞

0

e−p h(η) f(η) dη . (42)

This completes the extended derivation of our main result.

EXPLICIT SOLUTION OF THE BACKWARD INTEGRAL EQUATION FOR A SPECIAL CASE

In this section, we show how to solve the integral equation (24) of the main text for the special choice

f(η) =
1

2
e−|η| ; and h(η) = |η| . (43)

Substituting the choice (43) in the integral equation (24) one gets

Q̃p(x0) =
1

2

∫ ∞

0

dx1 Q̃p(x1) e
−(p+1) |x1−x0| +

1

2

∫ ∞

x0

e−(p+1) η dη , (44)

where we used the symmetry to change the limits of the integral in the second term of the r.h.s in Eq. (24). This
integral equation can be reduced to a differential equation following the trick used in numerous contexts before, see
e.g. Ref. [47, 48] (including an application to black hole physics as in the recent paper [53]). This trick uses the
following identity

d2

dx2

[
e−a |x−b|

]
= −2 a δ(x− b) + a2 e−a |x−b| . (45)

Differentiating Eq. (44) twice with respect to x0 and using the identity (45) simply gives, for x0 ≥ 0,

d2Q̃p(x0)

dx2
0

= p(p+ 1) Q̃p(x0) . (46)
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The general solution, for x0 ≥ 0, is trivially

Q̃p(x0) = Ae−
√

p(p+1) x0 +B e
√

p(p+1) x0 , (47)

where A and B are arbitrary constants. First we notice that when x0 → ∞, the solution Q̃p(x0) can not diverge
exponentially. This immediately fixes B = 0. However, finding the constant A is more tricky since we do not have any
available boundary condition on Q̃p(x0). The important point is that in arriving at the differential equation from the
integral equation, we took two derivatives and thus we lost some information, including constant and linear terms in

x0. Hence, we need to ensure that the solution of the differential equation Q̃p(x0) = Ae−
√

p(p+1) x0 actually satisfies
also the integral equation (46). Indeed, substituting back this solution into the integral equation (46) we find that
this is indeed the solution of the integral equation as well, provided

A = 1−
√

p

p+ 1
. (48)

This then fixes the solution uniquely as

Q̃p(x0) =

[
1−

√
p

p+ 1

]
e−

√
p(p+1) x0 . (49)

Setting, in particular, x0 = 0 for simplicity, we get

Q̃p(0) =

∫ ∞

0

Q(0, C) e−pC dC = 1−
√

p

p+ 1
. (50)

It turns out that a direct inversion of this Laplace transform is slightly difficult. To circumvent this problem, we first
differentiate both sides with respect to p to obtain∫ ∞

0

e−pC C Q(0, C) dC =
1

2
√
p(1 + p)3/2

. (51)

Now this Laplace transform can be inverted using Mathematica and we explicitly obtain the distribution of the cost
of first return to the origin (see Eq. 6 of the main text)

Q(0, C) =
1

2
e−C/2

[
I0

(
C

2

)
− I1

(
C

2

)]
, (52)

where I0(z) and I1(z) are modified Bessel functions. The distribution has asymptotic behaviors

Q(0, C) ≈


1
2 − 3

8 C + 5
32 C

2 as C → 0

1
2
√
π

1
C3/2 as C → ∞ .

(53)

The result for Q(0, C) in Eq. (6) of the main text can of course be recovered from the main result in Eq. (3) of the
main text. For the special choice: f(η) = (1/2)e−|η| and h(η) = |η|, we get

A(p) =

∫ ∞

0

e−p h(η)f(η) dη =
1

2(p+ 1)
. (54)

Consequently, the general result in Eq. (3) of the main text gives

Q̃p(0) = 1−
√

p

p+ 1
, (55)

which precisely coincides with the result in Eq. (50) obtained previously by a different method.
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EXPLICIT Q(C) FOR THREE OTHER EXAMPLES.

Example 1 - Gaussian steps

Let us consider another choice for the jump distribution f(η) and the cost function h(η) different from the example
in Eq. (43). We consider the case when

f(η) =
1√
π
e−η2

, and h(η) = η2 . (56)

This corresponds to a random walk with Gaussian jump distribution and a quadratic cost function, which is also a
rather natural choice. In this case, our exact formula (42) gives

Q̃p(0) =

∫ ∞

0

Q(0, C) e−pC dC = 1−

√
1− 1√

1 + p
. (57)

One needs some tricks to invert this Laplace transform. Let us first define

Q(0, C) = e−C G(C) . (58)

Substituting (58) in (57) and denoting s = p+ 1, we get∫ ∞

0

G(C) e−sC dC = 1−

√
1− 1√

s
. (59)

We now expand the r.h.s. of (59) in a power series in 1/
√
s and invert each term by using the identity

L−1
s→C

[
s−n/2

]
=

Cn/2−1

Γ(n/2)
. (60)

This leads to a power series for G(C)

G(C) =
2

C

∞∑
n=1

Γ(2n− 1)

Γ(n) Γ(n+ 1)Γ(n/2) 4n
Cn/2 . (61)

Amazingly, Mathematica was able to resum this series and express it in terms of hypergeometric functions. Finally,
using the relation (58), we get a nice and explicit expression for Q(0, C)

Q(0, C) =
e−C

2
√
π C

2F2 [1/4, 3/4; 1/2, 3/2;C] +
e−C

8
2F2 [3/4, 5/4; 3/2, 2;C] . (62)

One can easily plot this function (see Fig. 3) and it has the asymptotic behaviors

Q(0, C) ≈


1

2
√
π C

as C → 0

1
2
√
2π C3/2

as C → ∞ .

(63)

The large C decay C−3/2 is in accordance with the general result in Eq. 18 of the main text, while it also diverges
as C → 0 (though still integrable). Comparing to the result for the RTP case in Eq. (7) of the main text, we indeed
see that the small C behavior is rather nonuniversal, while the large C result is a universal C−3/2 law, as long as the
mean cost per jump µ1 is finite.

Example 2 - Lévy flight

Let us consider another example where the Laplace transform in Eq. (3) of the main text, namely,

Q̃p(0) =

∫ ∞

0

e−pC Q(0, C) dC = 1−

√
1− 2

∫ ∞

0

e−ph(η) f(η) dη (64)
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FIG. 3. Distribution Q(C) of the cost C until first return for jump distribution f(η) = e−η2

/
√
π and cost function h(η) = η2.

The continuous blue line corresponds to the exact result in Eq. (62) while the dots are obtained from numerical simulations
with 106 samples.

can be explicitly inverted. This example corresponds to the choice

f(η) =
1

2
√

4π |η|3
e−1/(4|η|) ; and h(η) = |η| . (65)

This is thus an example of a Lévy flight where the jump distribution f(η) ∼ 1/|η|µ+1 for large |η|, with a Lévy
exponent µ = 1/2. We now use the following identity∫ ∞

0

a

4πt3
e−a2/4t e−p tdt = e−a

√
p , (66)

valid for all a > 0. Setting t = η and a = 1 in this identity, we then get for the choice in Eq. (65)

A(p) = 2

∫ ∞

0

e−ph(η) f(η) dη = e−
√
p . (67)

Hence, Eq. (64) gives

Q̃p(0) =

∫ ∞

0

e−pC Q(0, C) dC = 1−
√

1− e−
√
p . (68)

We now use the following power series expansion

(1− x)1/2 = 1−
∞∑

m=1

(2m− 2)!

m! (m− 1)!

xm

22m−1
, (69)

to write Eq. (68) as

Q̃p(0) =

∫ ∞

0

e−pC Q(0, C) dC = Q̃p(0) =

∞∑
m=1

(2m− 2)!

m! (m− 1)! 22m−1
e−m

√
p . (70)
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4π |η|3
e−1/(4|η|) and cost function

h(η) = |η|. The continuous blue line corresponds to the exact result in Eq. (71) while the dots are obtained from numerical
simulations with 107 samples.

We can now invert this Laplace transform with respect to p term by term using the same identity as in Eq. (66) by
setting a = m for the inversion of the m-th term. This then gives an explicit result

Q(0, C) =
1√

4πC3

∞∑
m=1

(2m− 2)!

(m− 1)! (m− 1)! 22m−1
e−m2/4C . (71)

Unfortunately Mathematica could not resum this series, but it can easily evaluate it numerically and plot it as a
function of C, as shown in Fig. 4. The asymptotic behavior of Q(0, C) for small and large C can be easily derived

from Eq. (71). For example, for small C, the m = 1 term dominates giving, Q(0, C) ≃ e−1/(4C)/
√
16πC3. On

the other hand, for large C the dominant contribution to the sum in Eq. (71) comes from large m, where we can
use Stirling’s formula to approximate the factorials and then the sum can be converted to an integral which can be
explicitly evaluated. Summarizing, we get the following asymptotic behaviors

Q(0, C) ≈


1

2
√
4π C3

e−1/(4C) as C → 0

1
4Γ(3/4)

1
C5/4 as C → ∞ .

(72)

The large C power law decay C−5/4 is consistent with the general result µ/2 + 1 for µ = 1/2 < 1, as stated in the
main text.

Example 3 - Number of steps longer than a threshold

Let us consider the cost function h(η) = θ(|η| − ηc), where θ(z) is the Heaviside step function and ηc ≥ 0 is fixed.
Using this cost function, the variable C is the number of steps of length greater than ηc until the first passage event.
Note that when ηc = 0, we have q = 0 and C reduces to the first passage time. We find

A(p) =
1

2

[
q + e−p(1− q)

]
, (73)
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where

q =

∫ ηc

−ηc

f(η)dη , (74)

is the probability that a single step is shorter than ηc. Plugging this expression for A(p) and inverting the Laplace
transform, we get

Q(0) = 1−
√

1− q , (75)

and

Q(C) =
√

1− q
(2(C − 1))!

C!(C − 1)!
2−2C+1 (76)

for C ≥ 1. This result in Eqs. (75) and (76) is in perfect agreement with numerical simulations (see Fig. 5).
Interestingly, for C ≥ 1, the probability of C can be written as

Q(C) =
√
1− q FC , (77)

where

FC =
(2(C − 1))!

C!(C − 1)!
2−2C+1 (78)

is the first passage probability to the origin after C steps. From Eq. (75), we immediately find that
√
1− q is the

probability that there is at least a step of length greater than ηc up to the first passage time. As a consequence, we
find that the probability of C conditioned on the event C ≥ 1 is exactly the same as the probability distribution of
the first passage time

Q(C|C ≥ 1) = FC . (79)

Remarkably, this last rest result is completely universal, as FC is independent of the jump distribution f(η).


	Cost of excursions until first return for random walks and Lévy flights: an exact general formula
	Abstract
	References
	Supplemental Material
	Extended derivation of main result
	Explicit solution of the backward integral equation for a special case
	Explicit Q(C) for three other examples.
	Example 1 - Gaussian steps
	Example 2 - Lévy flight
	Example 3 - Number of steps longer than a threshold



