
pyKCN:
A Python Tool for Bridging Scientific

Knowledge

Zhenyuan Lu Wei Li Burcu Ozek Haozhou Zhou

Srinivasan Radhakrishnan Sagar Kamarthi
{lu.zhenyua, li.wei10, ozek.b, zhou.haoz, s.kamarthi, s.radhakrishnan}@northeastern.edu

Northeastern University, Boston

Abstract

The study of research trends is pivotal for understanding scientific develop-
ment on specific topics. Traditionally, this involves keyword analysis within
scholarly literature, yet comprehensive tools for such analysis are scarce,
especially those capable of parsing large datasets with precision. pyKCN ,
a Python toolkit, addresses this gap by automating keyword cleaning, ex-
traction and trend analysis from extensive academic corpora. It is equipped
with modules for text processing, deduplication, extraction, and advanced
keyword co-occurrence and analysis, providing a granular view of research
trends. This toolkit stands out by enabling researchers to visualize keyword
relationships, thereby identifying seminal works and emerging trends. Its ap-
plication spans diverse domains, enhancing scholars’ capacity to understand
developments within their fields. The implications of using pyKCN are sig-
nificant. It offers an empirical basis for predicting research trends, which can
inform funding directions, policy-making, and academic curricula. pyKCN
thus represents a leap forward in research trend analysis, offering scholars a
powerful tool for navigating the knowledge landscape. The code source and
details can be found on: https://github.com/zhenyuanlu/pyKCN

1 Introduction

Literature reviews can be broadly classified into research landscape analysis and detailed
topical reviews. Research landscape analysis, including scientometric and bibliometric
reviews, offers a quantitative, comprehensive overview of a research area. It highlights key
trends, major themes, and overall trajectories by analyzing the meta-data of a large number
of literature through data-driven methods. On the other hand, detailed topical reviews,
like systematic reviews, involve rigorous human screening and focus on in-depth analysis of
specific topics. They offer detailed insights, critical evaluations, and in-depth discussions on
particular findings or methodologies. Both types of reviews serve unique yet complementary
purposes. Research landscape analysis helps researchers understand the larger landscape,
identify research trends, and recognize potential gaps or underserved areas. Meanwhile,
a detailed topical review provides a deeper understanding of specific issues, theories, or
methods, facilitating nuanced discussions and fostering specialized expertise.
Automated tools designed to assist literature reviews are increasingly needed in academic
research. VOSviewer [6] and Connected Papers [7] are two notable examples of research
landscape analysis tools. VOSviewer utilizes bibliometric data to create bibliometric network

pyKCN Introduction

ar
X

iv
:2

40
3.

16
15

7v
2

 [
cs

.D
L

]
 2

6
M

ar
 2

02
4

https://github.com/zhenyuanlu/pyKCN

visualizations, revealing the connections between researchers, institutions, and specific
keywords. Similarly, Connected Papers examines the bibliographic data of a selected paper
and generates a graphical map that demonstrates how that paper is related to others in its
field. As for detailed topical reviews, tools powered by Large Language Models (LLM), such
as PDF.ai [4], come into play. These tools take individual research papers or collections,
extract key findings, generate summaries, and answer specific queries about the content.
Despite the efficiency of specialized automated tools, there are still many challenges and
limitations. Many tools tend to operate in isolation, focusing either on a broad overview
or on detailed insights without offering a comprehensive integration of both. While they
provide visualizations and summaries, they lack insightful metrics to gauge the dynamic
evolution of research fields. Additionally, most platforms do not track or visualize the shift
in research themes over time. In this context, we introduce pyKCN, a computational tool
designed to aggregate publication metadata of a research area and generate comprehensive
insights. It aims to answer the following questions:

1. Is this research area trending? How can we quantify its growth over time?
2. How can we quantitatively describe the research landscape? Is the
landscape expanding, gaining depth, or both? Which specific areas are
expanding or gaining depth?
3. What are the emerging and declining topics in this research area? How
does the research focus shift over time?
4. Which topics are frequently studied together? How do these associations
change over time?

The pyKCN package implements natural language processing (NLP) modules and downstream
task modules like keyword co-occurrence network (KCN) analysis. The user downloads
the relevant literature metadata from their preferred database to start the analysis. From
there, the package constructs a robust keyword database using pipelines powered by natural
language processing toolkits. These pipelines perform essential tasks like tokenization,
stemming, lemmatization, and merging synonyms and acronyms, ensuring the analysis is not
skewed by linguistic habits.
Following this preprocessing, co-occurrence values are calculated to determine how often two
keywords appear together in literature. Essentially, KCN works by viewing each keyword
as a node and every co-occurrence of a pair of words as a link. The frequency of these
co-occurrences establishes the weight of the link, resulting in a weighted network. The
package provides metrics to evaluate the nodes and edges’ statistical features, centrality,
affinity, and cohesiveness. Beyond KCN, pyKCN offers a range of downstream tasks like
association rules generation, research trend visualization, and potential integration with
advanced technologies like GPT-4.
The package is separated into distinct modules that perform specific tasks. The first module
is the data preparation module, which extracts keyword data from metadata while ensuring
data validity. The second module is the text processing module, which uses NLP tools to
process the data. The third module is the matrix generator, which generates the network
co-occurrence matrix. The final modules are the downstream models, which calculate network
metrics and association rules. The package includes meticulous error handling to ensure
smooth operation. For performance and versatility, the package utilizes Python libraries
such as pandas, numpy, nltk, networkX, and matplotlib.

2 Related Work

This section briefly reviews the existing software for literature reviews and compares them
with pyKCN. The KCN methodology, introduced in 2017 [5], has been cited in over 200
scientometric review papers. In this section, we summarize various research areas where
KCN has been applied, validating the need for an integrated tool like pyKCN. Lastly, we
discuss pyKCN’s key features and their value to the evolving field of scientometric reviews.
Table 1 presents a range of literature review tools, each serving different purposes in the
review process. Tools like pdf.ai represent a category that, while not exclusive to literature

2

Main Function Software Name Analysis
Capability

Automated
Trend

Analysis

Natural
Language

Processing

LLM-powered
literature analysis

pdf.ai Single paper No Yes
Semantic Reader Single paper No Yes

Taskade Both No Yes

Literature
management and
screening

MAXQDA Both No Yes
DistillerSR Both No Yes

Rayyan Both No Yes

Research landscape
analysis and
visualization

VOSviewer Meta No No
Connected Papers Meta No No

CiteSpace Meta Yes No
Table 1: Comparison of Literature Review Tools

Figure 1: KCN Application

reviews, assists in extracting information from publications, relying on manual screening
without analyzing research trends. Semantic Reader, another example, offers real-time
AI-powered abstracts of cited work and highlights key parts of publications. Taskade, with
its flexibility and collaborative features, can be tailored to support literature reviews, though
it also lacks automated trend analysis.
In contrast, tools such as MAXQDA, DistillerSR, and Rayyan fall under literature manage-
ment and screening, designed for detailed topical reviews. MAXQDA focuses on managing
and analyzing qualitative data, while DistillerSR and Rayyan are tailored to assist systematic
reviews, especially in the medical field.
Lastly, bibliometric network analysis tools like VOSviewer, Connected Papers, and CiteSpace
are closely related to pyKCN’s domain. They create networks based on citation relationships.
pyKCN, on the other hand, creates networks based on contents from title and keywords,
leverages NLP to refine raw data and employs KCN methodology to quantify research trends,
complementing the capabilities of tools like CiteSpace.
According to a recent study, the popularity of scientometric reviews is on the rise. Figure 1
summarizes the areas where the KCN has been applied. However, not all such reviews meet
the criteria for being valuable and effective. A high-quality scientometric review should ensure
input data quality, utilize nuanced search strategies, and include insightful visualization
interpretations. It should also conduct comprehensive analyses across multiple dimensions
such as intellectual composition and temporal dynamics. pyKCN aligns well with these
requirements, offering robust data processing via NLP modules and versatile tools for both
structural and temporal analyses. Additionally, its interactive visualizations and advanced

3

×

Figure 2: The main architecture of pyKCN.

metrics aid in identifying key research trends, making pyKCN a valuable asset for conducting
impactful scientometric reviews.

3 Architecture and Core Functionality

The pyKCN software is architected with modularity and scalability at its core. This section
elucidates the overarching blueprint of pyKCN, highlighting its key components and their
interplay.

3.1 Overview of the pyKCN Architecture

At the highest level, pyKCN ’s architecture can be categorized into primary and auxiliary
components 2. The primary components serve as the software’s main backbone, while the
auxiliary components facilitate and enhance the functionalities provided by the primary
modules.

• Main Modules: These form the core of pyKCN, encapsulating the primary func-
tionalities and algorithms. They are designed with flexibility in mind, enabling users
to seamlessly integrate and expand upon them as needed.

• Logging System: An indispensable part of any robust software, the logging
system in pyKCN ensures that all operations, anomalies, and significant events are
meticulously recorded. This aids in debugging, performance tuning, and maintaining
transparency in operations.

• File System: This component is responsible for the structured storage and retrieval
of data. By leveraging a hierarchical and organized approach, it ensures efficient
data access and modification capabilities.

• Error Handling: An essential layer that oversees the graceful management of
exceptions and unexpected events. It ensures the software’s robustness and resilience
in the face of unforeseen challenges.

• Docstring, Annotation, and Documentations: This segment is dedicated to
providing comprehensive documentation for pyKCN. From method-specific docstrings

4

to overarching annotations, it aids users in understanding and navigating the software
effectively.

Supplementing these primary components are core modules:

• Unit/Integration Test: Safeguarding the integrity of pyKCN are rigorous unit
and integration tests. These tests ensure that both individual modules and their
collective interactions remain flawless and efficient.

• Other Modules: These encapsulate additional functionalities and tools that can
be leveraged to extend the core capabilities of pyKCN.

• Library Setup and Configuration: Facilitating the initial setup and subsequent
configurations, this module ensures that users can tailor pyKCN to their specific
requirements with ease.

• Examples: A repository of practical use-cases and demonstrations that guide users
in harnessing the power of pyKCN to its fullest potential.

• Continuous Integration (CI): Ensuring the seamless integration of updates and
modifications, the CI process validates the compatibility and performance of new
additions, maintaining the software’s integrity.

In summation, the pyKCN architectural blueprint is a testament to thoughtful design,
emphasizing modularity, scalability, and user-centricity. Through its well-defined components
and their strategic interplay, pyKCN stands poised to address a wide array of tasks and
challenges with finesse.

3.1.1 Main Modules

The architecture of our main modules can be chiefly decomposed into two pivotal modules:
the extraction module and the processing module. Both of these modules synergize to
facilitate efficient data management and text processing. Below we introduce the components
of these modules, elucidating their roles and interactions.
Base Extractor: This acts as the foundational layer for data extraction. It establishes the
general protocol and methods which are then specialized by other extractors.

• External File Extractor: Specifically tailored to handle data extraction from
external files. This component ensures that files from diverse sources and formats
can be seamlessly integrated into our system.

• In Memory Extractor: Designed to retrieve data stored in memory. This is
particularly vital for instances where data is temporarily cached or buffered.

Base Processor: Serves as the backbone for all processing tasks, outlining the fundamental
logic and order of operations.

• Deduplication Processor: An indispensable unit responsible for identifying and
eliminating duplicate data entries. This not only optimizes storage but also ensures
the integrity and accuracy of subsequent processing.

• Text Processor: This component is entrusted with the crucial task of parsing and
processing textual data. It’s equipped to make multiple copies for diverse tasks,
such as stemming and reference tracking.

Deduplication Pipeline: Anchored by the Deduplication Processor, this pipeline rigorously
scans the incoming data from the File I/O System to filter out any redundancies.
Primary Pipeline: Post deduplication, the data flows into the primary pipeline. Here, two
main copies are generated, setting the stage for specialized processing.
Stemming Pipeline: One of the copies is earmarked for stemming, a linguistic process
wherein words are reduced to their base or root form, facilitating uniformity and simplifying
subsequent textual analyses.

5

3.2 Data Extraction Modules

3.2.1 BaseExtractor: A Foundational Framework for Data Extraction

The BaseExtractor class is designed as the foundational layer for data extraction, offering
robust interfaces and validating mechanisms to ensure a smooth extraction process. The
emphasis on a modular architecture becomes evident as it enables easier integration with
specialized data extraction approaches and broadens the applicability spectrum.

class BaseExtractor:
"""
Base class for data extraction.
"""

The constructor of the class, __init__, accepts various parameters that cater to diverse
data extraction scenarios:

• data_frame: Optional data frame where the extracted data will be stored.
• data_mapping: A dictionary detailing the mapping for data extraction.
• new_column_names: A list indicating the new names of columns post-extraction.
• data_dir: A string representing the directory where data resides.
• corpus_columns: A list detailing the columns which need corpus-based processing.
• date_column: Specifies the column that contains date data.
• date_type: Defines the type of date data (’year’, ’numeric’, or ’string’).

To ensure a consistent and error-free extraction process, BaseExtractor incorporates a
comprehensive validation mechanism, which can be broken down as follows:

Exclusive Parameter Validation This validation ensures that users provide either
file input parameters or in-memory DataFrame parameters, but not both simultaneously,
eliminating potential conflicts in the extraction process.

def _validate_exclusive_parameters(self):

Data Mapping and Directory Validation This validation is executed if a data_mapping
is provided, ensuring that the accompanying data_dir is also given.

def _validate_data_mapping_and_dir(self):

Corpus and Date Column Validation It ensures that if a corpus_columns list is
provided, the corresponding date_column must also be provided.

def _validate_corpus_and_date_columns(self):

Type and Structure Validation It guarantees the correctness of the types of various
parameters, ensuring logical coherence and effective data extraction.

def _validate_types(self) :

A salient feature of the BaseExtractor is its capacity to handle various date formats. The
date_extractor function offers versatile data extraction capabilities, accommodating types
like ’year’, ’numeric’, and ’string’, and leveraging different extraction functions based on the
specified date type.

6

The class provides a generic load_data method that must be overridden by its subclasses to
address specific data loading requirements. The pivotal function, extract_data, is responsible
for initiating the extraction process, processing date and corpus columns, and returning the
final data frame post-extraction.
In essence, the BaseExtractor stands as a versatile and robust foundation for data extraction,
encapsulating comprehensive validation mechanisms, ensuring robustness, and allowing
seamless extensibility.

3.2.2 ExternalFileExtractor

The ExternalFileExtractor class, extending from the previously discussed BaseExtractor,
offers a robust mechanism to handle data extraction from common file types such as CSV
and Excel files. The following subsection delves into the intricacies of this extractor.

External File Extraction The process of extracting data from external files, given
their ubiquity in datasets, is pivotal. Our solution, the ExternalFileExtractor, focuses on
streamlining this operation, ensuring efficiency and adaptability.
Constructor and Initial Setup The ExternalFileExtractor is initialized with various parameters
to provide flexibility during extraction. Its constructor, __init__, inherits the parameters
from the ‘BaseExtractor‘ but also integrates a logger for monitoring operations:

class ExternalFileExtractor(BaseExtractor):
def __init__(self,

data_mapping: dict[str] | None = None,
data_dir: str = None,
new_column_names: list[str] | None = None,
date_type: str = ’year’) :

super().__init__(data_mapping = data_mapping,
data_dir = data_dir,
new_column_names = new_column_names,
date_type = date_type)

self . logger = logging.getLogger(__name__)

Data Loading Mechanism A critical function in this class, load_data, orchestrates the entire
process of data extraction, offering a consolidated DataFrame from disparate file sources:

def load_data(self) −> tuple[pd.DataFrame, list[str], str]:
Code logic...

It inherently utilizes another method, _load_data_from_folder, to facilitate folder-specific
extraction and handle configuration-based data retrieval:

def _load_data_from_folder(self, folder: str , config : dict) −> tuple[DataFrame |
None, list[str], list [str], str]:
Code logic...

File-Specific Data Extraction The extraction mechanism distinguishes between file types,
ensuring accurate data retrieval. The method _load_data_from_file is instrumental in this
aspect:

def _load_data_from_file(self,
folder_path: str ,
file : str ,
target_columns: list [str]) −> pd.DataFrame | None:

Code logic...

7

This method checks the file extension and decides the appropriate pandas function to deploy,
be it read_csv for CSV files or read_excel for Excel files.
Column Renaming and Standardization Considering diverse datasets might have vary-
ing column names, standardization becomes vital. The _get_new_column_names and
_get_final_column_names methods cater to this requirement:

def _get_new_column_names(self,
corpus_columns: list[str],
date_column: str) −> tuple[list[str], list [str], str]:

Code logic...

@staticmethod
def _get_final_column_names(corpus_columns: list[str],

date_column: str,
new_column_names: dict) −> tuple[list[str], str]:

Code logic...

Error Handling and Logging Given the intricacies of file handling, potential errors need
addressing. The _log_error method is designed for this very purpose, ensuring that extraction
issues are promptly logged:

def _log_error(self , error_message: str) −> None:
"""
Log an error message.
:param error_message: The error message to log.
:return: None
"""
self . logger . error(error_message)

Summary: The ExternalFileExtractor works as the external file data extraction, emphasiz-
ing flexibility, efficiency, and robustness. By seamlessly integrating with the foundational
BaseExtractor, it showcases a pragmatic approach towards diverse dataset handling in the
realm of representation learning. Future work might encompass supporting an even broader
spectrum of file formats, further augmenting the utility of this extractor in various data
science endeavors.

3.2.3 InMemoryDataFrameExtractor

One increasingly common scenario involves the need to process data that al-
ready resides in memory, typically in structured formats like DataFrames. The
InMemoryDataFrameExtractor caters to this very scenario, providing robust extraction
capabilities for in-memory data structures.

In-Memory Data Extraction Mechanism The InMemoryDataFrameExtractor builds
upon the foundational BaseExtractor class, inheriting its core functionalities and extending
them to cater to in-memory data extraction. Its design emphasizes ease of use, flexibility,
and error resilience, ensuring that data can be seamlessly loaded and preprocessed, even
from complex in-memory structures.
Initialization The class constructor accepts several parameters:

• data_frame: The core DataFrame from which data is to be extracted.
• new_column_names: Optionally, a list of new column names if renaming is required.
• corpus_columns: Columns which constitute the corpus.
• date_column: A designated column for date information.
• date_type: Specifies the granularity of the date (e.g., ’year’).

8

The initialization method instantiates the logger and invokes the superclass’s initialization
with the provided parameters, as evident from the snippet below:

def init (self ,
data_frame: pd.DataFrame,
new_column_names: list[str] = None,
corpus_columns: list[str] = None,
date_column: str = None,
date_type: str = ’year’) :
super(). init (data_frame = data_frame,
new_column_names = new_column_names,
corpus_columns = corpus_columns,
date_column = date_column,
date_type = date_type,)
self . logger = logging.getLogger(name)

Data Loading and Preprocessing The load_data method is at the heart of the extraction
process. It leverages the power of pandas’ DataFrame operations to:
Extract relevant columns based on corpus_columns and date_column. Rename the columns
if new_column_names is provided. Return the final concatenated DataFrame along with
the corpus and date columns. Here’s the method in its entirety:

def load_data(self) −> tuple[pd.DataFrame, list[str], str]:
try:

target_columns = self.corpus_columns + [self.date_column]
final_df = self .data_frame[target_columns]
final_corpus_columns = self.corpus_columns
final_date_column = self.date_column

if self .new_column_names:
new_column_mapping = dict(zip(target_columns, self.new_column_names))
final_df .rename(columns = new_column_mapping, inplace = True)
final_corpus_columns = [new_column_mapping[col] for col in

self.corpus_columns]
final_date_column = new_column_mapping[self.date_column]
return final_df , final_corpus_columns, final_date_column

except Exception as e:
self ._log_error(READ_ERROR.format(e))
return pd.DataFrame(), [], ""

Error Handling and Logging Given the variable nature of in-memory data structures, there is
a potential for extraction errors. The InMemoryDataFrameExtractor includes a dedicated
_log_error method, which is invoked to log any exceptions encountered during the data
extraction process:

def _log_error(self , error_message: str) −> None:
self . logger . error(error_message)

Summary: The InMemoryDataFrameExtractor plays a pivotal role in extracting data from
in-memory structures, merging flexibility with robustness. By ensuring seamless integration
with pandas DataFrames, this module paves the way for efficient representation learning
directly from in-memory data, mitigating the need for external data loading processes.

9

3.3 Text Processing Modules

Central to the data processing pipeline of pyKCN is the BaseProcessor class. This class
encapsulates a plethora of methods meticulously engineered to process, cleanse, and refine
data, paving the way for advanced analysis and operations.

3.3.1 BaseProcessor: A Detailed Exploration

The BaseProcessor is initialized with a series of parameters that dictate its behavior across
various operations. A deep dive into the constructor reveals parameters such as dataframe,
columns_to_process, columns_to_deduplicate, among others, which play a pivotal role
in customizing the processor’s behavior according to specific needs. For instance, the
dataframe parameter holds the data subjected to processing, while configurations such as
custom_delimiter and deduplication_threshold offer granular control over text processing
and data deduplication respectively.

class BaseProcessor:
def init (self , dataframe: pd.DataFrame, columns_to_process: list[str] = None,

columns_to_deduplicate: list[str] = None, ...):
self .dataframe = dataframe.copy()

...

Initialization (__init__) During the initialization phase, the BaseProcessor is con-
figured by a series of parameters that distinctly influence its behavior across a multi-
tude of operations. At the heart of this configuration lies parameters such as dataframe,
columns_to_process, and columns_to_deduplicate, among others. For instance, the
dataframe parameter embodies the data destined for processing, acting as a receptacle
that holds the information to be manipulated and refined.

def __init__(self, dataframe: pd.DataFrame, columns_to_process: list[str] = None,
...)
Implementation details

Data Validation and Preprocessing Preliminary steps within the BaseProcessor
pipeline include data validation and cleansing operations that are critical for maintain-
ing the accuracy and quality of the analysis.
handle_nan The handle_nan method provides mechanisms for dealing with missing values,
which can be pivotal for preserving the dataset’s consistency, especially during deduplication
phases.

def handle_nan(self, mode_type = ’deduplication’)
Implementation details

validate_dataframe The validate_dataframe method is instrumental in ensuring the integrity
of the data, validating the data frame’s structure and type. This method is invoked during
the initialization phase, ensuring that the data is compatible with the subsequent processing
steps.

def validate_dataframe(self)
Implementation details

Custom Operations The BaseProcessor extends its functionality by allowing the incor-
poration of bespoke operations, imparting versatility to the user’s data processing needs.

10

apply_custom_operations The apply_custom_operations method facilitates the execution
of an array of user-defined transformations, enhancing the adaptability of the data processing
workflow.

def apply_custom_operations(self, operations: list)
Implementation details

combine_columns Merging multiple columns is accomplished via the combine_columns
method, a process that can be essential for feature engineering and dataset enrichment.

def combine_columns(self, columns_to_combine: list[str], new_col_name =
’target_col’) −> None
Implementation details

Text Processing The BaseProcessor module also houses sophisticated text manipulation
utilities, providing the foundation for any text-centric analytical task.
split_by_delimiter Dividing text based on specified delimiters.

def split_by_delimiter(self , text : str) −> list[str]
Implementation details

tokenize_string Tokenization, facilitated by the tokenize_string method, parses strings into
tokens, which are the basic methods for natural language processing (NLP) tasks.

def tokenize_string(self , text : list [str]) −> list[str]
Implementation details

Hyphen Handling Given the idiosyncrasies of text data, the BaseProcessor adeptly
manages hyphenated constructs to ensure uniformity in processed tokens.
handle_hyphenated_terms Dealing with terms that contain hyphens for standardized pro-
cessing.

def handle_hyphenated_terms(self, tokens: list[str]) −> list[str]
Implementation details

Numerical/Special Character Handling A comprehensive text processing system must
discern and manage numerical and special characters efficiently, as they can bear significant
or negligible meaning depending on the context.
remove_numbers The remove_numbers method in BaseProcessor offers a versatile approach
to filtering out numerical values from textual data. This function can be tailored with
different pattern_type parameters to match specific patterns of numbers within the text.

def remove_numbers(self, tokens: list [str], pattern_type: str = ’all ’) −> list[str]
Implementation details

Punctuation Handling Punctuation marks, while crucial for human readability, often
add noise to text-based algorithms. Their management is therefore crucial in pre-processing.
remove_punctuation The remove_punctuation function is designed to strip text of unnec-
essary punctuation, enhancing the textual data’s uniformity and reducing complexity for
downstream processing.

11

def remove_punctuation(self, text: str | list [str], punctuation_type = ’default’) −>
str | list [str]
Implementation details

Text Transformation The transformation of textual data is a critical pre-processing step
to ensure uniformity and facilitate the application of NLP algorithms.
stem_tokens The stem_tokens method reduces words to their base or stem form, a crucial
step in the normalization process that helps in decreasing the complexity of textual data by
consolidating various forms of a word into a common base.

def stem_tokens(self, tokens)
Implementation details

to_lowercase The conversion of all text entries to lowercase using the to_lowercase function
ensures case consistency throughout textual data, which is particularly significant when the
case is not indicative of different meanings.

def to_lowercase(self , text : str) −> str
Implementation details

Text Cleanup and Normalization Normalization is a process that not only cleans the
text but also standardizes it, making it more amenable to analysis.
unicode_normalize The unicode_normalize function standardizes Unicode characters into
their canonical form, thereby simplifying the encoding of text data.

def unicode_normalize(self, text : str) −> str
Implementation details

remove_non_ascii By removing non-ASCII characters with the remove_non_ascii method,
the text is cleansed of characters that could lead to processing errors or inconsistencies.

def remove_non_ascii(self, tokens)
Implementation details

remove_angle_brackets The remove_angle_brackets method is employed to eliminate any
text or markup that is enclosed within angle brackets, often used to denote tags or metadata
that are not required for the main text analysis.

def remove_angle_brackets(self, tokens)
Implementation details

strip_whitespace Trimming extraneous whitespaces from the data via the strip_whitespace
function is an essential step in tidying the text and preparing it for further processing without
the noise of unnecessary spaces.

def strip_whitespace(self , tokens)
Implementation details

remove_stopwords Stopwords are commonly occurring words in a language that carry minimal
unique information. The remove_stopwords method excises these to focus the analysis on
the most meaningful words.

def remove_stopwords(self, tokens)
Implementation details

12

final_cleanup A comprehensive final_cleanup method acts as a concluding step in the text
pre-processing phase, ensuring that the text is in its most refined form before being passed
on for analysis or machine learning processes.

def final_cleanup(self , tokens: str) −> str
Implementation details

Execution The BaseProcessor is architected to be versatile and extensible. The
execute_processor abstract method provides a template for the execution logic that must
be implemented by derived classes, tailoring the processing pipeline to specific datasets and
applications.
execute_processor An abstract method that mandates implementation by subclasses, dictating
the execution logic of the processing steps.

def execute_processor(self) −> pd.DataFrame
This method must be implemented by subclasses to define the specific processing

execution logic .

In summary, the BaseProcessor is a robust and sophisticated module within the pyKCN,
capable of executing a diverse array of text pre-processing functions. Its comprehensive
set of methods for text transformation and cleanup is foundational in preparing data for
advanced NLP tasks, ensuring that downstream processing is conducted on data that is
clean, normalized, and standardized.

3.3.2 DeduplicationProcessor: Ensuring Data Uniqueness

Data deduplication stands as an imperative process in the data preparation phase, particularly
in tasks where the uniqueness of entries is a prerequisite for analytical accuracy. The
DeduplicationProcessor, inheriting the BaseProcessor, epitomizes the commitment to data
quality by removing redundancies through a customizable pipeline of pre-processing functions.
The DeduplicationProcessor has been architected to refine textual data in preparation for
deduplication. It undertakes a methodical sequence of normalization and transformation
processes to eliminate inconsequential variations such as case sensitivity, punctuation dis-
crepancies, and encoding differences. Subsequently, the harmonized data can be scrutinized
for redundancies using string similarity assessments or advanced deduplication algorithms.

Initialization The instantiation of the DeduplicationProcessor includes parameters tai-
lored to identify and remove duplicates, taking into account a set threshold that determines
the strictness of comparison for deduplication.

class DeduplicationProcessor(BaseProcessor):
... constructor and DEDUPLICATION_STEPS omitted for brevity ...

Similarity Assessment At the core of this processor is the capability to discern similarity
between string entries, which is pivotal for identifying duplicates beyond exact matches.

@staticmethod
def is_similar(string1 : str , string2 : str , threshold_percentage: int) −> bool:

Levenshtein Distance based similarity check (fuzzy matching)

Deduplication Strategies The class defines two primary strategies for deduplication:
exact match deduplication and fuzzy deduplication based on similarity thresholds, allowing
for flexible data cleansing based on the use case.

13

def deduplicate_based_on_similarity(self, ...) :
Implementation details

def remove_duplicates(self, ...) :
Implementation details

Execution Pipeline The execution method is where the deduplication process is or-
chestrated, utilizing the defined pre-processing steps to prepare data before applying the
deduplication logic.

def execute_processor(self) −> pd.DataFrame:
Implementation details

Deduplication Pipeline Each step in the deduplication process is concisely described,
and the operations are applied in sequence to the specified columns of the DataFrame. The
methodological removal of duplicates ensures that the dataset retains only the essential
information, minimizing data redundancy.
The operational sequence of the DeduplicationProcessor is composed of a series of methodical
steps aimed at cleansing and normalizing text data. These steps include:

• Removal of content within angle brackets that often signifies irrelevant metadata or
formatting.

• Conversion of all text to a uniform lowercase format to eliminate case-based discrep-
ancies.

• Application of Unicode normalization to resolve encoding variances.
• Purging of non-ASCII characters to maintain a standard character set.
• Exclusion of punctuation marks to reduce textual noise and facilitate comparison.
• Eradication of numerical figures where they are deemed non-essential for the analysis

context.

Each step in this deduplication pipeline is paramount in its own right, coalescing into a
powerful collective that refines text into a form optimized for duplication assessment.

Usage and Examples The DeduplicationProcessor can be instantiated and employed in
various contexts, ranging from simple use cases to complex data preparation pipelines. The
following examples provide a glimpse into its integration within a data processing workflow.

Example usage of DeduplicationProcessor
deduplication_processor = DeduplicationProcessor(dataframe,

columns_to_process=[’column_1’, ’column_2’])
processed_df = deduplication_processor.execute_processor()

Algorithmic Implementation At the code level, the DeduplicationProcessor is a Python
class that inherits from the BaseProcessor. It is initialized with parameters that define the
scope of deduplication, the threshold for fuzzy matches, and the steps to be executed in
the deduplication pipeline. The class methods encompass functionality for string similar-
ity checks, dataframe deduplication based on exact and fuzzy matches, and the primary
execute_processor method, which encapsulates the full deduplication logic.

Summary In summation, the DeduplicationProcessor stands as a testament to the soft-
ware’s capabilities in ensuring data uniqueness and integrity. It highlights the intricate
blend of text processing techniques, from normalization to fuzzy matching, to address the
ubiquitous challenge of data redundancy. The inclusion of this module within the pyKCN
suite reinforces the tool’s comprehensive approach to data quality management.

14

3.3.3 TextProcessor: Specialized Textual Data Processing

The TextProcessor class, a derivative of the BaseProcessor, embodies a more focused approach
towards textual data. It accentuates the foundational pre-processing capabilities with
specialized pipelines that cater to text-specific operations such as stemming, normalization,
and removal of unwanted characters.

Primary and Stemming Pipelines The TextProcessor is equipped
with two default pipelines: the DEFAULT_PRIMARY_PIPELINE and the
DEFAULT_STEMMING_PIPELINE. These structured sequences of operations are
tailored to refine textual data methodically. The primary pipeline concentrates on
pre-cleanup and preparation tasks, while the stemming pipeline handles the reduction of
words to their base forms and further cleanup.

class TextProcessor(BaseProcessor):
Class definition and pipelines as provided.

Constructor Details Upon instantiation, the TextProcessor initializes with an extensive
set of parameters, offering extensive control over the processing procedures. This includes
specifying columns to process, setting a deduplication threshold, and configuring pipeline-
related settings, among others.

def __init__(self, dataframe: pd.DataFrame, columns_to_process: list[str], ...) :
super().__init__(dataframe, columns_to_process, ...)
Additional initialization details .

Execution Logic The execution methods, execute_processor, execute_primary_pipeline,
and execute_stemming_pipeline, articulate the logic for the sequential processing of data
through the defined pipelines.

def execute_processor(self , ...) :
Execution logic for processing pipelines .

Predefined Pipelines The TextProcessor class comes with two predefined pipelines that
establish a sequence of operations to be applied to the textual data:
the DEFAULT_PRIMARY_PIPELINE and the DEFAULT_STEMMING_PIPELINE.
These pipelines are collections of processing steps, each defined as a dictionary object
that specifies the operation to be executed and its associated arguments.
DEFAULT_PRIMARY_PIPELINE The DEFAULT_PRIMARY_PIPELINE is a sequence
designed for the initial cleanup and normalization of text. It includes steps such as the
removal of markup enclosed within angle brackets, case normalization, Unicode normalization,
tokenization, non-ASCII character removal, and more. Each step is meticulously described
and assigned a specific operation function within the TextProcessor.

DEFAULT_PRIMARY_PIPELINE = {
’ default ’ : [

... Pipeline steps as described.
]

}

• Removing text within angle brackets.
• Splitting text based on delimiters for tokenization.
• Converting text to lowercase to ensure case consistency.
• Normalizing Unicode characters to their canonical form.

15

• Tokenizing strings into individual terms.
• Removing non-ASCII characters for standardization.
• Handling hyphenated terms for consistent processing.
• Eliminating common stopwords.
• Stripping extraneous whitespace from the text.
• Discarding numerical values based on specified patterns.
• Purging punctuation, configurable by type.

These steps are crucial for preparing the text for advanced processing tasks, ensuring that
the data is consistent and standardized.
DEFAULT_STEMMING_PIPELINE
After the primary processing, the DEFAULT_STEMMING_PIPELINE targets the stem-
ming of words and additional cleanup. Stemming reduces words to their root form, signif-
icantly reducing the complexity of language by consolidating variations of a word. This
pipeline also includes rejoining terms and filtering by length, which removes extraneous or
overly short terms that may not contribute meaningful information to the analysis.

DEFAULT_STEMMING_PIPELINE = {
’original_data’ : [

... Steps for processing original data.
],
’stemmed_data’: [

... Steps for processing stemmed data.
]

}

• Rejoining terms post tokenization for original data.
• Filtering terms based on their length.
• Cleaning the text of any remaining unnecessary characters in original data.
• Applying stemming to tokenize terms.
• Rejoining stemmed terms into a coherent text.
• Further filtering by length for stemmed data.
• Final cleanup of stemmed terms.

Integration of Pipelines During the initialization of the TextProcessor, these pipelines
are set as defaults, but they can be replaced or augmented by user-defined pipelines, offering
flexibility and customizability.

def __init__(self, ...) :
self .PRIMARY_PIPELINE = primary_pipeline or

self.DEFAULT_PRIMARY_PIPELINE
self .STEMMING_PIPELINE = stemming_pipeline or

self.DEFAULT_STEMMING_PIPELINE
Additional initialization logic ...

The primary and stemming pipelines are key components of the TextProcessor, allowing for
a structured and sequential approach to text processing. The default configurations of these
pipelines reflect best practices in text preprocessing and are optimized for a general use case,
ensuring that the TextProcessor is versatile and ready to handle diverse textual datasets
right out of the box.

16

Caching Mechanism An integral feature of the TextProcessor is its caching mechanism,
which is meticulously designed to store intermediate results, reducing computational overhead
in repeated operations.

def save_cached_data(self, pipeline_type: str) :
Code to save DataFrame to cache.

The caching mechanism’s load operations are equally optimized to retrieve stored data,
ensuring efficient continuity in data processing.

def load_cached_data(self, pipeline_type: str):
Code to load DataFrame from cache.

Utility Methods The class also includes utility methods like get_cache_file_path and
_handle_parquet_format, which support the caching system and facilitate the management
of cache files.

def get_cache_file_path(self, pipeline_type: str) :
Code to get the file path for the cache.

These utility methods ensure that the TextProcessor operates seamlessly across different
stages of the text processing lifecycle.

Data Retrieval Post-processing, the TextProcessor provides methods to access the pro-
cessed data, thereby encapsulating the entire data processing workflow within a coherent
interface.

def get_primary_pipeline_data(self):
Code to retrieve data processed by the primary pipeline.

Summary The TextProcessor class is a testament to advanced textual data handling,
integrating a comprehensive set of preprocessing functionalities with an efficient caching
system. This orchestration of operations not only amplifies the processing capabilities but
also ensures that the transformed data adheres to the highest standards of quality and
readiness for downstream applications such as machine learning modeling and data analysis.

4 Downstream Tasks

The processed data output by the TextProcessor module serves as a cornerstone for several
downstream tasks. These tasks leverage the sanitized and structured data to unearth patterns,
associations, and insights that are pivotal for knowledge discovery within vast repositories of
textual information, such as scientific articles. We focus on tasks that reveal the intricacies
of keyword interrelationships, deduce association rules, offer general statistics, and explore
innovative applications of GPT-4.

4.1 Downstream Tasks

4.1.1 Network Metrics/Parameters

Weighted network metrics evaluate keyword connections on different levels of significance,
relevance, and hierarchies. Given a keyword network consists of entities interconnected with
non-zero probability, the weighted network metrics can help the KCN quantify the evolution
in a knowledge domain. Previous research conducted by Barrat et al. and Duvuru et al.
has presented weighted network metrics that can reflect emerging trends and knowledge
structures. Radhakrishnan et al. also developed novel weighted network metrics and validated

17

the effectiveness in nano-related literature research. Accordingly, several key network metrics
are summarized as follows:
The level of degree is a fundamental measurement of node centrality, which indicates its
importance. Considering ki as the level of degree for a node i, and the group of links aij ,
whose elements take the value 1 if a link connects node i to the node j and 0 otherwise, the
level of degree can be denoted as:

ki =
∑

j∈Ni

aij (1)

While the links hold different significance, the strength of node is more subjective performance
evaluation for the node centrality. Assuming only symmetric weights exist among the nodes,
a matrix that keeps the values of weighted links wij should fulfill that wij = wji, which
indicates the weight of the link between node i and j is the same regardless of the direction.
The strength si can be further denoted as:

si =
∑

j∈Ni

wij (2)

Either strong or weak connections may exist among nodes with different levels of degrees.
The average weight of endpoint degrees was introduced to measure the co-occurrence of
connections between pairs of nodes as their degrees are changing. Considering ki and kj are
the degrees of node i and j, respectively, the product of ki and kj is defined as the average
weight of endpoint degrees:

< wij >= kikj (3)

If a node and its neighbors share a similar level of degree, an enrichment tendency might
exist and can be reflected by an index of the average weighted nearest neighbor’s degrees.
Given a set of notes Ni, the index is defined as:

kw
nn,i = 1

si

∑
j∈Ni

wijkj (4)

Where the index kw
nn,j can also be considered as the affinity measurement that indicates the

tendency of nodes to connect with the nearest nodes that contain similar degree levels. The
network is determined as assortative if this measurement is proportional to degree or vice
versa.
Local cohesiveness of groups of nodes can reflect how well a particular node is connected to
its neighbors and it can be measured by a weighted clustering coefficient. This measurement
weighs a single node’s surrounding structure on the intensity of its interaction with the local
triplets. Considering a node i, along with its connected neighbors Ni, degree ki and strength
si, the weighted clustering coefficient Cw

i can be denoted as:

Cw
i = 1

si(ki − 1)
∑

j∈Ni,h∈Ni

(
wij + wih

2

)
ajh (5)

4.2 Pain Research

We employed this methodology in the field of pain research, which has been gaining global
significance due to the increasing number of individuals experiencing pain-related issues.
In response to this public health challenge, various interdisciplinary research areas have
converged to address pain-related concerns. This convergence has led to a rapid increase
in the number of studies and has placed greater demands on researchers. Therefore, this
study conducts a comprehensive review and analysis of a substantial body of pain-related
literature using the keyword co-occurrence network (KCN) methodology.
For this investigation, we extracted and examined keywords from 264,560 pain-related research
articles indexed in IEEE, PubMed, Engineering Village, and Web of Science, published
between 2002 and 2021. We created four distinct networks representing four different

18

time windows and applied network metrics to identify frequently used keywords related to
pain, reveal patterns of association among these pain-related keywords, and examine the
research trends within the domains of sensors/methods, biomedical research, and treatment
approaches in the context of pain-related studies. [3]

4.3 Asset Life Cycle Management Research

We then applied this approach to explore the progression of Industry 4.0 technology applica-
tions within the realm of sustainable asset life cycle management (ALCM). The increasing
potential of Industry 4.0 technologies to promote sustainable manufacturing has generated a
growing emphasis on ALCM in recent years.
The foundation of this study lies in the analysis of keywords extracted from 3,896 scientific
articles related to ALCM. These articles were published in Web of Science, IEEE Xplore,
and Engineering Village during the period from 2002 to 2021. We constructed KCNs based
on these keywords and conducted an in-depth exploration of network characteristics to reveal
valuable knowledge patterns, components, structure, and research trends.[8]

4.4 AI-assisted Vehicle Maintenance

The increasing complexity of a vehicle’s digital architecture has created new opportunities to
revolutionize the maintenance paradigm. The Artificial Intelligence (AI) assisted maintenance
system is a promising solution to enhance efficiency and reduce costs.
The KCN methodology is applied to systematically analyze the keywords extracted from
3153 peer-reviewed papers published between 2011 and 2022. The network metrics and
trend analysis uncovered important knowledge components and structure of the research
field covering AI applications for vehicle maintenance. The emerging and declining research
trends in AI models and vehicle maintenance application scenarios were identified through
trend visualizations. [1]

Acknowledgments
Our teams have been published in the following papers based on this work: [3, 8, 1, 2]

References
[1] Wei Li, Guoyan Li, and Sagar Kamarthi. The study of trends in ai applications for vehicle main-

tenance through keyword co-occurrence network analysis. International Journal of Prognostics
and Health Management, 14(2), 2023.

[2] Wei Li, Haozhou Zhou, Zhenyuan Lu, and Sagar Kamarthi. Navigating the evolution of digital
twins research through keyword co-occurence network analysis. Sensors, 24(4):1202, 2024.

[3] Burcu Ozek, Zhenyuan Lu, Fatemeh Pouromran, Srinivasan Radhakrishnan, and Sagar Kamarthi.
Analysis of pain research literature through keyword co-occurrence networks. PLOS Digital
Health, 2(9):e0000331, 2023.

[4] PDF.ai. pdf.ai: Chat with any pdf document. https://www.pdf.ai, 2023. Accessed: 2023-11-01.
[5] Srinivasan Radhakrishnan, Serkan Erbis, Jacqueline A Isaacs, and Sagar Kamarthi. Novel

keyword co-occurrence network-based methods to foster systematic reviews of scientific literature.
PloS one, 12(3):e0172778, 2017.

[6] Nees Van Eck and Ludo Waltman. Software survey: Vosviewer, a computer program for
bibliometric mapping. scientometrics, 84(2):523–538, 2010.

[7] Chandra Bhagavatula Waleed Ammar, Dirk Groeneveld. Construction of the literature graph in
semantic scholar. North American Chapter of the Association for Computational Linguistics,
2018.

[8] Sachini Weerasekara, Zhenyuan Lu, Burcu Ozek, Jacqueline Isaacs, and Sagar Kamarthi.
Trends in adopting industry 4.0 for asset life cycle management for sustainability: a keyword
co-occurrence network review and analysis. Sustainability, 14(19):12233, 2022.

19

	Introduction
	Related Work
	Architecture and Core Functionality
	Overview of the pyKCN Architecture
	Main Modules

	Data Extraction Modules
	BaseExtractor: A Foundational Framework for Data Extraction
	ExternalFileExtractor
	InMemoryDataFrameExtractor

	Text Processing Modules
	BaseProcessor: A Detailed Exploration
	DeduplicationProcessor: Ensuring Data Uniqueness
	TextProcessor: Specialized Textual Data Processing

	Downstream Tasks
	Downstream Tasks
	Network Metrics/Parameters

	Pain Research
	Asset Life Cycle Management Research
	AI-assisted Vehicle Maintenance

