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Abstract— In competitive multi-player interactions, simulta-
neous optimality is a key requirement for establishing strategic
equilibria. This property is explicit when the game-theoretic
equilibrium is the simultaneously optimal solution of cou-
pled optimization problems. However, no such optimization
problems exist for the correlated equilibrium, a strategic
equilibrium where the players can correlate their actions. We
address the lack of a coupled optimization framework for
the correlated equilibrium by introducing an unnormalized
game—an extension of normal-form games in which the player
strategies are lifted to unnormalized measures over the joint
actions. We show that the set of fully mixed generalized
Nash equilibria of this unnormalized game is a subset of the
correlated equilibrium of the normal-form game. Furthermore,
we introduce an entropy regularization to the unnormalized
game and prove that the entropy-regularized generalized Nash
equilibrium is a sub-optimal correlated equilibrium of the
normal form game where the degree of sub-optimality depends
on the magnitude of regularization. We prove that the entropy-
regularized unnormalized game has a closed-form solution, and
empirically verify its computational efficacy at approximating
the correlated equilibrium of normal-form games.

I. INTRODUCTION

As autonomous and artificial intelligence-assisted technol-
ogy become ubiquitous in our daily lives, game theory has
emerged as an important tool for modeling and analyzing
the interactions between autonomous agents. Within a game,
player interactions are at an equilibrium when their strategies
are simultaneously optimal: no player can achieve a better
objective by unilaterally deviating from its current strategy.
For equilibria concepts such as the Nash equilibrium and
the Stackelberg equilibrium, simultaneous optimality is an
explicit property: these equilibria solve coupled problems
within an optimization framework. The existence of such
a framework has also enabled the development of gradient-
based algorithms for computing game-theoretic equilibria, in
particular in autonomy and artificial intelligence [1]–[3].

The correlated equilibrium is an extension of the Nash
equilibrium to the joint action space. By utilizing a correla-
tion device that enables players to coordinate their actions,
a correlated equilibrium is more effective than the Nash
equilibrium at optimizing the social welfare, especially in
competitive games with three or more players [4]. In par-
ticular, such games arise naturally in urban mobility [5],
[6], robotics [7], and power markets [8]. Since correlated
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equilibria form a connected polytope [9], fairness and other
system-level metrics can be optimized to global optimality.

Despite its advantages, the correlated equilibrium becomes
exponentially more expensive to compute as the number of
players and actions increase, and the lack of an optimization
framework has made it difficult to apply scalable gradient-
based algorithms for finding correlated equilibria. Presently,
we pose and answer the following question: can we construct
a coupled optimization problem whose optimal solution is the
correlated equilibrium of a normal-form game?

Contributions. Our contribution is threefold-fold.

1) We introduce unnormalized games: an extension of
normal-form games in which the player strategies are
unnormalized measures over the joint action space.
We prove that a strictly positive generalized Nash
equilibrium of the unnormalized game is a correlated
equilibrium of the normal-form game.

2) We formulate an entropy-regularized unnormalized
game, and prove that its generalized Nash equilibria
are sub-optimal correlated equilibria of the normal-form
game. Furthermore, we compute the generalized Nash
equilibrium in closed-form, and show that its degree of
sub-optimality as a correlated equilibrium depends on
the entropy regularization.

3) We empirically verify that the generalized Nash equi-
libria of entropy-regularized unnormalized games are
sub-optimal correlated equilibria of normal-form games.
Furthermore, we empirically derive the relationship
between the degree of sub-optimality vs the magnitude
of the entropy regularization of these generalized Nash
equilibria.

Relevant research. First introduced in [4], the correlated
equilibrium exists in both finite and infinite games, including
games that possess no Nash equilibria [10]. A correlated
equilibrium definition requires both a correlation device and
the resulting probability distribution over the joint action
space [11]. The correlated equilibrium has multiple defini-
tions and formulations under different assumptions [2], [12].
Extensions of correlated equilibrium include constrained cor-
related equilibrium [13], quantal correlated equilibrium [14],
extensive-form correlated equilibrium [15], and coarse cor-
related equilibrium [16]. A correlated equilibrium’s stability
properties are analyzed in [17], [18]. Learning dynamics that
converge to the correlated equilibrium include uncoupled no-
regret learning dynamics [19] and evolution dynamics [20].
Gradient-based learning dynamics are not well explored.
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II. EQUILIBRIA CONCEPTS IN NORMAL FORM GAMES

We consider a normal-form game with N players. Let
[Ai](Ai ∈ N) denote the set of actions available to player
i, and let [A] = [A1] × . . . × [AN ](A =

∏
i∈[N ] Ai) denote

the set of all joint actions available in the game. We denote
player i’s action as ai ∈ [Ai], the action taken by player i’s
opponents as a−i, and every player’s joint action as a :=
(a1, . . . , aN ) ∈ [A]. Under a joint action a ∈ [A], player i
incurs a cost ℓi(a), where ℓi : [A] 7→ R for all i ∈ [N ].

We denote the Ai−dimensional probability simplex over
[Ai] as ∆i, the joint probability simplex as ∆ = ∆1 × . . .×
∆N , and the A-dimensional probability simplex over [A] as
∆A. Player i’s strategy xi ∈ ∆i is a probability distribution
over the action set [Ai]. Under the strategy xi, player i selects
an action ai with the probability xi(ai) for all ai ∈ [Ai].
The joint strategy x := (x1, . . . , xN ) ∈

∏
i∈[N ] ∆i is the

collection of all of the players’ strategies. Let the opponent
strategy, action space, and strategy space be respectively
given by

x−i =
∏
j ̸=i

xi, [A−i] =
∏
j ̸=i

[Aj ], ∆−i =
∏
j ̸=i

∆j , ∀i ∈ [N ].

Under the joint strategy x, the expected cost for player i is
given by

Ea∼x[ℓi(a)] =
∑

ai∈[Ai]

xi(ai)
∑

a−i∈[A−i]

x−i(a−i)ℓi(ai, a−i).

(1)
We use ℓ̂i : [Ai] ×∆−i 7→ R to denote player i’s expected
cost for playing action ai conditioned on the other players
playing the strategy x−i:

ℓ̂i(ai;x−i) = E[ℓi(ai, a−i) |aj ∼ xj , ∀j ̸= i],∀i ∈ [N ].
(2)

Using the notation ℓ̂i(ai;x−i), player i’s expected cost (1)
when choosing strategy xi is given by Ea∼x[ℓi(a)] =∑

ai∈[Ai]
xi(ai)ℓ̂i(ai;x−i) when the other players choose

strategies x−i.
Each player minimizes its expected cost Ea∼x[ℓi(a)]

through unilateral changes in its own strategy xi ∈ ∆i. At
the joint strategy x = (x1, . . . , xN ) and for each i ∈ [N ],
if xi minimizes

∑
ai∈[Ai]

xi(ai)ℓ̂i(ai;x−i) simultaneously,
x is a Nash equilibrium.

Definition 1 (Nash equilibrium). The joint strategy x⋆ =
(x⋆

1, . . . , x
⋆
N ) ∈ ∆ is a Nash equilibrium if for each i ∈ [N ],

x⋆
i satisfies∑

ai∈[Ai]

x⋆
i (ai)ℓ̂i(ai;x

⋆
−i) ≤

∑
ai∈[Ai]

xi(ai)ℓ̂i(ai;x
⋆
−i), ∀ xi ∈ ∆i.

(3)

The set of Nash equilibria is equivalent to the set of KKT
points of the following coupled linear program for all i ∈
[N ]. In general, the set is disconnected [9].

min
xi∈∆i

∑
ai∈[Ai]

xi(ai)ℓ̂i(ai;x−i),

s.t.
∑

ai∈[Ai]

xi(ai) = 1, xi(ai) ≥ 0, ∀ai ∈ [Ai],
(4)

The concept of Nash equilibrium extends the notion of
single-player optimality to simultaneous optimality under
unilateral deviations in the players’ strategies [21]. A Nash
equilibrium strategy (x1, . . . , xN ) ensures that, within player
i’s own strategy space ∆i, the strategy xi minimizes player
i’s expected cost when the other players play strategy x−i.
Independent decision-making induces inequity. The con-
cept of Nash equilibrium implicitly assumes that the players
make decisions independently—i.e., xi, xj are independent
probability distributions for all i, j ∈ [N ], j ̸= i. While
this assumption holds for game-theoretic models such as the
Prisoner’s Dilemma [22], it fails to take advantage of the
additional coordination structure that exists in large-scale
cyber-physical systems. Furthermore, independent decision-
making often induces inequity among players.

Example 1 (Vehicle standoff). Consider a single-lane road
with bi-directional traffic and an unexpected pothole on its
right side. Vehicles can choose to veer left or right to pass
each other. Two pure Nash equilibria are (left, right) and
(right, left), but the traffic direction that chooses the pothole
side will constantly be at a disadvantage. A mixed Nash
equilibrium can ensure that both traffic directions are equally
likely to encounter unexpected potholes, but it also means
that with positive probability, both directions’ vehicles will
choose the same roadside and stall traffic.

In Example 1, a more robust solution is to coordinate both
traffic directions to alternate between the two Nash equilibria
(left, right) and (right, left), without choosing the joint action
pairs (right, right) or (left, left). By doing so, the vehicles
are choosing to correlate their strategies.

Definition 2 (Correlated strategy). The A-dimensional prob-
ability distribution y ∈ ∆A is a correlated strategy if y(a) ≥
0 denotes the probability of the joint action a = (a1, . . . , aN )
occurring, for all a ∈ [A] and

∑
a∈[A] y(a) = 1 [9], [23].

To employ correlated strategies, the players must have
the incentive and the means to coordinate. As illustrated in
Example 1, one possible incentive may be to ensure greater
equity among players, and a possible coordination method is
a traffic operator.

Correlated strategies require a correlation device [11] that
coordinate actions among players in order to be imple-
mentable. Presently, we assume that such a correlation device
exists for every correlated strategy satisfying Definition 2, so
that the players can accurately coordinate and realize every
joint action a ∈ [A] [9].

Every joint strategy induces a correlated strategy, but
not every correlated strategy can be reduced to a joint
strategy. Furthermore, all correlated strategies induced by
joint strategies are rank one in their tensor form.

Example 2 (Rank of correlated strategy tensors). Consider a
two-player normal form game with finite action sets [U ] and
[V ]. We will cast the correlated strategy y ∈ ∆UV to a matrix
Y ∈ RU×V . For a joint strategy (xU , xV ) ∈ ∆U ×∆V , the
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corresponding correlated strategy Y is given by

Y = xUx
⊤
V .

Thus, all the joint strategies x = (xU , xV ) produce rank one
correlated strategies in its matrix form.

On the other hand, let Y0 be any feasible correlated
strategy, then the complete set of correlated strategies is
given by Y0 +N where N is defined as

N = {Y ∈ RU×V
+ |

∑
u∈[U ]

∑
v∈[V ]

Y (u, v) = 1⊤Y 1 = 0},

From the constraint 1⊤Y 1 = 0, matrices in N have a
maximum rank of min{U, V } − 1.

Example 2’s tensor formulation of correlated strategies
is extendable to the N -player setting: every joint strategy
(x1, . . . , xN ), where xi ∈ ∆i for all i ∈ [N ], induces a
correlated strategy ŷ given by

ŷ(a1, . . . , aN ) =
∏

i∈[N ]

xi(ai), ∀(a1, . . . , aN ) ∈ [A]. (5)

If we cast ŷ ∈ ∆A to an N -dimensional tensor Y ∈
RA1×...×AN , we observe that ŷ is again a rank one tensor.

Comparison of solution spaces ∆ and ∆A. The joint
strategy’s and correlated strategy’s solution spaces differ
significantly in size. A joint strategy is given by N inde-
pendent probability distributions xi ∈ ∆i, and its overall
dimension is

∑
i Ai. On the other hand, a correlated strategy

has dimension A =
∏

i∈[N ] Ai. When the number of players
or the number of player actions increases, the joint strategy
space ∆’s dimension scales linearly, while the correlated
strategy space ∆A’s dimension scales exponentially.

Player optimality in correlated strategy space ∆A. If
a correlated strategy is optimal for player i, the joint action
(ai, a−i) is played only when no other action âi ∈ [Ai]
can be played with a−i in place of ai to improve player i’s
expected cost ℓi. This notion of optimality is the same as the
Nash equilibrium (3). However, unlike the Nash equilibrium,
defining the optimality of an independent strategy is no
longer sufficiently descriptive. We formally define correlated
equilibrium as below.

Definition 3 (Correlated equilibrium [4]). The correlated
strategy y ∈ ∆A (Definition 2) is a correlated equilibrium if
for all i ∈ [N ] and ai, âi ∈ [Ai],∑

a−i∈[A−i]

(
ℓi(ai, a−i)− ℓi(âi, a−i)

)
y(ai, a−i) ≤ 0. (6)

Intuitively, condition (6) implies that player i cannot
independently swap action ai for âi while the other play-
ers play a−i and achieve a lower expected cost. On the
set of correlated strategies induced by joint strategies, the
correlated equilibrium condition (6) is equivalent to the Nash
equilibrium condition (3).

Lemma 1. Over the set of correlated strategies induced by
joint strategies as in (5), the correlated equilibrium condi-
tion (6) is equivalent to the Nash equilibrium condition (3).

Proof. Over the subset of correlated strategies induced by a
joint strategy (5), the correlated equilibria condition (6) is
equivalent to∑

a−i∈[A−i]

(
ℓi(ai, a−i)− ℓi(âi, a−i)

) ∏
j∈[N ]

xj(aj) ≤ 0

xi(ai)
∑

a−i∈[A−i]

(
ℓi(ai, a−i)− ℓi(âi, a−i)

)∏
j ̸=i

xj(aj) ≤ 0

xi(ai)
(
ℓ̂i(ai;x−i)− ℓ̂i(âi;x−i)

)
≤ 0,

(7)
for all (ai, âi) ∈ [Ai], i ∈ [N ]. When xi(ai) > 0, (7) implies
that ℓ̂i(ai;x−i) = minâi∈[Ai] ℓ̂(âi;x−i). When xi(ai) =
0, the probability simplex constraints on xi enforce the
existence of a′i ∈ [Ai], such that xi(a

′
i) > 0. Applying (7) to

a′i, ℓ̂i(a
′
i;x−i) = minâi∈[Ai] ℓ̂i(âi;x−i), such that the cost

ℓ̂i at the original action ai must have a cost greater than or
equal to ℓ̂i(a

′
i;x−i): ℓ̂i(a′i;x−i) ≤ ℓ̂i(ai;x−i). In summary,

the following holds for all ai ∈ [Ai], i ∈ [N ]:{
ℓ̂i(ai;x−i) = minâi∈[Ai] ℓ̂i(âi;x−i) xi(ai) > 0

minâi∈[Ai] ℓ̂i(âi;x−i) ≤ ℓ̂i(ai;x−i) xi(ai) = 0
.

We define λi = minai∈[Ai] ℓ̂i(ai;x−i) and µi(ai) =

ℓ̂i(ai;x−i) − λi for each player i ∈ [N ]. By construction,
(xi, λi, µi) satisfy the KKT conditions of (4) when the other
players use strategies x−i for all i ∈ [N ], given by

ℓ̂i(ai;x−i)− λi − µi(ai) = 0, ∀ai ∈ [Ai]

xi(ai) ≥ 0, µi(ai) ≥ 0, µi(ai)xi(ai) = 0, ∀ai ∈ [Ai],∑
ai∈[Ai]

xi(ai) = 1.

(8)
Since the optimization problem (4) is a linear program in
xi, the KKT conditions fully characterize optimality and
(x1, . . . , xN ) is a Nash equilibrium.

To show that a joint strategy x = (x1, . . . , xN ) produces
a correlated equilibrium y (5) if x is a Nash equilibrium, we
first note that x is a Nash equilibrium if and only if there
exist Lagrange multipliers λi and µi for all i ∈ [N ] such that
(xi, λi, µi) satisfies the KKT conditions (8) against opponent
strategy x−i. Furthermore, the KKT condition implies that

λi = min
âi∈[Ai]

ℓ̂i(âi;x−i), ∀i ∈ [N ]. (9)

When xi(ai) > 0, ℓ̂i(ai;x−i) ≤ ℓ̂i(âi;x−i) for all âi ∈ [Ai].
When xi(ai) = 0, xi(ai)

(
ℓ̂i(ai;x−i) − ℓ̂i(ai;x−i)

)
= 0.

We can conclude that (7) holds for all i ∈ [N ], such that
the correlated strategy y constructed via (5) from the Nash
equilibrium (x1, . . . , xN ) satisfies (6).

Lemma 1 provides an optimization-based proof for pre-
viously known equivalence between Nash equilibria and
correlated equilibria [9], [24], [25].

Correlated equilibrium polytope. In the original [4]
formulation of correlated equilibrium, the set of correlated
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equilibria is shown to be equivalent to the following linear
polytope on the joint action space.

PCE :=
{
y ∈ ∆ | 1⊤y = 0, y ≥ 0∑

a−i∈[A−i]

y(ai, a−i)
(
ℓi(ai, a−i)− ℓi(âi, a−i)

)
≤ 0,

∀ai, âi ∈ [Ai], i ∈ [N ]
}
. (10)

In [9], the authors showed that in addition to being a
connected polytope, PCE’s boundary set ∂PCE contains the
correlated strategies induced by Nash equilibria. However,
computing the PCE suffers from the curse of dimensionality
both due to the dimension of ∆ being exponential in the N
and the number of PCE’s constraints,

∑
i∈[N ]

(
Ai

2

)
, being

exponential in Ai.

III. LIFTING CORRELATED EQUILIBRIUM TO
GENERALIZED NASH EQUILIBRIUM

While a correlated equilibrium has the interpretation of
being a ‘simultaneously optimal’ strategy in literature, this
interpretation lacks an explicit optimization formulation like
the one that exists for Nash equilibrium in the form of (4). In
this section, we formulate a novel game in which the player
strategy spaces are lifted from the probability measure space
over [Ai] to the unnormalized measure space over [A] =∏

i∈[N ][Ai]. We show that a fully mixed generalized Nash
equilibrium of the lifted game over unnormalized measures
corresponds to a fully mixed correlated equilibrium of the
normal form game.

A. Unnormalized measures

We first consider a relaxation of probability distributions
to unnormalized measures with finite mass [26], [27].

Definition 4 (Unnormalized measure). Given an action set
[A] and a corresponding probability simplex ∆A, the vector
α ∈ RA

+/{0} is an unnormalized measure over the sample
space [A] if α(a) ≥ 0 for all a ∈ [A].

Given two unnormalized measures α1, α2 over [A], we
denote their element-wise product by α1 ◦ α2, such that

(α1 ◦ α2) ∈ RA
+, (α1 ◦ α2)(a) = α1(a)α2(a), ∀a ∈ [A].

We consider the decomposition of a correlated strategy y
(Definition 2) into N unnormalized measures.

Definition 5 (Normalized Decomposition). Given a cor-
related strategy y ∈ ∆A, we say that (α1, . . . , αN ) is
a normalized decomposition of y and y is a product of
(α1, . . . αN ) if

y = α1 ◦ . . . ◦ αN , αi ∈ RA
+, ∀i ∈ [N ]. (11)

The mapping (α1, . . . , αN ) 7→ y is surjective but not
injective. Every correlated strategy has at least one valid
decomposition, but multiple sets of unnormalized measures
can produce the same correlated strategy.

Lemma 2. Every correlated strategy y ∈ ∆A has an infinite
number of decompositions in the form of (11). Furthermore,
if (α1, . . . , αN ) satisfies

1⊤(α1 ◦ . . . ◦ αN ) = 1, αi ≥ 0, ∀i ∈ [N ], (12)

then y = α1 ◦ . . . ◦ αN is a correlated strategy.

Proof. Consider the unnormalized measures (α1, . . . , αN )
that satisfy (12) and y = α1 ◦ . . .◦αN , then y is a correlated
strategy as defined in Definition 2. To show that every cor-
related strategy y has an infinite number of decomposition’s,
we first show there exist at least one feasible decomposition:
α1 = y, αj = 1 for all j ̸= 1. We then select d ∈ R, d > 0
and define the measures α̂1 = dα1, α̂2 = 1

dα2, and α̂j = αj

for all j /∈ {1, 2}, then the product of (α̂1, α̂2, . . . ◦ α̂N )
satisfies y = α̂1 ◦ α̂2 . . . , α̂N . Since we can select arbitrary
positive real number d, there exists an infinite number of
decompositions.

Example 3 (Normalized decompositions). In a two-player,
finite action game where A1 = A2 ∈ N. We can represent the
unnormalized measures by A1 × A2-dimensional matrices,
α ∈ RA1×A2 , such that any element-wise product αi ◦ αj is
equivalent to the Hadarmard product between their matrix
counterparts. The following are all valid normalized decom-
positions and their correlated strategy product.

0 0 0
1 1 1
0 0 0

α1

,

0 0 1
0 0 1
0 0 1

α2


 ,

0 0 0
0 0 1
0 0 0

yα

, (13)


1

45

1 1 1
1 1 1
1 1 1

β1

,

1 2 3
4 5 6
7 8 9

β2


 ,

1

45

1 2 3
4 5 6
7 8 9

yβ

,

(14)
0 0 0
0 0 1
0 1 0

γ1

,
1

2

1 0 0
0 1 1
0 1 1

γ2


 ,

1

2

0 0 0
0 0 1
0 1 0

yγ

.

(15)

B. Unnormalized game

We define an unnormalized game as the following exten-
sion of the normal-form game: instead of choosing probabil-
ity distributions supported on each player’s individual action
space, each player i chooses an unnormalized measure αi

over the joint action space [A] as defined in Definition 4,
constrained by the condition that the product y = α1◦. . . αN

is a correlated strategy. The player objectives remain the
expected cost incurred by each player (2), which is a multi-
linear function of the unnormalized measures through (11)
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and (2). Each player’s optimization problem is given by

min
αi∈RA

+

∑
a∈[A]

ℓi(a)α1(a) . . . αN (a),

s.t.
∑
a∈[A]

(α1 ◦ . . . ◦ αN )(a) = 1.
(16)

In the unnormalized game, each player’s strategy αi has
the same dimension as the correlated strategy of the orig-
inal finite game. Given the other players’ strategies α−i,
player i uses their strategy αi to optimize the expected
cost

∑
a∈[A] ℓi(a)α1(a) . . . αN (a), constrained by a mass

constraint:
∑

a∈[A](α1 ◦ . . . ◦ αN )(a) = 1. The optimal
solution of this game is a generalized Nash equilibrium,
where, in addition to minimizing their expected cost, each
player’s strategy must be feasible with respect to the other
players’ strategies.

Definition 6 (Generalized Nash equilibrium). A joint strat-
egy (α⋆

1, . . . , α
⋆
N ) is a generalized Nash equilibrium if for

all i ∈ [N ], α⋆
i is the optimal solution to (16).

A generalized Nash equilibrium extends the standard Nash
equilibrium (Definition 3) to games where each player’s
strategy feasibility depends on the other players’ strategies.
In the unnormalized game, all players share the strategy
constraint given by (12). Next, we restrict our analysis to
fully mixed unnormalized measures and show that when a set
of fully mixed unnormalized measures forms a generalized
Nash equilibrium, their product is a correlated equilibrium.

Assumption 1 (Fully mixed measures). A measure α ∈ RA
+

is fully mixed if for all a ∈ [A], α(a) > 0.

When a correlated strategy is fully mixed, all of its nor-
malized decompositions (α1, . . . , αN ) satisfy Assumption 1.
Games with certain player cost structures, such as zero-sum
games and games with non-dominant strategies, tend to have
fully mixed Nash and correlated equilibria [28], [29].

C. Equivalence between generalized Nash equilibrium and
correlated equilibrium

For fully mixed correlated strategies y with a normalized
decomposition (α1, . . . , αN ), we can show that y is a cor-
related equilibrium of the normal form game if and only
if (α1, . . . , αN ) is a generalized Nash equilibrium of the
unnormalized game.

Proposition 1. If (α1, . . . , αN ) is a generalized Nash equi-
librium of the unnormalized game (16), and the αi’s satisfy
Assumption 1, then the product y = α1 ◦ . . . ◦ αN is a
correlated equilibria of the normal form game (6).

Proof. We prove this proposition by showing that Assump-
tion 1 and the coupled KKT conditions of (16) together
imply the correlated equilibrium condition in (6). From [30,
Thm.3.3], the coupled KKT conditions of (16) are necessary
and sufficient for (α1, . . . , αN ) to be a generalized Nash
equilibrium of the unnormalized game. Therefore, we show
that (6) holds for y = α1 ◦ . . . ◦ αN for all the KKT points
(α1, . . . αN ) of (16).

From the unnormalized game (16) for player i, we as-
sign the Lagrange multipliers σi ∈ R for the constraint∑

a∈[A](α1 ◦ . . . ◦ αN )(a) = 1 and µi(a) for the constraints
αi(a) ≥ 0. The first-order gradient condition and the com-
plementarity condition of the KKT are given by

ℓi(a)α−i(a)− σiα−i(a)− µi(a) = 0,

µi(a) =

{
≥ 0 αi(a) = 0

= 0 αi(a) > 0
,∀(i, a) ∈ [N ]× [A]. (17)

When α−i(a) > 0, the KKT conditions above imply that

ℓi(a)

{
= σi, if αi(a) > 0

≥ σi, αi(a) = 0
, ∀(i, a) ∈ [N ]× [A]. (18)

From Assumption 1, α−i(a) > 0 and αi(a) > 0 for all
a ∈ [A]. Therefore, µi(a) = 0, σi = ℓi(a) for all a ∈
[A]. In particular, ℓi(ai, a−i) = ℓi(âi, a−i) for all ai, âi ∈
[Ai]. The correlated equilibrium condition (6) (ℓi(ai, a−i)−
ℓi(âi, a−i))y(ai, a−i) will then evaluate strictly to 0 for all
âi ∈ [Ai] and i ∈ [N ]. We conclude that y = α1 ◦ . . . ◦ αN

is a correlated equilibrium.

Remark 1. Proposition 1 suggests that a correlated equi-
librium is fully mixed only if ℓi(a) evaluates to the same
value for all a ∈ [A]. While this may seem restrictive,
we use entropy regularizations in Section IV to produce
games in which the regularized costs are all equal for each
opponent action a−i. We can show that the generalized
Nash equilibrium under regularization will approximate the
correlated equilibrium of the normal-form game even if no
fully mixed correlated equilibrium exists.

The reverse of Proposition 1 is not true: if y is a fully
mixed correlated equilibrium, then it may not have a normal-
ized decomposition that is a generalized Nash equilibrium of
the unnormalized game.

Example 4 (Correlated equilibria not captured by gNE).
Consider a 2×2 matrix game where player one chooses the
row and player two chooses the column. The player costs
are given by matrices A and B, respectively, defined as

P1 =

[
3 3
2 4

]
, P2 =

[
1 2
1 0

]
.

We vectorize the joint action space as [A] = {a1, a2, a3, a4},
corresponding to the counterclockwise sequence of joint
actions in matrix Pi starting from the top left. For y ∈ ∆4 to
be a correlated equilibrium as defined in (6), it must satisfy

3y(a1) + 3y(a4)− 2y(a2)− 4y(a3) ≤ 0

1y(a1) + 1y(a2)− 0y(a3)− 2y(a4) ≤ 0
(19)

We can verify that yCE =
[
1
4

1
4

1
4

1
4

]
satisfies (19). The

unnormalized game played is given by

min
α1

1

2

(
3α1(a1) + 2α1(a2) + 4α1(a3) + 4α1(a4)

)
s.t. α1(a1) + α1(a4) + α1(a2) + α1(a3) = 2

α1(ai) ≥ 0, ∀i ∈ [4],

(20)
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where the mass constraint simplifies since player two’s
strategy is α2(aj) =

1
2 for all j ∈ [4]. Consider the decom-

position α1 = α2 =
[
1
2

1
2

1
2

1
2

]
, we can verify that α1

does not minimize (20). Specifically, α̂1 =
[
0 1 1

2
1
2

]
can achieve a lower objective than α1 against α2 =[
1
2

1
2

1
2

1
2

]
.

From Propositions 1, we can say that if the generalized
Nash equilibrium of (16) is strictly positive, then their
product y is a fully mixed correlated equilibrium of the
original normal-form game. A natural follow-up question
remains: when do strictly positive correlated strategies exist?
We explore this in the following section using entropy
regularizations.

IV. ENTROPY-REGULARIZED CORRELATED EQUILIBRIA

A coupled optimization formulation for the correlated
equilibrium expands the set of analysis techniques applicable
to it. In this section, we demonstrate how entropy regular-
ization can be applied to the unnormalized game to find ϵ-
correlated equilibria of the original normal-form game.

We consider the entropy-regularized counterpart of the
unnormalized game (16), where each player solves the opti-
mization problem given by

min
αi∈RA

+

∑
a∈[A]

(
ℓi(a) +

1

λi

(
log
(
αi(a)

)
− 1
))

αi(a)α−i(a)

s.t.
∑
a∈[A]

(α1 ◦ . . . ◦ αN )(a) = 1.

(21)
Here, λi ≥ 0, λi ∈ R denotes the magnitude of the entropy
regularization. The total entropy of the correlated strategy
y = α1 ◦ . . . ◦ αN is given by

∑
a∈[A] y(a) log(y(a)), such

that
∑

a∈[A] y(a) log(αi) is equivalent to player i’s contri-
bution to the total entropy. For two unnormalized measures
that achieve equal costs

∑
a∈[A] ℓi(a)αi(a)α−i(a), (21) will

favor the measure with the greater entropy and thus achieving
a lower cost as defined by (16).

Remark 2. In applications of game-theoretic equilibrium,
player costs and transitions are often obtained from noisy
and imperfect data. When faced with such modeling in-
accuracy data, it is in the player’s best interest to seek
strategies that not only optimize their expected cost but
also maximize the entropy over the action space. Entropy
regularization has been used in single-agent reinforcement
learning and Nash equilibrium to find optimal policies that
are robust to modeling inaccuracies and ‘unforeseen changes
in the environment’ [31], [32]. The Nash equilibrium of
entropy regularized games is also known as logit quantal
response equilibrium [33] and is an important tool for
finding ϵ-Nash equilibria in policy gradient-based reinforce-
ment learning [34]. Furthermore, the logit quantal response
equilibrium is shown to be a more robust equilibrium model
than the Nash equilibrium for games models involving human
players [35].

We can show that the entropy-regularized unnormalized
distribution game has the following closed-form solution.

Proposition 2. In the entropy-regularized unnormalized
game where each player solves (21), there exists a gener-
alized Nash equilibrium (α1, . . . , αN ), where αi is given by

αi(a) =
exp

(
− λiℓi(a)

)(∑
a exp

(
−
∑

j λjℓj(a)
))λi/

∑
j λj

,

∀i, a ∈ [N ]× [A]. (22)

Proof. Since (21) has strongly convex objectives, convex in-
dependent constraints, and a shared constraint that is convex
in each individual αi, the generalized Nash equilibrium of
the game is equivalent to the coupled KKT points of (21) [30,
Thm.3.3]. We assign the Lagrange multipliers σi ∈ R to the
constraint

∑
a∈[A](α1 ◦ . . . ◦ αN )(a) = 1 and µi(a) ∈ R+

to the constraints αi(a) ≥ 0, for all a ∈ [A]. The KKT
conditions of (21) are given by

0 =
(
ℓi(a) +

1

λi
log
(
αi(a)

)
+ σi

)
α−i(a)− µi(a), ∀a ∈ [A],

1 =
∑
a∈[A]

(α1 ◦ . . . ◦ αN )(a),

0 ≤αi(a), 0 ≤ µi(a), 0 = αi(a)µi(a), ∀a ∈ [A].
(23)

When α−i(a) > 0 and αi(a) > 0, the first KKT condition
reduces to 0 = ℓi(a)+

1
λi

log
(
αi(a)

)
+σi. We can solve for

αi(a) as
αi(a) = exp

(
− λi(σi + ℓi(a)

)
. (24)

For each joint action a ∈ [A], the product (α1 ◦ . . .◦αN )(a)
is given by

(α1 ◦ . . .◦αN )(a) = exp
(
−
∑
i

λiσi−
∑
i

λiℓi(a)
)
. (25)

From primal feasibility of the KKT conditions, 1 =∑
a∈[A](α1 ◦ . . . ◦ αN )(a). We combine this with (25) to

derive

exp
(
−
∑
i

λiσi

)∑
a

exp
(
−
∑
i

λiℓi(a)
)
= 1. (26)

Let λN =
∑

i λi and σi = σ for all i ∈ [N ].
We can then solve for exp(σ) in (26) as

(∑
a exp

(
−∑

i λiℓi(a)
))−1/λN

. Let βi(a) = exp
(
− λiℓi(a)

)
, each

αi(a) (24) is given by

αi(a) =
βi(a)(∑

a

∏
j βj(a)

)λi/λN
. (27)

When λi, ℓi(a) are finite, αi(a) > 0 for all i, a ∈ [N ]× [A].
Therefore α1, . . . , αN satisfy the KKT conditions and are
the optimal solutions to the unnormalized game.

The correlated equilibrium corresponding to (22) is

y(a) =
exp

(
−
∑

j λjℓj(a)
)∑

a exp
(
−
∑

j λjℓj(a)
) , ∀a ∈ [A]. (28)
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The resulting correlated equilibrium is a softmax function
over the regularized and weighted sum of individual player
costs, where the level of entropy introduced is controlled by
λi: the smaller the λi is, the closer the resulting correlated
equilibrium is to the completed mixed correlated strategy,
y′(a) = 1/A for all a ∈ [A]. We note that while Proposition 2
provides one possible solution for the entropy-regularized
unnormalized game (21), other generalized Nash equilibria
exist. In particular, each strictly positive generalized Nash
equilibrium is an ϵ-correlated equilibrium of the original nor-
mal form game (16), even if the original normal form game
does not have any strictly positive correlated equilibrium.

Corollary 1 (ϵ-correlated equilibrium). If the entropy-
regularized generalized Nash equilibrium (α1, . . . , αN ) sat-
isfies Assumption 1 for each i ∈ [N ], their product y (28) is
an ϵ-correlated equilibria—i.e., for all i ∈ [N ],∑
a−i

y(ai, a−i)
(
ℓi(ai, a−i)−ℓi(âi, a−i)

)
≤ ϵi

λi
, ∀ai, âi ∈ [Ai],

(29)
where ϵi = maxa,â∈[A] log

(
αi(a)/αi(â)

)
and ϵ = maxi ϵi.

Proof. From (23), we derived the coupled KKT conditions of
the entropy-regularized unnormalized game. When αi(a) >
0 for all (i, a) ∈ [N ]× [Ai], the following holds:

ℓi(a) +
1

λi
log(αi(a)) + σi = 0,∀a ∈ [A]. (30)

Then for any a, a′ ∈ [A], their cost difference is given by

ℓi(ai, a−i)− ℓi(a
′
i, a−i) =

1

λi
log(

αi(ai, a−i)

αi(a′i, a−i)
). (31)

We multiply (31) by y(ai, a−i) and sum over a−i ∈ [A−i]
to obtain∑

a−i∈[A−i]

y(ai, a−i)
(
ℓi(ai, a−i)− ℓi(a

′
i, a−i)

)
=

1

λi

∑
a−i∈[A−i]

y(ai, a−i) log(
αi(ai, a−i)

αi(a′i, a−i)
). (32)

Let maxa,a′∈[A] log(
αi(a)
αi(a′) ) = ϵi. It follows that∑

a−i∈[A−i]

y(ai, a−i) log(
αi(ai, a−i)

αi(a′i, a−i)
) ≤

∑
a∈[A]

y(a)ϵi ≤ ϵi.

(33)
We can then conclude the proposed statement (29).

V. COMPUTING ϵ-CORRELATED EQUILIBRIUM

We apply the results of Section IV to compute the gener-
alized Nash equilibrium of the unnormalized game (16) and
evaluate its feasibility as an ϵ-correlated equilibrium of the
original normal-form game.

We simulate normal-form games (4) with N = {2, 3}
players and individual action spaces of size A = {2, 5, 10}.

Over K = 1000 randomly generated normal-form games,
we compute the entropy-regularized generalized Nash equi-
librium as (22). We plot the empirical violation with a

5% standard deviation range of the correlated equilibrium
condition (6) under ϵ(empirical) and the theoretical bound
maxi ϵi/λi (29) under ϵ(bound) for the regularization values
λ = {0.1, 10, 30, 100, 1000, 1e4}. We assume that all players
use the same entropy regularization, λi = λ, ∀i ∈ [N ].

For each game, we compute its entropy-regularized gen-
eralized Nash equilibrium y⋆ via (22) and evaluate y⋆’s
empirical sub-optimality ϵce = ϵ (empirical) as

max
i∈[N ]

ai,a
′
i∈[Ai]

∑
a−i∈[A−i]

y⋆(ai, a−i)
(
ℓi(ai, a−i)− ℓi(a

′
i, a−i)

)
.

(34)
We note that ϵce is equivalent to the distance between yce
and the correlated polytope in ∞ vector norm.

Finally, we note that a key challenge in applying correlated
equilibrium for autonomous interactions is its poor scalability
in the number of agents and actions. To this end, (22)
provides an approximation that significantly reduces the
computation complexity. We observe this in Figure 2.

As shown in Figure 2, the computation time still scales
poorly in the number of actions and players. However,
the overall computation time is significantly lower than
solving for a feasible point of the correlated equilibrium
polytope via linear programming. For comparison, it takes
approximately 1.87 seconds to use CVXPY to compute a
correlated equilibrium for the game with N = 3 players each
with Ai = 3, whereas approximating it using the entropy-
regularized generalized Nash equilibrium only takes 4e − 3
seconds.

VI. CONCLUSION

We introduced an extension of finite player normal-form
games to coupled strategies on unnormalized measures over
the joint action space and showed that for fully mixed
unnormalized measures, the set of generalized Nash equi-
libria of the unnormalized measure game produces fully
mixed correlated equilibria in the original normal-form game.
Leveraging the optimization structure this imposes on the
correlated equilibria, we introduce an entropy-regularized
version of the unnormalized game, and show that its gener-
alized Nash equilibrium is within ϵ distance of the correlated
equilibrium polytope, where ϵ is dependent on the entropy of
each player’s unnormalized measure as well as the entropy
regularization. Our optimization framework is the first step
in connecting correlated equilibrium to the wider literature
on gradient-based multi-agent learning algorithms.
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constraint satisfaction in markov decision process congestion games,”
in 2019 American Control Conference (ACC). IEEE, 2019, pp. 1238–
1243.

[2] C. W. Bach and A. Perea, “Two definitions of correlated equilibrium,”
Journal of Mathematical Economics, vol. 90, pp. 12–24, 2020.

[3] R. P. Adkins, D. M. Mount, and A. A. Zhang, “A game-theoretic
approach for minimizing delays in autonomous intersections,” in
Traffic and Granular Flow’17 12. Springer, 2019, pp. 131–139.

[4] R. J. Aumann, “Correlated equilibrium as an expression of bayesian
rationality,” Econometrica: Journal of the Econometric Society, pp.
1–18, 1987.

7



Fig. 1: Empirical vs theoretical sub-optimality of the entropy-regularized generalized Nash equilibrium (28) as a correlated equilibrium.

Fig. 2: Computation time (seconds) of the ϵ-correlated equilibrium
for different numbers of players and actions.

[5] X. Yang, L. Deng, and P. Wei, “Multi-agent autonomous on-demand
free flight operations in urban air mobility,” in AIAA Aviation 2019
Forum, 2019, p. 3520.

[6] S. H. Li, Y. Yu, N. I. Miguel, D. Calderone, L. J. Ratliff, and
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