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Experiments in the human brain reveal switching between different activity patterns and functional network organiza-
tion over time. Recently, multilayer modeling has been employed across multiple neurobiological levels (from spiking
networks to brain regions) to unveil novel insights into the emergence and time evolution of synchrony patterns. We
consider two layers with the top layer directly coupled to the bottom layer. When isolated, the bottom layer would
remain in a specific stable pattern. However, in the presence of the top layer, the network exhibits spatiotemporal
switching. The top layer in combination with the inter-layer coupling acts as a symmetry breaker, governing the bottom
layer and restricting the number of allowed symmetry-induced patterns. This structure allows us to demonstrate the
existence and stability of pattern states on the bottom layer, but most remarkably, it enables a simple mechanism for
switching between patterns based on the unique symmetry-breaking role of the governing layer. We demonstrate that
the symmetry breaker prevents complete synchronization in the bottom layer, a situation that would not be desirable in
a normal functioning brain. We illustrate our findings using two layers of Hindmarsh-Rose (HR) oscillators, employing
the Master Stability function approach in small networks to investigate the switching between patterns.

Experimental evidence in neuroscience indicates that the
human brain exhibits diverse time-dependent synchrony
patterns. Synchrony patterns refer to states in which cer-
tain brain regions exhibit coordinated activity while other
regions do not, and these patterns can swiftly transition in
response to external or internal stimuli. Inspired by this
rapid switching phenomenon in the brain, we introduce a
simple switching mechanism between synchrony patterns
in networks. Since the brain is inherently heterogeneous,
including different types of nerve cells, chemical composi-
tions, various neuronal pathways, and intercellular inter-
actions, incorporating heterogeneity among network com-
ponents is crucial. Our work proposes a duplex network,
where the bottom layer corresponds to the reference net-
work to undergo transitions between synchrony patterns.
We consider symmetry-induced synchrony patterns that
are accessible by the bottom layer, so the top layer with
inter-layer connections acts as a symmetry breaker gov-
erning the emerging symmetry-induced patterns. The va-
lidity of the findings is tested through numerical simula-
tions, assessing the linear stability of accessible invariant
patterns. Our work highlights the significance of multi-
layer modeling in neuronal systems.

a)Also at Instituto de Ciências Matemáticas e Computação, Universidade de
São Paulo, São Carlos, Brazil

I. INTRODUCTION

Synchrony patterns in networks are found across different
areas ranging from physics to neuroscience1,2. Rather than ex-
hibiting a fully synchronized cluster, networks often manifest
diverse levels of synchronization throughout their structure.
For instance, EEG recorded data during unihemispheric sleep
in some mammals and birds, in which one half of the brain is
more active than the other, resembles distinct domains of syn-
chronized elements3,4. These synchrony patterns encompass
synchronized nodes organized into different forms, including
incoherent states, chimera states, cluster states, and complete
synchronous states. The specific pattern observed depends on
the connectivity structure2,5,6.

Experimental evidence in neuroscience suggests that syn-
chrony patterns are spatiotemporal, evolving dynamically
rather than remaining static7–9. Neuroimaging experiments,
spanning from functional MRI to EEG measurements of hu-
man brain activity, consistently reveal spatiotemporal pat-
terns. Initial work on functional brain networks were pri-
marily based on an assumption of network stationarity, but
a large portion of current research examines dynamic changes
in brain networks, even during the resting state9–12. EEG data
recorded during task performance also exhibits a mix of co-
ordination dynamics characterized by both phase locking and
metastability8. Thus, consider a simplified toy example of a
brain network depicted in Figure 1 a), where the network tran-
sitions from one specific synchronized pattern to another. This
scenario motivates a central question: How do these networks
have the ability to switch between various synchrony patterns?

In the past few decades, significant effort has been dedi-
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cated to understanding synchrony patterns in networks, as evi-
denced by various studies13–15. One well-established criterion
to characterize such patterns is network symmetry13,16. Sym-
metry refers to a permutation of nodes that leaves the network
unchanged, preserving the neighbors of any two nodes that
are permuted. The collection of all symmetries in a network
forms an algebraic group, which, when applied to coupled
identical units, gives rise to clusters. Clusters consist of equiv-
alent nodes under the set of all symmetries, collectively form-
ing a synchrony pattern in the network5. Symmetry arguments
are useful for characterizing synchrony patterns and their sta-
bility in networks of identical units17. However, the brain con-
tains billions of nerve cells, many different neurotransmitters,
various neuronal pathways, and different types and strengths
of interactions between the nerve cells18,19. Therefore, incor-
porating heterogeneity among network components is crucial
for a more accurate picture of switching between synchrony
patterns in the brain.

Multilayer modeling leverages different features of hetero-
geneous networks, where distinct node dynamics or coupling
functions are considered as layers of a multilayer network20.
In neuroscience, multilayer modeling serves as a valuable tool
for representing distinct information derived from the same
set of entities and in particular, this kind of model has been
important specifically in applications to brain network21–25.
For instance, Crofts and collaborators21 investigated impor-
tant structure-function relations in the Macaque cortical net-
work by modeling it as a duplex network that comprises an
anatomical layer, describing the known (macro-scale) network
topology of the Macaque monkey, and a functional layer de-
rived from simulated neural activity. Consequently, multilayer
modeling has opened the possibility of addressing how neu-
ronal networks switch between synchrony patterns.

Here, we propose a simple mechanism for switching be-
tween synchrony patterns in networks using two layers based
on the symmetry-breaking role of a governing layer. We con-
sider a network composed of two layers in which layers are
named top and bottom. The bottom layer serves as the ref-
erence network and has several accessible symmetry-induced
pattern states. When isolated, the bottom layer maintains a
particular pattern state without temporal change. The switch-
ing between states emerges due to the presence of the top
layer. The top layer and the inter-layer coupling constrains the
symmetries of the bottom layer, determining which patterns
are permissible — essentially acting as a symmetry breaker.
We characterize the existence of symmetry-induced pattern
states in a duplex network akin to26. Any bottom layer pat-
tern exists if it remains flow-invariant under permutation, tak-
ing the symmetry breaker into account. The stability of the
patterns is assessed in terms of the Master Stability Function
approach, which is simplified due to the directionality in inter-
layer links. We illustrate the switching between patterns states
using numerical simulations in coupled Hindmarsh-Rose os-
cillators with different node dynamics in each layer as well as
different intra- and inter-layer coupling functions.

II. SYMMETRY BREAKER: MAPPING PATTERNS IN
NETWORKS

We consider that each layer contains N nodes and the evo-
lution of the system is given by:

ẋi = t(xi)+α

N

∑
j=1

Ai ju(x j),

ẏi = b(yi)−β

N

∑
j=1

Li jc(y j)+σκiD(xi − yi), i = 1,2, . . . ,N,

(1)

where xi,yi ∈ Rn are the state vectors of node i in top layer
and bottom layer, respectively. We consider the following as-
sumptions:

A. Isolated dynamics. We consider continuously differen-
tiable top t : Rn → Rn and bottom b : Rn → Rn isolated
dynamics, that have an inflowing invariant set, also re-
ferred to as dissipative systems. Most smooth nonlinear
systems with compact attractors satisfy this assumption.
For instance, Hindmarsh-Rose in Equation (21) has an
attractor27,28.

B. Coupling function. The coupling functions u,c : Rn →
Rn are continuously differentiable. The inter-coupling
function is diffusive, depending on the difference of
states, and D ∈ Rn×n.

C. Intra-layer coupling. The intra-coupling strength is
given by α and β for the top layer and bottom layer, re-
spectively. The intra-coupling structure of the top layer
corresponds to adjacency matrix A, where the entries
Ai j equals 1 if node i receives a connection from j and
0 otherwise. The intra-coupling of the bottom layer is
given by a Laplacian matrix L. For both layers, the
connectivity structure is undirected. So, the adjacency
matrix and Laplacian matrix are symmetric, and conse-
quently, have real eigenvalues.

D. Directed one-to-one but not onto inter-layer cou-
pling. The symmetry of the whole multilayer struc-
ture moderates what pattern states are possible, and so
changes between the layers of the layers allows the top
layer to act as a governor over the bottom layer. We con-
sider a non-symmetric inter-coupling between the two
layers (unidirectionally) as illustrated in Figure 1. The
top layer drives the bottom layer through a one-to-one
but not subjective coupling represented by the diagonal
inter-layer matrix K = diag(κ1, . . . ,κN) ∈ NN×N (off-
diagonal terms are zero) with each entry κi ∈ {0,1},
and weighted by an overall inter-coupling strength σ .
For instance, consider a 5×5 matrix

K =


1

0
1

1
0

 .
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Brain network state 1 Brain network state 2

?
a)

b)

FIG. 1: Symmetry breaker underlies switching pattern states in neuronal networks. a) Schematic diagram of the switching
between brain network states. This represents our motivational toy example. b) Each layer contains the same number of nodes,

representing different instances of coupled units. Our focus is to observe the change of pattern in the bottom layer by the
presence of the top layer and inter-layer connections, the symmetry breaker. The left panel shows the bottom layer exhibits the
pattern state 1 for an intra-coupling β . The right panel shows that once the symmetry breaker is coupled to the bottom layer, the
bottom layer shifts its state, exhibiting pattern state 2. Pattern state 1 leaves to be flow-invariant, giving space to pattern state 2.

The intra-layer α and inter-coupling σ are tuned to pinpoint pattern state 2’s stability.

Consider an initial state in the network of the five nodes,
see the bottom left panel in Figure 1. By the flow-invariance,
if the bottom layer starts at pattern state 1, it remains there
and never shifts to pattern state 2. To allow the bottom layer
to attain the other pattern state, we build up the idea of ex-
tending the phase space. We assume there exists a top layer,
which evolves under different dynamics, coupled through an
inter-layer connectivity structure. Out of all possible pattern
states permitted in the bottom layer, only a subset is allowed
due to symmetry constraints induced by the coupling with the
top layer. We view the top layer and inter-layer coupling as
a symmetry breaker that restricts, breaks, and changes sym-
metries on the bottom layer, see Figure 1 for an illustration.
To attain another pattern state, the symmetry breaker plays
the role of mapping one pattern to another. Depending on the
structural configuration of the top layer and inter-layer, the
symmetry breaker shifts the initial pattern of the bottom layer
to another state, which would be impossible in the absence of
the symmetry breaker. Figure 1 illustrates the bottom layer
switching from one pattern to another depending on the sym-
metry breaker structure.

The following sections are organized as follows. First, in

Section III it is shown that the topology of the bottom layer
allows possible symmetry-induced clusters, and consequently,
pattern states. Section IV is devoted to characterizing how the
flow invariance of Equation (1) and the structure of the sym-
metry breaker restrict symmetry-induced patterns in the bot-
tom layer. Depending on the symmetry breaker structure, a
particular pattern state can cease to exist due to a lack of flow
invariance. Once the pattern state is flow-invariant, the bottom
layer attains this particular state whenever it is stable. Section
V describes the linear stability of the full system (symmetry
breaker and bottom layer). Section VI shows the numerical
simulations in coupled Hindmarch-Rose oscillators to demon-
strate our findings. Section VII provides our discussion and
conclusions.

Notation. Each vector ui ∈ Rn is denoted ui = (u1
i , . . . ,u

n
i ).

The vector space Rn is endowed with the ℓ1 norm ∥ui∥1 =
∑

n
k=1 |uk

i |. The state space Rn ⊗RN can be canonically identi-
fied with (Rn)N , which we will use for shorter notation. Each
element of the space is x = vec(x1, . . . ,xN) ∈ (Rn)N , where
vec denotes the vectorization by stacking multiple columns
vectors into a single column vector. Also, (Rn)N is equipped
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with the norm

∥x∥1 = max
i∈[N]

∥xi∥1.

Any linear operators on the above spaces will be equipped
with the induced operator norm. Finally, let us denote In the
n×n identity matrix in Rn.

The notation for the state of the top and bottom layer can
be recast as x = vec(x1, . . . ,xN) and y = vec(y1, . . . ,yN), re-
spectively. Moreover, we introduce a tensor representation of
Equation (1) into a 2(Nn)-dimensional system. Define

T(x) = vec
(
t(x1), . . . , t(xN)

)
,

U(x) = vec
(
u(x1), . . . ,u(xN)

)
,

B(y) = vec
(
b(y1), . . . ,b(yN)

)
,

C(y) = vec
(
c(y1), . . . ,c(yN)

)
.

Then, Equation (1) can be recast as

ẋ = T(x)+α(A⊗ In)U(x) (2)
ẏ =B(y)−β (L⊗ In)C(y)+σ(K ⊗D)(x−y), (3)

where ⊗ denotes the Kronecker product.

III. BOTTOM LAYER: SYMMETRY-INDUCED PATTERN
STATES

Symmetries of a network are elements of the automorphism
group of a graph, acting on the nodes of the network29. Al-
though symmetry is not a necessary condition for synchro-
nization between nodes13, it is sufficient for coupled identical
oscillators16. Then, we restrict ourselves to clusters, which are
defined as groups of nodes that are synchronized to each other
within the same group and distinct from other groups, induced
by symmetries of the network, symmetry-based clusters5,16.
We will drop the term symmetry-based to characterize the
clusters, but it should be clear that we are only dealing with
those. More general mechanisms for inducing clusters such
as balanced relation13,14, external equitable partition (EEP)30

and graph fibration31 will be explored elsewhere.
To define cluster, we use orbit partition. The graph au-

tomorphism induces a partition of [N] := {1, . . . ,N}29. The
collection of the graph automorphism orbits acting on [N]

induces the orbit partition of [N]32: (
⋃kB

l=1K
l
B) such that

Kl
B ∩Km

B = /0 for any l ̸= m ∈ [kB], where kB ∈ N is the
number of clusters and Kl

B are the clusters. Nodes in Kl
B can

be permuted among each other and will remain synchronized
if started in a synchronized state. The trivial orbit partition
consists of {{1},{2}, . . . ,{N}}.

From the orbit partition, we define the pattern state. Let
sl ∈ Rn be the state of the l-th cluster. Then, the pattern state
of the bottom layer is defined as

PB = {y ∈ V ⊂ (Rn)N : yi = sl ∈ Rn, i ∈ Kl
B, l ∈ [kB]}

(4)

and has dimension nkB, where V is an inflow invariant set.
PB corresponds to a manifold embedded in (Rn)N . Since any
element of the graph automorphism permutes with the Lapla-
cian matrix, the pattern state is an invariant manifold under
the bottom layer dynamics, i.e., Equation (1) with σ = 0.

The graph automorphism has subgroups that also generate
different sets of clusters, and consequently, different pattern
states17. To completely characterize all possible pattern states
of the bottom layer, we must enumerate the graph automor-
phism and its subgroups. We employ computational alge-
bra methods/dedicated discrete algebra software33 that gener-
ate the group automorphism and its subgroups of the bottom
layer, as explored in5,17,26. Figure 2 displays different patterns
that emerge in a network with five nodes. Each color identifies
a different cluster Kl

B in the network.

IV. RESTRICTING SYMMETRY-INDUCED PATTERNS

To define a cluster for a duplex topology, dynamical in-
formation must be taken into account: the set of nodes from
different layers evolve under different isolated dynamics, see
Equation (1). So, nodes from different layers are not allowed
to be permuted between each other. In this case, clusters do
not result directly from the orbit partition induced by the graph
automorphism of the duplex, but a subgroup where symme-
tries of the duplex are built up of symmetries that only per-
mute nodes of the same layer26.

More precisely, let GT and GB be the graph automorphisms
of the top layer and bottom layer, respectively. An element of
any of these sets can be represented by a permutation matrix
written in a representation in [N]. We abuse notation, we only
deal with the matrix representatives. Let PB ∈GB be a permu-
tation matrix that satisfies PBL = LPB. In order for Equation
(1) to be flow-invariant under the action of this symmetry of
the bottom layer, symmetry compatibility26 must be achieved,
which we state to our specialized scenario:

Proposition IV.1 (Symmetry compatibility26). Equation (1)
is invariant under the action of PB ∈ GB if there exists PT ∈
GT such that the conjugacy relation

PBK = KPT (5)

is satisfied.

Proof. To achieve invariance of the Equation (1) under PB ∈
GB, Equations (2) and (3) should be invariant under the action
of PB⊗ In. In fact, denote x̄ = (PT⊗ In)x and ȳ = (PB⊗ In)y.
We observe that the dynamics of x̄ and ȳ evolve as Equations
(2) and (3), i.e., it is invariant, as long as given PB there exists
PT ∈ GT such that the conjugacy relation is satisfied PBK =
KPT.

The conjugacy relation constrains the possible symmetries
of the bottom layer, depending on the topology of the top layer
and inter-layer structure. The sets

HT = {PT ∈ GT : ∃ PB ∈ GB s.t. PBK = KPT},
HB = {PB ∈ GB : ∃ PT ∈ GT s.t. PBK = KPT}

(6)
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FIG. 2: Symmetry-induced pattern states. Each orbit partition induced by the graph automorphism and its subgroups creates
different patterns in the network with five nodes. Four patterns are illustrated where node color corresponds to a cluster.

are subgroups of GT and GB, respectively. Since K is not a
subjective map, the left and right null spaces are nontrivial.
Consequently, we may find more than one PB that satisfies
PBK = KPT for a given PT, and vice versa. Then, it is useful
to define an equivalence relation between elements in HT, and
similarly, in HB:

• PT ∼r P′
T if the right multiplication is equal, KPT =

KP′
T;

• PB ∼l P′
B if the left multiplication is equal, PBK =

P′
BK.

By the Fundamental Theorem on Equivalence Relations these
equivalence relations ∼r and ∼l define partitions HT/∼r and
HB/∼l on HT and HB, respectively. These partitions are the
disjoint union of a finite number of equivalence classes {E i

T}i

and {E i
B}i as

HT/∼r =
⋃

i

E i
T HB/∼l =

⋃
i

E i
B. (7)

Then the group of symmetries of the duplex is given by

G =
{(

PT 0
0 PB

)
∈ R2N×2N : PT ∈ E i

T,PB ∈ E i
B

}
. (8)

Moreover, we also can define the clusters of the duplex net-
work

Definition IV.2 (Duplex clusters). Let G be the symmetry
group of the duplex. The collection of G-orbits acting diag-
onally on [N]× [N] induces the orbit partitions {K j

T}
kT
j=1 and

{Kl
B}kB

l=1 with kT and kB elements, respectively, that we call
clusters of the top and bottom layers, respectively.

Note that N = ∑
kT
l=1 |K

l
T|= ∑

kB
l=1 |K

l
B|. Also, this definition

leads to defining the pattern state of the duplex network. Let
r j,sk ∈ Rn be the state of the j-th cluster and k-th cluster of
the top and bottom layer, respectively. Then, the pattern state
of the duplex network is defined as

P = {(x,y) ∈ U ×V ⊂ (Rn)N × (Rn)N : xi = rl ,y j = sk ∈ Rn,

i ∈ Kl
T, j ∈ Kk

B, l ∈ [kT],k ∈ [kB]}
(9)

with dimension d := n(kT+kB), where U and V are inflow in-
variant sets. By construction, P is an invariant manifold under

Equation (1). Note that from P definition, it follows that in the
absence of the symmetry breaker (σ = 0), projecting P onto
the second coordinates matches with the pattern state of the
bottom layer PB in Equation (4), i.e., PB = πB(P), where
πB is the canonical projection onto the coordinates of the bot-
tom layer. Once the inter-coupling is positive, this does not
necessarily hold, because the particular bottom layer pattern
state PB may not be invariant under the duplex dynamics in
Equation (1). The symmetry breaker does not only restrict the
allowed symmetries of the bottom layer but also constraints on
which pattern states are invariant under the duplex dynamics.

Being invariant under the duplex dynamics also implies
other facts that we remark below.
Bottom layer clusters: all or nothing. The inter-layer struc-
ture is one-to-one (injective) but not onto (surjective). This
particular structure implies further constraints on the bottom
layer cluster in terms of a dichotomy:

(i) Either the bottom layer cluster is not driven by any top
layer cluster,

(ii) or it receives one-to-one connections of a top layer clus-
ter that has at least the same size.

See Corollary A.1 for the proof. This result also implies that
kT ≤ kB.
Symmetry breaker avoids complete synchronization. The
bottom layer complete synchronous state is defined as y1 =
y2 = · · · = yN = s. In the absence of the symmetry breaker
(when σ = 0), this state is an invariant state due to Laplacian
coupling. Once the symmetry breaker is present, it loses the
flow invariance for any inter-coupling strength σ ̸= 0. In fact,
the vector 1 = (1,1, . . . ,1) ∈ RN is an eigenvector of L asso-
ciated to the eigenvalue 0, L1 = 0. Hence, the intra-coupling
term in the bottom layer dynamics Equation (1) cancels out
and only the inter-layer coupling remains. The bottom layer’s
complete synchronous state only remains invariant if two con-
ditions are simultaneously satisfied: the top layer attains the
complete synchronous state (x1 = x2 = · · ·= xN) and the inter-
layer coupling matrix is K = IN . Our assumptions violate both
conditions, hence the bottom layer’s complete synchronous
state is not invariant.

As aforementioned each layer can exhibit multiple admis-
sible symmetry-induced pattern states, see Figure 2. So, from
here on we enumerate the pattern states using an additional
index. The i-th pattern state in the bottom layer is denoted as
P i
B, similarly for the top layer or the duplex. Figure 3 dis-
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FIG. 3: Eight symmetry-induced pattern states in a duplex. Node colors denote the clusters of each layer. The top and
bottom layers are illustrated using blue and red edges, respectively. The inter-layer connections are denoted as dashed directed
edges. The construction of these patterns can be performed by breaking different synchronous clusters34. Pattern P represents
the pattern state constructed from the orbital partition of the group in Equation (8) while P1 −P7 are patterns from breaking

different synchronous clusters. P1 −P4 are generated from breaking K1
T = {1,2,3}, P5 from K2

T = {4,5}, P6 from
K2

B = {2,3}, and P7 from K3
B = {4,5}.

plays eight distinct symmetry-induced patterns that emerge in
the duplex network of each layer containing six nodes.

V. LINEAR STABILITY OF PATTERN STATES

Flow-invariance under the duplex dynamics is a necessary
condition so that the bottom layer may attain any particular
pattern state. This leads to the question of when the pattern
state is stable under a certain interval regime of the intra and
inter-coupling strengths. In this section, we deduce the linear
stability analysis for the duplex dynamics.

A. Pattern dynamics: quotient dynamics

The dynamics on the pattern state P of the duplex network
lies in a reduced phase space with dimension n(kT + kB),
where kT and kB are the number of clusters in the network. To
obtain the equations of motion, also called quotient dynamics,
we use the notation in30,35 to characterize clusters and orbit
partition.

We introduce the notation for the bottom layer, but use the
same notation for the top layer, replacing the subscript by T.
Let el

B ∈ RN be given by the indicator vector that identifies
the indices of the nodes in the l-th cluster in the bottom layer,

i.e.,

(el
B)i =

{
1, i ∈ Kl

B

0, otherwise.

The orbit partition of [N] into kB clusters is encoded in the
characteristic matrix EB ∈ RN×kB35: E i j

B = 1 if node i be-
longs to cluster K j

B and zero otherwise, i.e., the columns of
EB are the indicator vectors el

B of the clusters:

EB = [e1
B, . . . ,ekB

B ].

First note that E∗
BEB is invertible and diagonal with entries

being the size of each cluster Kl
B

35. Also, let ΠB ∈RN×N be
defined

ΠB = EB(E∗
BEB)−1E∗

B = EBE+
B,

where E+
B is the left Moore-Penrose pseudoinverse of EB and

can be seen as a average operator30. Then, ΠB is symmet-
ric, Π2

B = ΠB, and ΠB and EB have the same column space.
Hence, ΠB represents the projection operator onto the col-
umn space of EB, i.e., the subspace spanned by the vectors
{el

B}kB
l=1. Moreover, ΠB is block-diagonal with each diago-

nal block a multiple of the ‘all-ones’ matrix3536. We denote
the projection operator on the column space of ET and EB

embedded into R2N as

Π =

(
ΠT 0
0 ΠB

)
. (10)
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Denote r = vec(r1, . . . ,rkT) ∈ (Rn)kT and s =

vec(s1, . . . ,skB) ∈ (Rn)kB . Then, the isolated dynamics
and coupling function evaluated at the pattern state (r,s) of
the duplex network are given by

Tr(r) = vec(t(r1), . . . , t(rkT)),

Ur(r) = vec(u(r1), . . . ,u(rkT)),

Bs(s) = vec(b(s1), . . . ,b(skB)),

Cs(s) = vec(c(s1), . . . ,c(skB)),

and satisfy

T((ET⊗ In)r) = (ET⊗ In)Tr(r)
U((ET⊗ In)r) = (ET⊗ In)Ur(r)
B((EB⊗ In)s) = (EB⊗ In)Bs(s)
C((EB⊗ In)s) = (EB⊗ In)Cs(s).

(11)

To obtain the quotient dynamics we set x = (ET ⊗ In)r and
y = (EB⊗ In)s and replace in Equations (2) and (3). To recast
as a reduced system, we introduce new matrices that are the
quotient versions of A, L, and K, i.e., satisfy the following
relations:

AET = ETAr, LEB = EBLs,

KET = EBKr, KEB = EBKs.

The new matrices are given by

Ar = E+
TAET ∈ RkT×kT

Ls = E+
BLEB ∈ RkB×kB

Kr = E+
BKET ∈ RkB×kT

Ks = E+
BKEB ∈ RkB×kB ,

(12)

where the one-to-one inter-layer structure K =
diag(κ1, . . . ,κN) ∈ NN×N implies that Kr is a kB × kT
matrix whose entries are given by

Ki j
r =

1
|Ki

B| ∑
l∈Ki

B∩K j
T

κl ,

and Ks = diag( 1
|K1

B| ∑l∈K1
B

κl , . . . ,
1

|KkB
B |

∑
l∈KkB

B

κl), where | · |

corresponds to the number of nodes belonging to the cluster.
As aforementioned, P is an invariant manifold under the

flow, using (11) the matrices in Equation (12) we obtain the
dynamics on P as given by

ṙ = Tr(r)+α(Ar ⊗ In)Ur(r),
ṡ =Bs(s)−β (Ls ⊗ In)Cs(s)+σ(Kr ⊗D)r−σ(Ks ⊗D)s.

(13)

Although invariance of the flow in Equation (1) is sufficient
to deduce the type of patterns allowed in the bottom layer,
knowing if trajectories attain a particular pattern is another
issue. It remains to show that there is contraction towards P
transversely. To this end, we obtain equations that govern the
dynamics near P . We adapt to our case the exposition in37.

B. Linear flow close to the pattern state

In order to consider stability of pattern states, we analyze
small perturbations away from P as(

x
y

)
=

(
ET⊗ In 0

0 EB⊗ In

)(
r
s

)
+ξ . (14)

The first term in the sum defines a coordinate on P , and the
second term ξ is viewed as a perturbation to the pattern state.
The coordinate splitting in Equation (14) is associated with a
splitting of (Rn)N × (Rn)N as the direct sum of subspaces

(Rn)N × (Rn)N = F ⊕F⊥

with associated projections

πF : (Rn)N × (Rn)N →F πF⊥ : (Rn)N × (Rn)N →F⊥.

The subspaces F ,F⊥ ⊂ (Rn)N × (Rn)N are determined by
embeddings from (Rn)d and (Rn)(2N−d), respectively, induced
by the duplex group of symmetries G. In fact, F has a repre-
sentation in terms of the column space of ET and EB, respec-
tively. Both matrices encode the cluster information of each
layer, and the orthogonal complement of their column space
forms a representation of F⊥. More precisely, the following
result is valid

Proposition V.1 (Block-diagonalization of coupling matri-
ces.). Consider A and L the adjacency and Laplacian matri-
ces of Equation (1), respectively. Let ΠT and ΠB be orthogo-
nal projection operators onto column spaces associated with
clusters in the top and bottom layer, respectively. Consider
the set of orthonormal eigenvectors {vi

T}i∈[N] and {vi
B}i∈[N]

of ΠT and ΠB, respectively, and denote

TT = [v1
T, . . . ,v

N
T] and TB = [v1

B, . . . ,vN
B].

Then, B = T ∗
TATT and M = T ∗

BLTB are block-diagonal and
denoted as

B =

(
B∥ 0
0 B⊥

)
and M =

(
M∥ 0
0 M⊥

)
(15)

with B∥ ∈ RkT×kT , B⊥ ∈ R(N−kT)×(N−kT), M∥ ∈ RkB×kB and
M⊥ ∈ R(N−kB)×(N−kB).

Proof. See Appendix A 2.

First, the above result yields a representation for F and F⊥:

F = span{v1
T, . . . ,v

kT
T ,v1

B, . . . ,vkB
B }⊗Rn,

F⊥ = span{vkT+1
T , . . . ,vN

T,v
kB+1
B , . . . ,vN

B}⊗Rn.

Second, the range of the adjacency matrix A and the Laplacian
matrix L can be split into these two subspaces, i.e., it performs
a block-diagonalization and the blocks are denoted with ∥ and
⊥ symbols. Different approaches are also possible such as ir-
reducible representations (IRR)5, cluster-based coordinates38,
and simultaneous block diagonalization (SBD)39.
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Here we consider a pattern state to be stable if the transver-
sal perturbations decay exponentially to zero. To determine
the linear stability of a pattern state, we study dynamics close
to the pattern state. Let F l

B ∈ RN×N for each l ∈ [kB] be de-
fined as

F l
B = diag(el

B), (16)

where ∑
kB
l=1 F l

B = IN , and similarly for F l
T. To obtain a linear

stability analysis, it suffices the linear flow close to the pattern
state given by:

ξ̇T =
( kT

∑
l=1

F l
T⊗DT(rl)+αAF l

T⊗DU(rl)
)

ξT

ξ̇B =
( kB

∑
l=1

(
F l
B⊗DB(sl)−βLF l

B⊗DC(sl)
)
−σ(K ⊗D)

)
ξB

+σ(K ⊗D)ξT,

written in the coordinates (ξT,ξB) along a curve (r(t),s(t))
of the quotient dynamics Equation (13). To obtain a decompo-
sition of the linear flow into the subspaces F and F⊥, Propo-
sition V.1 introduces a change of coordinates(

ξT

ξB

)
7→

(
T ∗
T⊗ In 0

0 T ∗
B⊗ In

)(
ξT

ξB

)
, (17)

which we abuse notation and still denote by (ξT,ξB), that
splits the perturbation (ξT,ξB) further into parallel and
transversal directions

ξ̇T =
( kT

∑
l=1

Gl
T⊗DT(rl)+αBGl

T⊗DU(rl)
)

ξT

ξ̇B =
( kB

∑
l=1

Gl
B⊗DB(sl)−βMGl

B⊗DC(sl)
)

ξB

σ(KT⊗D)ξT−σ(KB⊗D)ξB,

(18)

where Gl
T = T ∗

TF l
TTT, Gl

B = T ∗
BF l

BTB, KT = T ∗
BKTT and

KB = T ∗
BKTB.

The linear stability of any top layer pattern does not de-
pend on the bottom layer dynamics, due to the directed cou-
pling inter-layer structure. Hence, to determine if a duplex
pattern is stable, the top layer pattern counterpart must be sta-
ble. For general intra-coupling functions in both layers and
inter-coupling functions, this problem can be assessed numer-
ically, restricting the analysis to the columns associated with
the transversal directions of the pattern state, as we detail in
Section V C.

Remark V.2 (Laplacian coupling case). In the case of Lapla-
cian coupling in the top layer, obtaining a stability condition
for the coupling strengths (α,β ,σ) becomes a nontrivial task.
For σ = 0, under specific intra-layer structure40 and linear
coupling functions (satisfying special spectral conditions37)
the patterns are composed of independent clusters, and their
corresponding stability can be assessed independently as well.
In particular, the transversal directions of the pattern state

in Equation (18) can be analyzed in terms of exponential
dichotomy37 or Milnor stability40. However, for σ ̸= 0 in
Equation (18), the parallel and transversal perturbations are
coupled to each other, requiring further splitting to separate
them. This goes beyond the scope of this paper and will be
considered in future work.

C. Master stability approach

To characterize the stability of all clusters composing a pat-
tern, we view the duplex as a single network composed of
nodes, which lie on distinct layers, as having different types.
To find the new coordinate system in Equation (17) numeri-
cally, we apply a method for obtaining an irreducible block
representation via symmetry breaking of a cluster into smaller
clusters34. This method is suitable for directed networks as in
our case when compared to other methods26,41. We numeri-
cally solve all transverse perturbations in Equation (18), along
with the quotient dynamics given in Equation (13). The Lya-
punov exponents are estimated42,43, tracking exponents asso-
ciated with each cluster composing a pattern state. We denote
Λ the largest of all Lyapunov exponents of a cluster. The sta-
bility of a pattern state for the top or bottom layer is based on
the sign values of the largest exponents corresponding to each
nontrivial cluster composing the pattern state. See Appendix
A 3 for further details of the stability characterization of pat-
tern states in the case of a duplex composed of six nodes in
each layer.

VI. NUMERICAL SIMULATIONS

In this section, we present numerical simulations illustrat-
ing the switching between pattern states through the symme-
try breaker. Fixing the topology of the symmetry breaker,
we only vary the coupling strengths (α,β ,σ) to induce the
switching. The directed inter-layer connections from top to
bottom (Equation (1)) guarantee that the existence of a pat-
tern state in the top layer depends only on α , whereas patterns
in the bottom layer depend on all coupling strengths.

A. Determination of a pattern state

We must introduce a measure to quantify when the layer
has attained a particular pattern state. Let Kl

B be the l-th clus-
ter in the bottom layer in a pattern PB. To determine which
synchronous pattern exists in the bottom layer, we measure
the synchronization error of the pattern PB, given as

ePB
(t) =

1
kB

∑
l∈[kB]

eKl
B
(t), (19)

where

eKl
B
(t) =

1
|Kl

B|(|Kl
B|−1) ∑

i, j∈Kl
B

∥yi(t)− y j(t)∥1. (20)



Symmetry breaker governs synchrony patterns in neuronal inspired networks 9

timetime

a) b)Pattern when Pattern when is turned on at

Bottom layer

Bottom layer

Top layer

FIG. 4: Symmetry breaker governs patterns states in coupled HR oscillators. (a) Initially, when σ = 0, bottom layer is in
one pattern state P1

B = {(a,b,b,c,d)}. (b) The bottom layer switches to pattern P2
B = {(a,b,c,d,d)} in the presence of the

symmetry breaker with α = 0.225, when σ = 0.5 at t = 1500, represented by vertical dashed line. Node color corresponds to
nodes in the same cluster, but the same color across layers has no meaning. The HR parameters are

IT = 3.2,rT = 0.01, IB = 3.27,rB = 0.01,β = 0.3. The intra and inter-layer coupling functions are as shown in Equations (22)
and (23).

When ePB
(t) is away from zero the pattern does not exist at

time t, while ePB
(t) close to zero shows that the layer attained

PB. Note that Equation (20) is only defined for nontrivial
clusters since trivial clusters have |Kl

B|= 1. Therefore a pat-
tern state is decided by calculating the synchronization errors
for all nontrivial clusters in it. Similarly, we can define the
synchronization error for the pattern PT in the top layer.

The definition of the synchronization error in Equation (19)
allows us to deduce the following observations:

(i) In case the synchronization error is away from zero for
all patterns that contain at least one cluster, then the bot-
tom layer is in the incoherent state, which we denote as
P0
B.

(ii) Consider two distinct patterns P i
B and P j

B. Note that
whenever eP i

B
(t) is close to zero but eP j

B
(t) ̸= 0 as t →

∞, we say the bottom layer is in pattern state P i
B.

(iii) If a pattern state P i
B contains more nontrivial clusters

than P j
B and if eP i

B
and eP j

B
are both close to zero, the

bottom layer is in pattern P i
B.

Note that the same information about a pattern state can
be deduced by plotting eKl

B
(t) for all nontrivial clusters Kl

B

as well. For networks exhibiting a small number of pattern
states, plotting all synchronization errors corresponding to
each nontrivial pattern is a straightforward way to determine
which pattern state the network has attained.

B. Hindmarsh-Rose oscillators and coupling functions

We focus our attention on a neurologically relevant dynam-
ical system and consider Hindmarsh-Rose (HR) oscillators44

as nodes in both layers. The bottom isolated dynamics b is
given in arbitrary coordinates (v,w,z) ∈ R3 as

(v,w,z) 7→

w−aBv3 +bBv2 − z+ IB
cB−dBv2 −w

rB
(
sB[v− tB]− z

)
 , (21)

where aB,bB,cB,dB, IB,rB,sB, tB are parameters that de-
termine the dynamical regime such as a fixed point, periodic
orbit or chaotic dynamics. We fix some of the parameters
in Equation (21) as aB = 1,bB = 3,cB = 1,dB = 5,sB =
4, tB = −0.5(1 +

√
5)44. The isolated dynamics in the top

layer t is the same as b, except that one or both parameters
IT ̸= IB and rT ̸= rB are made different so that nodes in the
layers are non-identical.

The intralayer coupling functions are as follows

u(x j) =

x1
j

0
0

 , c(y j) =

y1
j

0
0

 , (22)

while the inter-layer coupling function follows the relation

D =

0 0 0
0 1 0
0 0 0

 . (23)

Equation 1 is solved numerically using the Runge-Kutta
fourth-order method with varying integration time steps dis-
carding a transient time so the oscillators reach a steady state.
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To analyze any clusters Kl
T and Km

B in the top and bottom lay-
ers, respectively, the initial conditions are selected such that
xi(0)≈ x j(0) ∀i, j ∈ Kl

T and yi(0)≈ y j(0) ∀i, j ∈ Km
B.

C. Switching patterns states

Our numerical simulations show that the symmetry breaker
can drive synchrony patterns in the bottom layer, using α and
σ as control parameters. The switching between two patterns
in the bottom layer can be described as follows: the desyn-
chronization of a cluster in the top layer also breaks the cor-
responding compatible cluster in the bottom. Likewise, if a
synchronized cluster exists in the top layer, increasing diffu-
sive coupling through the y variable eventually synchronizes
a compatible cluster in the bottom45. Therefore, synchroniza-
tion and desynchronization of clusters in the top layer change
patterns at the bottom layer.

Figure 4 displays the switching between pattern states in
the bottom layer of 5 nodes. When the symmetry breaker
is not present, σ = 0, the bottom layer is in pattern P1

B =
{(a,b,b,c,d)} as shown by the time-evolution of the synchro-
nization error eP1

B
(t) close to zero in Figure 4 a) in compar-

ison to the others admissible patterns, P2
B = {(a,b,c,d,d)}

and P3
B = {(a,b,b,c,c)}. Then, for σ ̸= 0 at t = 1500, we

observe that the bottom layer switches from P1
B to P2

B, as
illustrated in Figure 4 b). The synchronization error eP1

B
(t)

starts to oscillate away from zero, whereas eP2
B
(t) decays to

zero. To achieve this particular switching, the top layer attains
the pattern state P1

T = {(a,b,c,a,a)} as quantified by the syn-
chronization error eP1

T
(t), which is constant and close to zero,

illustrated in Figure 4 b). The initial conditions of each layer
were selected such that the top and bottom layers were close
to patterns P3

T and P3
B, respectively. Choosing the same HR

parameters and initial conditions from Figure 4, but tuning α

parameter, we can also observe that the bottom layer switches
from the same pattern P1

B to other patterns, see Figure 5. In
Figure 5 a), the top layer is in the incoherent pattern, induc-
ing that the bottom layer switches to the incoherent pattern
P0
B = {(a,b,c,d,e)}, as observed by all synchronization er-

rors being away from zero after t = 1500. In Figure 5 b), the
bottom layer goes to P3

B, which contains the minimum num-
ber of symmetry-induced clusters, as illustrated by the syn-
chronization errors of all patterns decaying to zero once σ is
turned on.

All the switching phenomena occurred from the same pat-
tern state, P1

B, and the bottom layer could attain any other
pattern state apart from the complete synchronous pattern. In
other words, from pattern P1

B we found three possible transi-
tion pathways to other pattern states. But a natural question
is: what are the admissible transition pathways starting from
a different pattern? Figure 6 displays all admissible transi-
tion pathways that switch the bottom layer’s pattern. Fixing
the topology of the top layer and inter-coupling, the switching
occurs only by changing (α,σ). We observe that all transi-
tion pathways among pattern states form a complete directed
graph, where the nodes are the pattern states, and the directed

b)

a)

time

time

FIG. 5: Bottom layer can attain other patterns by
changing α . (a) The bottom layer switches from
P1
B = {(a,b,b,c,d)} to an incoherent pattern

P0
B = {(a,b,c,d,e)} when α = 0.1 and σ is turned on at

t = 1500. (b) The bottom layer switches from
P1
B = {(a,b,b,c,d)} to P3

B = {(a,b,b,c,c)} when
α = 0.425.

edges are the transition pathways. This confirms that the sym-
metry breaker can drive the bottom layer to a different pattern
state, regardless of which state the bottom layer starts at.

VII. DISCUSSION AND CONCLUSION

Building upon a multilayer perspective for neuronal net-
work dynamics6,46–50, the current work has proposed a mech-
anism for a network to switch between pattern states. The
network is composed of two layers, a duplex network, where
the bottom layer is the reference network. The top layer to-
gether with the inter-coupling connections forms a symme-
try breaker, driving the invariant and stable symmetry-induced
patterns in the bottom layer. Instead of characterizing the ex-
istence and stability of individual clusters26,34,51,52, the rel-
evant information is the collection of clusters that defines
each symmetry-induced pattern. We have characterized all
symmetry-induced pattern states in the bottom layer that are
compatible in terms of the symmetry constraints imposed by
the connections with the top layer. In particular, our work has
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FIG. 6: Transition pathways driven by symmetry breaker. For a fixed symmetry breaker topology, regardless of the initial
pattern state, the symmetry breaker drives the bottom layer to any other pattern state. There are total of four pattern states:

P1
B = {(a,b,b,c,d)} (left top corner), P0

B = {(a,b,c,d,e)} (right top corner), P3
B = {(a,b,b,c,c)} (right bottom corner), and

P2
B = {(a,b,c,d,d)} (left bottom corner). The numerical simulations to draw these transition pathways have the same network

dynamics parameters as in Figure 4.

demonstrated that the symmetry breaker avoids the complete
synchronous state, which corresponds to excessive (abnormal)
synchrony and is associated with neurological disorders53.
Although whole-brain synchrony is not desirable, clusters of
synchronized regions that dynamically change membership
and activity patterns, as shown here, likely underlie complex
cognitive and emotional processes7,54.

Our work has mapped the transition pathways of a set
of admissible pattern states for small networks, fixing the
symmetry breaker’s topology. However, symmetry breakers
are also capable of inducing specific and targeted symmetry-
induced pattern states in networks. Hence, instead of fix-
ing the topology, an interesting research direction is a control
perspective48,55: from a set of chosen symmetry-induced pat-
terns in the bottom layer, to design the topology of the sym-
metry breaker such that the bottom layer can attain these par-
ticular pattern states. Although the inter-coupling connections
are directed, which simplifies the analysis, similar results are
also valid for bidirectional inter-coupling connections.

Our results will be explored in other network dynamics

that include neurologically relevant information such as brain-
inspired network topology and bio-physical details in the net-
work dynamics. When building more neurobiologically rele-
vant models, it will be essential to consider how the multilayer
network may manifest in the brain. The multilayer organiza-
tion can be literally true with a top layer controlling the bot-
tom layer. This structure is unlikely in a distributed system
like the brain. It is also possible that the multilayer struc-
ture is analogical with all nodes in the same layer but having
unique roles. Such an organization is much more likely in
the brain with some nodes serving the symmetry-breaker role
and controlling the pattern states in other nodes. One could
even imagine that this symmetry-breaker role is dynamic with
nodes flipping from the “top layer” to the “bottom layer” and
vice versa depending on the state of the brain and the incom-
ing sensory stimuli. For small networks, like the models used
here, the pattern states of the bottom layer can be accessed nu-
merically via the time-evolution of the synchronization error
(19). However, characterizing all admissible for larger net-
works, like neurobiologically-relevant ones, becomes a non-
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trivial task. So, numerical techniques to identify different pat-
tern states via clustering56 seems a promising direction. In
summary, our work illustrates a mechanism by which one net-
work can assist or drive patterns of synchrony in others, pro-
viding potential insights into switching between patterns in a
complex system such as the brain.
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Appendix A: Appendixes

1. Bottom layer’s cluster: all or nothing

The special choice of inter-coupling structure implies the
following result:

Corollary A.1 (Bottom layer’s cluster: all or nothing.). Con-
sider a bottom layer cluster of size m. Then, one of the two
scenarios holds:

(i) The bottom layer cluster does not receive connections
at all.

(ii) The bottom layer cluster receives one-to-one connec-
tions from a top layer cluster, which has at least the
same size m.

The claim follows from the flow-invariance of Equation (1),
and consequently, from the symmetry compatibility IV.1.

Proof. Consider top and bottom layers clusters KT and KB,
respectively. Denote m as the size of the bottom layer cluster,
i.e., m = |KB|. Let K = diag(κ1, . . . ,κN) be the inter-layer
coupling.

Note that if node i and j are in cluster KB, then there exists
a permutation matrix PB that permutes these nodes and sat-
isfies the symmetry compatibility in Equation (5). So, there
exists a permutation matrix PT that

KPT = PBK. (A1)

Also, note that PB permutes rows i and j of K. Since K is a
diagonal matrix, to attain the Equation (A1), PT must permute
columns i and j of K. This implies that the entries of K satisfy
κi = κ j for i, j ∈KT. Repeating the argument to every node in
the bottom layer KB, we obtain a constraint over the entries
of K:

κi1 = κi2 = · · ·= κim =

{
1,
0

, il ∈ KB.

Evaluating both cases implies the claim.

2. Proof of Proposition V.1

Proof. We develop the proof for the Laplacian matrix, but the
arguments can be repeated to the adjacency matrix. We split
the proof into two steps.
Eigenspace of ΠB. Since ΠB is an orthogonal projection
operator onto the column space of EB. Then, {el

B}kB
l=1 is the

set of eigenvectors associated to the eigenvalue 1. So, denote
vl
B = el

B for l = 1, . . . ,kB.
Consider the orthogonal complement of span{el

B}kB
l=1,

where any vector is in the kernel of ΠB. To obtain a set of
orthonormal eigenvectors {vi

B}i∈[N] which diagonalizes ΠB,
it suffices to extend the basis {vl

B}l to a basis of RN , and ap-
ply the Gram Schmidt process.
L and ΠB commute. First, note that ΠB is a doubly stochas-
tic matrix. In fact, let 1 be the all ones vector, then ΠB1 = 1,
and ΠB is symmetric, so ΠB is doubly stochastic. Using
Birkhoff-von Neumann decomposition, ΠB can be written as
a convex combination of permutation matrices, i.e., there exist
c1, . . . ,cd ∈ [0,1] with ∑

d
p=1 cp = 1 and d different permutation

matrices P1
B, . . . ,Pd

B such that

ΠB =
d

∑
p=1

cpPp
B. (A2)

For any node i ∈ [N], if Π
i j
B ̸= 0 then j belongs to the same

cluster of i, i.e., a particular cluster Kl
B. Since {Kl

B}kB
l=1 is an

orbit partition, then there exists at least one permutation ma-
trix Pp

B in the decomposition (A2) that permutes i and j. Since
the argument can be repeated for every node in the graph, we
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a) b)

c) d)

Top layer

Duplex 

Bottom layer

e)

FIG. 7: Stability characterization for switching between patterns (a) Pattern states in the top layer are depicted by the
change in the largest Lyapunov exponent corresponding to each nontrivial cluster, and a comparison with synchronization

errors from numerical simulations. (b) Pattern states in the bottom layer when σ = 0. (c) A multilayer network is constructed
by joining the top and bottom layers through directed inter-layer links. (d) The top panel shows the stability analysis of the
pattern states in the duplex network in (α,σ) space. The colors represent when the associated largest Lyapunov exponent is

negative for the particular pattern. The bottom panel shows the transformed coupling matrix in the node space. (e) The stability
analysis and time-averaged synchronization errors for compatible clusters in the bottom layer as σ changes. Here we choose

α = 0.2950 (e) and β = 0.05 ((d), (e)). The HR parameters in all figures are are IT = 3.1,rT = 0.01, IB = 3.2,rB = 0.005 with
coupling functions given by Equations (22), (23).

conclude that all permutation matrices Pp
B are elements of one

of the equivalence classes E i
B, and satisfy Pp

BL = LPp
B. Then,

LΠB = ΠBL.

Since commuting matrices preserve eigenspaces, then L can
be block-diagonalized using the set of eigenvectors of ΠB.
Repeating the same sequence of arguments to the adjacency

matrix, the proposition holds.

3. Stability characterization for the switching phenomenon

Here we detail the stability characterization that underlies
the switching phenomenon for an example of 6 nodes in the



Symmetry breaker governs synchrony patterns in neuronal inspired networks 14

top and bottom layers, see Figure 7. Figures 7 a) and 7 b) dis-
play the different patterns as we vary α and β while keeping
σ = 0. To demonstrate the validity of our numerical simula-
tions, we also plot the largest of all transverse Lyapunov ex-
ponents (Λ) associated with each nontrivial cluster along with
numerical simulations. A side-by-side comparison between
synchronization errors ePT

(t) and ePB
(t) for different clus-

ters and the corresponding ΛKT
and ΛKB

values consolidate
the accuracy of numerical simulations.

In Section III we discussed the effect on invariant syn-
chronous clusters in the bottom network when it is connected
with the top: invariant clusters whose corresponding permu-
tation matrices do not satisfy the conjugacy relation Equa-
tion (5) are not invariant for any σ > 0, see Section IV. There-
fore, the top layer restricts the number of identically synchro-
nized clusters, and consequently, pattern states at the bottom.
For instance, in Figure 7 b), when σ = 0, the bottom layer
exhibits patterns such as P2

B = {(a,b,b,c,c,c)} and the com-
plete synchronous pattern P3

B = {(a,a,a,a,a,a)}, confirmed
by tracing the maximum Lyapunov exponents and the syn-
chronization error e. However, these patterns are not invariant
for any σ > 0, or in other words, the corresponding permu-
tation matrix PB does not have a PT in the top network that
satisfies Equation (5).

The top panel of Figure 7 d) shows how the stability of bot-
tom layers’ patterns changes in the plane (α,σ) when driven
by the top layer. The pattern P0

B is stable at σ = 0, and in-
creasing α,σ , the patterns P4

B and P5
B become stable. If we

separate the isolated dynamics from coupling terms in Equa-
tion (18), the bottom panel of Figure 7 d) shows the coupling
matrix in the node space for the pattern state shown in Fig-
ure 7 c). To obtain this coupling matrix, we have assumed
that α = β = σ = 1. The coupling matrix is such that B⊥ is
decoupled from B∥ and M⊥ from M∥. However, due to the
one-way34 inter-layer dependence of the bottom network on
top, M⊥ is coupled with B⊥, but the reverse is not true. Each
row that is associated with B⊥ and M⊥ corresponds to a trans-
verse perturbation that determines the stability of a cluster.
Tracing all transverse Lyapunov exponents associated with a
cluster with

∣∣∣Kl
(T)B

∣∣∣ > 2 provides a detailed analysis about
which nodes in an invariant cluster can synchronize at a given
α and β 57. For instance, for cluster K1

T, the coupling matrix
shows that if xi(0)≈ x j(0) ∀i, j ∈K1

T, all nodes in this cluster
synchronize simultaneously.

There are two types of synchronized clusters: independent
and intertwined. Independent clusters are those whose exis-
tence does not require any other cluster to exist, i.e., they can
exist independently, whereas intertwined clusters require all
clusters (that are intertwined) to exist simultaneously. If any
cluster in a set of intertwined clusters desynchronizes, the sta-
bility of all intertwined clusters is lost as well. Using this
fact, we destabilize a synchronized cluster in the bottom layer.
Such independence or dependence of clusters is visible from
the coupling matrix in Figure 7 d) as well, which shows that
clusters K1

T,K2
T are independent, while K1

B,K4
B are inter-

twined with K1
T,K2

T. While such intertwining of clusters is
possible within the bottom layer also, our example contains

intertwining across the layers only.
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