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Abstract

We propose a road layout and traffic model, based on last passage percolation (LPP). An easy
näıve argument shows that coalescence of traffic trajectories is essential to be considered when
observing traffic networks around us. This is a fundamental feature in first passage percolation
(FPP) models where nearby geodesics naturally coalesce in search of the easiest passage through
the landscape. Road designers seek the same in pursuing cost savings, hence FPP geodesics
are straightforward candidates to model road layouts. Unfortunately no detailed knowledge is
rigorously available on FPP geodesics. To address this, we use exponential LPP instead to build
a stochastic model of road traffic and prove certain characteristics thereof. Cars start from every
point of the lattice and follow half-infinite geodesics in random directions. Exponential LPP is
known to be in the KPZ universality class and it is widely expected that FPP shares very similar
properties, hence our findings should equally apply to FPP-based modelling. We address several
traffic-related quantities of this model and compare our theorems to real life road networks.

1 Introduction

Road networks and traffic patterns are clearly important phenomena in everyday life. Cars start from
many locations and generally take random destinations to travel to. One’s first thought might be to
model car movements as independent straight trajectories. We show in Section 1.1 that this näıve
model results in divergent traffic densities in every region of the plane, which clearly does not align
with observations.

Cars require roads to run on, and these cannot be built in arbitrary density and through arbitrary
landscapes. Hence an interesting structure of road networks emerges, largely driven by geographic,
historic, and social circumstances. The aim of this paper is to provide a mathematical model to
describe some characteristics of such networks.

Characteristics of road networks have been considered in numerous works. As in this paper we
are interested in a mathematical model to construct road networks, we only mention two papers, first
Barthélemy and Flammini [3], who build urban networks by adding new centres and connecting them
to the existing network in certain optimal way. Second, Molinero and Hernando [15] introduce an
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algorithm based on a succession of Delanuay triangulation of a dense network of the centres of interest
plus auxiliary points, and only keeping paths that are shortest between the original nodes of interest
in the resulting network.

We build a model where, rather than the locations to connect, the environment surrounding the
roads has a crucial effect on the geometry. Points to connect are thought of as having a homogeneous
configuration throughout the plane, whereas obstacles roads need to get around will be random which
in turn causes nontrivial network characteristics.

The environment we live in presents geographical challenges to road building. If we model this
in the simplest possible way with i.i.d. cost distribution on some lattice, and try to build roads that
minimise overall cost, then we naturally arrive to first passage percolation (FPP) models.

FPP was originally proposed as a model for the flow of fluid through porous media by Hammersley
and Welsh in 1965 [13]. Since then, FPP has evolved into a major area of interest in probability theory.
See [1] for an extensive account on significant results in this field. Despite this active interest, many
significant unanswered questions remain.

One of the fundamental objects in FPP are geodesics, paths that collect minimal costs connecting
two points among a random penalty landscape on the plane. These will be our candidates to model
roads. For quantitative analysis of our road model we need refined estimates on geodesics, which
unfortunately are not yet available for FPP models. Instead, we switch to exponential last passage
percolation (LPP), where extensive results on last passage times and geometry of geodesics are now
available. FPP is widely believed to belong to the KPZ universality class – a property proved for LPP.
This implies that the geometry of geodesics in the two models should share basic characteristics that
we use throughout our arguments. Thus, switching to LPP from FPP seems a reasonable move. Of
the vast literature on the KPZ universality class, we refer to the surveys by Corwin [5], Ferrari-Spohn
[11], and Quastel [16].

LPP models have been subject of intensive research in the last decades. Instead of minimizing
weights (which we called costs so far), geodesics are maximising them under the constraint that paths
can only take up or right steps. We define this model precisely in Section 2.

The connection between roads and models in the KPZ universality class is not new. Solon, Bunin,
Chu and Kardar [17] compared optimal paths in road networks with directed polymers in random
medium (DPRM). LPP can be considered as extremal case of DPRM, and shares similar scaling
exponents. Solon et al. find that shortest paths on the road network can be well approximated with
DPRM – albeit with the environment exhibiting a power law rather than in exponential LPP. They
also conclude that long-range correlations in the road network play an important role in the scaling
properties of optimal paths.

To model cars, we augment the basic layer of LPP models with a network of half-infinite geodesics,
the a.s. existence of which was established by Ferrari-Pimentel and Coupier [6, 12]. To be more precise,
for any given direction and starting point, a.s. there exists a unique half-infinite geodesic from that
point going into the given asymptotic direction. These form a perfect model of a car pursuing a distant
destination in a given direction, while following the geodesic road network given to it. Each lattice
point of Z2 is thought of as the starting point of a car, and each car picks an independent random
direction for its a.s. geodesic. As Z2 is countable, the cars can jointly follow their own randomly
oriented geodesics on a probability one event. In FPP models the direction could be Uniform(0, 2π),
in our LPP setup this must be restricted to Uniform(0, π

2 ). In fact we will assume some ϵ separation
from the trivial angles 0 and π

2 .
We then discuss the following questions; notice that the model is translation-invariant, hence our

inquiry for the origin is not restricting generality:
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1. Probabilistic estimates for the furthest distance a car can come from to the origin (see Section
3).

2. Probabilistic bounds for the number of cars passing through a fixed point (see Section 4).

3. How far one needs to go from a point to see high-traffic roads i.e., geodesics used by several cars
at the same time (see Section 5)?

The purpose of this paper is to introduce this theoretical traffic model based on LPP, and to rigorously
derive some of its interesting characteristics. We do not claim a good fit with reality: in Section 6,
we compare our findings to real-world traffic data and point to various reasons why our model stays
in the theoretical domain rather than proving useful for practical applications about road networks.

1.1 A Poisson model for road network

Here we make the näıve assumption that cars go in a straight line i.e., the environment has no effect
on their trajectories. The aim of this part is to demonstrate the need of a more elaborate model: this
simple Poisson model cannot properly describe road networks.

Consider a homogeneous Poisson point process on R2 with intensity 1. These Poisson points
represent the starting points of cars. A car chooses a direction uniformly between 0 to 2π independently
of everything, and it travels along a straight line segment of length ℓ in this direction. The length ℓ of
the trip follows the Exponential(γ) distribution with a positive fixed parameter γ, and is independent
of all the other variables and cars.

This process can be thought of as a marked point process ξ where the starting point Xi of car i
is a point in the homogeneous Poisson point process on R2, and this gets decorated with the mark
(θi, ℓi) which represent the direction the car goes towards and the distance it travels respectively. The
mark space is [0, 2π)× [0,∞), equipped with the standard product Borel σ-algebra. By the marking
theroem [14, Theorem 5.6], ξ is a Poisson point process on

(
R2 × [0, 2π) × [0,∞)

)
. We are after the

number Nr of cars that come r close to the origin.
Without loss of generality we now assume that a car starts from coordinate (−z, 0) of R2, where z

is a positive real. If z ≤ r then the car does appear in the disc B(0, r) of radius r around the origin.

O

r

(−z, 0) z

ℓ

θ

Figure 1: A car starting from (−z, 0) and intersecting the disc B(0, r) or radius r around the origin.
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For z > r, as seen from Figure 1 and a bit of trigonometry, the car intersects B(0, r) if and only

if | sin θ| ≤ r
z and ℓ ≥ z cos θ −

√
r2 − z2 sin2 θ. For a car in general position the quantity z is to

be replaced by the distance of the car’s starting point from the origin. This way, exactly cars of the
marked point process ξ in the above region of

(
R2 × [0, 2π)× [0,∞)

)
will make it into B(0, r). Hence

the number Nr of such cars is Poisson distributed with parameter equal the mean of this number.
Assuming a car is starting at distance z > r from the origin, we estimate its probability to hit

B(0, r) by

P
{
| sin θ| ≤ r

z ∩ ℓ ≥ z cos θ −
√
r2 − z2 sin2 θ

}
≥ P

{
|θ| ≤ r

z ∩ ℓ ≥ z
}
=

r

πz
· e−γz.

Breaking up the homogeneous Poisson process on R2 w.r.t. polar coordinates, we get from here

E [Nr] ≥
∫ 2π

0

∫ r

0

1 · z dz dφ+

∫ 2π

0

∫ ∞

r

r

πz
· e−γz · z dz dφ = πr2 +

2r

γ
· e−γr.

We conclude that the number of cars intersecting the disc is Poisson with mean at least the right-hand
side of this display.

The mean distance travelled by cars is 1
γ , and since we already fixed the Poisson intensity of cars

at 1, we can think of this as a large number. Similarly, the radius r of interest e.g., for a homeowner
wishing for a quiet house, can be considered O(1). Hence we find that even in a moderate sized garden,
plenty of cars should pass. (For actual figures, the UK’s 243,610 km2 and 33.5m cars give 85metres
as unit length to get density 1 of cars, and the typical driving distance is around 10. . . 15 km: 1

γ is

in the order of 100’s. Of course spatial density fluctuates drasticly between urban and rural areas.)
Taking the driving distance to infinity (γ ↘ 0) makes Nr divergent.

This is not what we find in real life: the coalescence of the cars’ trajectories is a significant missing
feature in this näıve model.

2 Model definitions, notations and results

We first define the exponential last passage percolation model on Z2. We assign i.i.d. random variables
{τv}v∈Z2 to each vertex of Z2, where τv’s are distributed as Exp(1). Let, u, v ∈ Z2 be such that u ≤ v
(i.e., if u = (u1, u2), v = (v1, v2) then u1 ≤ v1 and u2 ≤ v2). For an up-right path γ between u and
v we define ℓ(γ) to be

∑
v∈γ\{u,v} τv. Let T (u, v) :=max{ℓ(γ) : γ is an up-right path from u to v}.

T (u, v) is the last passage time between u and v. Clearly, as the number of up-right paths between u
and v is finite, the maximum is always attained. Between any two points u, v ∈ Z2 maximum attaining
paths are called geodesics. As τv has a continuous distribution, between any two points u ≤ v ∈ Z2

almost surely there exists a unique geodesic. As a consequence of this uniqueness geodesics do not
form loops. Hence, geodesics starting from ordered vertices (ordered in the x+y = 0 direction) always
stay ordered. This property of geodesics is known as planarity and will be used in our proofs. The
a.s. unique geodesic will be denoted by Γu,v. An infinite up-right path u0, u1, u2... in Z2 is called
a semi-infinite geodesic starting from u0, if every finite segment of it is a geodesic. A semi-infinite
geodesic starting from u ∈ Z2 is said to have direction θ if limn→∞

un

|un| exists and equals θ (we will

always identify an element on the unit circle with its corresponding angle) and is denoted by Γθ
u. It is

a fact that for a fixed direction θ, almost surely starting from any point u ∈ Z2 there exists a unique
semi-infinite geodesic at the direction θ [6, 12]. Now we will explain the kind of traffic problems we
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are interested in. Let ϵ > 0 be fixed and imagine cars starting from each vertex of Z2 and picking
up uniform direction from the interval (ϵ, π/2− ϵ) independent of each other, also independent of the
vertex weights. The cars then travel via the a.s. unique semi-infinite geodesic in the chosen direction
from the starting point. Notice that we simply assume that cars travel infinitely far. While in the
näıve Poisson model they travelled much further than the radius r of the neighborhood we considered,
infinite driving distances would have made that model obsolete. As we shall see, this is not the case
for our LPP traffic model.

See Figure 2 for a simulation of some cars in the model. The main phenomenon we see is the empty
regions towards the middle of the picture: most points around there will not see any cars passing from
the distance to the bottom of the picture. When cars are started from all of Z2, that translates into
a limited close neighbourhood from where cars can arrive to a point say, the origin. All other cars
from further away will have coalesced into busy roads somewhere else that avoid passing through the
origin.

Figure 2: Simulation of geodesics in random directions, the picture is rotated left by 45o. Each point
on the bottom line picks another one randomly on the top within the admissible angle range 0o - 90o

and sends a geodesic there (i.e., this simulation only launches cars from one line, as opposed to our
model where this happens from each point of Z2). Many geodesics coalesce for most of their travel,
forming the heavy traffic paths which are marked in lighter colors. These leave gaps towards the
middle of the picture where no geodesics pass. The dark mesh of low-traffic geodesics close to 0o and
90o demonstrate the need of separation from the edge of the angle domain: geodesics with such angles
have little room to wiggle, hence do not coalesce much.
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Of the several questions that can be asked, we will address the tail behaviour of the following
quantities:

• How many cars pass through the origin (Theorems 2.1, 2.4)?

• What is the farthest distance a car arrives from to the origin (Theorem 2.5)?

• How far do we have to walk to find a busy road that carries certain volume of traffic (Theorems
2.6, 2.7)?

It is this last question that seemed tractable from the observations point of view. In Section 6 we
compare our result to UK road layouts and traffic statistics, and we discuss the limitations of this
experiment.

2.1 Further notations and results

Let ϵ > 0 be fixed; from now on all the constants we will obtain from the theorems will depend only
on this ϵ. From each vertex v ∈ Z2 an angle is chosen according to i.i.d. uniform (ϵ, π2 − ϵ) distribution
and we consider the a.s. unique semi-infinite geodesic in the chosen direction. We will denote the
angle chosen by v by θv and the semi-infinite geodesic in that direction by Γθv

v . For r ∈ Z let r denote
the vertex (r, r) ∈ Z2. For convenience sometimes we will work with the rotated axes x + y = 0 and
x − y = 0. They will be called space axis and time axis respectively. For a vertex v ∈ Z2, ϕ(v)
will denote the time coordinate of v and ψ(v) will denote the space coordinate of v. Precisely, for
u, v ∈ Z2, we have

ϕ(u, v) = u+ v, ψ(u, v) = u− v.

For u, v ∈ Z2, Γu,v denotes the geodesic between u and v. For a deterministic direction α,Γα
v denotes

the a.s. semi-infinite geodesic starting from v in the direction α. The line x+ y = T will be denoted
by LT . For a geodesic Γ,Γ(T ) will denote the random intersection point of Γ and LT .
Let N denote the number of cars passing through origin. More precisely we define,

N := |{u ∈ Z2 : 0 ∈ Γθu
u }|.

We have the following theorem.

Theorem 2.1. N is finite almost surely.

Proof. This will follow from Theorem 2.4 which we will prove in Section 4.

But N has infinite expectation. To show this we first need the following definition. For n ∈ N,
define Nn to be the number of cars starting from the line L−n and going through origin. We have the
following theorem.

Theorem 2.2. E(Nn) = 1.

Proof. For x ∈ L−n, let Gx denote the event that the car starting from x goes through origin. Then

Nn =
∑

x∈L−n

1Gx .
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So,

E(Nn) =
∑

x∈L−n

P(Gx).

For x ∈ L−n, we define G−x to be the event that the car starting from 0 goes through −x. We have

P(Gx) = P(G−x).

So,

E(Nn) =
∑

x∈L−n

E(1G−x
) = 1.

The following corollary is not surprising then, and is also in line with the divergence of the näıve
Poisson model.

Corollary 2.3. E(N) = ∞.

Proof. This is clear using Theorem 2.2. Indeed we have,

E(N) =

∞∑
n=1

E(Nn) = ∞.

We now dive a bit deeper into the scaling properties of the model.

Theorem 2.4. There exist constants C1, c1 > 0 (depending on ϵ) and n sufficiently large such that

c1
n1/4

≤ P(N ≥ n) ≤ C1 log n

n1/4
.

To get estimates for the furthest distance a car can come from we define the following random
variable.

D := max{n ∈ N : ∃u ∈ L−n such that 0 ∈ Γθu
u }.

Theorem 2.5. There exists C, c > 0 (depending on ϵ) such that the following holds

cn−1/3 ≤ P(D ≥ n) ≤ Cn−1/3.

Finally, to investigate the distance to the nearest busy road, we define

Tn := min{|ψ(v)| : v ∈ L0, Nv ≥ n4/3}.

We have the following theorem which is direct consequence of Theorem 2.4.

Theorem 2.6. For δ > 0 sufficiently small (depending on ϵ) we have there exists constant C > 0
(depending on ϵ) and for sufficiently large n (depending on ϵ)

P(Tn ≥ δn1/3

log n
) ≥ 1− Cδ.
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Proof. The proof follows from a union bound. let V denote the line segments with ⌈ δn1/3

logn ⌉ vertices
and with midpoint 0 on the line L0. Then

{Tn ≤ δn1/3

log n
} ⊂

⋃
v∈V

{Nv ≥ n4/3}.

Hence, by Theorem 2.4 upper bound we have for some constant C > 0 (depending on ϵ)

P(Tn ≤ δn1/3

log n
) ≤ Cδ.

Choosing Cδ < 1 we get Theorem 2.6.

The above theorem says that, with high probability, to see a vertex having n4/3 many cars through

it, we need to go at least sufficiently small multiple of n1/3

logn distance from origin. The following theorem

shows that, with non-vanishing probability, there is at least one vertex within n1/3 distance around
the origin that has n4/3 many cars through it. Precisely, for a fixed constant ℓ0 we make a slight
modification to the definition of Tn and by abuse of notation we will still call the new variable Tn.

Tn := min{|ψ(v)| : v ∈ L0, Nv ≥ n4/3

ℓ0
}.

We then have the following theorem.

Theorem 2.7. There exists c > 0, ℓ0 (depending on ϵ) such that for sufficiently large n (depending
on ϵ) we have

P(Tn ≤ n1/3) ≥ c.

The rest of the paper is devoted to proving these theorems and to compare the latter two to actual
road traffic statistics.

3 Bounds for the furthest distance a car can come from

3.1 Proof of Theorem 2.5 upper bound

First we divide the interval (ϵ, π2 − ϵ) into disjoint sub-intervals. Precisely, for 1 ≤ i ≤ ⌊n1/3⌋ and for
a uniformly bounded sequence {cn} we partition the interval (ϵ, π2 − ϵ) into intervals Ai each of equal

length
cn(

π
2 −2ϵ)

n1/3 . For 1 ≤ i ≤ ⌊n1/3⌋ we define the following random variables.

Di := max{n ∈ N : ∃u ∈ L−n such that θu ∈ Ai and 0 ∈ Γθu
u }.

Clearly, we have

{D ≥ n} ⊂
⌊n1/3⌋⋃
i=1

{Di ≥ n}.

So, we have

P(D ≥ n) ≤
⌊n1/3⌋∑
i=1

P(Di ≥ n). (3.1)
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We fix 1 ≤ i ≤ ⌊n1/3⌋. We want to find an upper bound for P(Di ≥ n). We will apply an averaging
argument. Let V denote the line segment with ⌈n2/3⌉ vertices with L0 with midpoint 0. For v ∈ V
we define the following random variables.

Dv
i := max{n ∈ N : ∃u ∈ L−n such that θu ∈ Ai and v ∈ Γθu

u }.

Clearly, for all v ∈ V we have
P(Di ≥ n) = P(Dv

i ≥ n).

Hence,

⌈n2/3⌉P(Di ≥ n) =
∑
v∈V

P(Dv
i ≥ n) = E(D̂i), (3.2)

where D̂i is defined as follows.

D̂i :=
∑
v∈V

1{Dv
i ≥n}.

We will show that for sufficiently large ℓ,P(D̂i ≥ ℓ) has a stretched exponential in ℓ upper bound.
We prove it precisely now. Let αi, βi, θi denote the left end point, right end point and midpoint of Ai

respectively and n′i ∈ L−n be the intersection point of L−n and the line y = (tan θi)x. Consider the

line segment Ṽ with ⌊ℓ1/96n2/3⌋ vertices on L−n with midpoint n′i. Let v1, v2 be the end points of Ṽ
with ψ(v1) ≤ ψ(v2). Consider Γ

αi
v1 and Γβi

v2 (see Figure 3). We define the following event.

V

v1

v2
b`1/96n2/3c

Ṽ

Γαi
v1

Γβiv2

L0

L−n

n′i

Figure 3: To prove the upper bound in Theorem 2.5 we fix 1 ≤ i ≤ ⌊n1/3⌋. The event that there are
more than ℓ many u ∈ L−n with θu ∈ Ai and Γθu

u intersecting V can happen in two ways. Either

the above u lies in L−n \ Ṽ . For sufficiently large ℓ this will imply large transversal fluctuation for
either Γαi

v1 or Γβi
v2 . Proposition 3.3 gives a stretched exponential upper bound for this event. The

other possibility is there are more than ℓ distinct vertices inside on V that carries a geodesic from Ṽ .
Proposition 3.4 gives a stretched exponential upper bound for this event.

9



• Ai := {∃u ∈ L−n \ Ṽ such that θu ∈ Ai and v ∈ Γθu
u for some v ∈ V }.

We have
P(D̂i ≥ ℓ) ≤ P(Ai) + P({D̂i ≥ ℓ} ∩ Ac

i ).

Now, by planarity the event Ai implies either Γαi
v1 or Γβi

v2 will intersect V (see Figure 3). Since, (βi−αi)
is of order 1

n1/3 , for sufficiently large ℓ (depending on ϵ), the event Ai will imply that either Γαi
v1 or

Γβi
v2 will have transversal fluctuation larger than ℓ1/96n2/3

4 . We have the following proposition.
Let Γα ( resp. J α) denote the semi-infinite geodesic (resp. the straight line) in the direction α starting
from 0 and Γα(T ) (resp. J α(T )) denote the intersection points of Γα (resp. J α) with LT . We have
the following.

Proposition 3.3. [2, Proposition 1.5] For ϵ > 0 there exist C1, c1 > 0 such that for all T > 0, ℓ >
0, n ≥ 1 and for all α ∈ (ϵ, π2 − ϵ) we have

(i) P(|ψ(Γα(T ))− ψ(J α(T ))| ≥ ℓT 2/3) ≤ C1e
−c1ℓ

3

,

(ii) P(sup{|ψ(Γα(t))− ψ(J α(t))| : 0 ≤ t ≤ T )} ≥ ℓT 2/3) ≤ C1e
−c1ℓ

3

.

Hence, for sufficiently large ℓ we have

P(Ai) ≤ Ce−cℓ3/96 .

Now, we consider the event {D̂i ≥ ℓ} ∩ Ac
i . On this event there are at least ℓ distinct vertices on V

that has a geodesic coming from Ṽ . We have the following proposition.
For k ∈ Z, let Ln (resp. L∗

n) denote the line segment on L0 (resp. L2n) of length 2ℓ1/32n2/3 with
midpoint 0 (resp. nk = (n − kn2/3, n + kn2/3)). For u, u′ ∈ Ln and v, v′ ∈ L∗

n we say that (u, v) ∼
(u′, v′) if the geodesics Γu,v and Γu′,v′ coincide between the lines Ln/3 and L2n/3. It is easy to see

that ∼ is an equivalence relation. Let Mk
n denote the number of equivalence classes.

Proposition 3.4. [2, Proposition 1.6] For ψ < 1 there exist C, c > 0 such that for all k with
|k|+ ℓ1/32 < ψn1/3, all ℓ < n0.01 sufficiently large and all n ∈ N sufficiently large we have

P(Mk
n ≥ ℓ) ≤ Ce−cℓ1/128 . (3.5)

Hence, using Proposition 3.4 we have for sufficiently large ℓ and n

P({D̂i ≥ ℓ} ∩ Ac
i ) ≤ Cecℓ

1/384

.

Combining all the above we have for ℓ < n0.01, n sufficiently large we have

P(D̂i ≥ ℓ) ≤ Ce−cℓ1/384 .

So, finally we have there exists ℓ0 (depending only on ϵ) and C̃ (depending only on ϵ) such that for
all large n

E
(
D̂i

)
≤
∑
ℓ≥1

P(D̂i ≥ ℓ) ≤ ℓ0 +
∑

ℓ0≤ℓ<n0.01

2

Ce−cℓ1/384 +
∑

n0.01

2 ≤ℓ<⌈n2/3⌉

Ce−c′n1/38400

< C̃. (3.6)
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So, from (3.2) we have there exists C > 0 (depending only on ϵ) such that for all 1 ≤ i ≤ ⌊n1/3⌋ we
have

P(Di ≥ n) ≤ C

n2/3
.

So, from (3.1) there exists C > 0 such that for large n

P(D ≥ n) ≤ C

n1/3
.

This proves the upper bound in Theorem 2.5.

3.2 Proof of Theorem 2.5 lower bound

We again consider disjoint sub-intervals of (ϵ, π2 − ϵ). First we fix large constant M which will be

chosen later. For 1 ≤ i ≤ [n
1/3

2M ], we consider the intervals Ai ⊂ (ϵ, π2 − ϵ), each of length
(π
2 −2ϵ)

n1/3 and

midpoint
Mi(π

2 −2ϵ)

n1/3 . Note that, unlike the previous case we are not partitioning the interval (ϵ, π2 − ϵ)

this time. Instead we are taking points which are
M(π

2 −2ϵ)

n1/3 distance apart from each other and we

are taking intervals of length
(π
2 −2ϵ)

n1/3 around them. We do this so that the constants that we get at
the end depend only on ϵ but not on M . This will be elaborated later. Corresponding to each Ai we
define the following random variables.

Di := max{n ∈ N : ∃u ∈ L−n such that θu ∈ Ai and 0 ∈ Γθu
u }.

Clearly,
[n

1/3

2M ]⋃
i=1

{Di ≥ n} ⊂ {D ≥ n}.

For 1 ≤ i ≤ [n
1/3

2M ] let
Bi := {Di ≥ n}.

So, applying inclusion-exclusion principle and considering the first two terms we have

P(D ≥ n) ≥
[n

1/3

2M ]∑
i=1

P(Bi)−
∑

1≤i<j≤[n
1/3

2M ]

P(Bi ∩ Bj). (3.7)

For the first sum we do the following. We fix 1 ≤ i ≤ [n
1/3

2M ]. We consider the line segment VM with

⌈4Mn2/3⌉ many vertices on L0 with midpoint 0 (see Figure 4) . For v ∈ VM , we define

Dv
i := max{n ∈ N : ∃u ∈ L−n such that θu ∈ Ai and v ∈ Γθu

u }.

So, same as before we have

⌈4Mn2/3⌉P(Di ≥ n) =
∑

v∈VM

P(Dv
i ≥ n) = E(D̂i), (3.8)

11



L−n

L0

n′i

VM

v′1

v′2

d4Mn2/3e Γαi
v2

Γβiv1

dn2/3e

V ′

Figure 4: To prove the lower bound for the first sum in (3.7) we fix an i. Using Proposition 3.3 we

can chose M large enough so that on a positive probability event Γβi

v′
1
and Γαi

v′
2
intersect L0 on VM .

Further, we consider an independent event on which there is at least one vertex on V ′ that chooses
an angle in Ai. Due to central limit theorem the later event is a positive probability event. Hence,
the intersection of these two events is a positive probability event and on this intersection D̂i ≥ 1.

where D̂i is defined as

D̂i :=
∑

v∈VM

1{Dv
i ≥n}.

We will show on a positive probability event D̂i ≥ 1. We construct this event now. Consider V ′, a
line segment with ⌈n2/3⌉ many vertices with midpoint n′i on L−n and let v′1, v

′
2 denote the end points

of V ′ with ψ(v′1) ≤ ψ(v′2). Consider the geodesics Γβi

v′
1
and Γαi

v′
2
. We define the following event.

Ci := {Γβi

v′
1
(0) ∈ VM and Γαi

v′
2
(0) ∈ VM}.

Again as (βi − αi) is of order
1

n1/3 , the complement of the event Ci will imply that either Γβi

v′
1
or Γαi

v′
2

will have transversal fluctuation more than M
2 n

2/3. So, using Proposition 3.3 we can chose M large
enough so that

P(Ci) ≥ 0.99.

Further, we consider the following event.

Di := {∃u ∈ V ′ such that θu ∈ Ai} = {
∑
u∈V ′

1{θu∈Ai} ≥ 1}.

12



So, we consider the random variableXi :=
∑

u∈V ′ 1{θu∈Ai}.We have E(Xn) =
cn⌈n2/3⌉

n1/3 and Var(Xn) =

( cn
n1/3 − c2n

n2/3 )⌈n2/3⌉. By the Berry-Esseen inequality we have for all n there exists a constant c > 0
such that

|P(Xn − E(Xn) ≥ 0})− 1

2
| ≤ c

(cnn1/3 − c2n)n
1/3

.

Hence, for sufficiently large n we have

P(Xn − E(Xn) ≥ 0}) ≥ 1

4
.

So, for sufficiently large n we have

P(Di) ≥
1

4
.

Finally, note that the events Ci and Di are independent. So,

P(Ci ∩ Di) ≥
0.99

4
.

Clearly, by planarity of geodesics (see Section 2 for definition), on the event Ci ∩Di, D̂i ≥ 1. So, from
(3.8) we have there exists c1 > 0 such that

P(Di ≥ n) ≥ c1
Mn2/3

. (3.9)

Now we consider the second sum in (3.7). We fix 1 ≤ i < j ≤ [n
1/3

2M ], both large enough. For

1 ≤ i ≤ [n
1/3

2M ] we define the following events.

Ei := {∃u ∈ Z2, γ ∈ Ai such that ϕ(u) = −n, and 0 ∈ Γγ
u}.

Observe that for all 1 ≤ i ≤ [n
1/3

2M ]
{Di ≥ n} ⊂ Ei.

From now on we will work with Ei’s. Consider the points n′i, n
′
j ∈ L−n defined as before. We have

|n′i − n′j | is of order M |i − j|n2/3. For simplicity let ki,j = M |i − j|. We apply again an averaging
argument. Consider the following parallelogram (see Figure 5).

W := {w ∈ Z2 : |ϕ(w)| ≤ ⌈ n

100ki,j
⌉, |ψ(w)| < ⌈n

2/3

2
⌉}.

Then for all w ∈W define the following events.

Ew
i := {∃u ∈ Z2, γ ∈ Ai such that ϕ(u) = −n+ ϕ(w), and w ∈ Γγ

u}.

We have for all w ∈W
P(Ei ∩ Ej) = P(Ew

i ∩ Ew
j ).

Hence,

cnn
5/3

100ki,j
P(Ei ∩ Ej) =

∑
w∈W

P(Ew
i ∩ Ew

j ) = E

(∑
w∈W

1Ew
i ∩Ew

j

)
, (3.10)

where {cn} is a uniformly bounded sequence such that for each n, the number of vertices in W is
cnn

5/3

100ki,j
. Let us define the following random variable.

13



• Ni,j is number of w ∈ W such that there exist ui, uj ∈ Z2 with |ϕ(ui) + n| ≤ ⌈ n
100ki,j

⌉ and

|ϕ(uj) + n| ≤ ⌈ n
100ki,j

⌉ and θui (resp. θuj ) lies in Ai (resp. Aj) and w ∈ Γ
θui
ui ∩ Γ

θuj
uj .

We have ∑
w∈W

1Ew
i ∩Ew

j
≤ Ni,j .

We will show that there exists a constant C > 0 (depending only on ϵ) such that for all n sufficiently
large

E(Ni,j) ≤
Cn log |ki,j |

k3i,j
. (3.11)

We define two equivalence classes. For u, v ∈ Z2 with |ϕ(u) + n| ≤ ⌈ n
100ki,j

⌉ and |ϕ(v) + n| ≤ ⌈ n
100ki,j

⌉
and θu, θv ∈ Ai we say u ∼ v if Γθu

u and Γθv
v coincide insideW. Let Ẽi denote the number of equivalence

classes. Similarly, we define the equivalence classes corresponding to Aj and denote it by Ẽj . Further
for u, v ∈ Z2 with |ϕ(u) + n| ≤ ⌈ n

100ki,j
⌉, θu (resp. θv) contained in Ai (resp. Aj) let Iu,v denote the

intersection size of Γθu
u and Γθv

v inside W . Clearly,

Ni,j ≤ ẼiẼj max Iu,v,

where the maximum is taken over all u, v ∈ Z2 with |ϕ(u) + n| ≤ ⌈ n
100ki,j

⌉ and |ϕ(v) + n| ≤ ⌈ n
100ki,j

⌉
and θu (resp. θv) lies in Ai (resp. Aj). So, for ℓ ≥ 1

P

(
Ni,j ≥

ℓn log |ki,j |
k3i,j

)
≤ P(Ẽi ≥ ℓ1/3) + P(Ẽj ≥ ℓ1/3) + P

(
max Iu,v ≥ ℓ1/3n log |ki,j |

k3i,j

)
. (3.12)

We start with an upper bound for the first term. Let us consider the following parallelogram (see
Figure 5).

• Rℓ
i is the parallelogram whose opposite sides lie on L−n−⌈ n

100ki,j
⌉ (resp. L−n+⌈ n

100ki,j
⌉), each

with ⌈ℓ1/96n2/3⌉ many vertices with midpoints are the intersection points of y = tan(θi)x with
L−n−⌈ n

100ki,j
⌉ (resp. L−n+⌈ n

100ki,j
⌉).

Let us consider the following two line segments J ′
i (resp. J ′′

i ) with ⌈4ℓ1/96n2/3⌉ many vertices on
L−n+⌈ n

100ki,j
⌉ (resp. Ln) with midpoints the intersection point of y = tan(θi)x and L−n+⌈ n

100ki,j
⌉ (resp.

n′′i ). Let us define following two events (see Figure 5).

• Fi := {∃u /∈ Rℓ
i : |ϕ(u) + n| ≤ ⌈ n

100ki,j
⌉, θu ∈ Ai,Γ

θu
u intersects W}.

• Gi := {∃u ∈ Rℓ
i : θu ∈ Ai,Γ

θu
u does not intersect either J ′

i or J ′′
i }.

Similarly, we define Fj ,Gj .
Using a planarity argument and due to large transversal fluctuation (see also the argument we used
in the upper bound to bound the probability of the event Ai) we have that there exist C, c > 0
(depending only on ϵ) such that for sufficiently large ℓ and n

P(Fi ∪ Fj) ≤ Ce−cℓ3/96 .

Further, we have the following lemma.

14



dn2/3e
2d n

100ki,j
e

L−n+d n
100ki,j

eL−n
L−n−d n

100ki,j
e

d`1/96n2/3e

`1/96n2/3

n′i

n′j

d4`1/96n2/3e

d4`1/96n2/3e

J ′i

J ′j

J ′′j
n′′j

n′′i
J ′′i

W

R`
i

R`
j

Figure 5: To find an upper bound for the second sum in (4.3) we fix 1 ≤ i < j ≤ [n
1/3

2M ]. Due to
planarity and large transversal fluctuation there is a very small probability that there will be vertices
u outside Rℓ

i (resp. Rℓ
j) with |ϕ(v) + n| ≤ ⌈ n

100ki,j
⌉ choosing angle in Ai (resp. Aj) such that Γθu

u will

intersect W . These are the events Fi and Fj . Further, the same argument as in [2, Lemma 3.1] shows
that, there is a very small probability that for any geodesic starting from Rℓ

i(resp. R
ℓ
j) and taking angle

in Ai (resp. Aj) will not intersect either J ′
i or J ′′

i (resp. either J ′
j or J ′′

j ). These are the events Gi

and Gj . Further, due to Proposition 3.4, we have with very small probability that there are more than
ℓ1/3 distinct vertices in W that has a geodesic starting from J ′

i (resp. J ′
j ) and ending at J ′′

i (resp.
J ′′
j ). Finally, we invoke [2, Lemma 3.2, Lemma 3.3] to conclude that with very small probability any

geodesic starting from J ′
i (resp. J ′

j ) and ending at J ′′
i (resp. J ′′

j ) will have more than ℓn
k3
i,j

intersection

size inside W . Combining all the above we get stretched exponential upper bound for each terms in
(3.12).

Lemma 3.13. For sufficiently large n, ℓ there exist constants C, c > 0 (depending only on ϵ) such
that

P(Gi ∪ Gj) ≤ Ce−cℓ3/96 .

Proof. This lemma is already proved in [2, Lemma 3.1], the Reader can refer to this proof. We briefly
describe the idea here. We consider two points a and b on L−n−⌈ n

100ki,j
⌉ which are ⌈2ℓn1/96n2/3⌉
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distance away (in the space direction) from the end points of Rℓ
i . Now, by transversal fluctuation

estimate we can say that Γβi
a and Γαi

b stays always ⌈ℓ1/96n2/3⌉ distance away (in the space direction)

from the rectangle Rℓ
i with probability at least 1− e−cℓ3/96 . On this event, every geodesics starting in

Rℓ
i will be sandwiched between Γβi

a and Γαi

b . So, on this event by planarity argument the event Gi will
imply large transversal fluctuation of either Γβi

a or Γαi

b . This gives us the desired upper bound.

So, we have

P(Ẽi ≥ ℓ1/3) ≤ Ce−cℓ3/96 + P({Ẽi ≥ ℓ1/3} ∩ (Fi ∪ Gi)
c).

Note that on the second event in the right hand side there are more than ℓ1/3 distinct equivalence
classes of geodesics starting from J ′

i and ending at J ′′
i . Using Proposition 3.4, for ℓ < n0.03 sufficiently

large (depending on ϵ) we have

P({Ẽi ≥ ℓ1/3} ∩ (Fi ∪ Gi)
c) ≤ Ce−cℓ1/384 .

Same argument shows for ℓ < n0.03 sufficiently large (depending on ϵ) we have

P({Ẽj ≥ ℓ1/3}) ≤ Ce−cℓ1/384 .

For the last term in (3.12) we consider the following.

P

(
max Iu,v ≥ ℓ1/3n log |ki,j |

k3i,j

)
≤ P(Fi ∪ Gi ∪ Fj ∪ Gj)+

P

({
max Iu,v ≥ ℓ1/3n log |ki,j |

k3i,j

}
∩ (Fi ∪ Gi ∪ Fj ∪ Gj)

c

)
.

Clearly, we have

P(Fi ∪ Gi ∪ Fj ∪ Gj) ≤ 2Ce−cℓ3/96 .

On the event
{
max Iu,v ≥ ℓ1/3n log |ki,j |

k3
i,j

}
∩ (Fi ∪Gi ∪Fj ∪Gj)

c, we want to estimate the maximum size

of the intersection of geodesics inside V that are starting from J ′
i (resp. J ′

j ) and ending at J ′′
i (resp.

J ′′
j ). For this we have the following lemma.

Lemma 3.14. [2, Lemma 3.2, Lemma 3.3] Consider any geodesic Γi (resp. Γj) starting from J ′
i

(resp. J ′
j ) and ending at J ′′

i (resp. J ′′
j ). If IΓi,Γj

denote the intersection size of Γi and Γj inside W
then for ℓ and n large enough there exist C, c > 0 such that we have

P

(
max IΓi,Γj

≥ ℓ log |ki,j |n
k3i,j

)
≤ Ce−cℓ.

Hence, we have that there exist constants C, c (depending on ϵ) such that for large enough ℓ and
n

P

({
max Iu,v ≥ ℓ1/3n log |ki,j |

k3i,j

}
∩ (Fi ∪ Gi ∪ Fj ∪ Gj)

c

)
≤ Ce−cℓ1/3 .
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Hence, combining the above we get that there exists a constant C > 0 (depending on ϵ) such that for
all large enough n we have

E(Ni,j) ≤
Cn log |ki,j |

k3i,j
.

hence, from (3.10) we have there exists C2 > 0 such that for sufficiently large n

P(Ei ∩ Ej) ≤
C2 log |ki,j |
k2i,jn

2/3
. (3.15)

We now go back to (3.7). From (3.9) and (3.15) we have there exists constants c1, C2 > 0, large M
such that for sufficiently large n(all depending only on ϵ)

P(D ≥ n) ≥ c1
M2n1/3

−
∑

1≤i<j≤[n
1/3

2M ]

C2 log(M |i− j|)
M2|i− j|2n2/3

.

Hence, we have for some c > 0, C > 0

P(D ≥ n) ≥ c

M2n1/3
− C

M3n1/3
.

As C, c depend only on ϵ (as we have chosen all the interval length to be 1
n1/3 ) we can choose M large

enough so that there exists c > 0 such that for sufficiently large n

P(D ≥ n) ≥ c

n1/3
.

This completes the proof of lower bound in Theorem 2.5.

4 Bounds for number of cars

In this section we prove the bounds for the tail distribution of N . In particular, we will prove there
exist c1, C1 > 0 (depending on ε) such that for all n sufficiently large

c1
n1/3

≤ P
(
N ≥ n4/3

)
≤ C1 log n

n1/3
.

Note that, this will imply Theorem 2.4.

4.1 Proof of Theorem 2.4 upper bound

First we restrict ourselves to smaller events. We have

P(N ≥ n4/3) ≤ P(D ≥ 2n) + P
(
{N ≥ n4/3} ∩ {D ≤ 2n}

)
.

We have already proved

P(D ≥ 2n) ≤ C

n1/3
.
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So, we will only consider P({N ≥ n4/3} ∩ {D ≤ 2n}). We want to apply an averaging argument. Let
V denote the line segment with ⌈n2/3⌉ vertices on L0 with midpoint 0. For v ∈ V define the following
random variables.

Dv := max{n ∈ N : ∃u ∈ L−n such that v ∈ Γθu
u }

Nv := |{u ∈ Z2 : v ∈ Γθu
u }|

Then we have for all v ∈ V

P(N ≥ n4/3, D ≤ 2n) = P(Nv ≥ n4/3, Dv ≤ 2n).

Hence,

⌈n2/3⌉P(N ≥ n4/3, D ≤ 2n) =
∑
v∈V

P(Nv ≥ n4/3, Dv ≤ 2n) = E(N̂),

where N̂ is defined as follows.
N̂ :=

∑
v∈V

1{Nv≥n4/3,Dv≤2n}.

For ℓ ≥ 1 we want to estimate P(N̂ ≥ ℓn1/3 log n). We define some more random variables.

Ñ := |{u ∈ Z2 : −2n ≤ ϕ(u) ≤ 0 and ∃v ∈ V such that v ∈ Γθu
u }|.

Observe that
{N̂ ≥ ℓn1/3 log n} ⊂ {Ñ ≥ ℓn5/3 log n}.

Same as before, for 1 ≤ i ≤ ⌊n1/3⌋ and for a uniformly bounded sequence {cn} we partition the

interval (ϵ, π2 − ϵ) into intervals Ai each of equal length
cn(

π
2 −2ϵ)

n1/3 . For 1 ≤ i ≤ ⌊n1/3⌋ we define the
following random variables.

Ñi := |{u ∈ Z2 : −2n ≤ ϕ(u) ≤ 0, θu ∈ Ai and ∃v ∈ V such that v ∈ Γθu
u }|

Clearly, we have

{Ñ ≥ ℓn5/3 log n} ⊂
⌊n1/3⌋⋃
i=1

{Ñi ≥ ℓn4/3 log n}.

We will show that for each 1 ≤ i ≤ ⌊n1/3⌋ there exist C, c > 0 (depending only on ϵ) such that for
sufficiently large n (depending only on ϵ) and ℓ < n1/6

P(Ñi ≥ ℓn4/3) ≤ Ce−cℓ. (4.1)

We fix 1 ≤ i ≤ ⌊n1/3⌋. Let αi, βi, θi denote the left end point, right end point and midpoint of Ai

respectively and ni ∈ L−2n be the intersection point of L−2n and the line y = (tan θi)x. Consider

the line segment Ṽ with ⌊ ℓ
32n

2/3⌋ vertices on L−2n with midpoint ni. Let v1, v2 be the end points

of Ṽ with ψ(v1) ≤ ψ(v2). Consider Γαi
v1 and Γβi

v2 . Let Ri denote the parallelogram whose one pair of

opposite sides are line segments with ⌊ ℓ
16n

2/3⌋ many vertices and they lie on L−2n (resp. L0) with
midpoint ni (resp. 0) (see Figure 6). Let Hi be the event defined as follows.

• Hi := {∃u ∈ Z2 \ Ri such that θu ∈ Ai and v ∈ Γu for some v ∈ V }.
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V

v1

v2
b `16n

2/3c
Ṽ

Γαi
v1

Γβiv2

L0

L−2n

ni

Ri

Figure 6: To prove the upper bound in Theorem 2.4 we fix 1 ≤ i ≤ ⌊n1/3⌋. The event that there
are more than ℓn4/3 many u with θu ∈ Ai and Γθu

u intersecting V can happen in two ways. Either
the above u lies outside Ri. For sufficiently large ℓ this will imply large transversal fluctuation for
either Γαi

v1 or Γβi
v2 . Proposition 3.3 gives a stretched exponential upper bound for this event. The

other possibility is there are more than ℓn4/3 many vertices inside Ri that choose an angle in Ai.
Using Hoeffding’s inequality we get a stretched exponential upper bound for this event. Combining
the above we get (4.1).

Then
P(Ñi ≥ ℓn4/3) ≤ P(Hi) + P({Ñi ≥ ℓn4/3} ∩ (Hi)

c). (4.2)

Note that by planarity the event Hi can happen in two ways. Either Γαi
v1 or Γβi

v2 will leave Ri or they
will intersect V (see Figure 6). Since, (βi − αi) is of order

1
n1/3 , for sufficiently large ℓ (depending on

ϵ), the event Hi will imply that either Γαi
v1 or Γβi

v2 will have transversal fluctuation larger than ℓ
64n

2/3.
We have the following proposition.
Hence, for sufficiently large ℓ

P(Hi) ≤ Ce−cℓ3 ,

for some C, c > 0 depending on ϵ. We consider the second term in (4.2). On the event {Ñi ≥
ℓn4/3} ∩ (Hi)

c there are at least ℓn4/3 many vertices inside Ri that chooses an angle from Ai. For
large ℓ and n there are at most ℓ

4n
5/3 many vertices inside Ri. Consider the collection of i.i.d. random

variables {1{θu∈Ai}}u∈Ri
with mean cn

n1/3 . So,

{Ñi ≥ ℓn4/3} ∩ (Hi)
c ⊂ {

∑
u∈Ri

1{θu∈Ai} ≥ ℓn4/3}.

By Hoeffding’s inequality we have, for some c > 0

P

(
{
∑
u∈Ri

1{θu∈Ai} ≥ ℓn4/3}

)
≤ P

(∑
u∈Ri

1{θu∈Ai} − E(
∑
u∈Ri

1{θu∈Ai}) ≥
ℓ

2
n4/3

)
≤ e−cℓ.
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Hence, we proved (4.1). Now, for ℓ < n1/6 sufficiently large

P(Ñi ≥ ℓn4/3 log n) ≤ Ce−cℓ logn.

So, we have

P

⌊n1/3⌋⋃
i=1

{Ñi ≥ ℓn4/3 log n}

 ≤
⌊n1/3⌋∑
i=1

P(Ñi ≥ ℓn4/3 log n) ≤ Cn1/3e−cℓ logn ≤ C ′e−c′ℓ.

Thus,
P(N̂ ≥ ℓn1/3 log n) ≤ C ′e−c′ℓ.

So, we have there exists ℓ0 (depending only on ϵ) and C̃ (depending only on ϵ)

E

(
N̂

n1/3 log n

)
≤
∑
ℓ≥1

P(N̂ ≥ ℓn1/3 log n) ≤ ℓ0 +
∑

ℓ0≤ℓ<n1/6

C ′e−c′ℓ +
∑

n1/6<ℓ<n1/3

log n

C ′e−c′n1/6

< C̃.

This proves the upper bound in Theorem 2.4 after an n↔ n4/3 change of variable.

4.2 Proof of Theorem 2.4 lower bound

Same as before, first we fix large constantsM and ℓ0 which will be chosen later. For 1 ≤ i ≤ [n
1/3

2M ], we

consider the intervals Ai ⊂ (ϵ, π2 − ϵ), each of length
(π
2 −2ϵ)

n1/3 and midpoint
Mi(π

2 −2ϵ)

n1/3 . Corresponding
to each Ai we define the following random variables.

Ni := |{u ∈ Z2 : θu ∈ Ai and 0 ∈ Γθu
u }|.

Then we have the following.

[n
1/3

2M ]⋃
i=1

{Ni ≥
n4/3

ℓ0
, n ≤ D ≤ 2n} ⊂ {N ≥ n4/3

ℓ0
}.

For 1 ≤ i ≤ [n
1/3

2M ], let

Ii := {Ni ≥
n4/3

ℓ0
, n ≤ D ≤ 2n}.

Applying inclusion exclusion principle on the union of Ii and considering the first two terms we have
the following lower bound.

P(N ≥ n4/3

ℓ0
) ≥

[n
1/3

2M ]∑
i=1

P(Ii)−
∑

1≤i<j≤[n
1/3

2M ]

P(Ii ∩ Ij). (4.3)
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First we consider the first sum. We fix 1 ≤ i ≤ [n
1/3

2M ]. Let us consider the line segment VM with

⌈4Mn2/3⌉ many vertices on L0 with midpoint 0. For v ∈ VM , define

Nv
i := |{u ∈ Z2 : θu ∈ Ai and v ∈ Γθu

u }.

⌈4Mn2/3⌉P
(
{Ni ≥

n4/3

ℓ0
, n ≤ D ≤ 2n}

)
=
∑

v∈VM

P
(
{Nv

i ≥ n4/3

ℓ0
, n ≤ Dv ≤ 2n}

)
= E(N̂i),

where
N̂i :=

∑
v∈VM

1{Nv
i ≥n4/3

ℓ0
,n≤Dv≤2n}.

We will show on a positive probability event N̂i ≥ 1. As before let αi, βi, θi denote the left end point,

L−2n

L−n

L0

ni

VM

Ln
RMiv1

v2

d4Mn2/3e
(0, 0)

Γαi
v2

Γβiv1

dMn2/3e Ri

V ′M

V ′′M

Figure 7: To find lower bound for the first sum in (4.3) we fix an i. Using Proposition 3.3 we can fixM
large enough so that with high probability Γβi

v1 and Γαi
v2 are contained in RM

i and do not intersect Ri.
On this event any car starting from Ri and taking angle in Ai will intersect L0 on VM . Further, using
[4, Theorem 3.10] depending on this M we can chose ℓ0 large enough so that with large probability
there are at most ℓ0 many distinct points on VM carrying a geodesic starting from V ′

M and ending
at V ′′

M . Also, with positive probability there are at least n4/3 any vertices u ∈ Ri such that θu ∈ Ai.
The last event is independent of the first two events. Hence, combining all these we get on a positive

probability event there exists v ∈ VM such that there are at least n4/3

ℓ0
many u with θu ∈ Ai and

v ∈ Γθu
u . Now, applying an averaging argument and summing over all i give a lower bound for the

first sum in (4.3).

right end point, mid point of Ai respectively. Consider ni which is the intersection point of L−2n and

y = tan(θi)x. Consider the line segment ṼM with ⌈Mn2/3⌉ many vertices on L−2n with midpoint ni.

21



Let v1 (resp. v2) denote the end points of ṼM with ψ(v1) ≤ ψ(v2). Further consider the following two
parallelograms (see Figure 7). Let n′i (resp. n′′i ) denote the intersection point of y = tan(θi)x with
L−n (resp. Ln).

• Ri is the parallelogram whose two opposite pair of sides are line segments with ⌈n2/3

4 ⌉, vertices
and they lie on L−2n (resp. L−n) with midpoint ni (resp. n

′
i).

• RM
i is the parallelogram whose two opposite pair of sides are line segments with ⌈4Mn2/3⌉ many

vertices , they lie on L−2n (resp. Ln) with midpoint ni (resp. n
′′
i ).

We define the event TFi as follows.

• TFi is the event that Γβi
v1 and Γαi

v2 are contained within RM
i and Γβi

v1 and Γαi
v2 do not enter Ri.

As (βi−αi) is of order
1

n1/3 , the event TFi will imply for sufficiently largeM either Γβi
v1 or Γαi

v2 will have

transversal fluctuation more than M
4 n

2/3. Using Proposition 3.3 we can chose M (depending only on
ϵ) large enough and n sufficiently large enough (depending on M) so that the following happens.

P(TFi) ≥ 0.99.

On TFi, for any u ∈ Ri with θu ∈ Ai, v ∈ Γθu
u , for some v ∈ VM . Now we define an equivalence class.

Let n′′i denote the intersection point of y = tan(θi)x with Ln. Consider the two line segments V ′
M

(resp. V ′′
M ) with ⌈4Mn2/3⌉ vertices on L−n (resp. Ln) with midpoint n′i (resp. n

′′
i ). For u, v ∈ V ′

M and
u′, v′ ∈ V ′′

M , we say (u, v) ∼ (u′, v′) if Γu,v(0) = Γu′,v′(0). Let Ei denote the number of equivalence
classes. Using [4, Theorem 3.10], we can chose ℓ0 large enough (depending on M) so that for all
sufficiently large n

P(Ei ≤ ℓ0) ≥ 0.99.

Now, we consider the following random variable.

Yn :=
∑
u∈Ri

1{θu∈Ai}.

Note that for large n, E(Yn) ≥ n4/3

4 and Var(Yn) = cn(n
4/3−n) for some uniformly bounded sequence

{cn}. By Berry-Esseen inequality we have the following for all n and a constant c

|P({Yn − E(Yn) ≥ 0})− 1/2| ≤ c

(n4/3 − n)3/2n5/6
.

Hence, for all sufficiently large n we have

P({Yn − n4/3

4
≥ 0}) ≥ 1

4
.

Finally we observe,

TFi ∩ {Ei ≤ ℓ0} ∩ {Yn − n4/3

4
≥ 0} ⊂ {N̂i ≥ 1}. (4.4)

Further, the event {Yn − n4/3

4 ≥ 0} is independent of TFi ∩ {Ei ≤ ℓ0}. So, combining all the above
for sufficiently large n, there exists c1 > 0 (c1 is a fixed constant, does not depend on anything) such
that

E(N̂i) ≥ P
(
TFi ∩ {Ei ≤ ℓ0} ∩ {Yn − n4/3

4
≥ 0}

)
≥ c1.
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Hence,

P
(
{Ni ≥

n4/3

ℓ0
, n ≤ D ≤ 2n}

)
≥ c1

4Mn2/3
. (4.5)

Now, we consider the second sum in (4.3). We fix 1 ≤ i < j ≤ [n
1/3

2M ], both large enough. We recall

the events Ei defined in the proof of lower bound of Theorem 2.5. Clearly, for all 1 ≤ i ≤ [n
1/3

2M ]

Ii ⊂ Ei.

So, as we did in the proof of lower bound of Theorem 2.5, from (4.5), (3.15) and (4.3) we have

P(N ≥ n4/3

ℓ0
) ≥ c1

8M2n1/3
−

∑
1≤i<j≤n1/3

2M

C2 log(M |i− j|)
M2|i− j|2n2/3

.

As argued before, choosingM sufficiently large completes the proof of Theorem 2.4 lower bound (with
n↔ n4/3, as before).

5 Distance to find a road with large number of cars

In this section we analyse how far one needs to go from origin to see a road with large number of cars.

5.1 Proof of Theorem 2.7

Let I denote the line segment with ⌊n1/3⌋ many vertices on L0 with midpoint 0. We divide the interval
(ϵ, π2 − ϵ) as we did in the proof of lower bound of Theorem 2.4. i.e., we fix large constants M and ℓ0

which will be chosen later. For 1 ≤ i ≤ [n
1/3

2M ], we consider the intervals Ai ⊂ (ϵ, π2 − ϵ), each of length
(π
2 −2ϵ)

n1/3 and midpoint
Mi(π

2 −2ϵ)

n1/3 . Let us define the following events. For 1 ≤ i ≤ [n
1/3

2M ] we define

• Ki := {∃w ∈ I such that there are n4/3

ℓ0
many vertices v with −2n ≤ ϕ(v) ≤ −n, θv ∈ Ai and

w ∈ Γθv
v }.

Clearly,
[n

1/3

2M ]⋃
i=1

Ki ⊂ {Tn ≤ n1/3}.

Same as before, considering the first two terms after applying inclusion-exclusion principle we have

P(Tn ≤ n1/3) ≥
[n

1/3

2M ]∑
i=1

P(Ki)−
∑

1≤i<j≤[n
1/3

2M ]

P(Ki ∩ Kj). (5.1)

We first consider the first sum. We fix 1 ≤ i ≤ [n
1/3

2M ].We will again apply an averaging argument. But

this time we will average over disjoint intervals containing ⌊n1/3⌋ vertices each. Precisely, we do the
following. We consider VM , line segment with ⌊4Mn1/3⌋⌊n1/3⌋ many vertices on L0 with midpoint 0.
We partition it into ⌊4Mn1/3⌋ many mutually disjoint sub-intervals each with ⌊n1/3⌋ many vertices
inside VM . i.e., consider the mutually disjoint intervals Ij each with ⌊n1/3⌋ many vertices. For each
of these intervals we define the following events.
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• Kj
i := {∃w ∈ Ij such that there are n4/3

ℓ0
many vertices v with −2n ≤ ϕ(v) ≤ −n, θv ∈ Ai and

w ∈ Γθv
v }.

We have
P(Ki) = P(Kj

i ).

So,

⌊4Mn1/3⌋P(Ki) =
∑

1≤j≤⌊4Mn1/3⌋

P(Kj
i ) = E

 ∑
1≤j≤⌊4Mn1/3⌋

1Kj
i

 . (5.2)

We will show, on a positive probability set, for large n the following holds.∑
1≤j≤⌊4Mn1/3⌋

1Kj
i
≥ 1.

But observe that, precisely this we have shown in the proof of Theorem 2.4 lower bound. Specifically,

in (4.4) we have shown that on the event TFi∩{Ei ≤ ℓ0}∩{Yn− n4/3

4 ≥ 0} there is at least one vertex

w ∈ VM such that there are n4/3

4ℓ0
many v ∈ Z2 with −2n ≤ ϕ(v) ≤ −n, θv ∈ Ai and w ∈ Γθv

v . So, we
have

TFi ∩ {Ei ≤ ℓ0} ∩ {Yn − n4/3

4
≥ 0} ⊂

{ ∑
1≤j≤⌊4Mn1/3⌋

1Kj
i
≥ 1
}
.

Hence, there exists c > 0 such that for sufficiently large n we have

E

 ∑
1≤j≤⌊4Mn1/3⌋

1Kj
i

 ≥ c.

So, from (5.2) we have for large n, and for some c > 0,

P(Ki) ≥
c

Mn1/3
.

Now, we consider the second sum in (5.1). We fix 1 ≤ i < j ≤ [n
1/3

2M ]. Same as before we consider the

following events. For 1 ≤ i ≤ [n
1/3

2M ], we define

• Mi := {∃u ∈ Z2, γ ∈ Ai such that ϕ(u) = −n, and ∃w ∈ I such that w ∈ Γγ
u}.

Clearly,
Ki ⊂ Mi.

So, we will work with Mi from now on. We will again apply an averaging argument in both space and
time directions. But this time in the space direction we will average over disjoint intervals of length
n1/3. Precisely, we do the following. We fix m such that −⌈ n

100ki,j
⌉ ≤ m ≤ ⌈ n

100ki,j
⌉. We consider the

line segments {v : |ψ(v)| ≤ ⌊n1/3⌋⌊n1/3⌋} on Lm and partition them into line segments with ⌊n1/3⌋
many vertices. So, we get cnn

4/3

100ki,j
many mutually disjoint line segments each with ⌊n1/3⌋ many vertices

for some uniformly bounded sequence {cn}. We will denote the line segments by Ik,m, if the line
segment lies on Lm and k is the index to specify the partition in the space direction on Lm. For all

−⌈ n
100ki,j

⌉ ≤ m ≤ ⌈ n
100ki,j

⌉ and 1 ≤ k ≤ 2⌊n1/3⌋ and for all 1 ≤ i ≤ [n
1/3

2M ] we define the following
events.
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• Mk,m
i := {∃u ∈ Z2, γ ∈ Ai such that ϕ(u) = −n+m, and ∃w ∈ Ik,m such that w ∈ Γγ

u}.

Clearly,

P (Mi ∩Mj) = P
(
Mk,m

i ∩Mk,m
j

)
.

So, we have

cnn
4/3

100ki,j
P (Mi ∩Mj) =

∑
−⌈ n

100ki,j
⌉≤m≤⌈ n

100ki,j
⌉

1≤k≤2⌊n1/3⌋

P
(
Mk,m

i ∩Mk,m
j

)

= E


∑

−⌈ n
100ki,j

⌉≤m≤⌈ n
100ki,j

⌉

1≤k≤2⌊n1/3⌋

1Hk,m
i ∩Hk,m

j

 ≤ E(Ni,j).

Recall that we had define Ni,j in the proof of lower bound in Theorem 2.5 and from (3.11) we have
there exists constant C > 0 such that for large n

cnn
4/3

100ki,j
P (Mi ∩Mj) ≤

Cn log |ki,j |
k3i,j

.

Combining all the above and from (5.1) we have there are C, c > 0 (depending only on ϵ)

P(Tn ≤ n1/3) ≥
[n

1/3

2M ]∑
i=1

c

Mn1/3
−

∑
1≤i<j≤[n

1/3

2M ]

C log(M |i− j|)
M2|i− j|2n1/3

.

Hence, again we have for some constant C, c > 0 we have

P(Tn ≤ n1/3) ≥ c

M2
− C

M3
.

Finally, we can chooseM large enough so that the right side is positive. This completes the proof.

6 Empirical analysis of road networks

This section describes our approach for empirically validating theoretical predictions about the align-
ment of road networks with geodesic paths and the statistics that follows. A significant basis for
our model is the hypothesis that in hilly terrain, real-world road network configurations substantially
align with geodesic shortest paths when elevation variations are considered. Our road network model
leverages the Last Passage Percolation (LPP) model for its theoretical tractability in predicting road
network structures. However, we acknowledge that road networks more realistically conform to the
dynamics of First Passage Percolation (FPP) models, despite their lesser tractability.

The interconnection between LPP and FPP models within the Kardar-Parisi-Zhang (KPZ) uni-
versality class offers a theoretical justification for this approach. This KPZ linkage underpins our
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assumption that insights derived from the LPP framework can provide predictive insights for FPP
models.

Our validation consists of two parts. First we verify that, on the input side of the model, FPP in
a hilly environment indeed predicts where roads are built, this is done in Section 6.1. We then turn
to compare the scaling behavior in Theorems 2.6 and 2.7 to actual road layout and traffic statistics
in Section 6.2.

6.1 Road networks and elevation data

To ensure the relevance and accuracy of FPP models in capturing the essence of real-world road
layouts, this section is dedicated to validating this assumption. By examining the alignment of road
networks against geodesic paths influenced by elevation data, we aim to validate the predictive capa-
bility of FPP models and, in turn, our LPP variant.

6.1.1 Data acquisition and processing

Our study leverages high-resolution elevation data sourced from the Shuttle Radar Topography Mission
(SRTM), accessed through the Earth Explorer platform [18]. The SRTM dataset provides compre-
hensive global elevation data. From this dataset, we extract elevation data encoded into image files,
which serve as input in building an edge weighted graph.

6.1.2 Graph construction and path analysis

In this study, we leveraged a computational framework found within the GitHub repository [8] to
facilitate our analysis of road networks within a designated study area. Utilizing the code from this
repository enabled us to construct a weighted graph that models a square lattice segment of the terrain
under investigation. Each vertex within this graph represents a precise point on the terrain, and the
weights assigned to the edges are calculated based on both the elevation differences and the distances
between the vertices at the endpoints.

Specifically, if ∆ denotes the grid spacing between elevation samples and h is a function expressing
the elevation at a vertex then the edge weight on the edge {x, y} of the graph is taken to be

w{x,y} =
√
∆2 + (h(x)− h(y))2.

Moreover, we have found that in some cases more consistent results can be achieved between the
predicted paths and the observed roads if we treat ∆ as a tuneable parameter.

6.1.3 Figures

We provide Figures 8, 9 and 10 to illustrate the comparison between actual road segments and the-
oretical geodesic paths derived from our graph model. Each figure shows a map provided by ESRI
World Topo Map [10] with a geodesic path, calculated based on elevation data and shortest path
algorithms, overlaid on selected road segments. The intent behind these figures is to visually highlight
where and how actual road networks align with or deviate from the calculated geodesic paths. This
direct comparison serves as evidence for the hypothesis that road layouts tend to follow geodesic paths,
considering elevation.
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Figure 8: A path computed between coordinates (42.9251086,−123.4220748) and
(42.2017416,−123.2366819).

The figures largely corroborate our hypothesis that real-world road networks tend to follow the the-
oretical shortest paths deduced from our model, with particular emphasis on elevation data. Nonethe-
less, certain regions exhibit discrepancies, prompting a discussion of potential causes for these diver-
gences.

Finite Lattice Effects One factor to consider is the graph model’s finite lattice structure, which
simulates the continuous real-world terrain with a discrete grid. This approximation introduces po-
tential errors in shortest path calculations, where the model’s sensitivity to edge weight value can
manifest as notable deviations from expected paths. Such minor inaccuracies in terrain representa-
tion, therefore, might explain the observed misalignment between theoretical predictions and actual
road configurations. This effect is made apparent between figures 9 and 10.

Beyond Shortest Path Considerations Additionally, the real-world intricacies of road design
decision-making extend beyond the simplistic criteria of minimizing path length or elevation variations.
Factors such as legal restrictions, environmental conservation, and socio-economic impacts heavily
influence road planning, often leading to routes that diverge from those predicted by our shortest
path model. Elements like land ownership, ecological preservation areas, and pre-existing structures
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Figure 9: A path computed between
(55.5028,−3.6964) and (55.3124,−3.4540).
We see an apparent disagreement between
portions of the road and geodesic caused by
low resolution lattice spacing.

Figure 10: A path computed between
(55.5028,−3.6964) and (55.3124,−3.4540).
This time we see better agreement when re-
fining lattice scale.

necessitate alterations to the theoretically optimal paths. These considerations, absent from the
shortest path algorithm, might account for any discrepancies between our model’s predictions and the
existing road networks.

Nevertheless, the clear alignment observed between the model predictions and actual road layouts,
despite some discrepancies, would seem to support the use of the FPP model for characterizing road
network structures. Then by the KPZ correspondence mentioned earlier, we can feel more confident
in the predictive capability of the LPP variant. We now turn to verifying some of these predictions
on actual road networks.

6.2 Comparison of the model output and real-world traffic data

We use the government traffic dataset from the United Kingdom accessed at [9]. This consists of
annual average daily traffic flow at count points scattered around the roads. We are interested in
investigating the validity of Theorems 2.6 and 2.7 for this dataset. We will disregard the logarithmic
correction in the former. Fix a startpoint and consider distances d along a spatial direction of LPP.
These results say that, with probability separated away from both 0 and 1, we are expected to get
at least one road with traffic count proportional to d4 within this distance d. As opposed to LPP,
we consider real road networks to be isotropic, which means that the direction we choose should be
irrelevant. We therefore work with East as our preferred direction. The task is to pick points on the
map randomly, draw an Easterly line from each, record where this intersects actual roads as well as
the traffic volumes carried by these roads.

It is quite difficult to determine an accurate traffic count on a specific intersection point with our
Easterly line because the closest count point on that road might be far away from here. It might also
happen that there are many junctions between the intersection point and the nearest count point on
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the road, harming the accuracy of the count point to the traffic count at the intersection of interest.
Figure 11 illustrates the difficulties.

Figure 11: Manual measurement of distances and road traffic. This is the interface of the Road traffic
statistics webpage, with a startpoint and its Easterly line overlaid by us in black. The pinpoints
are the locations of the traffic count points. They can be clicked, and their data is also available to
bulk-download. To be recorded are the distances between the startpoint at the left end of the black
line and the intersection points of roads with the black line, as well as the traffic carried by those
roads.

Careful inspection of the map and of the location of traffic count points allow for such data to be
collected with reasonable accuracy, especially for busier roads. We will refer to this as the manual
method. Smaller lanes are often not measured, we had no choice but to simply leave them out of our
analysis. However, this process is really slow and would not give sufficient volumes of data for proper
statistical analysis. Unfortunately, we failed to develop an algorithm that could perform this data
collection for us.

Instead, we consider a strip around the Easterly line starting from the chosen random point x and
take all the count points that lie inside this strip. We record their distances from x and the traffic
count they possess, and pretend that these are actual locations of intersections between the Easterly
line and the roads that they measure. We will refer to this process as the automated method.

In the rest of the paper we first calibrate the strip width to give a good match between outcomes
of the manual method and the automated method. We do that on a few examples where the manual
method was carried out. We then run the automated method on about 2 000 randomly chosen points
on the map, and compare the statistics gained with the statements of our Theorems 2.6 and 2.7.
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6.2.1 Calibrating the automated method

We performed the manual method at four locations of the UK, near Cirencester (51.7076,-1.90897),
Gillingham (51.0826,-2.22697), Glasgow (55.606053,-4.0506979), and a point in Wales (52.1577699,-
3.5958771). The code to support this analysis, along with additional simulation results is found in a
dedicated GitHub repository created by the authors for this project [7].

While the startpoint should be completely random, large-scale inhomogeneity of the UK and its
harmful effects soon became apparent. First, big cities are obviously much denser than rural areas,
distorting the measurement. Hence we made sure to avoid startpoints from where Easterly lines would
have traced into larger urban areas.

Second, the UK has a number of estuaries that needed to be avoided as they form long natural
barriers to road building.

Finally, we found that a dense part in England, roughly in the rectangle Drochester – Hastings –
Hull – Blackpool, has a significantly denser road network than the North and the West of the UK.
Hence we performed our analysis separately for this South-East rectangle, and the North and West
regions.

Of the four locations above for the manual method, Cirencester and Gillingham belong to the
denser South-East block, while the Wales and the Glasgow startpoints are in the sparser West and
North region.

We then ran the automated method on the same four startpoints, with different strip width. Strip
width is very important. If the strip is very wide, then it will contain many countpoints which might
wrongly include some high-traffic roads that don’t actually intersect the Easterly line. Similarly, if
the strip is too narrow, then it might miss some important countpoints of high-traffic roads because
those countpoints can lie outside of the strip even if that road intersects the Easterly line.

To check the theoretical predictions, we need to answer whether or not there is at least one road
above certain traffic threshold within certain distance of the startpoint we chose. This is equivalent
to considering the running maximum of crossing traffic volumes as we move alongside the Easterly
line from the startpoint. It is therefore this running maximum which we tried to align between the
manual and the automated method. The figures below illustrate this graph on the left hand-side. For
better intuition we also included violin plots on the right hand-side, which show the traffic distribution
measured in the two methods.

Figures 12, 13 and 14 refer to the startpoint near Cirencester (51.7076,-1.90897) in the South-East
region. It is noted that sometimes the violin plot takes a peak when there are multiple traffic counts
around the same distance. For example, consider the orange line in Figure 14. From the left side, it
shows that there is a new maximum that is observed around 60 km after a peak at 40 km. But on the
right side, traffic distribution shows that the traffic around 60 km is lower than the traffic at a distance
of 40 km. This happens because multiple traffic counts of nearly the same values are observed near
40 km. The plots indicate that the appropriate strip width is between 3 km and 5 km.

Similarly, also in the South-East region Figures 15, 16 and 17 are from the startpoint (51.0826,-
2.22697) near Gillingham. Figures 18, 19 and 20 are the plots with the startpoint near Wales
(52.1577699,-3.5958771) in the sparser, West region of UK. Finally, Figure 21 is the plot with the
startpoint near Glasgow, which belongs to the North region of UK. When taking the manual mea-
surement for this plot, we get a high-traffic road within a distance of 10km, but when considering the
automated measurement of a strip width of 10 km, we encounter another, much higher-traffic road,
and these remain the busiest crossings until the distance of 150 km. This makes the runing maximum
very different between the manual and the automated method. However, if we neglect the first few
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mismatched measurements, we get a good comparison. Figure 21 illustrates it all. As the points are
randomly chosen, rarely bad points like this one are expected to occur, and we do not have an efficient
way to eliminate this issue.

After observing these plots, we have concluded that 3 km would be the ideal strip width for the
South-East region and 10 km for the North and West regions of the UK.

6.2.2 Statistical analysis

We were now ready to deploy the automated method in large scale. As mentioned above, the plots
(Figures 12 - 21) indicate that the statistics are different between the South-East and the North
and West regions of the UK. We therefore divide the UK into these two regions for our statistical
analysis. Around 2000 random startpoints were considered inside the UK, and those points are at least
80 km horizontally away from big cities (like London, Birmingham, etc.), big rivers or oceans to avoid
distorting effects to the measurements. For a fixed strip width and distance d, we observe how many
points x have traffic counts greater than k, and calculate the relative frequency by dividing by the
total number of points, where k runs from 1000 to 100000. Figures 22 and 23 show the traffic threshold
encountered with relative frequency between [0.49, 0.51] as a function of the distance travelled on the
Easterly line.

Figure 22 is the plot when the South-East region is considered with strip width 3 km, whereas
Figure 23 for the West and North region with the strip width 10 km. By Theorem 2.6 and Theorem
2.7, with positive probability, we should expect Cd4 graph from these plots, where C is constant, but
C depends on the region where we are doing the analysis. We saw similar plots when relative frequency
thresholds different from [0.49, 0.51] were tried. The plots do not resemble a quartic function, which
we explain next.

6.2.3 Limitations of our analysis

There are obvious simplifications where our model and statistical procedure do not align with reality.
The first of these is that geography is not an i.i.d. environment. Long valleys are carved by rivers,
introducing obvious correlations in the landscape.

The second observation is the difficulties with extracting geographic information on intersection
points between Easterly lines and actual roads. We discussed this in details earlier.

None of these two issues appear to fundamentally change the main ideas of this paper to the
extent seen by our UK-wide analysis. Instead, we believe that the main problem is a combination
of driving distances and the nature of the road statistics data that we worked with. As apparent
from Figure 11, small roads are most often not measured, while the bigger, well-documented roads
tend to be 20. . . 30 km apart. Combine this with the typical driving distances of 10. . . 15 km for a
UK car trip, and add to the picture that two LPP geodesics towards the same direction, started from
distance d apart, need to travel in the order of d3/2 distance before they have a reasonable chance
to coalesce. The typical UK road trip is simply too short to have a good opportunity to join one of
the well-measured, big roads. Hence, we are missing the upper tail of the traffic count distribution
that would show the sharp growth of a d4 function. We suspect that more detailed measurements of
smaller roads would match the predictions better but such data just do not seem to be available.

Further observations distancing our model from real road networks can be found in Solon et al.
[17]. As already mentioned in the introduction, they found that for road networks the environment
is best described as having a heavy-tailed distribution, which is not the case for our framework of
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Figure 12: Busiest traffic from the startpoint (51.7076,-1.90897) (to the left) and violin plot (to the
right) with strip width 1 km.

Figure 13: Busiest traffic from the startpoint (51.7076,-1.90897) (to the left) and violin plot (to the
right) with strip width 3 km.

Figure 14: Busiest traffic from the startpoint (51.7076,-1.90897) (to the left) and violin plot (to the
right) with strip width 5 km.
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Figure 15: Busiest traffic from the startpoint (51.0826,-2.22697) (to the left) and violin plot (to the
right) with strip width 1 km.

Figure 16: Busiest traffic from the startpoint (51.0826,-2.22697) (to the left) and violin plot (to the
right) with strip width 3 km.

Figure 17: Busiest traffic from the startpoint (51.0826,-2.22697) (to the left) and violin plot (to the
right) with strip width 5 km.
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Figure 18: Busiest traffic from the startpoint (52.1577699,-3.5958771) (to the left) and violin plot (to
the right) with strip width 3 km.

Figure 19: Busiest traffic from the startpoint (52.1577699,-3.5958771) (to the left) and violin plot (to
the right) with strip width 8 km.

Figure 20: Busiest traffic from the startpoint (52.1577699,-3.5958771) (to the left) and violin plot (to
the right) with strip width 10 km.
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Figure 21: To the left, the busiest traffic from the startpoint (55.606053,-4.0506979) and to the right,
the violin plot with a strip width 10 km. On the left side, the top figure indicates that the busiest
traffic was captured within the first 10 km distance by the automated method, but this was a false
count point that shouldn’t have been included. Inaccuracies like this are expected from time to time.
However, the bottom figure shows a much better fit after removing the closest few traffic points.

Exponential LPP. They also found long-range positive correlations in road density, spanning across
hundreds of kilometers. Without traffic counts we do not have a meaningful way to define road density
in our model as we assume that cars start their journeys from each point of Z2. As for busier roads
in our model, we would guess negative correlations rather than positive ones. This might be due to
a busy road representing a stretch of preferable environment, which might attract other traffic hence
make busy roads less likely nearby; this could be a question for future mathematical research.
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Figure 22: Statistical plot for the South-East region of the UK

Figure 23: Statistical plot for the West region of the UK

38


	Introduction
	A Poisson model for road network

	Model definitions, notations and results
	Further notations and results

	Bounds for the furthest distance a car can come from
	Proof of Theorem 2.5 upper bound
	Proof of Theorem 2.5 lower bound

	Bounds for number of cars
	Proof of Theorem 2.4 upper bound
	Proof of Theorem 2.4 lower bound

	Distance to find a road with large number of cars
	Proof of Theorem 2.7

	Empirical analysis of road networks
	Road networks and elevation data
	Data acquisition and processing
	Graph construction and path analysis
	Figures

	Comparison of the model output and real-world traffic data
	Calibrating the automated method
	Statistical analysis
	Limitations of our analysis



