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FORMAL POISSON (CO)HOMOLOGY OF THE LEFSCHETZ SINGULARITY

LAURAN TOUSSAINT, FLORIAN ZEISER

Abstract. We compute the formal Poisson cohomology groups of a real Poisson structure π on C2

associated to the Lefschetz singularity (z1, z2) 7→ z
2

1
+ z

2

2
. In particular we correct an erroneous

computation in the literature. The definition of π depends on a choice of volume form. Using the
main result we formally classify all Poisson structure arising from different choices of volume forms.

1. Introduction

A Poisson structure on a smooth manifold M is a bivector field π ∈ X2(M) such that

[π, π] = 0,

where [·, ·] denotes the Schouten bracket (see e.g. [LPV13]). As first observed by Lichnerowicz [Lic77],
any Poisson manifold (M,π) is naturally equipped with a differential on the space of mulivector fields

dπ := [π, ·] : X•(M) → X•+1(M).

The vanishing of the bracket is equivalent to d2π = 0, and the associated cohomology H•(M,π) is
called Poisson cohomology. The groups H•(M,π) contain important information about the Poisson
manifold (M,π). For example:

• H0(M,π) consists of functions on M constant along the leaves of the foliation F ;
• H1(M,π), [·, ·]) can be seen as the Lie algebra of infinitesimal outer automorphisms of (M,π);
• H2(M,π) controls infinitesimal deformations modulo those induced by diffeomorphisms.

For a detailed exposition of Poisson geometry and Poisson cohomology we refer the reader to [DZ05;
LPV13; CFM21]. Despite their importance, Poisson cohomology is notoriously hard to compute due to
the lack of general methods for the computation. The difficulty comes from the fact that (X•(M), dπ)
is generally not an elliptic complex. Assuming that π is regular, i.e. all leaves of F have the same
dimension, Xu computed the Poisson cohomology of such Poisson structures in [Xu92]. This, together
with the existence of a Mayer-Vietoris sequence due to Vaisman [Vai94], implies that the fundamental
problem for the computation lies around neighborhoods of singular leaves.

To this end observe that given a Poisson structure π on M and a singular point p ∈ M of π, i.e.
πp = 0, we have a short exact sequence of complexes

0 → (X•
p(M), dπ) →֒ (X•(M), dπ)

j∞p
−−→ (X•(M)/X•

p(M) ≃ R[[T ∗
pM ]]⊗ ∧•TpM, dj∞p π) → 0

resulting in a long exact sequence in cohomology. Here j∞p is the infinite jet map at p, and X•
p(M)

denotes multivector fields whose infinite jet at p is zero. The equivalence for the quotient is due to
Borel’s lemma. A similar short exact sequence can be obtained when the singular locus of π is a
higher dimensional submanifold, see [HZ23].

The short exact sequence above was first used by Abreu & Ginzburg [Gin96] and Roytenberg [Roy02].
Its usefulness lies in the fact that if π vanishes in a polynomial way then we can compute the coho-
mology of (X•

p(M), dπ) as if π was regular. As such we are left with the computation of the complex

(R[[T ∗
pM ]]⊗ ∧•TpM, dj∞p π).

We call its cohomology the formal Poisson cohomology of π at p ∈ M , denoted by H•
Fp
(M,π). The

methods used to compute H•
Fp
(M,π) are more algebraic in nature (see e.g. [Mon02; Pic06; Pel09]).
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The Poisson structure under consideration in this paper are defined as follows. First recall that any
fibration f : (Mm, µM ) → (Nm−2, µN ) between oriented manifolds (M,µM ) and (N,µN ) defines a
Poisson structure πf,µM ,µN

on M due to [GSV14][Thm 2.6] by:

πf,µM ,µN
(dg, dh)µM := dg ∧ dh ∧ f∗µN for g, h ∈ C∞(M).(1)

Note that πf,µM ,µN
depends on the fibration f : M → N and on the choice of volume forms on M and

N . Poisson structures defined by different volume forms admit the same singular foliation F with:

• 2-dimensional leaves through every x ∈ M \ Crit(f);
• 0-dimensional leaves for every x ∈ Crit(f).

However, the symplectic form along the leaves will vary for different choices of volume forms. The
study of such Poisson structures has been of increased interest lately (see e.g. [STV19; BO22]). Our
Poisson structure of interest is induced by a fibration with a Lefschetz singulartiy:

f : R4 → R2 with f = (f1, f2) =
(
x2
1 − x2

2 + x2
3 − x2

4, 2(x1x2 + x3x4)
)

(2)

Definition 1.1. Let π = πf,µM ,µN
be the Poisson structure on R4 defined by (1), (2) and the standard

volume forms in R4 and R2, respectively.

In this paper we take the first step in the computation of H•(R4, π) by computing the formal Poisson
cohomology of π at the origin which we denote by H•

F (R
4, π). We do so by means of its Poisson

homology, i.e. on a Poisson manifold (Mm, π) we have another differential on the space of forms

δπ : Ω•(M) → Ω•−1(M) δπ := ιπ ◦ d− d ◦ ιπ

introduced by Kozsul [Kos85] and Brylinski [Bry88]. Here d denotes the de-Rham differential and
ι the contraction between mulitvector fields and forms. The homology associated to (Ω•(M), δπ) is
called Poisson homology and denoted by H•(M,π). Given a volume form µ ∈ Ωm(M) on M the
relation between Poisson (co)homology can be encoded as follows. First note that µ induces the
isomorphism

⋆ := µ♭ : X•(M) ∼−→ Ω•(M), X 7→ ιX(µ).(3)

We define a vector field Xµ ∈ X1(M), the modular vector field of (M,π) and µ (see [Wei97]), by

⋆Xµ := d ⋆ (π).

The vector field Xµ is Poisson, i.e. dπXµ = 0 and the class mod(M,π) = [Xµ] ∈ H1(M,π) is
independent of the chosen volume form µ. Using the isomorphism ⋆ we obtain the relation

(4) δπ = ⋆ ◦ (dπ +Xµ ∧ ·) ◦ ⋆−1,

between the Poisson differentials dπ and δπ (see [LPV13][Proposition 4.18]). We call (M,π) unimodu-
lar if mod(M,π) = 0 ∈ H1(M,π). It is well-known that (M,π) is unimodular iff there exists a volume
form µ with Xµ = 0. In particular, for all unimodular Poisson structures we obtain an isomorphism

H•(M,π) ∼−→ Hm−•(M,π).(5)

In particular, for (R4, π) from Definition 1.1 we have

⋆(π) = df1 ∧ df2,

and hence (R4, π) is unimodular. Note that the isomorphism induced by (3) descends via j∞0 to an
isomorphism between formal vector fields and forms, which we denote by

X•
f := R⊗ ∧•R4 and Ω•

f := R⊗ ∧•(R4)∗.

Here R := R[[x1, . . . , x4]] denotes the ring of formal power series. Therefore, (5) descends to the
formal setting and we obtain an isomorphism between formal Poisson (co)homology

HF
• (R4, π) ∼−→ H4−•

F (R4, π),

which allows us to compute formal Poissson cohomology by means of its homological counterpart.
Since from here on out we refer to Poisson (co)homology only in the formal setting, we drop the sub-
and superscript F , respectively throughout the rest of the paper.
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The main result is the following:

Theorem 1.2. The formal Poisson homology groups H•(R
4, π) of (R4, π) are uniquely described in

the various degrees as follows:

• in degree 0, H0(R
4, π) has unique representatives of the form

p+
4∑

i=1

aixi

where p ∈ R[[f1, f2]] and ai ∈ R[[x2
2, x4]];

• the group H1(R
4, π) has unique representatives of the form

2∑

j=1

pjζj + qjdfj +

4∑

i=1

d(aixi) + bixidf1

where pj, qj ∈ R[[f1, f2]] and ai, bi ∈ R[[x2
2, x4]] and

ζ1 :=
1

2
(−x3dx1 + x4dx2 + x1dx3 − x2dx4), ζ2 :=

1

2
(−x4dx1 − x3dx2 + x2dx3 + x1dx4);(6)

• in degree 2, H2(R
4, π) has unique representatives of the form

pζ1 ∧ ζ2 + qdf1 ∧ df2 +
2∑

i=1

pid(f1ζi) + qidζi +
4∑

i=1

d(aixi) ∧ df1

where p, pi, q, qi ∈ R[[f1, f2]] and ai ∈ R[[x2
2, x4]];

• representatives of H3(R
4, π) are uniquely described by

2∑

i=1

piζ2 ∧ dζi + qidf1 ∧ dζi

where pi, qi ∈ R[[f1, f2]];
• in degree 4, elements in H4(R

4, π) are of the form

R[[f1, f2]]µ.

Remark 1.3. The groups H•(R
4, π) from Theorem 1.2, or equivalently H•(R4, π), were erroneously

computed in [BV20]. We outline the problem of their computation in section 4.1.

Using the isomorphism (5) we describe the corresponding cohomology groups in Section 2. In par-
ticular, we can use the result for the second formal cohomology to classify Poisson structures arising
from the fibration in (2) via (1). We obtain the following result.

Corollary 1.4. Any Poisson structure obtained from a different volume form is formally equivalent
to a Poisson structure obtained from

µp = (c+ p)µ

for p ∈ 〈f1, f2〉R[[f1,f2]] and c ∈ R+ and any p and c.

Note that the space of forms Ω• comes naturally equipped with another differential, the de-Rham
differential d. One has the relation

d ◦ δπ + δπ ◦ d = 0.

Therefore we have a bidifferential complex (Ω•
f , d, δπ) and an induced differential complex in Poisson

homology (H•(R
4, π), d). It’s cohomology are described as follows.

Corollary 1.5. For the complex (H•(R
4, π), d) we find

Hk
DR(H•(R

4, π), d) =

{
R if k = 0

0 else.
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Strategy of the proof of Theorem 1.2. Roughly speaking the proof of Theorem 1.2 is as follows.
We start by computing the kernel of δπ. In turn this allows us to compute the dimension of the
Poisson homology groups. Together with the Poisson homology groups these kernels fit into short
exact sequences. This allows us to compute the Hilbert-Poincare series associated to the formal
Poisson homology groups, and hence obtain their dimensions. The last step consists of finding an
explicit set of generators of the right dimension.

In principle all the arguments consist of explicit computations. However, a recurring complication in
these computations is that the following property does not always hold. Given β ∈ Ωk

f , does

df1 ∧ df2 ∧ β = 0 imply that β =

2∑

i=1

dfi ∧ αi for some αi ∈ Ωk−1
f ?

The failure of this property to hold is measured by the groups Dk(df1, df2), first defined by [Rha54]
and generalized by Saito [Sai76]. It turns out that for k = 1 this group vanishes. On the other hand
D2(df1, df2) is non-zero, which plays an important role in the computations.

There appears to be a close relation between the generators of D(df1, df2) and those of H•(R
4, π).

For example, dζi appear both in Theorem 1.2, and as the generators of D2(df1, df2), see Proposition
4.3. Similarly, the appearance of the classes represented by coefficients ai and bi in R[[x2

2, x4]] appears
to be related to the description of the division groups. We do not explore this connection further but
leave it as an option question:

Question 1.6. Let f1, . . . , fn−2 : Rn → R be smooth functions. What is the precise relation between
the groups Di(df1, . . . , dfn−2) and the formal Poisson (co)homology of the Jacobi-Poisson structure
on Rn induced by the functions f1, . . . , fn−2?

Organization of the paper. Recall from (5) that the formal Poisson homology and cohomology
groups are isomorphic. In Section 2 we start by giving a cohomology description of the main theorem,
and a geometric interpretation of some of the generators. We also partially describe the Gerstenhaber
algebra structure of the groups H•(R4, π).

In Section 3 we discuss some preliminary notions from Poisson geometry (Section 3.1), and algebra
(Section 3.2). Most notably, the definition of Jacobi-Poisson structures and an explicit description of
δπ. Most of our computations involve power series, and are done degree wise. To this end we recall,
in Section 3.2.1, the definition of Hilbert-Poincare series, which we later use to compute the rank of
the Poisson homology groups in each homogeneous degree. We also recall some standard facts from
algebra concerning regular sequences in Section 3.2.2, and standard bases in Section 3.2.3.

In Section 4 we recall the notion of division groups, which measure the failure for the division property
to hold. The main result of this section is Proposition 4.3 giving an explicit description ofD2(df1, df2),
the second division group associated to the coefficients of df1 and df2.

Using these results, Section 5 computes the kernel of the Poisson differential δπ. The results are
collected in Proposition 5.1. The proof of this proposition, which is a long but more or less straight-
forward computation, is the core of the paper. In Section 6 we use the description of ker δπ to compute
the Hilbert-Poincare series of the Poisson homology groups, see Proposition 6.1.

The proof of Theorem 1.2, which combines the results from Section 5 and Section 6, is given in
Section 7. We check that the generators in Theorem 1.2 are indeed in the kernel. Then, using the
Hilbert-Poincare series we see that the set of generators have the right dimension. The remainder of
the proof consists of showing that none of the generators are in the image of δπ.

Lastly, Section 8 and Section 9 respectively contain the proofs of Corollary 1.4 and Corollary 1.5.

Acknowledgements. We would like to thank Ioan Mărcut, for bringing the problem to our attention
and useful discussions. L. Toussaint is funded by the Dutch Research Council (NWO) on the project
“proper Fredholm homotopy theory” (OCENW.M20.195) of the research programm Open Competi-
tion ENW M20-3. F. Zeiser would like to thank the Max Planck Institute for Mathematics in Bonn for
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Rot at Vrije Universiteit Amsterdam for its hospitality and support during a research visit.

2. An interpretation of the results

In this section we review theorem 1.2 in view of (5), stating the corresponding result for formal Poisson
cohomology and interpreting the result. In the first section we discuss the foliation F associated with π
and its relation with H0(R4, π). The second section is devoted to the Lie algebraH1(R4, π) and in the
third section we look at H2(R4, π) and the interpretation of some its classes in terms of deformations
of π. Finally, in the last section we describe the higher Poisson cohomology groups and some of the
additional algebraic structure present for Poisson cohomology.

2.1. The foliation and the Casimir functions. For the geometric interpretation let’s take a closer
look at the foliation F induced by π. From the introduction we know that F is closely related to the
fibers of the fibration f from (2). In particular, for (x, y) 6= 0 ∈ R2, the fiber f−1(x, y) is connected
and diffeomorphic to a cylinder.

f−1(x, y) ≃ S1 × R

The preimage of the origin under f consists of three leaves. The set f−1(0) \ {0} has two connected
components both of which are diffeomorphic to cylinders. The origin 0 ∈ R4 is the sole critical point
of f and is therefore a leaf of dimension 0.

f−1(0) = S1 × R ∪ {0} ∪ S1 × R

The leaf space R4/F is, as a topological space, given by R2 where we have three distinct points instead
of the origin. However, continuous functions on R4/F can not distinguish these three points. Viewing
f1 and f2 as the coordinate functions on the leaf space we obtain for formal functions on the leaf
space precisely what we expect, i.e./ power series in these coordinates. That is, in degree 0 we have

H0(R4, π) = R[[f1, f2]].

Remark 2.1. In fact one can use the discussion above to show that we have an isomorphism

C∞(R2) → H0(R4, π), g 7→ g(f1, f2).

Here H0(R4, π) refers to the Poisson cohomology over smooth multivector fields (see [MZ23]).

2.2. The Lie algebra H1(R4, π). To describe the Poisson cohomology group in degree one let Ei

and Ti, i = 1, 2, be the real and imaginary part of the complex vector fields

E = z∂z + w∂w and T := z∂w − w∂z ;

where (z, w) = (x1 + ix2, x3 + ix4).

Corollary 2.2. In degree one H1(R4, π) is the free H0(R4, π)-module generated by

E1, E2, T1, T2.

This follows immediately from the relations

⋆E1 = ζi ∧ dζi, ⋆E2 = −ζ1 ∧ dζ2 = ζ2 ∧ dζ1,(7)

⋆T1 = −
1

4
dfi ∧ dζi, ⋆T2 = −

1

4
df2 ∧ dζ1 =

1

4
df1 ∧ dζ2(8)

The Lie bracket on H1(R4, π) is induced by the Lie bracket for vector fields. In order to describe the
Lie algebra structure, we note that

[E1, E2] = [T1, T2] = [Ei, Tj] = 0.

Hence the brackets in cohomology are fully described by the relations

LE1
(fi) = fi, LE2

f1 = f2, LE2
f2 = −f1, LTi

fj = 0.(9)

Geometrically, (9) means that the Lie algebra

gN := {piEi | pi ∈ R[[f1, f2]]}
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describes Poisson vector fields who project non-trivially to the leaf space, i.e. E1 is mapped to the
Euler vector field and E2 to the rotational vector field. The vector fields Ti preserve the leaves and
form a commutative Lie subalgebra of Poisson vector fields tangent to F which we denote by

gT := {piTi | pi ∈ R[[f1, f2]]}

As a Lie algebra, the first formal Poisson cohomology is given by

H1(R4, π) ≃ gT ⋊ gN .

2.3. H2(R4, π): Infinitesimal deformations. Combining Theorem 1.2 with the isomorphism from
Equation (5), we obtain the following description of the formal Poisson cohomology in degree 2. Here
(and in the rest of this section) we use the following notation:

Wi := ⋆−1(dζi).

Corollary 2.3. H2(R4, π) has unique representatives of the form

pE1 ∧ E2 + qπ +

2∑

i=1

piEi ∧ T1 + qiWi + ⋆−1

(
4∑

i=1

d(aixi) ∧ df1

)

where p, pi, q, qi ∈ R[[f1, f2]] and ai ∈ R[[x2
2, x4]].

This follows from the identities

⋆−1(ζ1 ∧ ζ2) = −E1 ∧ E2(10)

⋆−1(df1 ∧ ζ1) = −4Ei ∧ Ti + fiWi and ⋆−1 (df1 ∧ ζ2) = 4E1 ∧ T2 + f1W2 = −4E2 ∧ T1 + f2W1

To study this result in more detail we use the filtration on X•
f induced by f . We set

(11) X•
f,1 := ker ιdf1∧df2 ∩ X•

f and X•
f,2 := ker ιdf1 ∩ ker ιdf2 ∩X•

f

Note that, since f1 and f2 are Casimir functions, dπ preserves X•
f,1 and X•

f,2, respectively. Infinitesimal

deformations which preserves F are governed by cohomology classes represented by elements in X2
f,2

up to coboundaries. It follows from the proof of the degree 2 part of Theorem 1.2, together with the
identity

ια(⋆
−1β) = (−1)k(4−k) ⋆−1 (β ∧ α)(12)

for α ∈ Ωk, β ∈ Ωl and 0 ≤ k ≤ n − l, that the only such cohomology classes are of the form qπ for
q ∈ R[[f1, f2]]. All such classes can be realized by a formal Poisson deformation of π of the form

πt := (1 + tq)π

More generally, from (1) we know that any deformation of the volume form µ induces a deformation of
Poisson structures preserving the foliation. By Corollary 1.4 we conclude that any Poisson structure
obtained in this way is formally equivalent to one as described above.

On the other end of the spectrum of deformation we have those which induce a symplectic structure
almost everywhere. There are two different classes of such deformations. First, the deformations
represented by elements in X2

f/X
2
f,1. By Corollary 2.3 such deformations are infinitesimally described

by the classes pE1 ∧ E2. Indeed, any bivector

πt := π + tpE1 ∧ E2

is a Poisson bivector whose rank is 4 away from the origin. This can be easily seen from the identities

π = −8T1 ∧ T2 and 16E1 ∧ E2 ∧ T1 ∧ T2 = (f2
1 + f2

2 )∂1 ∧ ∂2 ∧ ∂3 ∧ ∂4,

the fact that Ei and Tj commute and since Tj ∈ X1
f,2 by (9). The other deformations we want to

consider here are of the form

π1,t = π + tW1 and π2,t = π + tW2.

These bivectors are Poisson and we obtain a symplectic structure on R4 for t > 0 since

π ∧Wi = 0 and Wi ∧Wi = 2∂1 ∧ ∂2 ∧ ∂3 ∧ ∂4.
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2.4. Higher degrees and the algebraic structure. Next we consider deformations of the form

(13) πi,t = π + tpWi.

To this end we first need to compute H3(R4, π) and H4(R4, π).

From Theorem 1.2 we obtain the following:

Corollary 2.4. The formal Poisson cohomology of π satisfy:

• the group H3(R4, π) has unique representatives of the form

2∑

j=1

pjEj ∧W1 + qjTj ∧W1 +
4∑

i=1

bixiT1 ∧W1 + ⋆−1d(aixi)

where pj, qj ∈ R[[f1, f2]] and ai, bi ∈ R[[x2
2, x4]];

• the group H4(R4, π) has unique representatives of the form
(
p+

4∑

i=1

aixi

)
∂1 ∧ ∂2 ∧ ∂3 ∧ ∂4

where p ∈ R[[f1, f2]], ai ∈ R[[x2
2, x4]] and where we write ∂j = ∂xj

.

The statement follows from the following identities

⋆−1ζ1 = E1 ∧W1 = −E2 ∧W2 and ⋆−1 ζ2 = E1 ∧W2 = E2 ∧W1

⋆−1df1 = −4T1 ∧W1 = 4T2 ∧W2 and ⋆−1 df2 = −4T1 ∧W2 = −4T2 ∧W1

Going back to the deformations from (13) we obtain, for i = 1 that:

[π1,t, π1,t] = 8t2p(∂xpT1 ∧W1 + ∂ypT2 ∧W1)

In order to make the bivector Poisson, we would need to add a second order element in t, i.e. consider
a deformation of the form

π1,t = π + tpW1 + t2W

for some W ∈ X2
f such that

[π,W ] = 4p(∂xpT1 ∧W1 + ∂ypT2 ∧W1).

However, the right side represents a non-trivial class in H3(R4, π) iff p ∈ R[[f1, f2]] is not constant
and hence it is not possible to find such a W for non-constant p. The same argument shows that π2,t

does not define a deformation of Poisson structures.

The algebraic structure in cohomology. The cohomology groupsH•(R4, π) carry a rich algebraic struc-
ture, as both the wedge product and the Schouten bracket

∧ : Xk × Xl → Xk+l and [·, ·] : Xk × Xl → Xk+l−1

descend to cohomology, inducing a Gerstenhaber algebra structure for Poisson cohomology:
(
H•(R4, π),∧, [·, ·]

)
.

We distinguish two classes of representatives, those with coefficients in R[[f1, f2]] and those with
coefficients in R[[x2

2, x4]]. For the former, we note that the wedge product and the bracket can be
easily deduced from the various relations described above. Describing the precise algebraic structure
of representatives with coefficients in R[[x2

2, x4]] is harder and we do not attempt to describe them
here. We only want to point out that the corresponding modules, as modules over H0(R4, π) are not
free.

Explicitly, we have:

Proposition 2.5. For cohomology classes represented by some ai, bi ∈ R we have:

f1aixi = −2(x2
2 + x2

4)aixi and f1bixi = −2(x2
2 + x2

4)bixi

in terms of the representatives in Theorem 1.2. Moreover, we have the relations

a(f1x1 + f2x2) = a(f2x1 − x2f1) = a(f1x3 + f2x4) = a(f2x3 − f1x4) = 0

in cohomology for a ∈ R and similarly for the classes represented by bi.
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Proof. Degree 4: We note that

x1f1µ = −2(x2
2 + x2

4)x1µ+ df1 ∧ df2 ∧ ν1

where

ν1 :=
1

4

(
x3dx2 ∧ dx3 − x4dx1 ∧ dx3 + x1dx3 ∧ dx4

)

which is closed and hence there exists a primitive α1 ∈ Ω1(R). Similarly we obtain

x1f2µ = −2(x2
2 + x2

4)x2µ+ df1 ∧ df2 ∧ ν2

for the closed two form

ν2 :=
1

2

(
− 2x4dx1 ∧ dx4 − x4dx1 ∧ dx3 + x2dx3 ∧ dx4

)
.

Moreover, we have

(x1f1 + x2f2)µ = df1 ∧ df2 ∧ ν

for the closed two-form

ν :=
1

4

(
x4dx2 ∧ dx4 − x3dx1 ∧ dx4 + x1dx3 ∧ dx4

)

The other cases follow along the same lines.

Degree 2: We make use of the primitives in degree 4. Consider the 2-cocylce given by

⋆W = d(x1f1 + 2(x2
2 + x2

4)x1) ∧ df2.

Setting ⋆X := −df1 ∧ ν1 we obtain that
W = dπX.

Next consider the 2-cocylce given by

⋆W = d(x1f1 + x2f2)df2.

If we set ⋆X := −df1 ∧ ν then we obtain that

W = dπX.

The other cases follow similarly using the elements from the proof in degree 4.

Degree 3: Consider the 3-cocylce given by

⋆T = (x1f1 + 2(x2
2 + x2

4)x1)df1.

Let α1 be a primitiv of ν1. Then we obtain for ⋆W := −df1 ∧ α1 that

T = dπW.

Next consider the 3-cocylce given by

⋆T = (x1f1 + x2f2)df1.

Let α be a primitiv of a closed 2-form ν and define ⋆W := −df1 ∧ α. Then we obtain that

T = dπW.

Similarly we can treat the cocycle

⋆T = d(x1f1 + 2(x2
2 + x2

4)x1).

Defining ⋆W := −ν1 we obtain
T = dπW.

The other cases follow similarly using the primitives from the proof in degree 4. �

3. Preliminaries

In this section we recall some facts from Poisson geometry and (homological) algebra. The first section
is dedicated to Poisson geometry. In particular, we recall the definition of Jacobi-Poisson structures
and describe the Poisson structure we are studying. In the second part we recall several notions from
algebra: Hilbert-Poincare series, regular sequences and standard bases.
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3.1. Jacobi Poisson structures. We recall the notion of Jacobi-Poisson structures as introduce in
[Dam89] attributed to Flaschka and Ratiu. See also [GMP93]. In particular, we give an explicit
formula for π from Definition 1.1 and we compute the Poisson differential dπ in the various degrees.

Given a vector space Rn with standard volume form µ and n− 2 functions f1, . . . fn−2 ∈ C∞(Rn) one
can define a Poisson structure π on Rn by the following relation for the associated Poisson bracket:

{g, h}µ := dg ∧ dh ∧ df1 ∧ · · · ∧ dfn−2 for g, h ∈ C∞(Rn).

Poisson structures of this form are called Jacobi-Poisson structures. Note that the leaves of such
Poisson structures have dimension at most 2. For a generalization with leaves of higher dimension see
[DP12]. For some properties of Jacobi-Poisson structures and a generalization to manifolds we refer
to [Prz01] and [GSV14]. One property is the following:

Lemma 3.1. Any Jacobi-Poisson structure π ∈ X2(Rn) is unimodular.

Proof. We observe that using (3) we have the identity

⋆(π) = df1 ∧ · · · ∧ dfn−2.

Hence using the definition of the modular vector field the result follows. �

As a consequence of the Lemma together with (4) we obtain an isomorphism of complexes:

⋆ : (X•(Rn), dπ)
∼−→ (Ωn−•(Rn), δπ).

Poisson structure associated to a Lefschetz fibration. Consider f : R4 → R2 as in (2) together with
the standard volume forms µ4 and µ2 on R4 and R2 respectively, given by

µ4 = dx1 ∧ dx2 ∧ dx3 ∧ dx4 and µ2 = dy1 ∧ dy2.

We often write µ instead of µ4. Then π from Definition 1.1 is a Jacobi-Poisson structure and satisfies

⋆(π) = df1 ∧ df2.

Explicitly, the Poisson bivector π is given by

1

4
π = (x2

1 + x2
2)∂3 ∧ ∂4 − (x1x4 − x2x3)(∂1 ∧ ∂3 + ∂2 ∧ ∂4)

+ (x2
3 + x2

4)∂1 ∧ ∂2 + (x1x3 + x2x4)(∂2 ∧ ∂3 − ∂1 ∧ ∂4)

As an immediate consequence we can describe the Poisson differential δπ on differential forms.

Proposition 3.2. The Poisson differential δπ is given as follows.

• In degree 1 we get for α ∈ Ω1(R4) that

δπ(α) = ιπ(dα)

• For a 2-form β ∈ Ω2(R4) we obtain the formula

δπ(β) =ι⋆−1dβ(df1 ∧ df2)− dιπ(β)

• In degree 3, the differential of γ ∈ Ω3(R4) is given by

δπγ = ιπ(dγ)− dι⋆−1γ(df1 ∧ df2)

• For the top degree we obtain for any g ∈ C∞(R4) that

δπ(gµ) = dg ∧ df1 ∧ df2

The proof follows from the definition of δπ and the identity

ιV (α) = (−1)k(n−l)ι⋆−1α(⋆V ),

for V ∈ Xk(Rn) and α ∈ Ωl(Rm) with k ≤ l ≤ m.

Remark 3.3. One can generalize the formulas for δπ in Proposition 3.2 to describe the differentials
associated to any Jacobi-Poisson structure.
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3.2. (Homological) Algebra. This section intends to provide the algebraic background needed for
the paper. We first recall the definition of the Hilbert-Poincare series together with an example which
we will use later on. After a brief recap of regular sequences in the second section, we recall the notion
of standard bases in the third part. As an application, we provide a couple of examples which will be
used in later computations.

3.2.1. Hilbert-Poincare series. A reference for the background material in this sequence is [AM69].

Let R be a commutative ring and C a class of R-modules. A function λ : C → Z is called additive if
for every short exact sequence of R-modules in C:

0 → M ′ → M → M ′′ → 0 ⇒ λ(M) = λ(M ′) + λ(M ′′).

Example 3.4. For R = R and C the class of all finite dimensional R-vector spaces, λ = dim is a
additive function.

Proposition 3.5. Assume we have an exact sequence of R-modules in C

0 → M0 → M1 → · · · → Mn → 0

such that all kernels of the homomorphisms are in C, then for any additive function λ on C:
n∑

i=0

(−1)iλ(Mi) = 0.

Let R = ⊕∞
n=0Rn be a Noetherian graded ring. Note that R0 is Noetherian and let y1, . . . , ys be

the generators of R as an R0-algebra, of degrees k1, . . . , kr, respectively. Let M = ⊕∞
n=0Mn be a

finitely-generated, graded R-module. Note in particular that this implies that all Mi are finitely
generated R0-modules. Moreover, let λ be an additive function on the class of all finitely-generated
R0-modules. The Hilbert-Poincare series of M with respect to λ is the power series

HP (M, t) :=

∞∑

i=0

λ(Mi)t
i.

In general the Hilbert-Poincare series can be described as follows:

Theorem 3.6 ([AM69, Thm 11.1]). HP (M, t) is a rational function in t of the form

p(t)

Πr
j=1(1− tkj )

for p(t) ∈ Z[t].

For any graded module M we denote by M(−a) the module with the degree shifted by a ∈ N, i.e.

M(−a)d =

{
Md−a if 0 ≤ d− a

0 else.

Hence by definition of the Hilbert-Poincare series we obtain for a degree shift the relation

HP (M(−a), t) = t−aHP (M, t)

Another consequence for the Hilbert-Poincare series using Proposition 3.5 is the following.

Corollary 3.7. Let R1, . . . ,Rn be Noetherian graded rings with R1
0 = · · · = Rn

0 = R0 which are
all finitely generated as an R0-algebra and let M1, . . . ,Mn be finitely-generated, graded R1, . . . ,Rn-
modules respectively, fitting into an exact sequence

0 → M1 → M2 → · · · → Mn → 0

such that all the homomorphisms preserve the grading and all kernels of the homomorphisms in the
various degrees are in C. For λ = dim as in Example 3.4 we obtain using Proposition 3.5 that

n∑

i=0

(−1)iHP (Mi, t) = 0.

An example which we will also use later on is that of formal forms on Rn:
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Example 3.8. Denote by R := R[[x1, . . . , xn]] the ring of formal power series in n-variables and by
Ω•(R) the DGA of differental forms with coefficient in R, i.e.

Ω•(R) = ∧•(Rn)∗ ⊗R

The degree of xi is 1 and the degree of dxi is −1 for all 1 ≤ i ≤ n. Then we obtain

HPΩm(R)(t) =

(
n

m

)
tm

(1− t)n

3.2.2. Regular sequences. Here we follow [Pel09]. Let R be a commutative ring and M be a finitely
generated R-module. We recall that we call an element r ∈ R a non-zero divisor on M if

∀m ∈ M : rm = 0 ⇒ m = 0,

and aM-regular sequence is a sequence r1, . . . , rq ∈ R such that ri is a non-zero-divisor in the quotient

M/〈r1, . . . , ri−1〉 ·M,

where 〈r1, . . . , ri−1〉 ⊂ R denotes the ideal generated by rj for 1 ≤ j ≤ i − 1. If M = R then we
simply call it a regular sequence.

Example 3.9. The polynomials x1x3+x2x4 and x1x4−x2x3 form a regular sequence in R[[x1, x2, x3, x4]].

Lemma 3.10 (see [Wei94]). Let r1, . . . , rn be a regular sequence in R, then the Koszul complex

0 → ∧0(Rn)
∧α
−−→ . . .

∧α
−−→ ∧n(Rn) → R/〈r1, . . . , rn〉R → 0

is exact, where α =
∑

riei and (e1, . . . , en) is a free basis of Rn.

Corollary 3.11. The operations ∧df1 and ∧df2 are exact in the sense of the above lemma.

3.2.3. Standard bases. The notion of standard bases was introduced by Hironka in [Hir64] and Buch-
berger [Buc65]. For more details see e.g [Eis95][chapter 15] or [GP08][chapter 1]. We only give a brief
summary of the most relevant facts for us. We will use standard bases to compute ideal membership
and intersection of ideals in the ring of power series in an easy way.

Remark 3.12. All our computations are done for the various degrees of homogeneous polynomials.
Hence it would be enough to use Gröbner basis. However, due to our general setting we decide to
recap the theory for power series.

Throughout this subsection let R := R[[x1, . . . , xn]]. On R we consider the local ordering obtained
from the following monomial ordering (see [GP08][section 1.2]):

xα > xβ ⇔ |α| < |β| or |α| = |β| and ∃1 ≤ i ≤ n : α1 = β1, . . . , αi−1 = βi−1, αi > βi.

For f ∈ R written as

f =
∑

α∈Nn

aαx
α

and any subset G ⊂ R we define

LM(f) := max{xα|aα 6= 0}, LC(f) = {aα|LM(f) = xα} and L(G) := 〈LM(g)|g ∈ G \ {0}〉.

A standard basis is defined as follows.

Definition 3.13. Let I ⊂ R be an ideal. A standard basis of I is a finite set G ⊂ I with

G ⊂ I and L(I) = L(G).

Moreover we need the following definitions.

Definition 3.14. Let G ⊂ R.

(1) f ⊂ R is called reduced with respect to G if no monomial of f is contained in LG(G).
(2) G is called reduced if 0 6= G, for all f 6= g ∈ G then LM(f) ∤ LM(g) and for all g ∈ G,

LC(g) = 1 and g − LM(g) is reduced in G.

Now we have the following proposition.
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Proposition 3.15. Let f, f1, . . . , fm ∈ R then there exist q1, . . . , qm, r ∈ R such that

f =

m∑

i=1

qifi + r

and r is reduced with respect to {f1, . . . , fm} and for all i = 1, . . .m we have LM(qifi) ≤ LM(f).

Moreover, if {f1, . . . , fm} is reduced, then r is unique.

Proof. The existence of r follows from [GP08][Theorem 6.4.1]. Uniqueness follows by comparing the
monomials of two different r’s. �

For f1, . . . fm ∈ R as above we call r the normal form of f ∈ R, i.e.

NF (f |{f1, . . . fm}) := r.

Corollary 3.16. Let I ⊂ R be an ideal, G ⊂ I a reduced standard basis of I. Then for any f ∈ R:

f ∈ I ⇔ NF (f,G) = 0.

Proof. For a proof see [GP08][Lemma 1.6.7]. �

The following applications will be useful later. Let R := R[[x1, x2, x3, x4]] and let J ⊂ R be the ideal
defined by

J = J (df1, df2) = 〈G := {x2
1 + x2

2, x
2
3 + x2

4, x1x3 + x2x4, x1x4 − x2x3}〉R.(14)

We have the following two results.

Lemma 3.17. Consider the module M over R[[x2
2, x4]] defined by

M := 〈x1, x2, x3, x4〉R[[x2
2
,x4]].

Then:

J ∩R[[f1, f2]] = J ∩ (R[[f1, f2]] +M) = (f2
1 + f2

2 )R[[f1, f2]] and R[[f1, f2]] ∩M = {0}.

Proof. Note that G is reduced, hence we can use Corollary 3.16. Moreover, J is generated by homo-
geneous polynomials. Hence it is enough to check the statement for homogeneous degree polynomials.
For odd homogeneous degree n = 2m+ 1 we only have contributions from M. We write h ∈ M as

h =

4∑

j=1

xj

m∑

i=0

ajix
2i
2 x

2(m−i)
4 .

Then we obtain by exchanging x1x4 with x2x3 that

r := NF (h|G) = a1mx1x
2m
2 + x3

(
m∑

i=0

a3i x
2i
2 x

2(m−i)
4 +

m−1∑

i=0

a1ix
2i+1
2 x

2(m−i)−1
4

)

+

m∑

i=0

(
a2i x

2i+1
2 x

2(m−i)
4 + a4ix

2i
2 x

2(m−i)+1
4

)
.

Hence we have

h ∈ J ⇔ r = 0 ⇔ h = 0.

For the even case n = 2m > 0 we observe that

f2
1 + f2

2 = (x2
1 + x2

2)
2 + (x2

3 + x2
4)

2 + 2(x1x3 + x2x4)
2 − 2(x1x4 − x2x3)

2,

hence it is enough to consider g ∈ R[[f1, f2]] of the form

g = g1f
m
1 + g2f

m−1
1 f2.

We have

rg = NF (g|G) = g1(−2)m(x2
2 + x2

4)
m + g2(−1)m−12m

(
x1x

2m−1
2 + x3

(x2
2 + x2

4)
m − x2m

2

x4

)
.(15)
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We write an element h ∈ M as

h =

4∑

j=1

xj

m−1∑

i=0

ajix
2i
2 x

2(m−i)−1
4 .

Note that

rh = x3

m−1∑

i=0

(
a3ix

2i
2 x

2(m−i)−1
4 + a1ix

2i+1
2 x

2(m−i−1)
4

)
+

m−1∑

i=0

(
a2ix

2i+1
2 x

2(m−i)−1
4 + a4i x

2i
2 x

2(m−i)+1
4

)

and we conclude
g + h ∈ J ⇔ rg + rh = 0 ⇔ g = h = 0.

�

Lemma 3.18. Let g ∈ R[[f1, f2]] and (p, (q1, q2)) ∈ R[[x2]]⊕ R[[x2, x4]]
2 be such that

g · µ =df1 ∧ d(x1p+ x3q1 + q2)(dx1 ∧ dx4 + dx2 ∧ dx3) mod J · µ,

where µ is the standard volume form on R4. Then we have:

x2p+ x4q1, q2 ∈ R[[x2
2 + x2

4]] and g ∈ (f2
1 + f2

2 )R[[f1, f2]],

and the same result holds if we replace df1 by df2.

Proof. By a direct computation we obtain that the right hand side of the statement equals:

2
(
− x2q1 − x3(x1∂2p+ x3∂2q1 + ∂2q2) + x1(x3∂4q1 + ∂4q2) + x4p

)
µ.

Note that again it is enough to check the statement for homogeneous polynomials. We set

p = p0x
n−1
2 , q1 =

n−1∑

i=0

aix
i
2x

n−1−i
4 , q2 =

n∑

i=0

bix
i
2x

n−i
4 .

Then we obtain for the right hand side:

rR := NF (− x2q1 − x3(x1∂2p+ x3∂2q1 + ∂2q2) + x1(x3∂4q1 + ∂4q2) + x4p|G) =

−

n−1∑

i=0

aix
i+1
2 xn−1−i

4 + (n− 1)p0x
n−1
2 x4 +

n−1∑

i=0

iaix
i−1
2 xn−i+1

4 −

n∑

i=0

ibix
i−1
2 x3x

n−i
4

−

n−1∑

i=0

(n− i− 1)aix
i+1
2 xn−1−i

4 +

n−2∑

i=0

(n− i)bix
i+1
2 x3x

n−i−2
4 + bn−1x1x

n−1
2 + p0x

n−1
2 x4

=np0x
n−1
2 x4 + a1x

n
4 − an−1x

n
2 − 2an−2x

n−1
2 x4 −

n−3∑

i=0

((n− i)ai − (i+ 2)ai+2) x
i+1
2 xn−1−i

4

− b1x3x
n−1
4 + bn−1x1x

n−1
2 +

n−2∑

i=0

((n− i)bi − (i+ 2)bi+2) x
i+1
2 x3x

n−i−2
4 .

If n = 2m+ 1 is odd then g does not contribute and we obtain the condition

(2m+ 1− i)ai = −(i+ 2)ai+2, 0 ≤ i ≤ 2m− 2, a1 = a2m = 0, 2a2m−1 = (2m+ 1)p0

(i+ 2)bi+2 = (2m+ 1− i)bi, 0 ≤ i ≤ 2m− 1, b1 = b2m = 0,

which imply that p = q1 = q2 = 0.

For n = 2m is even we note that

f2
1 + f2

2 = (x2
1 + x2

2)
2 + (x2

3 + x2
4)

2 + 2(x1x3 + x2x4)
2 − 2(x1x4 − x2x3)

2.

Hence it is enough to consider g = g1f
m
1 + g2f

m−1
1 f2 as in the previous lemma. From (15) we obtain

the conditions

2(m− i)a2i = 2(i+ 1)a2(i+1), (2(m− i)− 1)a2i+1 − (2i+ 3)a2i+3 = (−2)m−1

(
m

i+ 1

)
g1,

for 0 ≤ i ≤ m− 2 and

a1 = −(−2)m−1g1, a2m−1 = (−2)m−1g1, 2mp0 = 2a2m−2,
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as well as

2(i+ 1)b2(i+1) = 2(m− i)b2i, 0 ≤ i ≤ m− 1,

(2i+ 3)b2i+3 = (2(m− i)− 1)b2i+1 + (−2)m−1

(
m

i+ 1

)
g2, 0 ≤ i ≤ m− 2,

b1 = (−2)m−1g2 b2m−1 = −(−2)m−1g2,

which implies the statement. The result for df2 follows along the same lines. �

4. Division groups

Consider the space Ω•(M) of differential forms on a smooth manifold M . It is possible to divide
differential forms in the following sence: let α ∈ Ω1(M) be nowhere vanishing then for any β ∈ Ω•(M),

β ∧ α = 0 =⇒ β = µ ∧ α,

for some µ ∈ Ω•−1(M). This property is extremely useful when manipulating forms but does not hold
in general for the exterior algebra of a module. To measure the failure, de Rham [Rha54] introduced
the following groups.

Consider a free R-module M with basis (e1, . . . , en). Fix elements α1, . . . , αk ∈ M. The quotient

Dp(α1, . . . , αk) := {β ∈ ΛpM | β ∧ α1 ∧ · · · ∧ αk = 0}/

k∑

i=1

(
αi ∧ Λp−1M

)
,

is called the p-th division group associated to (α1, . . . , αk).

We make use of a result by Saito [Sai76] about these groups. To state the results we first define the
following. Use the basis elements to write

α1 ∧ · · · ∧ αk =
∑

1≤i1<···<ik<≤n

ai1···ikei1 ∧ · · · ∧ eik ,

with ai1···ik ∈ R, and define J = J (α1, . . . , αk) ⊂ R, the ideal generated by the coefficients ai1,··· ,ik .

Definition 4.1. The depth depthR(I,M) of an ideal I ⊂ R on a finitely generated module M is the
supremum of the lengths of all M-regular sequences of elements of I.

Proposition 4.2 ([Sai76]). The division groups satisfy:

Dp(α1, . . . , αk) = 0,

for all 0 ≤ p < depth(J ,R).

Now, let us return to the setting of Lefschetz singularities. We introduce the notation:

β1 := dζ1 = dx1 ∧ dx3 − dx2 ∧ dx4 and β2 := dζ2 = dx1 ∧ dx4 + dx2 ∧ dx3,

where ζi were defined in (6). We have the following result.

Proposition 4.3. The depth of J = J (df1, df2) is 2, and there is an isomorphism:

I : R⊕ R[[x2]]⊕ R[[x2, x4]]
2 ∼−→ D2(df1, df2)

(c, p, (q1, q2)) 7→ [cβ1 + (px1 + q1x3 + q2)β2]

4.1. Consequence of Proposition 4.3. In this subsection we explain the problem of the claimed
computation for the formal Poisson cohomology for Lefschetz singularities in [BV20].

Let us first recall the definition of an isolated complete intersection singularity. SetR = R[[x1, . . . , xn]]
and consider polynomials p1, . . . , pk ∈ R[x1, . . . , xn] with zero constant term. Define I = I(p1, . . . , pk)
to be the ideal generated by

〈p1, . . . , pk, det(∂jipi)1≤i≤k〉.

Definition 4.4. (p1, . . . , pk) has an isolated complete intersection singularity (ICIS) if (p1, . . . , pk)
is a regular sequence in R and R/I is a finite dimensional R-vector space.
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Let us define the ideal J = J (p1, . . . , pk) by its generators

J := 〈det(∂jipi)1≤i≤k〉R.

The following is due to [Loo84][Proof of Proposition (4.4)]:

Proposition 4.5. If (p1, . . . , pk) is an ICIS, then the depth of the ideal J in R is k + 1.

For the computations in [BV20] it is assumed that (f1, f2) is an ICIS (p. 16, last paragraph). This
assumption is crucial for the computations as done in [Pel09]. However, combining 4.3 and Proposition
4.5 implies that (f1, f2) is not an ICIS. In fact, as we shall see, the non-vanishing of D2 seems to be
main factor for some of the cohomology groups being non-free modules over H0.

4.2. Proposition 4.3: The proof and a Corollary. We start with the proof of Proposition 4.3.
To see that depth(J ,R) = 2 observe that

βi ∧ df1 ∧ df2 = 0, i = 1, 2.

Furthermore, the coefficients of βi are homogenenous of degree 0, whereas the coefficients of dfi are
homogeneous of degree 1. This implies that β1 and β2 define a non-zero classes in D2(df1, df2). Hence,
by Proposition 4.2 we have depth(J ,R) ≤ 2. Hence Example 3.9 implies that depth(J ,R) = 2.

We note first that the map is well-defined. Let ω ∈ Ω2(R) be of the form

ω =
∑

i<j

ωijdxi ∧ dxj with ωij ∈ R.

The wedge product of ω with df1 ∧ df2 is described by the function

⋆−1(
1

4
ω ∧ df1 ∧ df2) = (x2

1 + x2
2)ω34 − (x1x4 − x2x3)(ω13 + ω24)(16)

+ (x2
3 + x2

4)ω12 + (x1x3 + x2x4)(ω23 − ω14).

We note that for γ ∈ Ω1(R) of the form

γ =
∑

i

γidxi

we obtain that
1

2
df1 ∧ γ = (x1γ2 + x2γ1)dx1 ∧ dx2 + (x3γ4 + x4γ3)dx3 ∧ dx4

+ (x1γ3 − x3γ1)dx1 ∧ dx3 + (x4γ2 − x2γ4)dx2 ∧ dx4(17)

+ (x1γ4 + x4γ1)dx1 ∧ dx4 − (x2γ3 + x3γ2)dx2 ∧ dx3.

Similarly we have for δ ∈ Ω1(R) that

1

2
df2 ∧ δ = (x2δ2 − x1δ1)dx1 ∧ dx2 + (x4δ4 − x3δ3)dx3 ∧ dx4

+ (x2δ3 − x4δ1)dx1 ∧ dx3 + (x1δ4 − x3δ2)dx2 ∧ dx4(18)

+ (x2δ4 − x3δ1)dx1 ∧ dx4 + (x1δ3 − x4δ2)dx2 ∧ dx3.

We want to show that for any ω ∈ Z2 we can find γ and δ such that

ω̄ = ω + df1 ∧ γ + df2 ∧ δ(19)

is of the form as described in Proposition 4.3.

Let us assume that ω ∈ Z2 or equivalently that

⋆−1(ω ∧ df1 ∧ df2) = 0.

Idea: We show in steps how we can simplify (parts) of the coefficients of ω as follows:

(1) We make choices for (parts) of the coefficients of γi in (17) and δj in (18) to show that these
simplifications can be achieved.

(2) We continue in the next step with a choice for γi and δj based upon the simplification for ω
which we verified in the previous steps.
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Notation: To keep notation simple:

• We write I ∈ N4
0 with a subscript to indicate which entries vary over non-zero entries, e.g. I24

stands for (0, i2, 0, i4) with i2, i4 ∈ N0. We simply write I for I1234;

• For r ∈ R the expression r(I) refers to the coefficient of the term xi1
1 xi2

2 xi3
3 xi4

4 for r;
• If J = (j1, j2, j3, j4) happens to be such that at least one of the ji is negative we set r(J) := 0.

We note first that the coefficients ω12 and ω34 satisfy:

ω12(I34) = 0 and ω34(I12) = 0.

This follows immediately from (16) since the only non-zero elements in the subrings R[[x1, x2]] and
R[[x3, x4]] can come from the corresponding parts of ω34 and ω12, respectively.

Claim 1: We may assume that the coefficients ω12 and ω34 satisfy:

ω12 = ω34 = 0.(20)

We can choose

δ1(I) :=
1

2
ω12(I + e1) + γ2(I) + (γ1 + δ2)(I + e1 − e2),

δ2(I234) := −
1

2
ω12(I234 + e2)− γ1(I234), δ4(I124) := −

1

2
ω34(I124 + e4)− γ3(I124)(21)

δ3(I) :=
1

2
ω34(I + e3) + γ4(I) + (γ3 + δ4)(I + e3 − e4).

By comparing the coefficients in (17), (18) and (19) this implies the claim.

Claim 2: We may assume that

ω13 + ω24 = 0 = ω23 − ω14 i.e. r = 0.

By Example 3.9 the sequence {x1x3 + x2x4, x1x4 − x2x3} ⊂ R is regular. Since R is a unique
factorization domain, the vanishing of (16) together with (20) implies the existence of r ∈ R such
that

ω13 + ω24 = (x1x3 + x2x4)r and ω23 − ω14 = (x1x4 − x2x3)r.

We choose

γ1(I + e1) := (γ3 + δ4)(I + e3)− δ2(I + e1)−
1

2
r.

Summing up the dx1 ∧ dx3 and the dx2 ∧ dx4-components of (17) and (18) yields

(x1x3 + x2x4)
(
(γ3 + δ4)(I + e3)− (γ1 + δ2)(I + e1)

)
.

Similarly, we obtain for the dx1 ∧ dx4-components minus the dx2 ∧ dx3-components that

−(x1x4 − x2x3)
(
(γ3 + δ4)(I + e3)− (γ1 + δ2)(I + e1)

)

implying the claim.

Claim 3: We may assume that

ω13 ∈ R.

Note that the sum of the dx1 ∧ dx3-components from (17) and (18) is given by

x1γ3 − x3γ1 + x2δ3 − x4δ1 = x1γ3(I124)− x3γ1(I234) + x2γ4 − x4γ2 + x1x3(δ2(I + e1)− δ4(I + e3)).
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Hence by taking

γ2(I4) :=
1

2
ω13(I4 + e4), γ4(I24) := −

1

2
ω13(I24 + e2) + γ2(I24 + e2 − e4),

γ3(I124) := −
1

2
ω13(I124 + e1)− γ4(I124 + e1 − e2) + γ2(I124 + e1 − e4),(22)

γ1(I234) :=
1

2
ω13(I234 + e3) + γ4(I234 + e3 − e2)− γ2(I234 + e3 − e4),

δ4(I + e3) :=
1

2
ω13(I + e1 + e3) + δ2(I + e1) + γ4(I + (1,−1, 1, 0))− γ2(I + (1, 0, 1,−1))

we obtain the claim.

To simplify ω14 we add the dx1 ∧ dx4-components of (17) and (18), which yields

(23) x1γ4+x4γ1+x2δ4−x3δ1 =
(x2

1 + x2
2)γ4(I124 + e1) + (x1x3 + x2x4)γ4(I + e3)

−(x2
3 + x2

4)γ2(I + e3) + (x1x4 − x2x3)(γ3(I + e3) + γ2(I24 + e2)).

Note that all the different coefficients are independent of each other. Moreover, we have

J = R · (x2
3 + x2

4) +R · (x1x3 + x2x4) +R · (x1x4 − x2x3) + R[[x1, x2, x4]] · (x
2
1 + x2

2).(24)

Hence the result follows from:

Claim 4: The following map is an isomorphism of R-vector spaces:

m : R[[x2]]⊕ R[[x2, x4]]
2 ∼−→ R/J

(p, (q1, q2)) 7→ [px1 + q1x3 + q2].

We first show that the map m is injective. In order to do this we use that the linear map:

l : R[[x1, x2]]⊕ R[[x3, x4]]⊕R2 → J

(p1, p2, (r1, r2)) 7→ (x2
1 + x2

2)p1 + (x2
3 + x2

4)p2 + (x1x3 + x2x4)r1 + (x1x4 − x2x3)r2

is surjective with kernel given by

(0, 0, ((x1x4 − x2x3) · r,−(x1x3 + x2x4) · r)) for r ∈ R.

This can be seen from Example 3.9 and the relations

x3(x
2
1 + x2

2)− x1(x1x3 + x2x4) + x2(x1x4 − x2x3) = 0,

x4(x
2
1 + x2

2)− x2(x1x3 + x2x4)− x1(x1x4 − x2x3) = 0,

x1(x
2
3 + x2

4)− x3(x1x3 + x2x4)− x4(x1x4 − x2x3) = 0,

x2(x
2
3 + x2

4)− x4(x1x3 + x2x4) + x3(x1x4 − x2x3) = 0.

Let (p, (q1, q2)) ∈ R[[x2]]⊕ R[[x2, x4]]
2 such that m(p, (q1, q2)) = 0, i.e.

∃(p1, p2, (r1, r2)) ∈ R[[x1, x2]]⊕ R[[x3, x4]]⊕R2 : l(p1, p2, (r1, r2)) = px1 + q1x3 + q2.

Comparing the terms in R[[x1, x2]] and R[[x3, x4]] we immediately obtain

p = 0 q1(I4) = 0, q2(I2) = 0 q2(I4) = 0 and p1 = p2 = 0.

Hence we can write the image of m uniquely as

x2x3q̃1 + x2x4q̃2 for some q̃1, q̃2 ∈ R[[x2, x4]].

But such an element is in the image of l iff it is zero, hence m is indeed injective.

We conclude the proof by comparing dimensions of the domain and codomain of m for a fixed homo-
geneous degree in R/J . We denote by Rd and Jd the corresponding subvector spaces generated by
polynomials of homogeneous degree d ∈ N0. Using the fact that for n ∈ N and d ∈ N0 we have

dimR[[x1, . . . , xn]]d =

(
n− 1 + d

n− 1

)
,
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and the description of J via l we obtain for the dimension of Jd for 2 ≤ d that

for 2 ≤ d < 4 : dimJd = 2

(
d− 1

1

)
+ 2

(
d+ 1

3

)
,

and else : dimJd = 2

(
d− 1

1

)
+ 2

(
d+ 1

3

)
−

(
d− 1

3

)
.

Finally, a direct computation implies that for any d ∈ N we have

dimRd/Jd = dimRd − dimJd = 2(d+ 1),

which proves the claim by comparing it with dim(m−1({Rd/Jd})). Hence we proved Proposition 4.3.

Corollary 4.6. The isomorphism from Proposition 4.3 satisfies the relations:

I−1([f1 · I(0, p, (q1, q2))]) = −2(0, x2
2p, (x2x4p+ (x2

2 + x2
4)q1, (x

2
2 + x2

4)q2))

I−1([f2 · I(0, p, (q1, q2))]) = 2(0, q2(I2)x
I2+e2 , (x4q2 + x2

2x
−1
4 (q2 − q2(I2)x

I2 ),−(x2p+ x4q1)(x
2
2 + x2

4)))

for any (p, (q1, q2)) ∈ R[[x2]]⊕ R[[x2, x4]]
2. Additionally, we have

[f1β1 − f2β2] = 0 = [f2β1 + f1β2].

In particular, for any (p, (q1, q2)) ∈ R[[x2]]⊕ R[[x2, x4]]
2 which satisfy

px2 + x4q1 = a(x2
2 + x2

4)
m and q2 = b(x2

2 + x2
4)

m

for some a, b ∈ R, we obtain that

[(x1p+ x3q1)β2] = [c1f
m−1
1 f2β2] and [q2β2] = [c2f

m
1 β2],

for c1 := (−2)−ma and c2 := 2−mb.

Proof. The first two equations follow by a direct computation using (23) and its induced partition for
J as stated in (24). The last two equalities are obtained from a direct computation and choices for
γ and δ as described in (22) and (21). �

5. Kernel of the Poisson differential

The aim of this section is to compute the kernel of the Poisson differential δπ : Ω•
f → Ω•−1

f . We prove
the following:

Proposition 5.1. For the kernel of the differential δπ from Proposition 3.2 we obtain the following
results for formal differential forms. The statements are for g, gi ∈ R and p, pi, qi ∈ R[[f1, f2]].

• For α ∈ Ω1
f we obtain that

(25) α ∈ ker δπ ⇔ α = dg0 +

2∑

i=1

piζi + gidfi.

• In degree 2 we get for ω ∈ Ω2
f that

ω ∈ ker δπ ⇔ ω = pζ1 ∧ ζ2 + gdf1 ∧ df2 +

2∑

i=1

df1 ∧ piζi + d(qiζi) + dgi ∧ dfi.(26)

• For a formal 3-form γ ∈ Ω3
f we obtain

γ ∈ ker δπ ⇔ γ = df1 ∧ df2 ∧ dg +
2∑

i=1

qiǫi + df1 ∧ d
(
piζi

)
(27)

where ǫi = ⋆Ei.
• In the top degree we have for g ∈ R that

gµ ∈ ker δπ ⇔ g ∈ R[[f1, f2]].(28)
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For top degree forms this is a consequence of [Pel09][Proposition 3.1], since D1 = 0. In the other
degrees, Pelap uses the vanishing of D2, which doesn’t hold in our case. Therefore, we need an
adaptation which takes the non-triviality of D2 into account. The sections below provide proofs for
the various degree and are ordered according to their logical dependence:

degree 1 ⇒ degree 3 ⇒ degree 2.

Therefore, the proof for degree 1 is at the core of the proof of Proposition 5.1, which we obtain by an
induction argument. Another important ingredient for the proof in any degree is a good understanding
of the group D2, as described in Proposition 4.3 and Corollary 4.6. We have two more observations:

• First we note that the standard scalar multiplication mt : R
4 → R4 on R4 satisfies

δπ ◦m∗
t = m∗

t ◦ δπ.

Hence δπ maps homogeneous degree coefficients to homogeneous degree coefficients and it is
enough to prove the statements for coefficients of a fixed homogeneous degree.

• It is easy to verify the implications ⇐ in Proposition 5.1 using Proposition 3.2. Therefore, we
really only need to show that ⇒ holds. To do so it is enough to show that

(29) ker δπ mod V = {0},

where V denotes the vector space generated by elements on the right hand side of Proposition
5.1. Whenever we look at this quotient we refer to it by modV .

That being said, we are ready to start the proof of Proposition 5.1.

5.1. Proof of Degree 1. For α ∈ Ω1
f recall from Proposition 3.2 that

δπ(α) = dα ∧ df1 ∧ df2.

Hence it suffices to prove that

dα ∧ df1 ∧ df2 = 0 ⇔ α = dg0 +

2∑

i=1

pi(f1, f2)ζi + gidfi.

If the coefficients of α are of homogeneous degree n+ 1, i.e. m∗
tα = tn+2α, the following lemma will

allow us to derive the statement by induction over even and odd degrees, respectively.

Lemma 5.2. For n = 0 there exist c1, c2 ∈ R such that

d(α− (c1ζ1 + c2ζ2)) = 0.

For 1 ≤ n = 2m there exist c1, c2 ∈ R such that

d(α− (c1f
m
1 + c2f

m−1
1 f2)ζ2) = α1 ∧ df1 + α2 ∧ df2.

Moreover, for 1 ≤ n = 2m+ 1 we have

dα = α1 ∧ df1 + α2 ∧ df2.

In all cases we may assume

m∗
tαi = tnαi for i = 1, 2.

Proof. From Proposition 4.3 we obtain that

dα ∧ df1 ∧ df2 = 0 ⇒ dα = I(c, p, (q1, q2)) +

2∑

i=1

αi ∧ dfi

for some c ∈ R, p ∈ R[[x2]], q ∈ R[[x2, x4]]
2 and αi ∈ Ω1

f . Note that since α has coefficient of

homogeneous degree n+ 1 we may assume that the coefficients of I(c, p, q) and αi are homogeneous
of degree n and n− 1, respectively. Wedging the equation for dα with df1 and applying d yields

df1 ∧ dI(c, p, q) = df1 ∧ df2 ∧ dα2.(30)

If n = 0, then the statement follows immediately from the fact that dζi = βi. Hence we assume
n > 0. Then (30) implies the hypothesis of Lemma 3.18 for g · µ = 0, which in turn implies that
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x2p + x4q1, q2 ∈ R[[x2
2 + x2

4]]. Hence Corollary 4.6 implies [(x1p + x3q1)β2] = [c1f
m−1
1 f2β2] and

[q2β2] = [c2f
m
1 β2] so that

I(0, p, q) = [(c1f
m−1
1 f2 + c2f

m
1 )β2] ∈ D2.

Finally, since dζi = βi we get

I(0, p, q) = [d((c1f
m−1
1 f2 + c2f

m
1 )ζ2)] ∈ D2,

and therefore by changing αi we obtain the statement. �

We prove the statement first for the case of n = 2m− 1 being odd. In the base case, i.e. m = 0 it is
straightforward to see that τ = dg for g of homogeneous degree 1. Hence we assume

m∗
tα = t2m+3α and df1 ∧ df2 ∧ dα = 0.

From Lemma 5.2 we get that

dα =

2∑

i=1

αi ∧ dfi with m∗
tαi = t2m+1αi and df1 ∧ df2 ∧ dαi = 0 for i = 1, 2.

We distinguish two cases. For m = 1 the induction hypothesis implies that

dα = dg1 ∧ df1 + dg2 ∧ df2,

and hence we can conclude that

α = dg0 + g1df1 + g2df2,

For 1 < m the induction hypothesis yields

dα = dg1 ∧ df1 + dg2 ∧ df2 + gdf1 ∧ df2,

for some g ∈ R. Taking d of this expression we see that gµ ∈ ker δπ. Hence g ∈ R[[f1, f2]] and we can
absorb g into g1 and g2. Therefore we obtain

α = dg0 + g1df1 + g2df2

for some g0, g1, g2 ∈ R, which proves the Proposition for n odd.

For the even case let n = 2m. The base case (m = 0) can be checked by hand, where we obtain that

α = dg0 +
2∑

i=1

piζi + gidfi

with g0 ∈ R homogeneous of degree 2 and pi, gi ∈ R for i = 1, 2. For α satisfying

m∗
tα = t2m+2α and df1 ∧ df2 ∧ dα = 0

we get from Lemma 5.2 that

dα = d
(
(c1f

m
1 + c2f

m−1
1 f2)ζ2

)
+

2∑

j=1

(dgj +

2∑

i=1

pji ζi) ∧ dfj + gdf1 ∧ df2.

Here the pji ∈ R[[f1, f2]] are homogeneous of degree 2m − 2, gj ∈ R are homogeneous of degree 2m
for i, j ∈ {1, 2} and g ∈ R is homogeneous of degree 2m− 2. Hence we have (see (29))

dα =
2∑

i,j=1

pjiζi ∧ dfj + gdf1 ∧ df2 mod dV.(31)

Lemma 5.3. We may assume that

dα =

2∑

i=1

piζi ∧ df1 + gdf1 ∧ df2 mod dV.
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Proof. Note that we have the relations

df1 ∧ ζ1 − df2 ∧ ζ2 = d(f1ζ1 − f2ζ2) and df2 ∧ ζ1 + df1 ∧ ζ2 = d(f2ζ1 + f1ζ2).

Hence for any p, q ∈ R[[f1, f2]] we have:

(p+ f2∂yp)df2 ∧ ζ2 − f1∂ypdf2 ∧ ζ1 = (p+ f1∂xp)df1 ∧ ζ1 − f2∂xpdf1 ∧ ζ2 mod dV,

(q + f2∂yq)df2 ∧ ζ1 + f1∂yqdf2 ∧ ζ2 = −(q + f1∂xq)df1 ∧ ζ2 − f2∂xqdf1 ∧ ζ1 mod dV.

Adding those two equations, we want to determine the image of
(
p
q

)
7→

(
q − f1∂yp+ f2∂yq
p+ f2∂yp+ f1∂yq

)
.

By looking at the maximal powers of f2 in the image and inductively decreasing, we obtain that the
map is injective, and hence surjective, thus proving the claim. �

Applying d to equation (31) yields

0 = d(
2∑

i=1

piζi) ∧ df1 + dg ∧ df1 ∧ df2.

To show that this implies (25) we first prove an auxiliary Lemma.

Lemma 5.4. For any g ∈ R we have

LT1
g,LT2

g ∈ R[[f1, f2]] ⇒ LT1
g = LT2

g = 0.

Proof. Note that we can focus on even homogeneous degrees only. Hence we can view g as an element
in ring generated by

f1, f2, x
2
1 + x2

2 + x2
3 + x2

4, x
2
1 − x2

2 − x2
3 + x2

4, x
2
1 + x2

2 − x2
3 − x2

4,

2(x1x2 − x3x4), 2(x1x3 + x2x4), 2(x1x3 − x2x4), 2(x1x4 + x2x3), 2(x1x4 − x2x3).

By a direct computation we can check that LTi
maps generators to generators. More generally, for a

homogeneous monomial of degree n in the above variables we note that either the total degree nf in
the variables of f1 and f2 is preserved or the monomial is maped to zero. Therefore it is enough to
look at polynomomials in f1 and f2, but on such LTi

acts trivial. �

We use the Lemma to show the following.

Corollary 5.5. Fix j = 1, 2. For p1, p2 ∈ R[[f1, f2]] and g ∈ R the condition

dg ∧ df1 ∧ df2 +
2∑

i=1

d(piζi) ∧ dfj = 0

implies p1, p2 = 0 and g ∈ R[[f1, f2]].

Proof. Let j = 1. Note that we have the relations

4ιTi
ζ1 = fi, 4ιT1

ζ2 = f2 4ιT2
ζ2 = −f1 LTi

ζj = 0.(32)

Hence contracting with T1 and T2, respectively together with (9) yields the equations

0 = f1∂yp1 + f2∂yp2 + p2 + 4dg(T1) and 0 = f2∂yp1 + p1 − f1∂yp2 + 4dg(T2)

and therefore dg(T1), dg(T2) ∈ R[[f1, f2]]. Hence Lemma 5.4 implies LTi
(g) = 0 and the above

equations imply p1 = p2 = 0. The statement for g then follows from (28). The proof for j = 2 follows
along the same lines. �

Remark 5.6. Note that the conclusion of Corollary 5.5 also holds under the assumption

dg ∧ df1 ∧ df2 +

2∑

i=1

pidζi ∧ dfj = 0

The proof follows along the same lines.
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5.2. Proof of Degree 3. The argument consists of two steps which are proven below. Suppose that
γ ∈ Ω3

f satisfies δπγ = 0 then we show the following:

Step 1: Replacing γ by γ − q1ǫ1 − q2ǫ2 for some q1, q2 ∈ R[[f1, f2]] we may assume that

(33) ⋆−1(dγ) = ι⋆−1γdf1 = ι⋆−1γdf2 = 0.

Step 2: If γ satisfies (33) then there exists α ∈ ker δπ ⊂ Ω1
f such that

γ = df1 ∧ dα.

Using (25) the last equation can be rewritten as

γ = df1 ∧ d
(
f2dg +

2∑

i=1

piζi
)
,

for g ∈ R and p1, p2 ∈ R[[f1, f2]], which finishes the proof.

Proof of Step 1: Let γ ∈ Ω3
f be such that m∗

t γ = tm+3γ and δπγ = 0, i.e.

0 = δπγ = ιπ(dγ)− dι⋆−1γ(df1 ∧ df2).

Wedging the above equation with df1 and df2 respectively, using Proposition 3.2 and (28) implies

ι⋆−1γ(dfi) = pi ∈ R[[f1, f2]],

satisfying the equation

⋆−1(dγ)df1 ∧ df2 =
(
(∂xp1)(f1, f2) + (∂yp2)(f1, f2)

)
df1 ∧ df2(34)

and hence in particular that ⋆−1(dγ) ∈ R[[f1, f2]]. Using the relations (9)

δ(E1) = 2, δ(E2) = 0,

it is easy to see that ǫi = ⋆Ei ∈ ker δπ. Given q1, q2 ∈ R[[f1, f2]], the identities above also imply:

ιq1E1+q2E2
df1 = (xq1 + yq2)(f1, f2),

ιq1E1+q2E2
df2 = (yq1 − xq2)(f1, f2).

Hence, replacing γ by γ − q1ǫ1 − q2ǫ2, for suitably chosen q1 and q2, we may assume that

p1(f1, f2) = p1(f1) and p2(f1, f2) = p2(f1).

We want to show that p1 = p2 = 0. Recall that be homogeneity of γ and since f1 and f2 are
homogeneous of degree 2, we have m = 2n − 1 where n ≥ 1 is the homogeneous degree of pi as a
polynomial in one variable. As such we can write

p1 = c1x
n and p2 = c2x

n,

for some c1, c2 ∈ R. We also write γ =
∑4

i=1 γi ⋆ (∂xi
). We denote by ai and bi respectively the

coefficient of the x2n−1−i
1 xi

2-terms for γ1 and γ2, 0 ≤ i ≤ 2n − 1. With this notation, explicitly

computing the x2n−i
1 xi

2-terms of Equation (34) yields the following conditions:

2a0 = c1 and 2b0 = c2,

(−1)j
(

n

n− j

)
c1 = 2(a2j + b2j−1) and (−1)j

(
n

n− j

)
c2 = 2(a2j−1 + b2j) for 1 ≤ j ≤ n,

a2j+1 = −b2j and a2j = −b2j+1 for 0 ≤ j ≤ n− 1,

2b2n−1 = (−1)n−1c1 and 2a2n−1 = (−1)nc2.

Using the equations in lines 1-3 we obtain

a2j+1 = −b2j = c2
(−1)j

2

∑

0≤l≤j

(
n

l

)
and a2j = −b2j+1 = c2

(−1)j

2

∑

0≤l≤j

(
n

l

)

for 1 ≤ j ≤ n− 1, and hence in particular that

a2n−1 = c2
(−1)n−1

2
(2n − 1) and b2n−1 = c1

(−1)n

2
(2n − 1)

which yields a contradiction for all 1 ≤ n unless c1 = c2 = 0. This completes the proof of Step 1.
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Proof of Step 2: Assume γ satisfies (33). Observe that for any α ∈ Ω1
f we have

⋆ ◦ ♯ (ι⋆−1γ(α)) = α ∧ γ(35)

where ♯ : Ω0
f → X0

f is the canonical identification. Hence Corollary 3.11 implies that

γ = df1 ∧ β

for some β ∈ D2(df1, df2) with m∗
tβ = tm+1β. Thus, it remains to show that β = dα with α ∈ ker δπ.

From Proposition 4.3 we know that

β = I(c, p, q) +

2∑

i=1

dfi ∧ αi

for some c ∈ R, p ∈ R[[x2]], q ∈ R[[x2, x4]]
2 and αi ∈ Ω1(R). Moreover, since we are interested in γ

we may assume that α1 = 0, and rename α2 to α. Then Equation (33) implies:

df1 ∧ dI(c, p, q) = df1 ∧ df2 ∧ dα.(36)

Hence it suffices to show that

β =
2∑

i=1

dfi ∧ αi mod dV.

That is, we may assume I(c, p, q) = 0. If β has constant coefficients, i.e. m = 1, then this follows
immediately from the fact that dζi = βi. Hence let’s assume β is homogeneous of degree m > 1.
To see the statement, we recall that the coefficients of df1 ∧ df2 are (by definition) in the ideal
J defined in (14), so that (36) is zero modJ . This means the left hand side of (36) satisfies the
hypothesis of Lemma 3.18 taking g · µ = 0, which in turn implies that x2p+ x4q1, q2 ∈ R[[x2

2 + x2
4]].

Hence m = 2n + 1 for 1 ≤ n, otherwise we are done. It then follows from Corollary 4.6 that
[(x1p+ x3q1)β2] = [c1f

n−1
1 f2β2] and [q2β2] = [c2f

n
1 β2] so that

I(0, p, q) = [(c1f
n−1
1 f2 + c2f

n
1 )β2].

Finally, since dζi = βi, and d(c1f
n−1
1 f2 + c2f

n
1 ) = 0 modJ we obtain

I(0, p, q) = [d((c1f
n−1
1 f2 + c2f

n
1 )ζ2)],

as desired. Hence the proof is complete.

5.3. Proof of Degree 2. Let β ∈ Ω2
f such that

δπ(β) =ι⋆−1dβ(df1 ∧ df2)− dιπ(β) = 0.

Applying d to the equation implies that dβ ∈ ker δπ. By a direct computation we can check that

qζ1 ∧ ζ2 ∈ ker δπ

for any q ∈ R[[f1, f2]]. Moreover, the relations

df1 ∧ ζ1 ∧ ζ2 = f1ǫ2 − f2ǫ1, df2 ∧ ζ1 ∧ ζ2 = f2ǫ2 + f1ǫ1 and d(ζ1 ∧ ζ2) = 2ǫ2(37)

imply that we have

d(qζ1 ∧ ζ2) = (2q + f1∂xq + f2∂yq)ǫ2 + (f1∂yq − f2∂xq)ǫ1.(38)

Therefore, by replacing β by β − qζ1 ∧ ζ2 and using (27) we can assume that

dβ = df1 ∧ df2 ∧ dg + qǫ1 + df1 ∧ d
(
piζi

)

for some q, pi ∈ R[[f1, f2]] and g ∈ R. Taking the differential d of this equation yields

0 = dq ∧ ǫ1 + 2qµ = (f1∂xq + f2∂yq + 2q)µ

and hence q = 0 and we can conclude that

β = gdf1 ∧ df2 + df1 ∧ piζi + dα

for pi ∈ R[[f1, f2]], g ∈ R and α ∈ Ω1
f . In other words, the map

d : {β = gdf1 ∧ df2 + df1 ∧ piζi + dα} ∩ ker δπ → {γ ∈ ker δπ| γ satisfies (34)}

is surjective. Therefore, it is enough to study its kernel, i.e. we may assume β = dα such that

δπ(β) = ι⋆−1dβ(df1 ∧ df2)− dιπ(β) = −dιπ(dα) = 0.
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By Proposition 3.2 this implies that α ∈ ker δπ and hence (25) implies the statement.

6. Poincare series

In this section we use the Hilbert-Poincare series to determine the dimension of the Poisson homology
groups. We achieve this by constructing short exact sequences for the kernels of δπ as described in
Proposition 5.1. We obtain the following result:

Proposition 6.1. For the Poisson homology spaces we have the following Hilbert-Poincare series:

HPH0
(t) =

4t2 + 4t+ 1

(1− t2)2
,

HPH1
(t) = 4t

t3 + t2 + 2t+ 1

(1− t2)2
,

HPH2
(t) = 2t2

4t2 + 2t+ 1

(1− t2)2
.

In degree 1 we have the following statement.

Lemma 6.2. The following sequence is exact:

0 → R[[f1, f2]]
θ1−→ R(−2)2 ⊕R⊕ R[[f1, f2]](−2)2

β
−→ ker δπ,1 → 0,

where the maps are given by

θ1 : u 7→ ((−∂f1u,−∂f2u), u, 0) and σ1 : ((g1, g2), g0, (p1, p2)) 7→ dg0 +
∑

i

pi(f1, f2)ζi + gidfi.

Proof. Injectivity of θ1 follows from the definition, while surjectivity of σ1 follows from (25). Let

α := σ1(g1, g2, g0, p1, p2) = 0.

Wedging with df1, applying d to both sides and using Corollary 5.5 implies that p1 = p2 = 0 and
g2 ∈ R[[f1, f2]]. Wedging with df1 ∧ df2 implies that g0 ∈ R[[f1, f2]] by Proposition 3.2 and (28).
Hence the statement follows by contraction with E1 and E2 by (9). �

In degree 2 we obtain the following short exact sequences for the kernel.

Lemma 6.3. The following sequence is exact:

0 → R[[f1, f2]](−2)2
θ2−→ R(−2)2 ⊕R(−4)⊕ R[[f1, f2]](−4)3 ⊕ R[[f1, f2]](−2)2

σ2−→ ker δπ,2 → 0,

where the maps are given by

θ2 : (u1, u2) 7→ ((u1, u2), ∂f2u1 − ∂f1u2, 0, 0) and

σ2 : ((g1, g2), g, (p, p1, p2), (q1, q2)) 7→ pζ1 ∧ ζ2 + gdf1 ∧ df2 +

2∑

i=1

df1 ∧ piζi + d(qiζi) + dgi ∧ dfi.

Proof. Note that θ2 is injective, σ2 is surjective by the description of ker δπ,2 in (26) and we have

Im θ2 ⊂ kerσ2.

Let us determine the kernel of σ2. To do so, we set

β := σ2((g1, g2), g, (p, p1, p2), (q1, q2)).

We first note that due to (38), (9) and (12) we have

dβ ∧ (f2df1 − f1df2) = 2(f2
1 + f2

2 )(2p+ f1∂xp+ f2∂yp)µ,

implying that p = 0 if β = 0. Wedging with df1 and applying Corollary 5.5 implies that q1 = q2 = 0
and g2 ∈ R[[f1, f2]]. Applying d and using again Corollary 5.5 implies the statement. �

In degree 3 we obtain the following short exact sequence for the kernel of the differential.
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Lemma 6.4. The following sequence is exact:

0 → R[[f1, f2]](−4)
θ3−→ R(−4)⊕ R[[f1, f2]](−4)4

σ3−→ ker δπ,3 → 0,

where the maps are given by:

θ3 : u 7→ (u, 0), and σ3 : (g, (q1, q2, p1, p2)) 7→ df1 ∧ df2 ∧ dg +

2∑

i=1

qiǫi + df1 ∧ d(piζi).

Proof. The map θ3 is injective by definition and surjectivity of σ3 follows from (27). To show that

Im θ3 = kerσ3

we define

γ := σ3(g, (q1, q2, p1, p2)).

Note that by (9) and (12) we have the relations

(f1df1 + f2df2) ∧ γ = 2(f2
1 + f2

2 )q1µ, and (f2df1 − f1df2) ∧ γ = 2(f2
1 + f2

2 )q2µ.

Hence γ = 0 implies that q1 = q2 = 0. Therefore Corollary 5.5 implies the statement. �

Now we are ready to proof Proposition 6.1.

Proof of Proposition 6.1. We use the exact sequence of degree preserving maps

0 → ker δπ,i+1 →֒ Ωi+1
f

δπ,i+1

−−−−→ ker δπ,i → Hi → 0.(39)

Let us first compute the Hilbert-Poincare series of the kernels of δπ,i. Therefore we note that

HPR(−n) =
tn

(1 − t)4
and HPR[[f1,f2]](−n) =

tn

(1 − t2)2

for all n ∈ N0. For any two graded vector spaces U and V we have that

HPU⊕V = HPU +HPV ,

and for any exact sequence of graded vector spaces

0 → V0 → · · · → Vk → 0

with degree preserving maps in between, that

HPVk
=

k−1∑

i=0

(−1)k−1−iHPVi
.

From Lemma 6.4 we obtain

HPker δπ,3
(t) =

t4

(1 − t2)2
+

t4

(1− t)4
.

Similarly, Lemma 6.3 and Lemma 6.2 imply

HPker δπ,2
(t) =

3t4

(1 − t2)2
+

t4 + 2t2

(1− t)4
and HPker δπ,1

(t) =
2t2 − 1

(1 − t2)2
+

2t2 + 1

(1− t)4
.

Additionally, note that by Example 3.8 we have

HPker δπ,0
(t) = HPΩ0

f
(t) =

1

(1 − t)4
, HPΩ1

f
(t) =

4t

(1− t)4
,

HPΩ2
f
(t) =

6t2

(1 − t)4
, HPΩ3

f
(t) =

4t3

(1− t)4
.



26 LAURAN TOUSSAINT, FLORIAN ZEISER

Hence (39) for i = 2 implies that

HPH2
(t) = HPker δπ,2

(t) +HPker δπ,3
(t)−HPΩ3

f
(t)

=
3t4

(1− t2)2
+

t4 + 2t2

(1 − t)4
+

t4

(1− t2)2
+

t4

(1 − t)4
−

4t3

(1 − t)4

=
4t4

(1− t2)2
+ 2t2

(1− t)2

(1− t)4
= 2t2

4t2 + 4t+ 1

(1− t2)2
.

For i = 1 we get

HPH1
(t) = HPker δπ,1

(t) +HPker δπ,2
(t)−HPΩ2

f
(t)

=
2t2 − 1

(1 − t2)2
+

2t2 + 1

(1− t)4
+

3t4

(1− t2)2
+

t4 + 2t2

(1 − t)4
−

6t2

(1− t)4

=
3t4 + 2t2 − 1

(1− t2)2
+

(1− t)2(1 + t)2

(1− t)4
= 4t

t3 + t2 + 2t+ 1

(1− t2)2
.

Finally, for i = 0 we compute

HPH0
(t) = HPker δπ,0

(t) +HPker δπ,1
(t)−HPΩ1

f
(t)

=
1

(1− t)4
+

2t2 − 1

(1− t2)2
+

2t2 + 1

(1− t)4
−

4t

(1 − t)4

=
2t2 − 1

(1− t2)2
+ 2

(1− t)2

(1− t)4
=

4t2 + 4t+ 1

(1− t2)2
.

�

7. Proof of the main theorem

In this section we prove Theorem 1.2. In each degree the strategy of the proof is the same: by
Proposition 6.1 the given set of generators has the right dimension. Hence it is enough to show that
none of the elements generated by the given module are in the image of the Poisson differential.

7.1. Degree 0. For the proof in degree 0 we need the following auxiliary statement.

Lemma 7.1. Let g ∈ R[[f1, f2]], (c, p, (q1, q2)) ∈ R⊕ R[[x2]]⊕ R[[x2, x4]]
2 and α ∈ Ω1

f such that:

g · µ =df1 ∧ dI(c, p, (q1, q2)) + df1 ∧ df2 ∧ dα.

Then g = 0 and the same statement holds if we exchange the roles of df1 and df2.

Proof. We prove the statement for g being homogeneous of degree 2n by induction on n.

n = 0, 1 : If g ∈ R then the statement holds by a degree count of the coefficients. If g is homogeneous
of degree 1 then the statement follows from Lemma 3.18.

Induction step: Assume that g ∈ R[[f1, f2]] is homogeneous of degree 2n. Then Lemma 3.18 implies

x2p+ x4q1, q2 ∈ R · (x2
2 + x2

4)
n−1, and g ∈ (f2

1 + f2
2 )R[[f1, f2]].

Hence, by Corollary 4.6 we have:

I(c, p, (q1, q2)) = (c1f
n−1
1 + c2f

n−2
1 f2)β2 +

2∑

i=1

dfi ∧ αi,

for some ci ∈ R and αi ∈ Ω1
f , with i = 1, 2. Therefore, writing g as (f2

1 + f2
2 )g̃ and replacing α by

α− α2, again denoted by α, the original equation becomes

(f2
1 + f2

2 )g̃ · µ =df1 ∧ df2 ∧ dα.

Using (9), (12) and (37) we note that

2gdf1 ∧ df2 ∧ ζ1 ∧ ζ2 = (f2
1 + f2

2 )g · µ.
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Hence combining the two equations above, we obtain by Proposition 4.3 that

2g̃ζ1 ∧ ζ2 − dα = I(0, p̃, (q̃1, q̃2)) +

2∑

i=1

αi ∧ dfi

for some (p̃, (q̃1, q̃2)) ∈ R[[x2]] × R[[x2, x4]]
2 and αi ∈ Ω1

f . Note that the homogeneous degrees of
p̃, q̃1, q̃2 and αi are two smaller than those of p, q1, q2 and α, respectively. Now taking the de-Rham
differential and wedging with df1 implies by (9), (12) and (37) that

2((f2
1 + f2)

2∂y g̃ + f2g̃) · µ = df1 ∧ dI(0, p̃, (q̃1, q̃2)) + df1 ∧ df2 ∧ dα2.

Therefore, the induction hypothesis implies that

(f2
1 + f2)

2∂y g̃ + f2g̃ = 0,

and hence g̃ = 0 concluding the induction. The proof for df2 follows along the same lines. �

Now we are ready to prove Theorem 1.2 for degree 0. We distinguish between even and odd homoge-
neous degrees.

The odd degree: The zeroth Poisson homology group is realized by the free R[[x2
2, x

2
4]]-module gen-

erated by the linear monomials. This follows from the description of a boundary by Proposition 3.2
and Lemma 3.17.

The even degree: By a similar argument as in the odd degree we obtain that the coefficients in even
degree are contained in the ideal I if and only if they are of the form

(f2
1 + f2

2 )p

where p ∈ R[[f1, f2]]. Hence we only need to check if there exists an α ∈ Ω1(R) such that

(f2
1 + f2

2 )pµ = df1 ∧ df2 ∧ dα

We show that such an α can only exist if p = 0. This follows from Lemma 7.1.

7.2. Degree 1. We first prove another auxiliary lemma.

Lemma 7.2. Let g ∈ R[[f1, f2]] and ai ∈ R[[x2
2, x4]] and γ ∈ Ω3

f such that

0 =
(
g − ⋆−1(dγ)

)
df1 ∧ df2 + d

((
4∑

i=1

aixi − ι⋆−1γ(df2)

)
df1 + ι⋆−1γ(df1)df2

)
.

Then g = a1 = a2 = a3 = a4 = 0 and γ ∈ ker δπ.

Proof. Note that by wedging with df1, Proposition 3.2 and (28) imply

ι⋆−1γ(df1) ∈ R[[f1, f2]].

Using (35), (9) and Corollary 3.11 we obtain that

γ = r1ǫ1 + r2ǫ2 + df1 ∧ β

for unique r1 ∈ R[[f1, f2]], r2 ∈ R[[f2]] and some β ∈ Ω2
f . Wedging with df2 and using (9), (35),

Proposition 3.2 and (28) implies
(

4∑

i=1

aixi

)
µ+ β ∧ df1 ∧ df2 ∈ R[[f1, f2]]µ.

Hence Lemma 3.17 yields

a1 = a2 = a3 = a4 = 0 and β ∧ df1 ∧ df2 ∈ (f2
1 + f2

2 )R[[f1, f2]]µ.

This implies that

β = rζ1 ∧ ζ2 + β̃ + df1 ∧ α1 + df2 ∧ α2,

for some r ∈ R[[f1, f2]], α1, α2 ∈ Ω1
f and β̃ representing a non-trivial class in D2(df1, df2). Note that

r1ǫ1 + r2ǫ2 + rdf1 ∧ ζ1 ∧ ζ2 ∈ ker δπ.
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Hence it is enough to show

γ := df1 ∧ (β̃ + df2 ∧ α2) ∈ ker δπ.

In this case, the original equation is equivalent to

g · µ = df1 ∧ dβ̃ + df1 ∧ df2 ∧ dα2.

Using Lemma 7.1 we obtain g = 0, which concludes the proof. �

To prove the statement in degree one, it is, by a dimension count and Proposition 6.1, enough to show
that for any non-trivial choice of coefficients aj , bj ∈ R[[x2

2, x4]] and qi, pi ∈ R[[f1, f2]], the 1-cycle

α := d(

4∑

j=1

ajxj) +

4∑

j=1

bjxjdf1 +

2∑

i=1

qidfi + piζi

is not a boundary. That is, for all β ∈ Ω2
f we have

α̃ := α− δπ(β) = 0 ⇒ aj = bj = qi = pi = 0.

If we take the differential of α̃ = 0 we obtain:

0 = dα̃ = d

(
2∑

i=1

qidfi + piζi

)
+ d




4∑

j=1

bjxj + ι⋆−1dβ(df2)



 ∧ df1 − dι⋆−1dβ(df1) ∧ df2.

Wedging with df1, Corollary 5.5 implies that pi = 0. Applying Lemma 7.2 for γ = −dβ implies that
bj = 0 for j = 1, 2, 3, 4, ∂xq2 = ∂yq1 and dβ ∈ ker δπ. The arguments from Section 5.3 give

β = rζ1 ∧ ζ2 + gdf1 ∧ df2 + df1 ∧ piζi + dα,

for r, pi ∈ R[[f1, f2]], g ∈ R and α ∈ Ω1
f . Note all terms except dα are in ker δπ. Therefore, we have

0 = α̃ = q1df1 + q2df2 + d



ι⋆−1dα(df1 ∧ df2) +

4∑

j=1

ajxj



 .

Wedging the expression with df1 ∧ df2 yields

d



ι⋆−1dα(df1 ∧ df2) +

4∑

j=1

ajxj



 ∧ df1 ∧ df2 = 0.

By Proposition 3.2, (28) and (35) this is equivalent to

dα ∧ df1 ∧ df2 +




4∑

j=1

ajxj



µ ∈ R[[f1, f2]]µ.

Then, Lemma 3.17 implies aj = 0 for j = 1, 2, 3, 4 and by Lemma 7.1 we have

⋆ ◦ ♯ (ι⋆−1dα(df1 ∧ df2)) = dα ∧ df1 ∧ df2 = 0.

Hence α̃ = 0 implies q1 = q2 = 0 which completes the proof.

7.3. Degree 2. We proceed similar as in the previous cases. Consider

β = pζ1 ∧ ζ2 + qdf1 ∧ df2 +
2∑

i=1

pid(f1ζi) + qidζi + d




4∑

j=1

ajxj


 ∧ df1,

where p, q, pi, qi ∈ R[[f1, f2]] and aj ∈ R[[x2
2, x4]]. We want to show that

0 = β̃ := β − δπ(γ) ⇒ p = q = pi = qi = aj = 0

Replicating the argument for Lemma 6.3, replacing Corollary 5.5 with Remark 5.6 we obtain

p = p1 = p2 = q1 = q2 = 0 and ι⋆−1γ(df1), ⋆
−1dγ ∈ R[[f1, f2]].
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As such we are left with

0 = β̃ = qdf1 ∧ df2 − ιπ(dγ) + d


ι⋆−1γ(df2) +

4∑

j=1

ajxj


 ∧ df1 − dι⋆−1γ(df1) ∧ df2.

Hence Lemma 7.2 implies q = aj = 0. Counting the elements and comparing them to Proposition 6.1
implies that we have a representative for every cohomology class.

7.4. Degree 3. By Proposition 3.2, elements in the image of the differential have the form

df1 ∧ df2 ∧ dg,

for g ∈ R. Hence we can argue as in the proof of Lemma 6.4.

8. Proof of Corollary 1.4

A Poisson structure coming from a deformation of the volume form is equals gπ for some g ∈ R with
positive constant term. Using (3) this corresponds to the 2-form gdf1 ∧ df2.

From the definition of the differential we see that

gdf1 ∧ df2 ∈ ker δπ

By Proposition 3.2 and Theorem 1.2 we can write

gdf1 ∧ df2 = β + ιπ(dγ)− dι⋆−1γ(df1 ∧ df2)

for some β = β(ai, p, pj, q, qj) representing a class in the second Poisson homology according to
Theorem 1.2 and γ ∈ Ω3

f . Following the first part of the argument from subsection 7.3 we can
conclude that p = pi = qi = 0. Using the first part of the proof of Lemma 7.2 we can conclude that
ai = 0 and

γ = r1ǫ1 + r2ǫ2 + df1 ∧ (rζ1 ∧ ζ2 + β̃ + df2 ∧ α)

for unique r1 ∈ R[[f1, f2]], r2 ∈ R[[f2]], some r ∈ R[[f1, f2]], α ∈ Ω1
f and where β̃ represents a

non-trivial class in D2(df1, df2). Note that this implies in particular, that

gdf1 ∧ df2 = qdf1 ∧ df2 + δπ(γ)

for some q ∈ R[[f1, f2]] and some γ ∈ Ω3
f such that

ι⋆−1γ(dfi) = 0.

In other words, we can find a vector field X ∈ X1
f,2 (see (11)) and q ∈ R[[f1, f2]] satisfying

gπ = qπ + dπ(X).

This allows us to prove the following which implies Corollary 1.4.

Claim 8.1. Given g ∈ R with positive constant term, there exists a formal diffeomorphism φ satisfying

φ∗(gπ) = pπ

for some p ∈ R[[f1, f2]] with positive constant term.

To see this, first observe that the flow φt of X satisfies:

(40) φ∗
1(gπ)− gπ =

∫ 1

0

d

dt
φ∗
t (gπ)dt = [X, gπ] = −gdπX + (LXg)π.

Let us write g as g =
∑∞

i=0 gi, where gi is homogeneous of degree i and g0 > 0. By induction on i we
show that if gj ∈ R[[f1, f2]] for all j < i then we can change gπ such that also gi ∈ R[[f1, f2]].

We start with i = 1. From cohomology statement we can find X̃1 homogeneous of degree 2 such that

(41) g1π = dπX̃1
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Taking X1 := 1
g X̃1 we obtain from (40) that:

φ∗
1(gπ)− gπ = −gdπX1 +O(|x|4) = −dπX̃1 +O(|x|4)

Hence we may assume g1 = 0. In even degrees (41) will be of the form

g2jπ = q2jπ + dπX̃2j

for some q2j ∈ R[[f1, f2]] contributing to q. Repeating the argument for increasing i ∈ N we map gπ
to qπ.

9. Proof of Corollary 1.5

In degree zero, the result follows from Theorem 1.2 as d maps representatives to representatives.

In degree four, we note that for the image of d we have by (8) that

d

(
2∑

i=1

piζ2 ∧ dζi + qidf1 ∧ dζi

)
=2p2µ+ (∂xp1 + ∂yp2)df1 ∧ ζ2 ∧ dζ1 + (∂xp2 − ∂yp1)df1 ∧ ζ2 ∧ dζ2

=(2p2 + f2(∂xp1 + ∂yp2) + f1(∂xp2 − ∂yp1))µ

which implies that d is surjective in homology.

In degree three, note that from the discussion in degree four, the kernel of d is parameterized by

q1, q2, p1 ∈ R[[f1, f2]]

since the differential operator 2+ x∂x + y∂y is invertible on R[[x, y]]. To determine the image of d let
β = β(ai, p, pj, q, qj) be a representative of a class in the second Poisson homology. We can write β as

β := pζ1 ∧ ζ2 + qdf1 ∧ df2 +
2∑

i=1

pidf1 ∧ ζi + qidζi +
4∑

i=1

d(aixi) ∧ df1

for p, pi, q, qi ∈ R[[f1, f2]] and ai ∈ R[[x2
2, x4]]. Applying d and using (7) and (8) yields

dβ = (∂xpdf1 + ∂ypdf2) ∧ ζ1 ∧ ζ2 + 2pζ2 ∧ dζ1 +

2∑

i=1

∂ypidf2 ∧ df1 ∧ ζi

+(∂xq1 + ∂yq2 − p1)df1 ∧ dζ1 + (∂xq2 − ∂yq1 − p2)df1 ∧ dζ2

Let q̃1, q̃2, p̃1 ∈ R[[f1, f2]] and

p̃2 := −(2 + x∂x + y∂y)
−1(y∂x − x∂y)p̃1.

Let γ = γ(p̃i, q̃i) be the corresponding representative of a class in ker d. We want to determine for
which p, pi, q, qi, ai as above and g ∈ R we have

0 = γ + dβ + dg ∧ df1 ∧ df2.

Wedging with df1 and df2 respectively, yields

(f2
1 + f2

2 )∂yp+ 2f2p+ f1p̃2 + f2p̃1 = 0 = (f2
1 + f2

2 )∂xp+ 2f2p− f2p̃2 + f1p̃1

and hence we obtain
−p̃1 = 2p+ f1∂xp+ f2∂yp.

Therefore, we may assume p̃1 = p̃2 = p = 0. Contracting the remaining equation with T1 and T2

respectively, yields using (32) that

0 = ∂xq2 − ∂yq1 − p2 − f1∂yp1 − f2∂yp2 + q̃1 + 4dg(T1)

0 = ∂xq1 + ∂yq2 − p1 − f2∂yp1 + f1∂yp2 + q̃2 + 4dg(T2)

By Lemma 5.4 this implies dg(T1) = dg(T2) = 0. Hence q̃1, q̃2 can be realized by choices of p2 and
p1, respectively.

In degree two, let’s denote a representative of the second Poisson homology by β = β(ãi, q̃, q̃j , p̃, p̃j)
as above. Then by the above discussion, β ∈ ker d iff p̃ = 0 and p̃i such that

p̃2 = (1 + y∂y)
−1 (∂xq̃2 − ∂y q̃1 − f1∂y p̃1) and p̃1 = (1 + y∂y)

−1 (∂xq̃1 + ∂y q̃2 + f1∂y p̃2) .
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We denote by α = α(ai, bi, qj , pj) a representative of the first Poisson homology and γ ∈ Ω3
f . We want

to find α and γ such that

0 = β + dα+ ιπ(dγ)− dι⋆−1γ(df1 ∧ df2)

where dα is given by

dα =

2∑

j=1

d(pjζj) + (∂xq2 − ∂yq1)) df1 ∧ df2 +

4∑

i=1

d (bixi) ∧ df1.

Wedging the equation above with df1 and contracting with T1 and T2 yields by (8) and (32) that

0 = f1∂yp1 + f2∂yp2 + p2 + q̃2 + d(ι⋆−1γ(df1))(T1)

0 = f2∂yp1 − f1∂yp2 + p1 + q̃1 + d(ι⋆−1γ(df1))(T2)

Using again Lemma 5.4 implies d(ι⋆−1γ(df1))(T1) = d(ι⋆−1γ(df1))(T2) = 0. Hence q̃1 and q̃2 can be
realized by choices of p1 and p2, respectively. That is, we may assume q̃i = p̃i = pi = 0. From Lemma
7.2 implies that ãi = bi and ∂xq2 = ∂yq1.

Finally, to determine the kernel of d in degree one, we note that from the discussion in degree two
we immediately get p1 = p2 = bi = 0 and ∂xq2 = ∂yq1. Using Theorem 1.2 we therefore obtain the
statement.
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