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Abstract— Quantum entanglement stands at the forefront
of quantum information science, heralding new paradigms in
quantum communication, computation, and cryptography. This
paper introduces a quantum optimal control approach by focus-
ing on entanglement measures rather than targeting predefined
maximally entangled states. Leveraging the indirect Pontryagin
Minimum Principle, we formulate an optimal control problem
centered on maximizing an enhanced lower bound of the entan-
glement measure within a shortest timeframe in the presence
of input constraints. We derive optimality conditions based on
Pontryagin’s Minimum Principle tailored for a matrix-valued
dynamic control system and tackle the resulting boundary value
problem through a Physics-Informed Neural Network, which is
adept at handling differential matrix equations. The proposed
strategy not only refines the process of generating entangled
states but also introduces a method with increased sensitivity
in detecting entangled states, thereby overcoming the limitations
of conventional concurrence estimation.

I. INTRODUCTION

Quantum entanglement, a central tenet of quantum me-
chanics, manifests itself as a unique phenomenon in which
two or more particles become intricately correlated. Re-
markably, this includes the properties of one particle instan-
taneously influences those of another, transcending spatial
distances. In the realm of quantum information, entanglement
is not merely a fascinating aspect of quantum systems but is
hailed as a valuable resource. This perspective has fueled a
keen interest in the pursuit of maximally entangled quantum
states (see an illustration in Fig. 1).

As researchers delve deeper into the manipulation of
quantum states, the control of entanglement dynamics has
emerged as a pivotal objective, promising unparalleled op-
portunities for the effective utilization and optimization of
quantum resources. The field has witnessed significant devel-
opments, unveiling the fundamental principles governing en-
tanglement and providing a roadmap for steering its evolution
with precision. The quest to control entanglement dynamics
is driven by the potential to unlock new horizons in quantum
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Fig. 1: The model depicts a bipartite system consisting of two
atoms positioned within separate cavities, and interconnected by
a closed-loop optical fiber. A coherent input field is applied into
Cavity 1, influencing Atom 1, and the resulting light paths are
routed through the optical fibers to Cavity 2 and back. The closed-
loop setup introduces additional pathway for quantum entanglement
to circulate among the two atoms.

information processing. In this context, the entangled states
form the basis for transformative applications in quantum
communication [1], computation [2], and cryptographic pro-
tocols [3].

From the standpoint of control theory, the generation of
Maximally Entangled States (MES) encompasses both open-
loop and feedback methods. In both approaches, a specified
MES, such as a Bell state |GHZ⟩, or |W ⟩ state, serves as
the target state ρd . Subsequently, a control law is devised to
drive the system state ρ(t) to ρd . However, for more complex
systems, possessing many MES with unknown structures,
the design of quantum control for MES generation should
be rooted in the desired entanglement measure rather than
a predetermined MES. In this regard, quantum Lyapunov
control [4], [5], as a feedback approach and optimal control
theory [6], [7], [8], [9], [10], [11], amongst open loop control
methods have been indicated as proper candidates for the
creation of entangled states. To the best of the author’s under-
standing, while optimal control has been demonstrated to be
effective in maximizing entanglement, its indirect utilization
remains largely untapped in this domain. Indirect optimal
control, based on the calculus of variations and Pontryagin’s
Minimum Principle (PMP), shows promise for addressing
quantum state transfer challenges, and it may have applica-
tions in targeting MESs. Through this method, our emphasis
shifts towards focusing on maximizing an entanglement
measure rather than adhering to the conventional strategy
of considering a predetermined target state. Furthermore, the
quantitative evaluation of the entanglement employed in this
study showcases a distinctive capability: it can discern en-
tangled states that often escape detection through traditional
entanglement measure estimation methods. This underscores
the increased sensitivity and discriminatory power inherent in
the chosen entanglement evaluation approach. In comparison
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to the state of the art, we have the following two main
contributions:

• We delve into an entanglement measure-centric quan-
tum optimal control approach. In the domain of quan-
tum entanglement, our approach diverges from conven-
tional methods by leveraging entanglement measures
to inform the design of quantum control. Rather than
tailoring a controller for a predetermined maximally
entangled state, we employ entanglement measures,
particularly an enhanced lower bound, which excels at
identifying entanglement beyond the scope of conven-
tional concurrence estimation methods.

• In addition, we pioneer the application of the indirect
Pontryagin maximum principle to optimize entangle-
ment, ushering in a new perspective for the optimal
control of entanglement dynamics. In essence, this work
formulates an optimal control problem that prioritizes
the maximization of a robust lower bound of the en-
tanglement measure within an optimal time frame. This
problem formulation yields results that surpass existing
state-of-the-art approaches.

• Lastly, we illustrate the obtained results for a closed
quantum system, adhering to the Liouville-von Neu-
mann equation, and examine the time evolution of
the density operator ρ(t). To this end, we extend the
Physics-Informed Neural Network (PINN) method for
generic differential matrix equations.

The remainder of the work is organized as follows: In Sec-
tion II, we briefly recap the most highlighted entanglement
monotones and measures in the literature for bipartite pure
and mixed states. We then continue with the derivation of
the lower bound of concurrence for an arbitrary-dimensional
bipartite state in terms of lower-dimensional systems and
how this lower bound is exploited as a sufficient condition
for distillability of quantum entanglement. We then formulate
an optimal control problem such that we maximize the lower
bound of concurrence in minimum time in the presence of
input constraints. We validate our results through numerical
simulations in section IV. The paper ends with a conclusion
and an outlook to future work.

Notation: For a general continuous-time trajectory x,
the term x(t) indicates the trajectory evaluated at a specific
time t. For writing the conjugate transpose of a matrix
(or vector), we use the superscript †. To denote wave
functions as vectors, we use the Dirac notation such that
|ψ⟩ =

n
∑

k=1
αk |ψ̂k⟩, where |ψ⟩ indicates a state vector, αk

are the complex-valued expansion coefficients, and |ψ̂k⟩ are
fixed basis vectors. The notation bra is defined such that
⟨ψ|= |ψ⟩†. The quantum density operator is denoted by ρ =

∑
j

p j
∣∣ψ j
〉〈

ψ j
∣∣ where coefficients p j are non-negative and

add up to one. For writing partial differential equations, we
denote partial derivatives using ∂ . The sign ⊗ indicates the
tensor product. The notation [·, ·] represents a commutator.
We denote the trace of a square matrix A by Tr(A), and the
partial trace over subsystem B by TrB. Throughout the paper,

the imaginary unit is i =
√
−1. A d-dimensional Hilbert

space is represented by Hd , and Hρ is the set of linear
bounded operators on Hd characterized by d × d complex
matrices that are positive semi-definite, Hermitian, and has
trace one.

II. OPTIMAL CONTROL BASED ON QUANTUM
ENTANGLEMENT MEASURE

We consider the quantum control design for generation
of maximally entangled states based on the entanglement
measure rather than for a specified maximally entangled
state. Specifically, the entanglement measure that we aim to
maximize is the lower bound of concurrence from all known
lower bounds. The control signal is designed such that the
entanglement measure lower bound reaches its maximum in
a minimum time.

A. Entanglement Monotones and Measures

We delve into the fundamental concepts of entanglement
theory, focusing on entanglement monotones and measures -
a crucial aspect in the study of quantum entanglement. Entan-
glement measures are mathematical constructs that quantify
the degree of entanglement within quantum states, offering
valuable insights into the intricacies of quantum systems. We
indicate the establishment of key criteria that entanglement
measures must satisfy and explore the significance of entan-
glement monotones, which encapsulate essential properties
for characterizing entanglement. Here is a list of possible
postulates for a bipartite entanglement measure E(ρ) [12],
[13], [14], [15].

1) A measure E(ρ) quantifies the intensity of entanglement
of a state ρ by mapping system density matrices to
positive real numbers, i.e., ρ 7→ E (ρ) ∈ R+.

2) E(ρ) = 0 if and only if ρ is separable, indicating no
quantum entanglement.

3) E(ρ) does not increase on average under Local Op-
erations and Classical Communication (LOCC) opera-
tions1. For a LOCC operation Λ, it holds that E(Λρ)≤
E(ρ), ensuring the non-increase of entanglement under
such operations.

4) For pure states ρ = |ψ⟩⟨ψ|, the measure converges to
the entropy of entanglement, aligning the entanglement
measure with the von Neumann entropy for pure bipar-
tite systems.

Any function E(ρ) satisfying the first three conditions is con-
sidered monotone in relation, while functions that meet con-
ditions 1, 2, and 4 are recognized as entanglement measures.
In addition, the entanglement measure does not increase
under deterministic LOCC transformations. Frequently, some
authors also define entanglement measures by imposing addi-
tional criteria, including convexity, additivity, and continuity,
as further detailed in [12], [13]. In [14], an entanglement

1LOCC, in quantum information theory, involves performing a local
operation on a section of a system and then classically sharing the outcome
with another section, where typically a subsequent local operation occurs
based on the received information.



measure E(ρ) is characterized by an entanglement monotone
function g possessing the following main properties:

• Concavity: Specifically, g(ρ) ≥ λg(ρ1)+ (1−λ )g(ρ2)
for any convex combination of states ρ = λρ1 +(1−
λ )ρ2, where 0 ≤ λ ≤ 1.

• Invariance under local unitary transformations: Mean-
ing g(ULρU†

L ) = g(ρ), where UL is any local unitary
operation.

Some key measures of entanglement include the entropy
of entanglement, Renyi entropy, entanglement of formation,
Negativity, and Concurrence (see Section III for the exact
definition). Given the significance and widespread applica-
tion of concurrence as an entanglement monotone, our paper
will primarily focus on quantum entanglement through the
lens of concurrence.

B. Optimal Control Problem Statement

The role of Optimal Control: Consider a bipartite
system composed of two interacting particles, each with d-
levels (or Hd). Our objective is to manipulate the state of
this system to achieve a high degree of entanglement. The
challenge we address is to devise optimal control strategies
that can navigate the constraints imposed by the intrinsic
and dissipative interactions and the initial conditions to
maximize the entanglement between the two particles. Our
goal is to apply Pontryagin’s Minimum principle (PMP) of
optimal quantum control theory to effectively employ time-
dependent external control fields to steer the system’s time
evolution towards desired states that exhibit high degrees of
entanglement. It means that starting from an initial state ρi,
the target is a maximally entangled set rather than a single
state, i.e., SMES.

For a d-dimensional bipartite system, composed of two
subsystems A and B, a maximally entangled basis can be
constructed using the generalized Bell states or the so-called
maximally entangled states. These states can be defined as

|Ψmn⟩=
1√
d

d−1

∑
j=0

e
2πi
d jn| j⟩A ⊗|( j+m) mod d⟩B

Here, | j⟩A and |( j+m) mod d⟩B are the computational basis
states of subsystems A and B, respectively. The term e

2πi
d jn

introduces a phase that depends on n, and the summation
runs over all basis states from 0 to d−1, creating a superpo-
sition of these states. The set of these maximally entangled
states, {|Ψmn⟩}, for m,n ∈ {0, . . . ,d −1}, forms a complete
orthonormal basis for the d2-dimensional Hilbert space of
the bipartite system. This set can be compactly denoted as

SMES = {|Ψmn⟩ : m,n ∈ {0, . . . ,d −1}} (1)

Each |Ψmn⟩ in SMES is a maximally entangled state, and for
d = 2, this set reduces to the familiar set of four Bell states
in H4 [16].

Problem formulation: The design of optimal quantum
controllers varies significantly based on the chosen cost
functional, the formulation of the Pontryagin-Hamiltonian
function, and the numerical methods employed to satisfy the

PMP optimality conditions. In this context, for a general d-
level quantum system described by

ρ̇(t) = F(ρ(t),u(t)), ρ(t0) = ρ0 ∈ Hρ ⊂ Cd×d (2)

we specifically address a time-minimization problem, de-
noted as (P), which focuses on optimizing the duration of
quantum operations within the constraints of bounded control
input u(t). In Section III, we particularize (2) for Liou-
ville–von Neumann dynamics. The objective is to maximize
the lower bound of the concurrence measure for entangle-
ment, denoted as τ(ρ), in the shortest possible timeframe.
The decision to maximize the tight lower bound τ(ρ) rather
than direct concurrence in our optimal control framework is
supported by both practical and theoretical considerations.
The tight lower bound provides a more computationally
tractable objective for optimization due to its formulation
involving lower-dimensional projections of ρ . This approach
simplifies the complexity inherent in high-dimensional opti-
mization problems. The problem casts as the following:

(P)



min
t f

{
J(t f ) = Γ t f − τ(ρ)

}
subject to
ρ̇(t) = F(ρ(t),u(t)) a.e. t ∈ [t0, t f ]

ρ(t0) = ρ0 ∈ Hρ

u(t) ∈ U := {u ∈ Lm
∞ : ∥u∥

∞
≤ umax} a.e. t ∈ [t0, t f ]

where J is the performance index, Γ is a positive coefficient,
and t f shows the free final time to be optimized. The control
is represented as a measurable bounded function. In this
setup, we assume that all the sets are Lebesque measurable
and the functions are Lebesgue measurable and Lebesgue
integrable. The goal is to obtain a pair of trajectories (ρ∗,u∗)
that is optimal in the sense that the value of the cost func-
tional is the minimum over the set of all feasible solutions.
We will explore the measurement of entanglement using
concurrence, examine the concurrence’s lower bound, and
discuss the distillation process for bipartite quantum states
of arbitrary dimensions.

III. PRINCIPAL FINDINGS AND CORE INSIGHTS

A. Analysis of Quantum Entanglement by Concurrence

We present the investigation of the concept of concurrence
undertaken to delineate the dynamic characteristics exhibited
by bipartite systems. Consider Hd1 and Hd2 as the corre-
sponding Hilbert spaces of systems A and B, respectively. A
bipartite pure state is given by

|ψ⟩=
d1

∑
i=1

d2

∑
j=1

φi j |i j⟩ with φi j ∈ C, ∑
i j

∣∣φi j
∣∣2 = 1 (3)

in computational basis {|i j⟩} of Hd1 ⊗Hd2 . Then, the con-
currence of |ψ⟩ is expressed as [17]

C (|ψ⟩) =
√

2
(

1−Tr(ρA)
2
)

(4)



where ρA = TrB(|ψ⟩⟨ψ|). Following a series of algebraic
computations done in [18], C (|ψ⟩) can be further expressed
as

C (|ψ⟩) = 2

√√√√ d1

∑
i<k

d2

∑
j<l

∣∣φi jφkl −φilφk j
∣∣2· (5)

Proposition 1: Given a pure bipartite quantum state |ψ⟩ ∈
Hd1 ⊗Hd2 , and its unnormalized projection |ψs⊗w⟩ onto a
lower-dimensional subspace s⊗w, expressed as

|ψ⟩s⊗w =
is

∑
i=i1

jw

∑
j= j1

φi j |i j⟩ , s ∈ (1,d1), w ∈ (1,d2)

the concurrence C(|ψs⊗w⟩) of the projected state can be
expressed as a function of the elements of the original state
|ψ⟩

C
(
|ψ⟩s⊗w

)
= 2

√√√√ s

∑
iP<ik

w

∑
jq< jl

∣∣φip jqφik jl −φip jl φik jq

∣∣2 (6)

Proof: The result can be found in [19]. For the sake
of completeness and to facilitate understanding, we detail
the result as follows. The projection |ψs⊗w⟩ onto a lower-
dimensional s⊗w space is defined by selectively summing
over the coefficients φi j of the original state |ψ⟩. Given
the definition of |ψs⊗w⟩, the concurrence C(|ψs⊗w⟩) can be
derived from the general formula for the concurrence of
a bipartite pure state given in (4). For the projected state
|ψs⊗w⟩, the reduced density matrix ρAs⊗w can similarly be
obtained by tracing out the w-dimensional part of the system,
resulting in:

ρAs⊗w = TrBs⊗w (|ψs⊗w⟩⟨ψs⊗w|)

Substituting this into the formula for concurrence, we find:

C(|ψs⊗w⟩) =
√

2
(

1−Tr
(
ρAs⊗w

)2
)

from which one obtains (6).
Remark 1: The determination of the number of distinct

s⊗w projected states from a given bipartite state |ψ⟩ within
Hilbert spaces Hd1 ⊗Hd2 , leverages fundamental combi-
natorial principles, i.e., combinatorial concept of selecting
subsets without regard to the order. Specifically, the binomial
coefficient

(d1
s

)
calculates the ways to choose s dimensions

from an d1-dimensional subsystem, analogous for
(d2

w

)
with

d2 and w. The product
(d1

s

)
×
(d2

w

)
of these coefficients, yields

the total distinct projections, and forms a comprehensive set
of lower-dimensional representations of the original bipartite
state.

Proposition 2: The concurrence squared of a pure state
|ψk⟩, and the concurrence squared of its projections |ψk⟩s⊗w,
are related by

C2 (|ψk⟩) = αsw

[
∑
Psw

C2 (|ψk⟩s⊗w)

]
, (7)

where αsw = (s−2)!(w−2)!(m−s)!(n−w)!
(m−2)!(n−2)! represents the normal-

ization coefficient, and the summation is over all possible
s⊗w projections of |ψk⟩.

Proof: A proof of (7) is obtained in [19]. For read-
ability, we state that the concurrence squared of |ψk⟩ and its
s⊗w projections are related through the normalization factor
αsw. This factor compensates for the combinatorial variations
in selecting s and w dimensions from the subsystems. The
summation over ∑Psw C2(|ψk⟩s⊗w) consolidates the entangle-
ment across all projections into a unified measure, adjusted
by αsw to accurately reflect the original state’s entanglement.
Thus, αsw and the summation process ensure that C2(|ψk⟩) is
effectively represented through its projections’ entanglement
contributions.

Proposition 3: Given a mixed quantum state ρ , the con-
currence C(ρ) can be assessed through its projections onto
lower-dimensional subspaces, specifically via the concur-
rence of unnormalized bipartite s⊗w mixed states ρs⊗w. This
relationship is encapsulated by

C(ρs⊗w) = min

{
∑
k

pkC (|ψk⟩s⊗w)

}
, (8)

where the minimization is over all possible
s ⊗ w pure-state decompositions of ρs⊗w =

∑
k

pk|ψk⟩s⊗w ⟨ψk|s⊗w, ∑
k

pk = tr (ρs⊗w).

Proof: See [20], [19], and references therein. For read-
ability and completeness, we include the following proof.
The concurrence C(ρ) for a mixed state ρ is determined
via the convex roof extension, which requires finding the
infimum over all ensemble realizations of ρ , i.e.,

C (ρ) = inf
{pk,|ψk⟩}

∑
k

pkC (|ψk⟩) (9)

This process typically involves a complex optimization prob-
lem due to the high-dimensional nature of ρ . To simplify
this, we consider projections of ρ onto lower-dimensional
subspaces s ⊗ w, resulting in the mixed state ρs⊗w. Each
projection reduces the complexity of the state while retaining
essential information about its entanglement structure. The
concurrence C(ρs⊗w) of these projections can be calculated
more straightforwardly due to the reduced dimensionality.
The critical insight is that the concurrence of ρ can be
approached by aggregating the concurrence measures of
its lower-dimensional projections. For a mixed state ρ , the
unnormalized bipartite s⊗w mixed states are defined as

ρs⊗w =A⊗BρA†⊗B†, A=
s

∑
ip=1

∣∣ip
〉〈

ip
∣∣ , B =

w

∑
jq=1

∣∣ jq〉〈 jq
∣∣

which has the matrix form of

ρs⊗w =

(ρip jq ,ip jq ρip jq ,ip jl ρip jq ,ik jq ρip jq ,ik jl
ρip jl ,ip jq ρip jl ,ip jl ρip jl ,ik jq ρip jl ,ik jl
ρik jq ,ip jq ρik jq ,ip jl ρik jq ,ik jq ρik jq ,ik jl
ρik jl ,ip jq ρik jl ,ip jl ρik jl ,ik jq ρik jl ,ik jl

)
(10)

for which the concurrence is (8). This method ensures that
C(ρ) is effectively quantified by considering the contribu-
tions of entanglement from all relevant lower-dimensional
subspaces.

Proposition 4: A tight lower bound of concurrence can be
obtained by

τs⊗w(ρ) = αsw ∑
Psw

C2 (ρs⊗w) (11)



Proof: From [19], combining (7) and (8), and (9),
results in

C2 (ρ)≥ αsw

[
∑
Psw

C2 (ρs⊗w)

]
(12)

Inequality (12) represents an analytical lower bound of
squared concurrence for bipartite mixed states. Therefore,
we can deduce that

C2 (ρ)≥ τs⊗w(ρ) (13)

The lower bound indicated in (11) is a tight lower bound,
and is strictly stronger in comparison with its counterparts,
[20], [21]. For instance, in [20], an analytical lower bound is
obtained as τ2⊗2(ρ), which is only a special case of (13). In
addition, the lower bound in (13) is an stronger criterion to
detect positive partial transposition (PPT) entangled states.

B. Entanglement Distillation

Quantum entanglement distillation is a pivotal protocol
designed to counteract the adverse effects of noisy channels
in quantum information processing. Its primary objective is
to enhance and improve quantum entanglement, crucial for
the reliable quantum information transmission. In this sub-
section, we present some results regarding the distillability
of entangled states.

Distillability of an Entangled Mixed State: In practical
terms, determining the distillability of an entangled mixed
state presents a significant challenge. However, a fundamen-
tal connection between the distillability of a mixed state and
its ability to be transformed into the singlet form has been
revealed in [22]. Specifically, a mixed state is said to be
distillable if it can be successfully distilled into the singlet
form, a condition that necessarily violates the Positive Partial
Transpose (PPT) criterion. This context gives rise to two
distinct categories of entanglement:

• “Free” entanglement: States that can be distilled into
the singlet form, making them suitable for utilization in
quantum communication.

• “Bound” entanglement: States that resist conversion into
the beneficial singlet form, rendering them unsuitable
for quantum communication purposes.

In this regard, the lower bound of concurrence provides
a concise representation of the structure of entanglement.
It serves two purposes: facilitating the assessment of free
entanglement, and aiding in the classification of mixed-state
entanglement. Motivated by the above, we can now state
the following results regarding the distillability of quantum
states.

Proposition 5: Let ρ⊗N = ρ ⊗·· ·⊗ρ︸ ︷︷ ︸
N

represent the quan-

tum state of a composite system consisting of N identical
subsystems, each initially described by the density matrix
ρ ∈Hd1 ⊗Hd2 . From the lower bound of concurrence (13), it
can be deduced that ρ is distillable if the following condition
holds

τ2⊗2
(
ρ
⊗N)> 0, N ∈ Z+ (14)

Proof: See [22].
Proposition 6: The results for Proposition 5 holds also if

the projectors A and B map ρ⊗N to one 2-dimensional and
one 3-dimensional space, respectively, i.e.,

τ2⊗3 > 0, N ∈ Z+ (15)
Proof: See [22].

Proposition 7: If (14) holds, then (15) also holds, how-
ever, the inverse is not true.

Proof: See [19].
Remark 2: One must note that not all entangled states

are detected by the distillability criterion since the condition
given in Proposition 5 does not detect bound entanglement,
and can detect most of the free entanglement. Bound en-
tangled states, although entangled, cannot be utilized as a
resource for quantum communication tasks unlike their free
entangled counterparts. Therefore, the states that satisfy the
distillability condition are highly valuable in the realm of
quantum information. With a sufficient quantity of such
states, it becomes possible to transform them, through local
operations, into any desired entangled state, thereby enabling
a diversity of potential applications.

Remark 3: Note that the primary goal of mapping bi-
partite system to two qubits is to make the examination
of entanglement easier since it is a challenging task to
detect entanglement in systems with dimensions greater than
2 ⊗ 3 due to lack of necessary and sufficient conditions
of entanglement in these systems. However, as mentioned
earlier, there exist necessary and sufficient conditions for
systems of dimensions 2⊗2 and 2⊗3.

C. Necessary Optimality Conditions in the form of Pontrya-
gin Minimum Principle

In this subsection, we delve into the solution of optimal
control problem expressed in II-B. We tackle the optimal
control problem (P) that prioritizes minimizing time. This
problem involves bounded control and aims to maximize the
lower bound of concurrence. The assessment of concurrence
involves mapping the bipartite system to a two-qubit system.

System dynamics: We examine the time evolution of the
density operator within a closed quantum system, adhering
to the Liouville-von Neumann equation:

ρ̇(t) =− i
h̄
[H(u(t)),ρ(t)]

where the quantum mechanical Hamiltonian H(u(t)) = H0+
HC(u(t)) comprises of the drift H0 and time dependent con-

trol Hamiltonian HC (u(t)) =
m
∑

l=1
Hlul (t) which indicates the

interaction of the system with the control fields u(t) through
the interaction Hamiltonians Hl . This evolution transpires
through a unitary process, denoted as ρ(t) = U(t)ρ0U†(t).
The primary objective in this controlled evolution is to
transfer an initial state ρ0 utilizing the unitary operators
U(t) in a manner that attains a maximally entangled state.
Concurrently, the entanglement measure is optimized within
an optimal time frame.



Remark 4: It is crucial to note that the unitary transforma-
tion involved in ρMES =U(t)ρ(0)U†(t) is a global operation,
acting uniformly on all particles within the system. This
global transformation stands distinct from a unitary local
transformation, which only influences specific particles and
cannot increase the overall entanglement of ρ(0).

Saturation function for handling input constraints: In
order to account for control constraints, certain adjustments
must be incorporated into the existing formulation (see
details in [23]). Initially, it is necessary to establish a new
unconstrained control variable ū(t) for the control constraint
existing in the problem, with each input ul(t) falling within
the interval [umin,umax]. The concept involves substituting
the control constraint with a smooth and monotonically
increasing saturation function, such that u = Φ(ū), where
each entry of entry satisfies

Φl(ūl) = umax −
umax −umin

1+ exp(sūl)
, s =

c
umax −umin

in which c is a constant. The benefits of employing a
saturation function lie in its definition within the range
ul(t)∈ [umin,umax], and it gradually approaches the saturation
limits asymptotically as ūl tends towards infinity (ūl → ∞).

Necessary Optimality Conditions: By indication the
time-varying Lagrange multiplier vector, whose elements are
called the costates adjoint variables of the system, we now
construct the Pontryagin Hamiltonian function H defined
for all t ∈ [t0, t f ] as

H (ρ (t) ,u(t) ,Λ(t) , ū(t),β (t), t) = Tr
(
Λ

† (t)F (ρ (t) ,u(t))
)

+β (t)(u(t)−Φ(ū(t)))
(16)

Here, β (t) is an additional multiplier to consider the new
equality constraint. According to the Pontryagin’s minimum
principle, the optimal state trajectory ρ⋆, optimal control u⋆,
and the corresponding Lagrange multiplier Λ⋆ must minimize
the Pontryagin Hamiltonian function, i.e.,

H (ρ⋆,u⋆,Λ⋆, ū,β , t)≤ H (ρ⋆,u,Λ⋆, ū,β , t) (17)

for all time t ∈ [t0, t f ], and for all permissible controls u(t) ∈
Ω. Then, from the first-order optimality conditions of the
PMP, one obtains the optimal control by

∂H

∂u
= Tr

(
Λ

†⋆ (t)
∂F (ρ (t) ,u(t))

∂u

)
+β (t) = 0 (18)

It is worth noting that in some cases, the optimality con-
dition for the control problem involves a transcendental
form, making it difficult or impossible to find a closed-form
solution for the control input u(t). Since we introduced a
new unconstrained control, it necessitates the inclusion of
an extra equation in the optimality conditions related to the
new control variable as

∂H

∂ ū
=−β (t)

∂Φ(ū)
∂ ū

= 0 (19)

We now express the necessary optimality conditions for state
and adjoint variables as follows

ρ̇
⋆ (t) =

∂H (ρ⋆ (t) ,u⋆ (t) ,Λ⋆ (t))
∂Λ

=−i [H (u⋆ (t)) ,ρ⋆ (t)]

Λ̇
⋆ (t) =−∂H (ρ⋆ (t) ,u⋆ (t) ,Λ⋆ (t))

∂ρ
=−i

[
H (u⋆ (t)) ,Λ⋆† (t)

]
(20)

In addition, we have the following transversality conditions
at final time t f :

Λ
(
t f
)
=

∂J
∂ρ
(
t f
) =−

∂τ
(
ρ
(
t f
))

∂ρ
(
t f
)

H
(
t f
)
=− ∂J

∂ t f
=−Γ

(21)

We also need to consider the following equality constraint
in our boundary value problem:

u(t)−Φ(ū) = 0 (22)

Proposition 8: Consider the indicated optimal control
problem (P). Let u⋆(t) be an optimal control and ρ⋆(t) the
corresponding state trajectory response. Then, there exist the
multiplier Λ⋆(t) that together with β :

[
t0, t f

]
→R satisfy the

PMP necessary conditions (17)-(22).
Proof: Following the optimality conditions [24] and

also [23], the Pontryagin Hamiltonian forms as written in
(16) where an additional multiplier needs to be taken into
account in order to deal with control constraints. Then,
the necessary conditions according to the PMP can be
indicated. In addition, due to the input constraints, we have
an additional optimality condition and an equality constraints
to take into account.

D. Physics-Informed Neural Network (PINN) method for
generic differential matrix equation

Consider a generic differential matrix equation
F (t,y(t) , ẏ(t)) = 0, where F : R×Rn×n ×Rn×n → Rn×n

is a given map, and y(t) ∈ Rn×n is the state matrix which
may (or may not) have some known values ytk at time
tk. Based on [25], [24], but now extended to matrix case,
we aim to obtain an approximated matrix solution y(t)
through a matrix function g(τ) and a set of switching
(scalar) functions Ωk. To this end, we model g(·) by n
single hidden layer neural networks. More precisely, in
[24](Algorithm 1), g is extended to g = Tr

(
σ̄̄σ̄σT (τ)ξξξ

)
, with

ξξξ ∈ Rn×n, and σ̄̄σ̄σT = [σ1σ1σ1
T , . . . ,σnσnσn

T ], σiσiσi
T (τ) = σT

i (τ)⊗ In×n,
where σT

i (τ) =
[
σi
(
ω i

1τ +bi
1
)
, . . . ,σi

(
ω i

Lτ +bi
L
)]

, and σi
is a non-linear activation function applied to the weighted
sum of the domain τ with the weight ω i

l and bias bi
l .

The output of each neuron in the hidden layer is then
multiplied by another set of weights ξl and summed up
to produce the output. Therefore, the differential equation
can be rewritten in the domain of activation function as
F̃(τ,g(τ), ġ(τ)) = 0. By substituting ġ(τ) = cTr

(
σ̄̄σ̄σ ′T (τ)ξξξ

)
,

with σiσiσi
′ = dσiσiσi(τ)

dτ
, the differential equation can solely be

written in terms of unknowns, so F̃(τ,ξξξ ) = 0, where F̃(·)
has the same dimension of F(·) Following [24](Algorithm



1), the next step is to discretize τ into N points, and express
the obtained set of differential equations as loss functions at
each point as LT (ξξξ ) =

[
F̃ (τ0,ξξξ ) , . . . , F̃ (τN ,ξξξ )

]
and obtain

the unknown ξξξ , by computing the solution of L= 0.

In line with the proposed approach, the following set of
loss functions need to be minimized, where all variables
(including coefficients), are now approximated by neural
networks:

Lρ = ρ̇ + i [H (u⋆ (t)) ,ρ⋆ (t)]

Lλ = Λ̇
† + i

[
H (u⋆ (t)) ,Λ⋆† (t)

]
Lu = Tr

(
Λ

†⋆ (t)
∂F (ρ (t) ,u(t))

∂u

)
+β (t)

Lū =−β (t)
∂Φ(ū)

∂ ū
Lφ = u−φ(ν)

LH = H
(
t f
)
+Γ

L
Λ(t f ) = Λ

(
t f
)
+

∂τ
(
ρ
(
t f
))

∂ρ
(
t f
)

IV. NUMERICAL VALIDATION OF OPTIMAL
ENTANGLEMENT CONTROL

In this section, we delve into the entanglement control
approach developed in the preceding section, utilizing the
configuration presented in Fig. 1. We initially consider the
internal Hamiltonian in the absence of the radiation field, rep-
resented as H0 = σz ⊗σz. The control Hamiltonian, denoted
by HC(t), is orchestrated using a local laser field denoted by
ul(t), and the coupling Hamiltonians Hl , for l = 1,2,3 are
constructed from a linear combination of Pauli matrices as
follows:

H1 = σx ⊗σy +σz ⊗σz

H2 = σx ⊗σz +σz ⊗σx

H3 = σy ⊗σz +σz ⊗σ

where σx =

(
0 1
1 0

)
,σy =

(
0 −i

i 0

)
,σz =

(
1 0
0 −1

)
. We

consider a general superposition state |ψ(t)⟩ as a linear com-
bination of the basis states |00⟩, |01⟩, |10⟩, and |11⟩, which
are the possible tensor product combinations of individual
states for the two qubits, expressed as

|ψ (t)⟩= α00 |00⟩+α01 |01⟩+α10 |10⟩+α11 |11⟩

for which the density operator is ρ = |ψ⟩⟨ψ|. Initiating from
any initial state, we explore cases where specific coefficients
(αi j) lead to well-known entangled states, in this case Bell
states. The Bell states can be expressed as the following
combinations of the basis states,

|Φ+⟩= 1√
2
(|00⟩+ |11⟩), |Φ−⟩= 1√

2
(|00⟩− |11⟩)

|Ψ+⟩= 1√
2
(|01⟩+ |10⟩), |Ψ−⟩= 1√

2
(|01⟩− |10⟩)

These Bell states showcase specific patterns of entanglement
between the qubits, and provide unique insights into quantum
correlations that defy classical intuition.

In what follows, we numerically verify the state population
transition from the initial state to a maximally entangled
state. In this regard, we choose a separable state, however,
with a small perturbation. This perturbation is necessary to
avoid the issue of starting at a critical point where the gradi-
ent of the entanglement measure is zero. To investigate the
dynamics of quantum entanglement under optimal control,
we define an initial state that is predominantly separable
but includes a minor perturbation towards entanglement.
This approach ensures that the state is both normalized
and valid for quantum mechanical analysis, and facilitates a
smooth transition from separability to entanglement through
the application of control fields. Given the Bell state |Φ+⟩=

1√
2
(|00⟩+ |11⟩), we construct the initial state |ψi⟩ as a su-

perposition of the separable state |00⟩ and a slight admixture
of |Φ+⟩, introducing a perturbation ε that nudges the system
away from pure separability. The state is expressed as

|ψi⟩=
1√

(α + ε)2 + ε2
((α + ε)|00⟩+ ε|11⟩) . (23)

We select ε to represent an small, but non-negligible in exact
computations, component of the entangled state, e.g., here we
consider of order 10−2 This initial state is deliberately chosen
to be close to a separable state, with a minor entanglement
component, to enable the study of entanglement evolution
under optimal control. It serves as a foundation for examining
how subtle perturbations in initial conditions can influence
the system’s trajectory towards maximally entangled states.
We first plot the evolution considering a generic control func-
tion ul(t) = cos

(
t + π

l

)
. As depicted in Fig. 2, the evolution

of the quantum state populations and entanglement in a two-
qubit system is examined under the influence of coherent
dynamics. The left panel elucidates the oscillatory population
dynamics among the basis states, indicative of coherent
quantum behavior and the reversible nature of the population
exchange. In the right panel, the corresponding concurrence
evolution traces the cyclical emergence and diminishment
of entanglement, highlighting the efficacy of time-dependent
control fields in modulating quantum correlations. Further
optimization of control protocols has been explored, as
illustrated in Fig. 3, where the left graph captures the popu-
lation transfer between the |00⟩ and |11⟩ states over time.
This transfer evidences the dynamic allocation of system
resources under optimal control. The right graph in Fig. 3
showcases a progressive rise in concurrence, revealing a con-
sistent amplification of entanglement culminating in a plateau
that suggests a steady-state of near-maximal entanglement
has been achieved. These dynamics underscore the capacity
of optimal control techniques to steer the system toward
a desired entanglement resource state, opening avenues for
enhanced quantum information processing and computation.



Fig. 2: Coherent Dynamics and Entanglement in a Two-Qubit
System. Left: Evolution of the populations for the basis states |00⟩,
|01⟩, |10⟩, and |11⟩ of a two-qubit quantum system over time,
illustrating the oscillatory behavior due to the system’s coherent
dynamics. Each curve represents the population of a corresponding
quantum state, indicating the transient dominance of certain states at
various time intervals. Right: The concurrence evolution of the same
system, demonstrating the periodic generation and annihilation of
quantum entanglement. The concurrence oscillates between 0 (no
entanglement) and values close to 1 (near-maximal entanglement),
reflecting the impact of time-dependent control fields on the entan-
glement properties of the system.

Fig. 3: Evolution of Quantum State Populations and Entanglement
via Optimal Control. Left: The graph demonstrates the time-
dependent variation of the populations for the states |00⟩ and |11⟩,
showing the transfer of population between these two states as
a function of time. Right: The concurrence evolution exhibits a
monotonic increase, signifying the enhancement of entanglement
between the two qubits under the applied optimal control strategy.
The concurrence approaches a plateau as the system reaches a near-
maximally entangled state.

V. CONCLUSION

In this paper, we have streamlined quantum optimal con-
trol for entangling bipartite systems, utilizing the indirect
Pontryagin Minimum Principle to maximize an enhanced
lower bound of entanglement. Our framework, empowered
by a neural network approach, can efficiently produce en-
tangled states. The insights gained lay the groundwork for
advanced control in complex quantum systems and could
greatly benefit the integration with current quantum technolo-
gies. This refined control mechanism promises significant
strides in quantum networking and computing. Future work
will extend these strategies to high-dimensional and mul-
tipartite systems, with considerations for dissipative effects
and noise in realistic scenarios.
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