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ABSTRACT

We describe a novel approach for developing realistic dig-
ital models of dynamic range compressors for digital audio
production by analyzing their analog prototypes. While re-
alistic digital dynamic compressors are potentially useful for
many applications, the design process is challenging because
the compressors operate nonlinearly over long time scales.
Our approach is based on the structured state space sequence
model (S4), as implementing the state-space model (SSM)
has proven to be efficient at learning long-range dependen-
cies and is promising for modeling dynamic range compres-
sors. We present in this paper a deep learning model with S4
layers to model the Teletronix LA-2A analog dynamic range
compressor. The model is causal, executes efficiently in real
time, and achieves roughly the same quality as previous deep-
learning models but with fewer parameters.

Index Terms— Virtual analog modeling; State-space
model; Dynamic range compressor.

1. INTRODUCTION

Virtual analog modeling (VA modeling) concerns the digital
simulation of analog audio devices like synthesizers and au-
dio effect units [1, 2]. There has been a trend of using deep
learning (DL) techniques in VA modeling, transforming VA
modeling tasks to be data-driven by utilizing input and output
waveform pairs processed by the analog system. Introduc-
ing VA modeling to DL may bring some research benefits.
While these approaches can be used to emulate analog au-
dio systems, they can also be used to construct differentiable
proxies [3], facilitating tasks such as automatic mixing [4].

Until now, applications of DL to VA modeling have
focused mostly on vacuum-tube amplifiers [5, 6] and distor-
tion pedals [7, 8]. In contrast, dynamic range compressors
(DRCs), which are non-linear, time-invariant, and possess
longer temporal dependencies, have received less attention.
Existing attempts include the use of autoencoders [9], using
temporal convolutional networks (TCNs) [10], and gray-
box models based on DRC implementation structures [11].
While these attempts investigated various aspects of the topic,

there is still room to improve the performance. The output
generated by some models still exhibits artifacts, and some
best-performing models either rely on hard-coded compo-
nents, are non-causal, or require a larger number of neural
network parameters. The need for a model with greater objec-
tive accuracy and perceptual quality that is causal, parameter
efficient, and real-time capable remains.

In 2021, Gu et al. proposed S4, which implements an in-
finite impulse response (IIR) in the state-space form for long-
sequence modeling [12]. It has proven powerful because it
can have an arbitrarily long receptive field. It can also pre-
serve state information between samples or buffers to process
arbitrarily long sequences. Because of this, S4 seems promis-
ing for improving a model’s performance in modeling DRCs.

This work proposes a model that uses S4 layers to char-
acterize an analog DRC, namely the Teletronix LA-2A com-
pressor. This work introduced SSM to model an analog
non-linear audio effect, exploring the effectiveness of using
SSM in VA modeling. Various experiments are conducted
to evaluate our model’s objective and subjective performance
and real-time evaluation capabilities. The proposed model
provides roughly the same quality as previous deep-learning
models but with a causal formulation and fewer parameters.
It can also perform real-time inference given a specific audio
buffer size, which is feasible in an audio production scenario.

2. BACKGROUND

2.1. Structured State Space Sequence Model (S4)

S4 is a neural network layer that implements an IIR system
in state-space form. An N th-order discrete SSM mapping of
a mono signal to another mono signal can be expressed as
follows, where u is the input signal, x is the intermediate sig-
nal, y is the output signal, and A(N ×N),B(N × 1),C(1×
N),D(1× 1) are state-space matrices expressing linear map-
pings.

x[t] = Ax[t− 1] +Bu[t] (1)
y[t] = Cx[t] +Du[t] (2)
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Finite impulse response (FIR) systems like convolu-
tional neural networks (CNNs) have finite-length impulse
responses. Since S4 is an IIR system, its impulse response
is infinite, and its impulse response decay and receptive field
are arbitrarily long. S4 layers are also parameter efficient,
given that for filters with a similar effect, IIR systems require
fewer parameters. There is an even more parameter-efficient
S4 variant called S4D, with a diagonalized matrix A [13].

Inside an S4 layer, SSM matrices are complex-valued, al-
lowing them to efficiently generate an impulse response that
is as long as the input sequence using some mathematical
techniques. The input sequence is filtered using Fast Fourier
transforms, producing the output sequence and state informa-
tion. S4 can process data sequences with state information
preserved. It can calculate the internal state at the end of
one segment, allowing the next buffer to be computed without
discontinuities. For a very long sequence, one can input the
entire sequence directly or section the sequences into small
buffers and pass the state information. The entire recursive
process is causal.

2.2. Feature-wise Linear Modulation

Analog audio devices usually feature external controls that
modify these devices’ operation. Digital emulations should
also capture this behavior. To model DRC controls such as
gain reduction, feature-wise linear modulation (FiLM) lay-
ers can be used [14], following the approach of some other
VA modeling research [10]. Given an external information
vector, FiLM first converts it into two vectors, γ and β, us-
ing a multi-layer perceptron (MLP). The output y is given by
y = γ ⊙ x + β, where x is the input and ⊙ is element-wise
vector multiplication. FiLM layers enable adaptation of the
model’s behavior as a function of external controls.

3. METHODS

3.1. Proposed Model

Our S4-based model is illustrated in Fig. 1. At first, the input
is expanded into c data channels. Unlike how CNN layers are
conventionally implemented in DL, S4 layers are not com-
bined or mixed across data channels. Instead, every linear
layer applies affine transformations on the data’s channel di-
mension, thus creating a mix or combination of channel data
on a frame-by-frame basis.

The design is essentially a chain of S4 blocks, illustrated
at the right of Fig. 1. Each block consists of a linear layer that
mixes audio channels from c to c, a PReLU layer to introduce
non-linearity, an S4D layer, a BatchNorm1D layer, a FiLM
layer to introduce audio effect controls, another PReLU layer,
and a residual connection. All S4 layers are S4D layers [13].
The BatchNorm1D layers treat the channel dimension as the
feature dimension. An independent MLP processes external
audio effect controls once to create control-based information

Fig. 1: The proposed S4 model. It mainly comprises a stack
of S4 blocks, where the S4 layer models the temporal dimen-
sion, the linear layer models the channel dimension, the FiLM
layer applies external controls, and PReLU layers apply non-
linearities.

before processing audio. This control information is fed to all
FiLM layers identically. Each FiLM layer has its own inde-
pendent MLP to convert control information to γ and β and
apply them to the data’s channel dimension.

After the stack of S4 blocks, the final linear layer contracts
audio channels from c to 1. The final tanh layer softly limits
the output data to ±1.0.

3.2. Experiment

We tested our model with four S4 blocks, 16 or 32 inner audio
channels, and fourth or eighth S4D SSM order. There are four
configurations in total. Models are named in the format of
ssm-c*-f*, where cmeans the inner audio channel number
and f means S4 SSM order. Our training code and audio
samples are available online 1.

The SignalTrain dataset [15] is used to train, validate,
and test those models. The SignalTrain dataset comprises au-
dio input and output data processed by the Teletronix LA-2A
compressor (LA-2A) with different gain reductions and com-
pressing/limiting switch values. All audio data are mono sam-
pled at 44.1 kHz. There are 87 540 s training data. Phase in-
version is the only data augmentation technique applied with
a probability of 0.5. To accommodate the SignalTrain dataset,

1https://int0thewind.github.io/s4drc/

https://int0thewind.github.io/s4drc/


the model takes audio waveforms and audio effect controls as
32-bit floating point vectors. The input audio is mono with an
amplitude range of ±1.0.

Models are trained using the SignalTrain dataset training
split with batch size 32 in 60 epochs. The training audio
data are segmented into sections of length 65 536 (≈1.598 s
at 44.1 kHz). No state information is preserved between au-
dio buffers. Each buffer is processed independently. The
learning rate is 0.001 and is reduced by a factor of 10 af-
ter ten epochs of no improvement in validation loss. The
optimizer is AdamW, with default function arguments from
PyTorch (v2.0.0). All S4D layer parameters’ weight de-
cays are set to zero. The training loss function combines
both time and frequency domain loss and is the sum of
mean-averaged error (MAE) with multi-resolution STFT
(multi-STFT) loss [16], with default function arguments from
auraloss (v0.4.0) [17]. Both parts are weighted equally.

Models are tested using the SignalTrain dataset testing
split. The testing audio data are segmented with length 223

(≈190.218 s at 44.1 kHz) to test the model’s long-term gen-
eralizability. The entire buffer is fed into the model without
slicing it. When testing, MAE, mean-squared error (MSE),
error-to-signal ratio (ESR) loss with a pre-emphasis filter
of H(z) = 1 − 0.85z−1 plus DC loss (ESR+DC) [18],
multi-STFT loss with the same configuration in testing,
loudness unit full scale (LUFS) difference with the ITU-R
BS.1770 perceptual loudness recommendation, and Fréchet
Audio Distance (FAD) [19] are evaluated. MAE, MSE, and
ESR+DC loss are time-domain criteria, and multi-STFT loss
is a frequency-domain criterion. ESR+DC loss may reflect
the audio perceptual difference in the time domain, LUFS
provides the loudness error, and FAD models perceptual
similarity. We took Steinmetz and Reiss’ TCN and LSTM
models [10] as the baseline, as S4 is closely related to TCN,
and our model structure and training procedure are close to
them.

4. RESULT AND ANALYSIS

4.1. Objective Loss

The test losses of our models and various baseline models
are presented in Table 1. Our ssm-c32-f8 model has the
best multi-STFT loss, and ssm-c16-f8 has the best LUFS
difference. Other best metrics are from TCN-300-N and
LSTM-32, yet we found that our ssm-c32-f4 model has
very close MAE and MSE, and our ssm-c32-f8 has very
close FAD.

We found the time domain losses of the ssm-c16-f8
and ssm-c32-f8 models to be greater than those of our
other models. Given that those higher loss values are from
models with higher SSM filter orders, training a higher-order
SSM might be more mathematically complicated.

We believe that our ssm-c32-f4 model’s performance

is the most balanced. The ssm-c32-f4 model has the best
time-domain losses among all our models and outperforms all
causal TCN models in all metrics. It provides MAE and MSE
performances that are close to those of TCN-300-N, which
uses three times more model parameters than ssm-c32-f4
and is not causal. It also has a close FAD performance com-
pared to LSTM-32, which cannot perform in real time and
has higher time-domain and frequency-domain loss. Al-
though the ssm-c32-f8 and ssm-c16-f8 models have
better multi-STFT loss and LUFS, their time-domain loss
is much higher than that of the ssm-c32-f4 model. The
ssm-c32-f4 model has relatively good objective accuracy
that is causal, parameter efficient, and real-time capable.

4.2. Subjective Listening Study

A multi-stimulus listening test similar to MUSHRA [20]
was conducted to further evaluate the model’s performance.
The testing interface is webMUSHRA [21]. It allows online
assessment, and participants can instantaneously switch be-
tween clips to facilitate the comparison of minute differences.
Test participants score each audio clip based on the similarity
to the reference and the effectiveness of the clip capturing
the DRC’s characteristics, with the range from 0 to 100; the
higher, the better.

Eleven passages from the SignalTrain dataset testing split
were included in the test, including strings, piano, guitar, and
band clips. Each audio clip has 10 seconds. Three models
were tested: TCN-300-C and LSTM-32 from Steinmetz and
Reiss [10] and our ssm-c32-f4. We also include the orig-
inal output clip in the test as a reference. There are 17 valid
responses. The results are illustrated in Fig. 2.

Fig. 2: Subjective Evaluation Scores among all Clips

Generally, we found no immediately distinguishable re-
sults from the three models we tested. All models show rel-
atively the same median subjective scores and the same sub-
jective score lower bounds, with our ssm-c32-f4 model
showing fewer outliers. As most participants demonstrated, it
is hard to distinguish differences between testing clips, mak-



Model Params MAE MSE ESR+DC Multi-STFT LUFS FAD

ssm-c16-f4 8.2k 1.012E-02 3.206E-04 4.003E-01 6.160E-01 6.249E-01 4.813E-02
ssm-c16-f8 9.3k 1.142E-01 2.432E-02 3.685E+00 6.588E-01 3.518E-01 4.318E-02
ssm-c32-f4 16.9k 8.737E-03 2.879E-04 4.065E-01 4.881E-01 4.766E-01 3.921E-02
ssm-c32-f8 18.9k 1.157E-01 2.503E-02 3.676E+00 4.785E-01 4.502E-01 3.713E-02

TCN-100-N 26k 1.580E-02 5.580E-04 2.331E-01 7.980E-01 1.155E+00 1.599E+00
TCN-300-N 51k 7.660E-03 1.350E-04 2.913E-02 6.160E-01 6.020E-01 1.062E-01
TCN-1000-N 33k 1.200E-01 2.650E-02 - 7.690E-01 9.340E-01 1.762E+00
TCN-100-C 26k 1.920E-02 1.390E-03 1.880E+00 7.840E-01 1.225E+00 1.903E+00
TCN-300-C 51k 1.440E-02 1.140E-03 1.800E+00 6.200E-01 7.610E-01 1.036E-01
TCN-1000-C 33k 1.170E-01 2.570E-02 3.150E+00 7.100E-01 8.990E-01 1.959E+00
LSTM-32 5k 1.100E-01 2.290E-02 1.870E+00 5.650E-01 3.610E-01 2.741E-02

Table 1: Our model’s testing metrics and baseline models metrics from Steinmetz and Reiss [10]. Our models are on the top.
c means inner audio channel number. f means S4 SSM order. For TCN models, N means non-causal. C means causal. Bold
numbers are the global best metrics for all models. Italic numbers are the local best.

ing the scoring hard. To conclude, there appears to be no
significant difference in the ratings between our and baseline
models. The subjective listening study demonstrates a rela-
tively close model performance between our S4 models and
the previous TCN and LSTM models.

4.3. Real-time Performance

A real-time implementation requires that audio be processed
incrementally in buffers to achieve a finite latency and that
buffer computation time is less than the playback time. To
evaluate computation time, we processed multiple buffers us-
ing six sizes of 128 through 4096 samples with an Apple
M1 Max CPU core (no GPU) and the ssm-c32-f4 model
(44.1 kHz sampling rate), with state-passing. Note that S4
layers can preserve state from one block to the next, eliminat-
ing discontinuities at block transitions.

We define “speed ratio” as the audio playback time di-
vided by the buffer stream inference time in PyTorch’s in-
ference mode. A speed ratio higher than 1.0 means the infer-
ence speed is faster than the audio playback speed. The speed
ratio on those buffer streams is presented in Fig. 3.

Fig. 3: Speed Ratios in Different Buffer Lengths.

The result shows that when the buffer size is greater than

256, the inference speed is faster than real time. Our imple-
mentation runs around three times as fast as real time using
4096 sample buffers. This shows that our model can perform
in real time and that the implementation is feasible in an audio
production scenario.

Our S4 implementation produces impulse responses to
process audio buffer-by-buffer rather than implementing SSM
directly to process audio sample-by-sample. The current S4
implementation might not portray the fastest real-time per-
formance possible. The learned compressor could also be
implemented by applying the state space updates sample-by-
sample, reducing latency. We estimate this approach requires
around 10M FLOPs per sample, so a single core capable of
5 GFLOPS should run faster than real time and perhaps even
faster than the block-based approach.

5. CONCLUSION

We presented a model that uses S4 layers to model an ana-
log DRC. Our model’s objective performance and subjective
performance are close to those of previous models but with
a causal formulation and smaller model parameter space.
Specifically, our model can perform in real time on a CPU
core with a buffer size greater than 256, which is easily feasi-
ble in an audio production scenario. We showed that a model
with SSM can efficiently emulate an analog non-linear audio
effect with long temporal dependencies, ensuring causality
and a small parameter space. While, in principle, SSMs
process data sequences sample by sample, the current S4
implementation can only process data buffer by buffer. A
promising goal of future work could be the utilization of
state-space matrices to process audio data sample-by-sample
to evaluate the fastest real-time performance.
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