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Abstract—This paper presents CHATDBG, the first AI-
powered debugging assistant. CHATDBG integrates large lan-
guage models (LLMs) to significantly enhance the capabilities and
user-friendliness of conventional debuggers. CHATDBG lets pro-
grammers engage in a collaborative dialogue with the debugger,
allowing them to pose complex questions about program state,
perform root cause analysis for crashes or assertion failures, and
explore open-ended queries like why is x null?. To handle
these queries, CHATDBG grants the LLM autonomy to take the
wheel and drive debugging by issuing commands to navigate
through stacks and inspect program state; it then reports its
findings and yields back control to the programmer. Our CHAT-
DBG prototype integrates with standard debuggers including
LLDB, GDB, and WinDBG for native code and Pdb for Python.
Our evaluation across a diverse set of code, including C/C++ code
with known bugs and a suite of Python code including standalone
scripts and Jupyter notebooks, demonstrates that CHATDBG
can successfully analyze root causes, explain bugs, and generate
accurate fixes for a wide range of real-world errors. For the
Python programs, a single query led to an actionable bug fix
67% of the time; one additional follow-up query increased the
success rate to 85%. CHATDBG has seen rapid uptake; it has
already been downloaded nearly 30,000 times.

I. INTRODUCTION

Debuggers help programmers identify and fix bugs by
letting them investigate program state and navigate program
execution. Debuggers for mainstream languages, including
GDB [1], LLDB [2], and WinDBG (for C, C++, and Rust),
jdb (Java), Pdb (Python), and the Chrome or Firefox debuggers
(for JavaScript), generally provide the same functionality. In
particular, most debuggers support observing program execu-
tion via tracing and reporting when a program reaches a given
line or function of source code; interrupting execution and
returning control to the debugger when the program reaches a
given line or function via breakpoints, when a particular con-
dition is true via conditional breakpoints, or when a variable
changes via watchpoints (a.k.a. data breakpoints); inspecting
local variables, globals, heap objects, and backtraces of the call
stack; resuming program execution line-by-line (single-step)
or at the granularity of function calls; and in some debuggers,
stepping backward through execution via reverse debugging,
also known as time-travel or omniscient debugging.

Debuggers can be helpful, but finding and fixing software
defects remains a deeply challenging and time-consuming task.
Programmers must still reason about program behavior to
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ascertain what went wrong. They must formulate and test
hypotheses about program execution, they must read and
understand code they may have not written, and they must pore
over potentially voluminous information. Such information
includes lengthy executions, large amounts of program data,
and many stack frames that potentially span multiple threads.

This paper introduces CHATDBG, the first AI-powered de-
bugger assistant. CHATDBG integrates into and significantly
extends the functionality of standard debuggers. CHATDBG
builds on the insight that large language models (LLMs), such
as OpenAI’s GPT-4 [3], enable a debugger to leverage insights
and intuition from many thousands of programs as well as the
vast real-world knowledge embedded in LLMs.

A debugger integrated with CHATDBG continues to provide
its full range of functionality, but also lets programmers
engage in debugging dialogs where they can ask high-level
questions like why is x null here? or why isn’t
this value what I expected?. The question can be
as simple as why? if a program has crashed or failed an
assertion. CHATDBG then orchestrates a conversation with
the LLM. A key novelty of CHATDBG is that it grants
autonomy to the LLM to “take the wheel” while answering the
programmer’s queries. Specifically, the LLM issues “function
calls” [4] to run commands in the underlying debugger to
investigate program state, execute code, or obtain source code.
The results of those calls are sent back to the LLM for
use while constructing its response. After answering a query,
control is returned to the programmer, who may then enter
additional commands or chat messages.

Our prototype of CHATDBG integrates into four widely
used debuggers: GDB, LLDB, WinDBG, and Pdb. Our evalua-
tion presents a range of case studies demonstrating that CHAT-
DBG improves significantly on existing debuggers. On a suite
of unpublished Python scripts and Jupyter notebooks written
by undergraduate students, one or two queries is sufficient for
CHATDBG to properly diagnose and fix defects 87% of the
time, typically at a cost of under $0.20 USD. CHATDBG is
also effective at identifying causes and providing fixes for a
range of real-world bugs in C/C++ code.

This paper makes the following contributions: it introduces
CHATDBG, the first AI-powered debugger assistant; it de-
scribes the implementation of our CHATDBG prototype; and
it introduces the “take the wheel” approach to integrating large
language models with developer tools. The paper also presents
an evaluation of CHATDBG that demonstrates its significant
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Source code for bootstrap.py
1 from datascience import *
2 from ds101 import *
3

4 def make_marble_sample():
5 table = Table().read_table('marble-sample.csv')
6 return table.column('color')
7

8 def proportion_blue(sample):
9 return sample

10

11 def resampled_stats(observed_marbles, num_trials):
12 stats = bootstrap_statistic(observed_marbles,
13 proportion_blue,
14 num_trials)
15 assert len(stats) == num_trials
16 return stats
17

18 observed_marbles = make_marble_sample()
19 stats = resampled_stats(observed_marbles, 5)
20

21 assert np.isclose(np.mean(stats), 0.7)

Fig. 1: An example program containing several bugs. It is
supposed to create an array of marble colors, compute the proportions
of blue marbles in resamples of that array, and assert that their mean
is about 0.7, the proportion for the array.

advantages over existing debugger functionality.
This paper is organized as follows. Section II illustrates the

use of CHATDBG to debug a program. Section III describes
key related work. Section IV describes CHATDBG’s imple-
mentation. Section V presents our evaluation, and Section VI
concludes with several promising directions for future work.

II. OVERVIEW

This section illustrates CHATDBG’s features and ability
to assist in debugging the program in Figure 1. That pro-
gram is a distillation of real errors encountered by stu-
dents in an introductory data science lab. It creates an array
observed_marbles representing the colors of marbles
(red or blue) in a sample stored in a file. It then calls
bootstrap_statistic to create same-sized resamples
of that array. That function computes a statistic for each
resample and returns an array of those statistics. In this
case, the statistic is proportion_blue, the proportion of
blue marbles. Given a sufficiently large number of trials, the
mean of the resamples’ statistics should be close to 0.7, the
proportion of blue marbles in the original sample [5].

The program fails the assertion in resampled_stats,
and Figure 2 illustrates a debugging session. To try to figure
out what went wrong, the user issues the Pdb command
p num_trials to view the value of that variable. Con-
tinuing debugging with existing tools would likely involve
issuing additional commands, examining data files, source
code, and examining library documentation. With CHATDBG,
the user instead starts a dialog with the debugger, asking
why doesn’t stats have 5 elements? While con-
structing the answer (in blue ), the LLM takes the wheel and
directly issues debugger commands ( yellow ). These include
standard Pdb commands and a CHATDBG-specific info
command for accessing the source code and docstrings for any

$ chatdbg bootstrap.py

Traceback (most recent call last):
File "/python3.11/site-packages/ipdb/__main__.py", ...
pdb._run(stdlib_pdb._ScriptTarget(mainpyfile))

File "/python3.11/pdb.py", line 1659, in _run
self.run(target.code)

File "/python3.11/bdb.py", line 600, in run
exec(cmd, globals, locals)

File "<string>", line 1, in <module>
File "./bootstrap.py", line 19, in <module>
stats = resampled_stats(observed_marbles, 5)

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "./bootstrap.py", line 15, in resampled_stats
assert len(stats) == num_trials

^^^^^^^^^^^^^^^^^^^^^^^^
AssertionError
Uncaught exception. Entering post mortem debugging
Running 'cont' or 'step' will restart the program

(ChatDBG) p num_trials

5

(ChatDBG) Why doesn’t stats have 5 elements?

(ChatDBG) p len(stats)
150

(ChatDBG) info bootstrap_statistic
bootstrap_statistic(observed_sample,

compute_statistic, num_trials)
Creates num_trials resamples of the initial
sample. Returns an array of the provided
statistic for those samples.

* observed_sample: the initial sample, as an
array.

* compute_statistic: a function that takes a
sample as an array and
returns the statistic for
that sample.

* num_trials: the number of bootstrap samples
to create.

You MUST assume that `bootstrap_statistic` is
specified and implemented correctly.

(ChatDBG) p proportion_blue
<function proportion_blue at 0x1050b00e0>

(ChatDBG) info proportion_blue
8 def proportion_blue(sample):
9 return sample

From the information we have, the stats variable in
resampled_stats is supposed to have 5 elements, but it actually
has 150 elements...

The Python debugger output shows a reference to a variable or
function called proportion_blue, which is used as the
compute_statistic parameter for bootstrap_statistic. Upon
looking at the proportion_blue function’s definition, it is found that
the function simply returns the input sample without computing a
statistical value. This means that for each of the num_trials (which
is 5), bootstrap_statistic is adding the entire sample to the
stats array without processing the sample to obtain a single statistic
value...

Recommendation

To fix this issue, the proportion_blue function must be corrected to
perform the intended computation of returning the proportion of blue
marbles in the sample:

def proportion_blue(sample):
return np.mean(sample == 'B')

Fig. 2: A debugging session with CHATDBG. For brevity, we
elide repetitive or unimportant parts. CHATDBG catches the assertion
failure on line 15 and prompts the user to enter commands (bold and
highlighted in gray ). Commands issued by CHATDBG when it takes

the wheel are highlighted in yellow , and its response is highlighted

in blue .
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$ chatdbg bootstrap.py

Traceback (most recent call last):
File "./bootstrap.py", line 21, in <module>

assert np.isclose(np.mean(stats), 0.7)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

AssertionError
...

(ChatDBG) Why is the mean of stats not close to 0.7?

(ChatDBG) p np.mean(stats)
0.7466666666666667

...

(ChatDBG) info resampled_stats
...

(ChatDBG) info make_marble_sample
....

(ChatDBG) info bootstrap_statistic
...

...

Recommendation

1. Check the CSV file marble-sample.csv to verify the proportion
of blue to red marbles and ensure it is close to 70% blue marbles.

2. Review the implementation of the proportion_blue function...
3. Verify that the proportion_blue function ... is available in the

current scope or imported correctly.

(ChatDBG) p proportion_blue(observed_marbles)

0.7

(ChatDBG) That value is correct.

...
(ChatDBG) p stats
array([0.66666667, 0.8 , 0.63333333,

0.76666667, 0.86666667])

At this point, the most straightforward explanation for the error is that
the number of trials is not enough to accurately reflect the expected
mean due to random sampling effects. Increasing the number of trials
would likely result in an average statistic that is closer to the expected
value of 0.7, following the Law of Large Numbers.

Recommendation

Increase the number of bootstrap trials significantly (e.g., from 5 to
something like 1000 or more) to reduce the variability of the mean...

Fig. 3: A debugging session demonstrating how CHAT-
DBG incorporates real-world knowledge. After correcting
proportion_blue in Figure 1, the program fails on line 21
because the mean proportion of blue marbles in the resamples is
not the expected value. CHATDBG identifies high variance resulting
from the small number of trials as the root cause.

user-written code, and the docstrings for library code (which
we assume is correct and not the root cause of any error).

CHATDBG identifies the root cause: proportion_blue
fails to compute and return the desired statistic, and it pro-
vides a corrected version of proportion_blue. When
CHATDBG cannot identify the root cause, it suggests further
debugging steps and control is returned to the user, who
may continue the chat, issue further debugger commands,
or both. Figure 3 illustrates this scenario, where a version
of bootstrap.py with the corrected proportion_blue
function fails the assertion on line 21. The user asks why the
mean of stats is not close to 0.7, and CHATDBG’s first
response suggests examining whether 0.7 is the appropriate
expected value. The user then computes the proportion of
blue marbles with a debugger command and tells CHATDBG
that 0.7 is the correct value. In response, CHATDBG points

to the low number of trials (5) as the issue. The LLM drew
this correct conclusion without seeing any discussion of trial
size or variance in any program state, code, or documentation
encountered during the chat. A powerful aspect of CHATDBG
is its ability to exploit real-world knowledge in its analyses
(here, the fact that bootstrapping depends on large numbers of
resamples) without specific instruction or user intervention.

III. RELATED WORK

Table I presents an overview of previous interactive debug-
gers, together with their features and date of introduction. The
first interactive debugger, DDT, introduced breakpoints, single-
stepping, and stack navigation in 1961 [6]. By 1979, the Mesa
debugger had most key features of modern debuggers, includ-
ing source-level debugging, conditional breakpoints, tracing,
and the ability to display runtime state and evaluate code [8].
Arbitrary conditional breakpoints date back at least to 1990
with DBX [9]. Watchpoints were introduced by 1991 and have
been in GDB since version 4.0.1 [10]. Reverse debugging it
was first implemented in EXDAMS in 1969 [7] is present in
widely-used debuggers like GDB (in 2009) [11], and WinDBG
(in 2017); the rr debugger, built on top of GDB, also supports
reverse debugging on Linux platforms [12]. CHATDBG, by
integrating into standard debuggers, inherits and extends their
functionality.

Ko and Myers present Whyline, an interactive, trace-based
debugger that lets programmers select from a range of queries
and identifies (via static and dynamic analysis) a timeline that
answers the query [13]. Programmers can only select from
those queries presented by Whyline as options. In contrast,
CHATDBG permits programmers to pose arbitrary queries
that it answers via a dialog with an LLM. Whyline’s use of
traces gives it the ability to answer questions that might not
be straightforward to answer with the current program state
but limits its applicability to relatively short-lived executions.

The goal of program slicing, introduced by Weiser in
1981 [14], is to produce a shorter version of a program limited
to the source code that could have led to an error. Program
slicing has been extensively studied; Weiser’s paper has been
cited over 5,000 times to date. As Section IV-G describes,
CHATDBG performs backwards slicing to collect code spread
across code cells to facilitate debugging of Jupyter notebooks.

Fault localization seeks to identify the likely location of the
root cause of a defect; Wong et al. present a survey with over
400 citations [15]. Unlike previous work, CHATDBG performs
fault localization by leveraging LLM-based examination and
LLM-driven exploration of source code and program state.

Automated program repair is another highly active area of
software engineering research [16]; its goal is to generate
source-level program patches that prevent a program from
failing. Unlike past work, CHATDBG performs best-effort
automated program repair—leveraging its integration within
a debugger—via LLM-based examination and LLM-driven
exploration of program source and state.
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System & Date Single Stack Break- Cond. Source Trace Display Eval. Watch- Reverse Explain Propose Open
Introduced Step Nav. points " Level State Code points Bugs Fixes Queries

DDT [6], 1961 ✓ ✓ ✓
EXDAMS [7], 1969 ✓ ✓ ✓ ✓
Mesa [8], 1979 ✓ ✓ ✓ ✓* ✓ ✓ ✓ ✓
DBX [9], 1981 ✓ ✓ ✓ 1990 ✓ ✓ ✓ ✓ ✓
GDB [10], 1986 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 1991 2009
Pdb, 1992 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
WinDBG, ca. 1997 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2017
LLDB, 2010 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CHATDBG, 2023 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

TABLE I: Debugger features and their dates of introduction. Most key features have been around for decades. By integrating into modern
debuggers (GDB, LLDB, Pdb and WinDBG), CHATDBG inherits all of their features while significantly extending them with functionality
to explain bugs and their root causes, propose fixes, and answer arbitrary natural-language queries over program state. (An asterisk or year in
italics means the feature is limited in functionality, performance, or depends on specific hardware support; for example, WinDBG’s reverse
debugging only works on specific Intel chips.)

free-form

text

Existing
Debugger

(Pdb, LLDB,…)output

command

free-form text

enriched stack,
error info

prompt

response

command 

Chat
DBG

output 

standardcommand
ɠ

ɡ
ɢ

ɣ

ɤ

LLM

1⃝ Standard commands are handled by the existing debugger.
2⃝ CHATDBG converts free-form text into a suitable prompt.
3⃝ CHATDBG sends the prompt.
4⃝ The LLM takes the wheel and directly issues commands

to the underlying debugger.
5⃝ The LLM responds to the prompt.

1: history = “”
2: loop
3: line = INPUT()
4: if ISDEBUGGERCOMMAND(line) then
5: output = DOCOMMAND(line) 1⃝
6: PRINT(output)
7: history = history + (line + “→” + output)
8: else
9: if not CHATINPROGRESS() then 2⃝

10: prompt = MAKEPROMPT(INSTRUCTIONS(),
11: ENRICHEDSTACK(), INPUTS(),
12: ERROR(), history, line)
13: else
14: prompt = MAKEPROMPT(history, line)
15: SEND(prompt) 3⃝
16: history = “”
17: while RESPONSEPENDING() do
18: match RECEIVE()
19: case DEBUG(cmd) ⇒ 4⃝
20: output = DOCOMMAND(cmd)
21: PRINT (cmd + “→” + output)
22: SEND(output)
23: case MESSAGE(text) ⇒ PRINT(text) 5⃝

Fig. 4: CHATDBG architecture and top-level command processing loop.

IV. IMPLEMENTATION

A. Using CHATDBG: Preliminaries

CHATDBG integrates with existing debuggers as either a
plug-in or a direct extension. Our primary focus to date has
been an extension to Pdb, which supports both non-interactive
Python scripts and interactive sessions in IPython or Jupyter
notebooks, and a plug-in for LLDB to support C/C++ code.
A subset of features has been ported to GDB and WinDBG.

Configuration for Python is minimal and limited to the in-
stallation of the chatdbg package with the standard package
installer, plus one optional shell script command to add it
as an extension to IPython. CHATDBG extends either the
standard pdb.Pdb debugger or IPython’s implementation of
Pdb, depending on how it is run. Configuration for LLDB and
other C/C++ debuggers is similarly straightforward. LLDB can
be installed through standard package managers if it is not
already present, and the CHATDBG plug-in is installed via a
single shell command. Since CHATDBG leverages OpenAI’s

LLMs, the user must also set an environment variable to a valid
OpenAI API key within their system’s configuration settings.

B. Debugging a Target Program

For Python, debugging with CHATDBG begins by running
chatdbg on the target program. No special preparation of
the target is needed; Python’s managed run time ensures that
debugging information and source code is always available.
Debugging is supported in IPython interactive sessions or
Jupyter notebooks via the standard command-line flag --pdb
or the Jupyter magic command %pdb, respectively. Control
drops into the debugger when an exception occurs.

For C and C++, debugging begins by running lldb on
the target program. The target program must be an unstripped
executable generated with the -g compiler flag, which ensures
the availability of DWARF debug information that describes
the memory layout and maps the program’s machine code back
to the original source code. That information is essential for
the effective debugging of unmanaged code.
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Instructions:
You are a debugging assistant. You will be given a Python stack trace for an
error and answer questions related to the root cause of the error.

Call the debug function to run Pdb debugger commands on the stopped
program. You may call the debug function to run the following commands:
bt, up, down, p expression, list. Call debug to print any variable value
or expression that you believe may contribute to the error.

Call the info function to get the documentation and source code for any
variable, function, package, class, method reference, field reference, or
dotted reference visible in the current frame. Examples include: n, e.n where
e is an expression, and t.n where t is a type. Unless it is from a common,
widely-used library, you MUST call info exactly once on any symbol that is
referenced in code leading up to the error.

Call the provided functions as many times as you would like.

The root cause of any error is likely due to a problem in the source code from
the user. Explain why each variable contributing to the error has been set to
the value that it has. Continue with your explanations until you reach the root
cause of the error. Your answer may be as long as necessary.

End your answer with a section titled “Recommendation” that contains one of:
• a fix if you have identified the root cause
• a numbered list of 1-3 suggestions for how to continue debugging if

you have not

Enriched Stack Trace:
The program has this stack trace:

[... skipping 4 hidden frame(s)]

./bootstrap.py(19)<module>()
15
16 assert len(stats) == num_trials
17
18 observed_marbles = make_marble_bag()

---> 19 resampled_stats(observed_marbles, 5)

Global variables:
observed_marbles: ndarray = array(['R', 'R', 'R',
..., 'B', 'B', 'B'], dtype='<U1')

> ./bootstrap.py(16)resampled_stats()
14 num_trials)
15

---> 16 assert len(stats) == num_trials
17
18 observed_marbles = make_marble_bag()

Variables in this frame:
num_trials: int = 5
observed_marbles: ndarray = array(['R', 'R', 'R',
..., 'B', 'B', 'B'], dtype='<U1')

stats: ndarray = array(['B', 'R', 'B', ..., 'R',
'B', 'R'], dtype='<U32')

Error:
The program encountered the following error:

AssertionError

The code assert len(stats) == num_trials is correct and must not
be changed.

History:
This is the history of some pdb commands I ran and the results:

(ChatDBG) p num_trials
5

User Text:
Why doesn’t stats have 5 elements?

Fig. 5: The initial prompt for the debugging session in Figure 2.
For brevity, the enriched stack includes only five lines of source in
each frame, rather than the default of 10.

CHATDBG also handles native code generated for other
languages but may require additional steps. For example, to
debug a Rust target program, the Cargo.toml file must list

CHATDBG as a dependency and the main function must
be annotated with #[chatdbg::main] to ensure that error
messages are visible to CHATDBG through a log file.

C. CHATDBG Architecture Overview

CHATDBG orchestrates communication between the user,
the debugger, as shown in the architecture diagram and CHAT-
DBG’s top-level command processing loop in Figure 4. The
operations in the pseudocode map naturally onto debugger
APIs and onto LLM APIs supporting completion and function
calls [4]. CHATDBG currently utilizes OpenAI’s API [17] and
GPT-4 models. We elaborate on the most salient technical
innovations after this overview.

1⃝ CHATDBG dispatches standard commands, such as
p num_trials in Figure 2, directly to the underlying
debugger (lines 3-7). It also preserves those commands and
their output in the history variable for later communication
to the LLM. 2⃝ Any other text entered by the user, such as
why doesn’t stats have 5 elements?, is directed
to CHATDBG, which creates a prompt to send to the LLM.
If this is the start of a chat, CHATDBG bundles basic in-
structions, information from the debugger about the current
stack and error, program inputs, history of user commands, and
the text together in an initial prompt (lines 9-12). Otherwise,
CHATDBG bundles only the history since the last chat step
and text (line 14). The MAKEPROMPT function concatenates
the prompt components into a string, respecting any length
limits set by the LLM by selectively truncating parts as needed.

3⃝ CHATDBG then sends the prompt to the LLM and
processes the response stream, which includes both 4⃝ requests
to run debugger commands (lines 19-22) and 5⃝ prose for the
user (line 23). In Figure 2, CHATDBG runs four debugging
commands, including one to print the length of the stats
array, via this mechanism as the LLM constructs its response.
CHATDBG echoes those commands and their ouputs to the
user. Once the full response has been processed, CHATDBG
returns control to the user.

D. Initial Prompts and Enriched Stack Traces

In addition to including the user’s text, the initial prompt
conveys instructions to LLM and also the context surrounding
the error. We highlight the components comprising that context
in this section, using the initial prompt in Figure 5 that was
generated for the first query in Figure 2.
Instructions. The instructions at the top of the prompt ask the
LLM to answer questions about the root cause of the error,
to focus on user code, to explain values stored in variables,
and to end each response with either a fix or suggestions for
further debugging steps. The last item ensures a relatively
consistent structure on answers that facilitates reading them
and evaluating their quality. Paragraphs 2-4 of the instructions
are the take the wheel prompt described in Section IV-E.
Enriched stack trace. CHATDBG’s success at identifying
and fixing errors relies critically on providing the LLM with
sufficient details to reveal the cause of the error. A key source
of that information is the run-time stack. Debuggers provide a
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Command Debugger Output

info symbol Pdb The source code and/or docstring for a symbol referring to any function, method, field, class, or package.
code loc LLDB The source code surrounding loc, where loc is filename:lineno.
definition loc symbol LLDB The declaration for the first occurrence of symbol at loc, where loc is filename:lineno.
slice symbol Pdb The source code in the backwards slice of the global symbol. Interactive IPython/Notebook sessions only.

TABLE II: CHATDBG command extensions. These commands are available to not only the user but also the LLM, and they provide access
to information beyond what is typical in a debugger.

way for the user to view the stack trace but often only show
function names, source file locations, and possibly a couple
lines of code for each stack frame. CHATDBG provides a more
detailed enriched stack trace to the LLM. That stack trace
includes the types and values of variables for each frame, as
well as a larger window of at least 10 lines of code. Enriched
stack traces also elide frames corresponding to library code to
better focus the LLM on user-written code, which CHATDBG
assumes to be the most likely cause of errors.

In Python, CHATDBG leverages Pdb’s internal data struc-
tures to build enriched stack traces. When converting values to
suitable string representations, CHATDBG must balance utility
with the size of the string produced. For objects, CHATDBG
calls the object’s __repr__ method if an appropriate (non-
default) version exists. Otherwise, it iterates over the object’s
fields and recursively converts their values to strings. Similarly,
CHATDBG recursively converts the values stored in aggregate
structures like lists, arrays, and dictionaries to strings, but
limits the number of elements shown to a small, fixed number.
The rest of the elements are just abbreviated with an ellipsis
(...). This recursive conversion of values to strings is limited
to a depth of three, at which point any remaining values are
again abbreviated with ellipses.

CHATDBG follows roughly the same approach in LLDB,
utilizing the static types embedded in the DWARF debugging
information to decode the stack. In addition, any pointers are
dereferenced to show the values being referred to as well; null
pointers and illegal dereferences are dropped.

Inputs. The initial prompt also includes the target’s command
line arguments and standard input when that information is
available from the underlying debugger. These are empty and
elided in Figure 5.

Error. A description of the error causing execution to stop is
also extracted from the underlying debugger. When the error
is due to an assertion failure, CHATDBG instructs the LLM
to assume that the assertion is valid as written so that it will
look beyond the assertion for the real problem.

History. The initial prompt also includes the history of com-
mands already issued by the user, as well as their outputs. This
builds a more complete context surrounding the user’s query.

E. Taking the Wheel

CHATDBG supports take the wheel debugging via the
function call capabilities in OpenAI’s API and most recent
models [4]. This feature lets clients register callback functions
with the LLM for obtaining additional information while

constructing a response. The LLM calls these functions by
sending special messages to the client as part of its response
stream. The client receives those messages, computes the
requested results, and sends them back to the LLM. The initial
prompt describes how to use the available functions.

For example, CHATDBG registers a debug(command)
function for running a command in the underlying
debugger. The LLM calls debug("p len(stats)")
through this mechanism in the session from Figure 2.
CHATDBG then runs Pdb’s command processing routine,
onecmd("p len(stats)"), and captures the output to
and send back. CHATDBG similarly uses the SBCommand-
Interpreter.HandleCommand routine in LLVM. In
both cases, the command and output are printed so the user
can see these steps.

The LLM has sufficient background knowledge on debug-
gers and requires no additional training to navigate up/down
the stack, inspect variables and heap data, evaluate expres-
sions, and perform other typical debugger operations.

F. Navigating the Code

While the LLM can often leverage pre-existing background
knowledge of common Python and C/C++ standard libraries,
it will likely have limited-to-no knowledge of any user-defined
code or third-party library functions. CHATDBG extends the
underlying debuggers with several new commands that are
designed to help the LLM navigate through and understand
the target’s code. These commands are available to the LLM
via function calls and are listed in Figure II.

CHATDBG augments Pdb with the info command,
which prints the docstring for any function, class, field,
method, or package. It additionally prints the source for
any user-defined code. The info requests in Figure 2
demonstrate these two cases for proportion_blue and
bootstrap_statistic, respectively. The command is
implemented via the standard inspect and pydoc libraries.

The info command is not directly reproducible for un-
managed code in LLVM because there is no comparable
existing debugger support for retrieving the source or doc-
umentation for a symbol. Instead, CHATDBG adds two other
debugging commands to LLDB. The first, code, prints the
code surrounding a source location described by a filename
and line number, as in code polymorph.c:118. The
second command, definition, prints the location and
source code for the definition corresponding to the first oc-
currence of a symbol on a given line of code. For example,
definition polymorph.c:118 target prints the lo-
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Name LoC Type Reported Exception Root Cause

c1 48 semantic Assertion Error Off-by-one error in an h-index computation
c2 81 crash Name Error Parameter not referenced properly
c3 64 crash Value Error Error in CSV column label leads to improper data parsing
c4 89 crash Index Error A class’s __str__ fails if an object’s internal list is empty
c5 29 crash Index Error Missing one of two base cases in a recursive function
c6 72 crash Name Error Multiple errors related to building list of user-defined objects
c7 71 semantic Assertion Error Failure to convert input to lower case before processing
c8 72 semantic Assertion Error Missing test for lowercase words

s1 123 semantic Assertion Error Incorrect drop and rename operations leading to bad data in table
s2 124 semantic Assertion Error Incorrect max operation on a table
s3 124 semantic Assertion Error Incorrect aggregation function in pivot operation
s4 124 semantic Assertion Error Incorrect aggregation function in group operation
s5 162 semantic Assertion Error Hardcoded table data in wrong order
s6 162 crash Name Error Typo in variable reference
s7 45 semantic Assertion Error Function confuses parameter and global variable
s8 49 semantic Assertion Error Wrong percentile used in confidence interval construction
s9 112 semantic Assertion Error Wrong percentile used in confidence interval construction
s10 118 semantic Assertion Error Loops doesn’t append to array correctly
s11 181 crash Value Error Takes a sample from a table smaller than the sample size without replacement
s12 127 crash Value Error Incorrect label when accessing column value for table row
s13 127 crash Value Error Pivot uses wrong columns for row/columns in new table
s14 65 crash Index Error Simulation fails to properly create a random sample under null hypothesis

TABLE III: Python programs exhibiting a variety of common errors. Programs c1–c8 are command line scripts, and programs s1–s14 are
Jupyter notebooks, which utilize two non-standard libraries consisting of 3,000 lines of code. Semantic errors reflect failed tests expressed
as assertions. Crashes reflect unexpected termination due to any other type of error.

cation and source for the declaration of target correspond-
ing to its use on that line. The definition implementation
leverages the clangd language server, which supports source
code queries via JSON-RPC and Microsoft’s Language Server
Protocol [18].

G. Slices for Interactive Python

CHATDBG supports debugging interactive IPython sessions
and Jupyter notebooks. Interactive sessions lead to many
individual code cells that are each evaluated separately. Cells
may be evaluated out-of-order, override definitions from earlier
cells, and communicate values to other cells through top-level
global variables. Others have noted the challenges of reasoning
about program behavior in this context [19], [20]. CHATDBG
provides an additional slice debugging command to fa-
cilitate that reasoning. The slice command computes the
backwards slice for any variable used in the current cell that
was defined in previously-executed cells. It returns the code
for cells in that slice. Suppose the code from bootstrap.py
in Figure 1 were written in four notebook cells:

In[2]: def make_marble_sample(): ...

In[3]: def proportion_blue(sample): ...

In[4]: def resampled_stats(observed_marbles, num_trials):
stats = bootstrap_statistic(observed_marbles,

proportion_blue,
num_trials)

assert len(stats) == num_trials
return stats

In[5]: observed_marbles = make_marble_sample()
stats = resampled_stats(observed_marbles, 5)

After evaluating these cells, slice(observed_samples)
returns the source for the cells labeled In[2] and In[5],

and slice(stats) returns the source for all four cells.
CHATDBG uses ipyflow to compute slices [20], [21].

V. EVALUATION

We demonstrate CHATDBG’s capacity to identify the root
cause of defects and provide fixes in two contexts: bugs in rel-
atively small Python programs written by students and bugs in
large C/C++ programs. The former have well-defined expected
behavior that enable us to thoroughly and systematically
assess CHATDBG. The latter demonstrates its effectiveness on
unmanaged code when unusual corner cases trigger crashes.

Our evaluation addresses the following research questions:
RQ1: Is CHATDBG effective at diagnosing and fixing bugs in
Python? RQ2: Which components of CHATDBG contribute to
its effectiveness? RQ3: Is CHATDBG effective at diagnosing
and fixing bugs in unmanaged code (C/C++)?

A. Python

We applied CHATDBG to bugs in a collection of student
labs from two introductory computer science courses; see
Table III. Bugs c1–c8 are in non-interactive scripts from a
programming class that perform various file reading and text
processing tasks. Bugs s1–s14 are in Jupyter notebooks [22]
from a data science class that manipulate, visualize, and com-
pute over arrays and tables. Some bugs were apparent to the
programs’ authors. Others were identified during autograding.

Unlike many existing bug benchmarks for Python, these
programs are unpublished and thus not in the language model’s
training data. In addition, the programs have clear correctness
criteria that lead to objective effectiveness metrics in our
experiments. The bugs are also representative of mistakes often
made in languages like Python. They range from scoping

7



issues, algorithmic errors, and misuse of library functions to
subtle misunderstanding of domain knowledge. They include
both semantic errors leading to failed tests and crashing errors
that terminate execution abruptly. Further, they reflect two im-
portant, widely-used modalities for Python programming: non-
interactive scripts and interactive computational notebooks.
CHATDBG supports debugging in both settings.

Programs were prepared by removing them from their
automatic grading harness and replacing failed unit tests with
assert statements that generate exceptions. We ran each
program ten times under the five configurations in Table IV:
Default Stack includes standard stack traces, as generated by
ipdb [23], with 5 lines of code per frame in the initial prompt,
but it does not support the LLM taking the wheel. Enriched
Stack generates enriched stacks with ten lines of code per
frame, and +Take the Wheel additionally permits CHATDBG
to run debugger commands. These three configurations all use
why? as the initial user text. +Targeted Question asks a ques-
tion specific to the failure. For semantic errors, which validate
the values stored in variables, these questions describe what
those values should be or what they are intended to represent.
For crashes, the questions relate the crash to expected behavior,
as in the following; we designed our questions to be “neutral”
and not hint at the root cause.

c3 (Crash) Why am I not reading the CSV file correctly?
s11 (Crash) Why am I not able to sample 100 rows?
c1 (Semantic) Why am I not getting 3?
s1 (Semantic) bill_length_mean_by_species

should be a table of the mean bill lengths of each species
in our data set. Why isn’t it?

The final +Dialog configuration is the same as +Targeted
Question but extends the chat with a second query. All trials
use the same follow up: Continue to explain your reasoning
and give me a fix to make it work as I describe. Context-
specific follow-ups work better, but we opted for consistency.

CHATDBG used the gpt-4-1106-preview model for
these experiments. Under +Targeted Question, the first
prompt and response led to, on average, a chat of about
10,000 tokens (7,500 words), a cost of about $0.12 USD under
OpenAI’s current pricing model [24], and a completion time
of about 25 seconds. Subsequent steps in extended debugging
dialogs incurred comparable costs. Time was highly variable
and dominated by the performance of OpenAI’s service. These
characteristics will be different for other platforms and models.

RQ1: Is CHATDBG effective at diagnosing and fixing bugs
in Python?

Each response was manually examined and deemed a suc-
cess if it included an accurate explanation of the error and
an actionable fix. That fix could be either code or a prose
description in which all necessary details were made explicit.
Figure 6 shows the success rate under each configuration.

Configuration Stack Take the Initial Ask a
Trace Wheel Prompt Follow-up

Default Stack standard why?
Enriched Stack enriched why?
+Take the Wheel enriched ✓ why?
+Targeted Question enriched ✓ specialized
+Dialog enriched ✓ specialized ✓

TABLE IV: Configurations used in the Python experiments.
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Fig. 6: Overall CHATDBG success rate for each configuration.
CHATDBG innovations and user-provided context gradually increase
effectiveness.

RQ1 Summary: Even with just the simple question
why?, CHATDBG was successful 57% of the time. With
questions specialized to the target’s particular error, that
number jumps to 67%, and with an additional dialog step
CHATDBG succeeded in identiyfing and fixing the defect
in 85% of the trials.

RQ2: Which components of CHATDBG contribute to its
effectiveness?

Figure 7 presents the success rates for each program under
each configuration. The Enriched Stack plots demonstrate
that enriched stacks provide some benefit, particuarly for
crashes in which the stack contains sufficient information to
diagnose the problem, but they alone do not provide much
improvement for many semantic errors in which the relevant
computation steps complete before failure. However, enriched
stacks coupled with letting the LLM taking the wheel led to
significant improvement in the success rate for both crashing
and semantic bugs, as shown in the +Take the Wheel plots.

The LLM most heavily used the info, slice (for note-
books), and p (print) debugging commands. That is not
surprising, given that they often provide the most direct insight
into the execution state and code. The slice command was
critically important for notebooks. Without it, success rates
rarely improved when the LLM took the wheel.

The +Targeted Question configuration demonstrates the
impact of providing even the most modest details about
expected behavior. When the LLM is asked to continue its
reasoning in +Dialog, CHATDBG’s success rate improves
despite the follow-up prompt providing no feedback on the
contents or quality of the first response. This phenom indicates
that constraints on the underlying LLM’s response lengths may
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Fig. 7: Success rate for CHATDBG for each program and configuration. Vertical lines show the mean.

Program LoC Error Type Root Cause Proximate Cause Fix Root Cause Fix

BC [25] 17.0k Buffer overflow Input from data file printed to a fixed-size buffer Truncate on copy Use dynamic size
GZIP [25] 8.2k Buffer overflow Command line argument unsafely copied to a fixed-size buffer Truncate on copy Check size & warn/exit
NCOM [25] 1.9k Buffer overflow Command line argument unsafely copied to a fixed-size buffer Truncate on copy Check size & warn/exit
PEG [26] 14.7k Null dereference Invalid input produces corrupted data structure Check if not null Warn/exit
POLY [25] 0.7k Buffer overflow Command line argument is unsafely copied to a fixed-size buffer Truncate on copy Check size & warn/exit
TIFF [26] 58.9k Division by zero Combination of command line options leads to a division by zero Override option values Warn/exit when invalid
YAML1 [26] 8.7k Stack overflow Long sequences of { in the input leads to deep recursion Use iterative method Guard recursion depth
YAML2 [26] 8.7k Assertion failure Specific input causes a peek request for non-existent “next” token Replace assert Check before peeking

TABLE V: Bugs in unmanaged C/C++ code, and our criteria for fixing the proximate cause or the root cause of each.

prevent it from conducting the amount of reasoning necessary
to successfully develop a fix in a single step. The success
rates for +Targeted Question and +Dialog demonstrate the
importance of continued dialogs and user input. We expect
those features to be even more important to CHATDBG’s
success when diagnosing bugs in more complex programs.

The LLM also demonstrated its background knowledge with
the responses including, for example, details of Python idioms
and libraries, the definition of h-index [27], and the implemen-
tation and limitations of various statistical techniques.

Failures were generally due to the LLM not always recog-
nizing or discovering key aspects of a program’s behavior. In
some cases, it was on the right track but did not converge on
an actionable fix. In others, it suggested changes that would
introduce other bugs. It also occasionally made mistakes, such
as conflating proportions and percentages or failing to handle
unusual corner cases. All of these could be mitigated by
feedback from the user in subsequent follow ups.

RQ2 Summary: While all features of CHATDBG con-
tribute to its success, the technical innovations enabling
it to take the wheel are critical. The most sophisticated
configurations show that user-provided contextual informa-
tion about behavior and engaging in multi-step dialogs are
particularly good ways to improve its effectiveness.

B. C and C++

Programs in unmanaged languages such as C and C++ are
vulnerable to memory safety errors. These memory errors can
also hinder the debugging process: the crash may not occur
immediately at the memory violation but instead much later
on, and the crash may cause corruption of the stack and/or
heap, making it challenging to recover any useful information.

Table V summarizes the programs from the BugBench [25]
and BugsC++ [26] suites used to evaluate CHATDBG’s ef-
fectiveness at debugging unmanaged code. Programs used in
this evaluation are all real-world applications with concrete
known bugs. The four BugBench programs were selected as
the only ones we could retrieve, build and reproduce on our
system. The BugsC++ suite does not include the original
crash-causing inputs. However, it provides links to the original
bug report, CVE identifier, and/or exploit-fixing patch, from
which we manually retrieve crash reproduction information.
We randomly selected and reproduced four bugs from the
“memory error” category.

Some of the studied programs do not crash at run time.
We employed AddressSanitizer [28] to force a crash at the
moment a memory violations occured to trigger those de-
fects. AddressSanitizer is already capable of reporting some
information about the crash when it happens. However, this
information is often very dense, and typically points at the
symptom of the bug, not its root cause. We did not include
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Fig. 8: CHATDBG success rate at fixing the proximate or root
cause in C/C++ programs. CHATDBG successfully identified and
fixed the root cause 36% of the time and the proximate cause an
additional 55% of the time.

that information in the initial prompt.

RQ3: Is CHATDBG effective at diagnosing and fixing bugs
in unmanaged code (C/C++)?

We run our C/C++ experiments on an an x86 Ubuntu 22.04
server. We use Clang and LLDB 17.0.6 to compile and de-
bug, using flags -g -Og -fno-omit-frame-pointer.
CHATDBG used OpenAI’s gpt-4-1106-preview model.
Each program was run ten times using queries of the
form I am debugging cpp-peglib. Provide the
root cause of this crash, for PEG, followed by a
request to include code in the response. Average time (27
seconds) and cost ($0.06 USD) were comparable to Python.

We manually examined each response to determine if CHAT-
DBG successfully provided an actionable code fix for the
proximate cause of the crash or for the underlying root cause.
We used the critera outlined in Table V. While fixing root
causes is the ultimate goal, fixing proximate causes can still
be beneficial as fixing crashes enables further debugging steps.

Figure 8 presents CHATDBG’s ability to suggest a fix
for either the proximate or root cause of the bug. Gener-
ally, CHATDBG is excellent at diagnosing and explaining
the reason for the crash, which in itself may be useful to
programmers. For BC, GZIP, NCOM, and POLY, CHATDBG
tends to suggest replacing the strcpy or sprintf call with
their respective strncpy and snprintf counterparts to
prevent buffer overflows. While correct, this change truncates
the input silently. Validation or other measures should be added
to obtain a robust fix. The root cause in BC is inside code
generated from a YACC file. The clangd language server
does not handle this case in a way that would let CHATDBG
answer the LLM’s definition requests properly.

In the case of PEG, CHATDBG correctly identifies which
pointer is null but typically suggests ignoring it instead of
failing immediately. This is similar to YAML2, where CHAT-
DBG recommends replacing the assertion with a check inside
a function rather than recommending that the client check
that the function’s preconditions are met prior to the call.
CHATDBG has a relatively high root cause fix rate for YAML1
and TIFF. It often correctly suggests fixes to limit recursion
depth (YAML1) and to validate input parameters (TIFF).

RQ3 Summary: CHATDBG was successful in virtually all
of our trials in diagnosing and explaining the cause of the
crash. It was also capable of providing relevant, actionable
fixes: 36% of its suggestions addressed the root cause of
the bug, while another 55% corrected the proximate cause.

C. Threats to Validity

This paper evaluates CHATDBG on two suites of code.
The primary suite is a collection of unpublished student labs
that may not be entirely representative of code written by, for
example, experienced programmers. The second suite consists
of real C/C++ applications and bugs drawn from the BugBench
and BugsC++ suites. Unlike the Python suite, the C/C++
source code and the bug fixes for these programs are available
on Github, which may lead to data leakage affecting the C/C++
study if those repositories were part of the training set for the
LLMs we used. While the C/C++ suite consists of real-world
applications, most of the errors are memory errors. Other types
of errors, such as assertion failures, concurrency errors, or
other logical errors, may lead to different results.

CHATDBG depends on an LLM to analyze and drive explo-
ration of state, and like all systems based on LLMs today, its
performance is affected by prompt engineering. It is possible
that CHATDBG’s prompts are overfit to the specific GPT-4
models we employed; this threat is somewhat mitigated by the
fact that CHATDBG was originally developed using a different
model (GPT-3.5-turbo). LLMs are also inherently stochastic,
and it is possible to obtain unusually good results by chance.
To mitigate this threat, our evaluation runs CHATDBG on each
test program at least ten times.

Our evaluation depends on a manual and subjective eval-
uation of whether CHATDBG’s explanation of a bug and its
proposed fix are satisfactory. We mitigated the risks of sub-
jective evaluation by using precisely-defined criteria decided
upon in advance. Python fixes were deemed successful if the
resulting code met the correctness requirements outlined in the
assignment. C/C++ fixes were deemed successful at fixing the
proximate or root cause using the criteria in Table V. Fixes
described in prose were permitted, provided that the details of
all necessary changes to the code were made explicit.

VI. CONCLUSION AND FUTURE WORK

This paper presents CHATDBG, the first AI-based de-
bugging assistant. Our evaluation shows that engaging in a
debugging dialog with CHATDBG can significantly assist in
identifying root causes of errors and developing correct fixes.

We see several avenues for future work. Incorporating an ex-
isting fault localization approach into CHATDBG, rather than
relying solely on the LLM’s ability to explore the program’s
source code and state, could potentially increase its effective-
ness and efficiency by allowing the LLM to focus its attention
on suspicious and possibly problematic files, functions, or lines
of source code. Similarly, incorporating delta debugging [29]
could increase the effectiveness of CHATDBG by limiting the
amount of input for an LLM and providing failure-inducing
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events as guidance. Finally, integrating CHATDBG with a
time-travel debugger would expand its reach to exploring
program state over time, letting it answer queries that cannot
be answered given the current program state.

CHATDBG is available on GitHub at
github.com/plasma-umass/ChatDBG.
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