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      Abstract 

The Floquet-Magnus and Fer expansion schemes were introduced in solid-state 

nuclear magnetic resonance (NMR) in 2011 and 2006, respectively. Key features of the 

Floquet-Magnus expansion are its ability to account for the calculations developed in a 

finite-dimensional Hilbert space instead of an infinite-dimensional space within the 

Floquet theory as well as its use of its distinguishable function, Λ𝑛(𝑡), 𝑛 = 1, 2, 3,…, not 

available in other concurrent theories such as average Hamiltonian theory, Floquet theory, 

and Fer expansion. The distinguishable function facilitates the evaluation of the spin 

behavior in between the stroboscopic observation points. This article focuses on revisiting 

the Floquet-Magnus and Fer expansion approaches, and applying both methods to calculate 

the effective Hamiltonians and propagators, which control the spin system evolution during 

the Triple Oscillating Field Technique radiation experiment (TOFU). The TOFU pulse 

sequence is an important technique that was shown to avoid the dipolar truncation problem 

and form a new basis for accurate distance measurement by solid-state NMR. We take 

advantage of the interaction frequencies and the time modulation arising from the TOFU 

pulse sequence allowing selective recoupling of specific terms in the Hamiltonian that 

fulfill determined specific conditions. The work presented here unifies and generalizes 

results of the Floquet-Magnus and Fer expansions, and delivers illustrations of novel 

springs that boost previous applications that are based on the classical information. We 

believe that the revisited approaches of this work and the derived expressions can serve as 

useful information and numerical tools for time evolution in time-resolved spectroscopy, 

quantum control, and open system quantum dynamics. 

I.     Introduction 

Over the past two decades, solid-state nuclear magnetic resonance (NMR) 

spectroscopy has revealed its ability of producing atomic-resolution structures of solids 

and semi-solids1. This has opened new possibilities to elucidate molecular structure and 

dynamics in systems, which in many cases cannot be obtained by alternative ways2. Most 

solid-state NMR experiments are established on a combination of magic-angle spinning 

(MAS) and dipolar recoupling3. This technique can also be combined with cross 

polarization to increase the spectral sensitivity of rare and low-gamma nuclei such as 13C,  
15N in biopolymers or other organic solids2. Therefore, MAS NMR techniques have 
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improved to determine complete structure of systems4-6. Methods to describe the time 

evolution of spin systems under time-dependent Hamiltonians play an important role 

among the tools used to analyze solid-state nuclear magnetic resonance experiments. The 

technique of spin recoupling, first proposed by Andrew7, has evolved into a universal and 

essential part of high-resolution NMR spectroscopy. The general idea of spin recoupling is 

that the radio-frequency irradiation is used to manipulate the spin part of the Hamiltonian 

to reintroduce certain terms in the Hamiltonian8-10. In many situations, the resulting time 

dependent Hamiltonian becomes periodic with possibly multiple incommensurate 

frequencies. MAS NMR experiments are preferred for structural studies of biomolecular 

systems that exhibit low solubility or lack long range order and therefore cannot be 

addressed with the traditional tools of structural biology, solution NMR or X-ray 

diffraction11. The basic approach consisting of reintroducing dipolar couplings with a train 

of pulses at the 13C and 15N frequencies5,12 while simultaneously decoupling the 1H spins 

from the 15N-13C spin dynamics was employed in the development of the majority of 

heteronuclear recoupling sequences including rotational echo double resonance (REDOR)  

13, transferred echo double resonance (TEDOR)14, frequency selective (FS)-REDOR15, Z-

filtered (ZF-) and band-selective (BASE-) TEDOR, and frequency selective (FS-) 

TEDOR16, which enable accurate N-C distance measurements, and have been especially 

important in the determination of high resolution 3D structures17. MAS NMR experiments 

average 2nd rank tensor interactions such as the chemical shift anisotropy and dipolar 

interactions, and therefore yield high resolution spectra. One of the most significant 

challenges encountered in the recoupling pulse sequences is the requirement to 

accommodate high power rf irradiation on all three channels (1H, 13C, and 15N) during 

the mixing periods. Nearly a decade and half ago, Khaneja and Nielsen18 proposed a new 

concept for homonuclear dipolar recoupling in MAS solid-state NMR experiments, which 

avoids the problem of dipolar truncation. With the introduction of the triple oscillating field 

technique (TOFU), Khaneja and co-worker demonstrated that the TOFU is an efficient 

means to accomplish broadband dipolar recoupling of homonuclear spins, while 

decoupling heteronuclear dipolar couplings and anisotropic chemical shifts and retaining 

influence from isotropic chemical shifts18. 

 

In this article, we applied the two developing approaches which describe the 

behavior or spin dynamics in solid-state NMR, namely the Floquet-Magnus expansion 

(FME)2,19-33 and the Fer expansion (FE)34-48 to control the spin dynamics on the TOFU 

radiation experiment. We investigated the orders to which the FME and the FE approaches 

are equivalent or different for the chemical shielding Hamiltonian during the application 

of the TOFU pulse sequence radiation experiment. The TOFU experiment allows for 

broadband recoupling of Ising interaction Hamiltonian, 2IzSz, while simultaneously 

ensuring that the chemical shifts of the spins are maintained and the heteronuclear coupling 

are decoupling18,49. This method circumvents the dipolar truncation problem and form a 

new basis for accurate distance measurement par solid-state NMR50-55. 

 

The Floquet-Magnus expansion2 and the Fer expansion36 schemes were introduced 

in solid-state NMR in 2011 and 2006, respectively. Key features of the Floquet magnus 

expansion are its ability to account for the calculations developed in a finite-dimensional 

Hilbert space instead of an infinite-dimensional space within the Floquet theory as well as 
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its use of its distinguishable function, Λ𝑛(𝑡), 𝑛 = 1, 2, 3, …, from other theories such as 

average Hamiltonian theory, Floquet theory, and Fer expansion, which facilitates the 

evaluation of the spin behavior in between the stroboscopic observation points. Notably, 

the  Λ𝑛(𝑡) functions represents the nth – order term of the argument of the operator that 

introduces the frame such that the spin system operator is varying under the time-

independent Hamiltonian, F. This view presents the functions Λ𝑛(𝑡) as the argument of the 

operator that introduces the frame that varies under the time-independent Hamiltonian, F. 

Such theoretical advance has been facilitated by the development of a more general 

representation of the evolution operator, which removes the constraint of a stroboscopic 

observation. This current article focuses on applying the Floquet-Magnus and Fer 

expansion approaches for the calculation of effective Hamiltonians and propagators to 

control the spin system evolution during the Triple Oscillating Field Technique radiation 

experiment. Our work unifies and generalizes existing results of the Floquet-Magnus and 

Fer expansions and delivers illustrations of novel springs that boost previous applications 

that are based on the classical information. The generality of this work points to potential 

applications in problems related to theoretical developments of spectroscopy as well as 

interdisciplinary research areas whenever they include spin dynamics concepts.  

 

In this manuscript, we explain in detail the spin dynamics mechanism during the 

application of the TOFU technique. Notably, we show that analytical expressions derived 

using FME and FE approaches facilitates a clear understanding of the associated spin 

physics. The paper is organized as follows. In sections II, we revisited the TOFU Pulse 

Sequence, and in sections III and IV, we revisited the theoretical formalism of the FME 

and FE, respectively. In sections V and VI, we performed the applications of FME and FE 

to Chemical Shielding Hamiltonian during the TOFU Pulse Sequence Radiation. The 

comparison and discussion are presented in section VII, and the conclusion in section VIII. 

We also presented an extended appendix containing detailed derivations and calculations 

of the results.   

 

II.    Revisiting the TOFU Pulse Sequence 

 

The triple oscillating field technique called TOFU was introduced a decade and half 

ago by Khaneja and Nielden18. The TOFU pulse sequence allows for broadband recoupling 

of Ising interaction Hamiltonian (2IZSZ), while simultaneously ensuring that the chemical 

shifts of the spins are maintained and the heteronuclear couplings are decoupled49. This 

technique was shown to avoid the dipolar truncation problem and form a new basis for 

accurate distance measurement by solid-state NMR. Consider two coupled homonuclear 

spins I and S under magic-angle-spinning (MAS) conditions. Within the high-field 

approximation and under conditions of MAS, the Hamiltonian of the spin system takes the 

form49, 

 

𝐻0(𝑡) = 𝜔𝐼(𝑡)𝑇1,0
𝐼 + 𝜔𝑆(𝑡)𝑇1,0

𝑆 +𝜔𝐼𝑆(𝑡)√6𝑇2,0
𝐼𝑆 ,                                                                                  (1) 

 

where the first two terms include isotropic/anisotropic chemical shifts for the two spins 

while the third term denotes the dipole-dipole coupling interaction. These interaction  
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strengths may be expressed in terms of a Fourier series, 

 

𝜔𝜆,𝑚′(𝑡) = ∑ 𝜔𝜆,𝑚′
(𝑚)2

𝑚=−2 exp(𝑖𝑚𝜔𝑟𝑡)                                                                                                        (2) 

 

where 𝜔𝑟 is the sample spinning frequency in angular units and 𝜆 = 𝐼, 𝑆, 𝐼𝑆 is a signature 

of the specific interaction such as the chemical shift, dipole-dipole coupling (through this 

the internuclear distance), J coupling, and quadrupolar coupling56-58. The Fourier 

coefficients are  

                                  

𝜔
𝜆,𝑚′
(𝑚)

= 𝜔𝑖𝑠𝑜
𝜆 𝛿𝑚,0 + 𝜔𝑎𝑛𝑖𝑠𝑜

𝜆 {𝐷0,−𝑚
(2) (Ω𝑃𝑅

𝜆 ) −
𝜂𝜆

√6
[𝐷−2,−𝑚

(2)
(Ω𝑃𝑅

𝜆 ) +

𝐷2,−𝑚
(2)

(Ω𝑃𝑅
𝜆 )]} 𝑑−𝑚,𝑚′

(2) (𝛽𝑅𝐿),                                                                                                                             (3)               

 

where 𝛿𝑚,0 is a standard Kronecker delta and the constants specifying the isotropic (𝜔𝑖𝑠𝑜
𝜆 ) 

and anisotropic (𝜔𝑎𝑛𝑖𝑠𝑜
𝜆 , 𝜂𝜆) contributions to the Fourier coefficients (for the i-spin) are 

given in angular frequency units by   

 

𝜔𝑖𝑠𝑜
𝜆 = 𝜔0

𝑖 𝛿𝑖𝑠𝑜
𝑖 − 𝜔𝑟𝑒𝑓                                                                                                     (4-a) 

 

𝜔𝑎𝑛𝑖𝑠𝑜
𝜆 = 𝜔0

𝑖 𝛿𝑎𝑛𝑖𝑠𝑜
𝑖                                                                                                           (4-b) 

 

𝜂𝜆 = 𝜂𝐶𝑆
𝑖                                                                                                                           (4-c) 

 

𝛿𝑖𝑠𝑜
𝑖 =

1

3
(𝛿𝑥𝑥

𝑖 + 𝛿𝑦𝑦
𝑖 + 𝛿𝑧𝑧

𝑖 )                                                                                             (4-d) 

 

𝛿𝑎𝑛𝑖𝑠𝑜
𝑖 = 𝛿𝑧𝑧

𝑖 − 𝛿𝑖𝑠𝑜
𝑖                                                                                                           (4-e) 

 

𝜂𝐶𝑆
𝑖 =

(𝛿𝑦𝑦
𝑖 − 𝛿𝑧𝑧

𝑖 )

𝛿𝑎𝑛𝑖𝑠𝑜
𝑖⁄                                                                                                 (4-f) 

 

𝜔0
𝑖 = −𝛾𝑖𝐵0.                                                                                                                    (4-g) 

 

𝛿𝑖 is the gyromagnetic ratio and 𝐵0 the flux density of the static magnetic field. 𝜔𝑟𝑒𝑓   is an 

optional rotating frame reference frequency. The principal elements are ordered according 

to 

 

|𝛿𝑧𝑧
𝑖 − 𝛿𝑖𝑠𝑜

𝑖 | ≥ |𝛿𝑥𝑥
𝑖 − 𝛿𝑖𝑠𝑜

𝑖 | ≥ |𝛿𝑦𝑦
𝑖 − 𝛿𝑖𝑠𝑜

𝑖 |.                                                                    (4-h)  

 

The second-rank Wigner (𝐷(2)) and reduced Wigner (𝑑(2)) rotation matrices in the Eq. (3) 

reveal the orientation dependence for the anisotropic interactions. Furthermore, the Wigner 

rotation matrices, 𝐷
𝑚′,𝑚

(𝑙) (Ω𝐴𝐵
𝜆 ), describe the coordinate transformation between axis 

systems A and B, according to a set of three Euler angles59,60, 

 Ω𝐴𝐵
𝜆 = {𝛼𝐴𝐵

𝜆 ,   𝛽𝐴𝐵
𝜆 ,   𝛾𝐴𝐵

𝜆 }                                                                                                 (4-i) 
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such as, 

 

 𝐷
𝑚′,𝑚

(𝑙) (Ω𝐴𝐵
𝜆 ) = exp (−𝑖𝑚′𝛼𝐴𝐵

𝜆 )𝑑𝑚′,𝑚
(𝑙)

(𝛽𝐴𝐵
𝜆 )exp (−𝑖𝑚𝛾𝐴𝐵

𝜆 ),                                          (4-j) 

 

where 𝑑
𝑚′,𝑚

(𝑙) (β𝐴𝐵
𝜆 ) is the reduced Wigner matrix. Any given interaction 𝜆 describes these 

matrices coordinate transformations from the principal-axis frame (𝑃𝜆) to the laboratory-

fixed frame (L), as well as a rotor-fixed frame (R) such as described by Bak et al.56. For 

simplicity, the Eq. (3) assumes that the principal axis frame coincides with the crystallite-

fixed frame. 

 

With the aim of recoupling the dipole-dipole coupling interaction while 

maintaining strong contributions from the isotropic chemical shift terms to truncate non-

secular terms in the dipolar coupling Hamiltonian, the pioneering TOFU technique 

experiment18 uses a rotor synchronized, time-dependent rf Hamiltonian takes the general 

form 

 

𝐻𝑟𝑓(𝑡) = 𝐴(𝑡)(𝑐𝑜𝑠𝜙(𝑡)𝐹𝑥 + 𝑠𝑖𝑛𝜙(𝑡)𝐹𝑦) + 𝜔(𝑡)𝐹𝑧                                                                           (5) 

 

where   

 

𝐹𝑞 = 𝐼𝑞 + 𝑆𝑞  (𝑞 = 𝑥, 𝑦, 𝑧).                                                                                                                                 (7) 

 

By appropriate choice of amplitude, phase, and offset, the rf field can be written as   

                 

 𝐻𝑟𝑓(𝑡) = 𝐶𝐹𝑥 + 𝐶𝑒𝑥𝑝(−𝑖𝐶𝑡𝐹𝑥)𝐹𝑦 exp(𝑖𝐶𝑡𝐹𝑥) 

   +𝐵𝑒𝑥𝑝(−𝑖𝐶𝑡𝐹𝑥)exp (−𝑖𝐶𝑡𝐹𝑦)𝐹𝑧exp (𝑖𝐶𝑡𝐹𝑦)exp (𝑖𝐶𝑡𝐹𝑥).                                                          (8) 

 

This particular setting of the rf fields may be appreciated by performing a series of 

coordinate transformations18. The TOFU technique was recently improved by introducing 

the four-oscillating field dipolar recoupling technique in a one-dimensional (1D) setup that 

allowed the user to extract accurate 13C-13C distances49. In this work, we applied the FME 

and FE to the original TOFU (Triple Oscillating Field Technique) to understand and 

investigate the spin dynamics during the TOFU pulse sequence radiation for the chemical 

shielding Hamiltonian. The overall transformation to the recoupling frame represented as 

 

 𝐴̃ = 𝑈+(𝑡)𝐴𝑈(𝑡),                                                                                                                                                 (9) 

 

with 

 

𝑈(𝑡) = exp(−𝑖𝐶𝑡𝐹𝑥) exp (−𝑖𝐶𝑡𝐹𝑦),                                                                                                         (10) 

 

where  𝐹𝑞 is defined by the Eq. (7) and C is the magnetic field strength described by 

Khaneja and co-worker18. In this article, within the recoupling frame, we only consider the 
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expression for the chemical shielding Hamiltonian leaving other interactions for future 

work and development. 

 

III.    Revisiting the Theoretical formalism of the FME 

  

The idea of a formulation of FME applied directly to periodically driven many-

body quantum systems has attracted much attention over recent years, in particular is solid-

state NMR. The FME benefit from the fusion of average Hamiltonian theory (Magnus 

expansion)61-70 and Floquet theory71-75 as well as the concise natural treatment of time-

periodic Hamiltonian that both approaches (average Hamiltonian and Floquet theories) 

provide. The divergence of the FME anticipate interesting physical meaning2,19,76. Part of 

this article focused on the FME that gives a formal expression of the effective Hamiltonian 

on the system. Plausibly, the most noteworthy difference of the Floquet−Magnus 

expansion with other approaches such as Magnus expansion, Floquet theory, or Fer 

expansion may be that it expands a propagator in the form of a more basic representation 

of the evolution operators as2,77 

 

𝑈(𝑡) = 𝑃(𝑡)𝑒−𝑖𝑡𝐹𝑃+(0),                                                                                                                                 (11) 

 

which removes the constraint of a stroboscopic observation. P(t) can be seen as the operator 

that introduces the frame such that the density operator is varying under the time 

independent Hamiltonian F. The FME is obtained by representing the solution of the time 

dependent Schrödinger equation  

 
𝑑𝑈(𝑡)

𝑑𝑡
= −𝑖𝐻𝑈(𝑡)                                                                                                                                                 (12) 

 

in the form of eq. (11) and using the following exponential ansatz  

 

𝑃(𝑡) = 𝑒𝑥𝑝{−𝑖Λ(𝑡)}                                                                                                                                         (13) 

 

where the function Λ(t) is the argument of the operator P(t). Introducing the expansions  

 

Λ(𝑡) = ∑ Λ𝑛𝑛 (𝑡),                                                                                                                                                (14) 

 

and 

 

F = ∑ F𝑛𝑛 ,                                                                                                                                                               (15) 

 

the FME expansion can be summarized as  

 

Λ(𝑡) = Λ𝑛(0) + ∫ 𝐺𝑛(𝑢)𝑑𝑢 − 𝑡𝐹𝑛
𝑡

0
                                                                                                           (16) 

 

where the first functions 𝐺𝑛(𝑡)are defined in the literature2. The above Eq. (16) includes 

two operators Λ𝑛(𝑡) and 𝐹𝑛 independent of each other. Indeed, the periodicity conditions, 
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Λ𝑛(𝜏𝐶) = Λ𝑛(0)                                                                                                                                                  (17) 

  

where 𝜏𝐶  is the period of the modulation, 

 

𝐻(𝜏𝐶 + 𝑡) = 𝐻(𝑡)                                                                                                                                               (18) 

 

defines 𝐹𝑛 as  

 

𝐹𝑛 =
1

𝜏𝐶
∫ 𝐺𝑛(𝑢)𝑑𝑢
𝜏𝐶

0
                                                                                                                                          (19) 

 

such that we are free to choose the operators Λ𝑛(0), i.e., the boundary conditions. At first 

glance, the choice Λ𝑛(0) = 0 (i.e., 𝑃(0) = 1) appears as the simplest. As was shown in 

our previous work2, in this case the FME reduces to the Magnus expansion (ME), which 

validity is restricted to stroboscopic observation, as was discussed in numerous 

papers2,19,26,29,76. A much better choice, without any restriction on the observation time, is 

given by the general rule, 

 

∫ Λ𝑛(𝑢)𝑑𝑢 = 0
𝜏𝐶

0
                                                                                                                                                 (20) 

 

which was shown to simplify higher order terms in the 𝐹𝑛 expansion. The FME is also 

known to give a formal expression of the Floquet Hamiltonian as follows 

 

H𝐹 = ∑ 𝑇𝑛∞
𝑛=0 Ω𝑛                                                                                                                                                (21) 

 

where explicit forms of the terms {Ω𝑛}𝑛=0
∞  are given by  

 

Ω𝑛 =
1

(𝑛 + 1)2
∑(−1)𝑛−𝜃(𝜎)

𝜎

𝜃(𝜎)! (𝑛 − 𝜃(𝜎))!

𝑛!

1

𝑖𝑛𝑇𝑛+1
 

× ∫ 𝑑𝑡𝑛+1
𝑇

0
…∫ 𝑑𝑡2

𝑡3

0
∫ 𝑑𝑡1
𝑡2

0
[𝐻(𝑡𝜎(𝑛+1)), [𝐻(𝑡𝜎(𝑛)), . . . , [𝐻(𝑡𝜎(2)), 𝐻(𝑡𝜎(1))] … ]].      (22) 

 

The parameter 𝜎 is the permutation and 𝜃(𝜎) ∶=  ∑ 𝜃(𝜎(𝑖 + 1) − 𝜎(𝑖)),𝑛
𝑖=1  with 𝜃(. ) the 

usual step function2,19. The FME is useful to investigate periodically driven system when 

the period T of the driving is sufficiently small. The above Eq. (22) is useful especially for 

high-frequency limit in finite-size systems, where higher-order contribution is negligible. 

The FME can also be truncated up to the nth order, which is defined as  

 

𝐻𝐹
(𝑛)
: = ∑ 𝑇𝑚𝑛

𝑚=0 Ω𝑚                                                                                                                                        (23) 

 

IV.    Revisiting the Theoretical formalism of the FE 

 

The Fer expansion was developed by Fer more than half a century ago35 and further 

thrived by Klarsfeld et al.78. Recently, Madhu et al.36 introduced the approach to solid-state 

NMR, while Takegoshi et al.77 as well as other authors such as34,79,80 contributed to 

exhaustive descriptions of Fer expansion in solid-state NMR. In this section, we 
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recapitulate and revisted the results of Madhu36, Takegoshi77, and Ganguly79,80 for the Fer 

expansion without going into detail. In the Fer expansion, the evolution operator is 

expressed in terms an infinite product of exponential operators such as, 

 

𝑈(𝜏𝐶) = ∏ 𝑒𝑥𝑝{−𝑖𝜏𝐶𝐻̅𝐹𝑒𝑟
(𝑛)
}∞

𝑛=0                                                                                                                    (24) 

 

Depending on the ordering of the operators, the time-propagator, 𝑈(𝑡), derived from Fer 

expansion is classified into two categories36,77-80: The Right running Fer expansion and the 

Left running expansion, which are represented in the following, 

 

(a) Right running Fer expansion 

 

                            𝑈𝑅(𝑡) =

exp(𝜆𝐹1(𝑡)) exp(𝜆
2𝐹2(𝑡)) exp(𝜆

3𝐹3(𝑡))… exp(𝜆
𝑛−1𝐹𝑛−1(𝑡)) exp(𝜆

𝑛𝐹𝑛(𝑡))𝑈𝑛(𝑡).   (25)      

 

Next, using the form of the 𝐹𝑛(𝑡) operators, we can evaluate the density operator (Right 

running Fer expansion) at time t as well as derive the signal detected (Right running Fer 

expansion) as a function of time. The density operator, 

 

 𝜌𝑅(𝑡) = 𝑈𝑅(𝑡)𝜌𝑅(0)𝑈𝑅
+(𝑡),                                                                                                                          (26) 

  

and the signal detected as a function of time is formally given by,  

 

𝑆𝑖𝑔𝑛𝑎𝑙(𝑡) = 〈𝑆(𝑡)〉𝑅 = 𝑇𝑟𝑎𝑐𝑒{𝜌𝑅(𝑡)𝐷̂}                                                                                                (27) 

 

(b) Left running Fer expansion 

 

                            𝑈𝐿(𝑡) =
𝑈𝑛(t)exp(𝜆

𝑛𝐹𝑛(𝑡)) exp(𝜆
𝑛−1𝐹𝑛−1(𝑡))… exp(𝜆

3𝐹3(𝑡)) exp (𝜆
2𝐹2(𝑡))exp (𝜆𝐹1(𝑡))     (28) 

 

Similarly, we can evaluate the density operator (Left running Fer expansion) at time t as 

well as derive the signal detected (Left running Fer expansion) as a function of time. The 

density operator,  

 

𝜌𝐿(𝑡) = 𝑈𝐿(𝑡)𝜌𝐿(0)𝑈𝐿
+(𝑡),                                                                                                                            (29) 

 

and the signal detected as a function of time is also formally given by 

 

𝑆𝑖𝑔𝑛𝑎𝑙(𝑡) = 〈𝑆(𝑡)〉𝐿 = 𝑇𝑟𝑎𝑐𝑒{𝜌𝐿(𝑡)𝐷̂}                                                                                                 (30) 

The  𝐹𝑛(𝑡) operators in the above Eqs. (25) and (28) act sequentially and are derived using 

the following simple integrals, 

 

  𝐹1(𝑡) = (−𝑖) ∫ 𝐻(𝑡
′)𝑑𝑡′

𝑡

0
                                                                                           (31-a) 

  𝐹2(𝑡) = 𝐹2,0(𝑡) + 𝐹2,1(𝑡) + 𝐹2,2(𝑡) +⋯                                                                    (31-b) 
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  𝐹2,0(𝑡) = (
𝑖

2
) ∫ [𝐹1(𝑡

′), 𝐻(𝑡′)]𝑑𝑡′
𝑡

0
                                                                              (31-c) 

  𝐹2,1(𝑡) = −(
𝑖

3
) ∫ [𝐹1(𝑡

′), [𝐹1(𝑡
′), 𝐻(𝑡′)]]𝑑𝑡′

𝑡

0
                                                             (31-d) 

……………… 

 

The above Eqs. (31-a)–(31-d) show that 𝐹𝑛(𝑡) operators are infinite series containing 

progressively higher order correction terms. However, for the purpose of this article, we 

limit ourselves only to the lowest order correction in the operator, 𝐹2(𝑡) = 𝐹2,0(𝑡). 
Although, the splitting of the time-propagator into an infinite product of exponential 

operators seem beneficial, from an operational aspect, the ordering of operators in the time-

propagator play an important role. In the time-propagators based on Left running 

expansion, the 𝐹𝑛(𝑡) operators (of higher order ’n’) act initially on the initial density 

operator, while in the Right running expansion, the 𝐹𝑛(𝑡) operators (of lower order ’n’) act 

initially on the initial density operator. Therefore, the signal for the Right running Fer 

expansion can be calculated explicitly as following  

 

𝑆𝑖𝑔𝑛𝑎𝑙(𝑡) = 〈𝑆(𝑡)〉𝑅 = 𝑇𝑟𝑎𝑐𝑒{𝜌𝑅(𝑡)𝐷̂}                                                                      (32-a) 

 

= 𝑇𝑟 [{𝑒𝐹1
𝑅(𝑡)𝑒𝐹2

𝑅(𝑡)𝑒𝐹3
𝑅(𝑡)𝜌(0)𝑒−𝐹3

𝑅(𝑡)𝑒−𝐹2
𝑅(𝑡)𝑒−𝐹1

𝑅(𝑡)} 𝐷̂]  

= 𝑇𝑟 [𝑒𝐹2
𝑅(𝑡)𝜌(0)𝑒−𝐹2

𝑅(𝑡)⏟          
𝜌(2)
𝑅 (𝑡)

𝑒𝐹3
𝑅(𝑡)𝜌(0)𝑒−𝐹3

𝑅(𝑡)⏟          
𝜌(3)
𝑅 (𝑡)

𝑒−𝐹1
𝑅
𝐷̂𝑒𝐹1

𝑅⏞      

𝐷̂(1)
𝑅 (𝑡)

 ]  

= 𝑇𝑟[𝜌(2)
𝑅 (𝑡)𝜌(3)

𝑅 (𝑡)𝐷̂(1)
𝑅 (𝑡)]                                                                                         (32-b) 

 

The signal for the Left running Fer expansion can also be calculated explicitly as  

 

𝑆𝑖𝑔𝑛𝑎𝑙(𝑡) = 〈𝑆(𝑡)〉𝐿 = 𝑇𝑟𝑎𝑐𝑒{𝜌𝐿(𝑡)𝐷̂}                                                                      (33-a) 

 

= 𝑇𝑟 [{𝑒𝐹3
𝐿(𝑡)𝑒𝐹2

𝐿(𝑡)𝑒𝐹1
𝐿(𝑡)𝜌(0)𝑒−𝐹1

𝐿(𝑡)𝑒−𝐹2
𝐿(𝑡)𝑒−𝐹3

𝐿(𝑡)} 𝐷̂]  

= 𝑇𝑟 [𝑒𝐹2
𝐿(𝑡)𝜌(0)𝑒−𝐹2

𝐿(𝑡)⏟          
𝜌(2)
𝐿 (𝑡)

𝑒𝐹1
𝐿(𝑡)𝜌(0)𝑒−𝐹1

𝐿(𝑡)⏟          
𝜌(1)
𝐿 (𝑡)

𝑒−𝐹3
𝐿
𝐷̂𝑒𝐹3

𝐿⏞      

𝐷̂(3)
𝐿 (𝑡)

 ]  

= 𝑇𝑟[𝜌(2)
𝐿 (𝑡)𝜌(1)

𝐿 (𝑡)𝐷̂(3)
𝐿 (𝑡)]                                                                                         (33-b) 

 

The subscripts (1, 2, and 3) in the density operator 𝜌(𝑡) and detection operator 𝐷̂ represents 

the evolution under the corresponding 𝐹𝑛
𝑅(𝑡) and 𝐹𝑛

𝐿(𝑡) operators, where 𝐹𝑛
𝑅(𝑡) represents 

the Right running counterparts of the Left running operators 𝐹𝑛
𝐿(𝑡). The operators are 

related among them as following: 

 

𝐹1
𝑅(𝑡) = 𝐹1

𝐿(𝑡) = 𝐹1(𝑡)                                                                                                 (34-a) 

 

𝐹2
𝑅(𝑡) = 𝐹2

𝐿(𝑡) = 𝐹2(𝑡)                                                                                                (34-b) 
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𝐹3
𝑅(𝑡) = 𝐹3

𝐿(𝑡) = 𝐹3(𝑡)                                                                                                 (34-c) 

 

As described above, the final form of the density operator at time ’t’ is dependent on the 

type of the expansion scheme (Right running or Left running) used to obtain   the time-

propagator. Depending on the form of the initial density operator and the detection 

operator, the final form of the signal expression derived from the two formulations could 

differ as showed in the Eqs. (32-b) and (33-b). Because most works in the literature mainly 

are based on Right running expansion36,77-80, in this article, we used the Right running 

notation for the sake of continuity and simplicity. 

 

V.    Application of FME to the Chemical Shielding Hamiltonian during the  

        TOFU Pulse Sequence Radiation  

 

The relevant spin Hamiltonian of the chemical shielding transformed into the 

recoupling frame takes the form18, 

 

𝐻̃𝜎(𝑡) = 𝜔𝐼(𝑡) (𝑐𝑜𝑠
2(𝐶𝑡)𝐼𝑍 + sin(𝐶𝑡) 𝐼𝑌 −

1

2
sin(2𝐶𝑡) 𝐼𝑋)                                  

+ 𝜔𝑆(𝑡)(𝑐𝑜𝑠
2(𝐶𝑡)𝑆𝑍 + sin(𝐶𝑡)𝑆𝑌 −

1

2
sin(2𝐶𝑡)𝑆𝑋)                                                                      (35) 

 

where C is an angular frequency, which is the strength of a field 𝐵𝑖 (with i = x, y, z). The 

functions 𝜔𝐼(𝑡) and 𝜔𝑆(𝑡) represent the time-varying chemical shifts for the two spins I 

and S, respectively. These functions are interaction strengths that may be expressed in 

terms of a Fourier series such as expressed in section II. The Interference between time 

dependence, exp(−𝑖𝑚𝜔𝑟𝑡), of the interaction frequencies (Eq. (35)) and the time 

modulation given in the appendix (Eqs. (A.1) – (A.3)) arising from the TOFU pulse 

sequence, allows for selective recoupling of specific terms in the Hamiltonian by fulfilling 

the conditions  

 

𝑚𝜔𝑟 + 𝑛𝐶 = 0                                                                                                                                                     (36) 

 

where, 𝑚 = ±1, ±2 according to Eq. (2), and 𝑛 = ±1, ±2. The chemical shielding 

Hamiltonian can be written as 

 

𝐻̃𝜎(𝑡) = ∑ 𝜔𝐼
(𝑚)2

𝑚=−2 {𝑎𝑋𝐼𝑋 + 𝑎𝑌𝐼𝑌 + 𝑎𝑍𝐼𝑍} + Σ𝑆
(0)                                                                      (37) 

 

where Σ𝑆(0)are the sum of the equivalent terms of spin I for spin S, and the functions 𝑎𝑋(𝑡), 
𝑎𝑌(𝑡), and 𝑎𝑍(𝑡) are given by 

 

𝑎𝑋 = −
1

4𝑖
(𝑒𝑖(𝑚𝜔𝑟+2𝐶)𝑡 − 𝑒𝑖(𝑚𝜔𝑟−2𝐶)𝑡)                                                                                                   (38) 

 

𝑎𝑌 =
1

2𝑖
(𝑒𝑖(𝑚𝜔𝑟+𝐶)𝑡 − 𝑒𝑖(𝑚𝜔𝑟−𝐶)𝑡)                                                                                                            (39) 

 

𝑎𝑍 =
1

2
𝑒𝑖𝑚𝜔𝑟𝑡 +

1

4
(𝑒𝑖(𝑚𝜔𝑟+2𝐶)𝑡 + 𝑒𝑖(𝑚𝜔𝑟−2𝐶)𝑡)                                                                                 (40) 
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The dipolar coupling Hamiltonian takes the form18, 

 

𝐻̃𝐼𝑆(𝑡) =
3

2
𝜔𝐼𝑆(𝑡){

𝑐𝑜𝑠4(𝐶𝑡)2𝐼𝑍𝑆𝑍 + 𝑠𝑖𝑛
2(𝐶𝑡)𝑐𝑜𝑠2(𝐶𝑡)2𝐼𝑋𝑆𝑋

+𝑠𝑖𝑛2(𝐶𝑡)2𝐼𝑌𝑆𝑌 +
1

2
sin(2𝐶𝑡) [cos (Ct)(2𝐼𝑍𝑆𝑌 + 2𝐼𝑌𝑆𝑍

−sin(𝐶𝑡) (2𝐼𝑋𝑆𝑌 + 2𝐼𝑌𝑆𝑋) − 𝑐𝑜𝑠
2(𝐶𝑡)(2𝐼𝑍𝑆𝑋 + 2𝐼𝑋𝑆𝑍]

}               (41) 

 

where components from the invariant (and non-recoupled) 𝐼. 𝑆 part of the Hamiltonian are 

ignored. In this article, we only considered and treated the chemical shielding Hamiltonian 

and we leaved the dipolar coupling Hamiltonian, which will be treated in a forthcoming 

publication.         

 

The first order term of the FME can be calculated as 

 

        𝐹1
𝜎 =

1

𝑇
∫ 𝐻̃(𝜏)𝑑𝜏 =

1

𝑇

𝑇

0
∫ {𝜔𝐼(𝑡)𝑐𝑜𝑠

2(𝐶𝑡)⏞        
𝐼1

𝐼𝑍 + 𝜔𝐼(t)sin (𝐶𝑡)⏟        
𝐼2

𝐼𝑌 −
𝑇

0

1

2
𝜔𝐼(𝑡) sin(2𝐶𝑡)
⏞          

𝐼3

𝐼𝑋 +𝜔𝑆(𝑡)𝑐𝑜𝑠2(𝐶𝑡)⏞        
𝐼4

𝑆𝑍 +𝜔𝑆(𝑡) sin(𝐶𝑡)⏟        𝑆𝑌 −
𝐼5

1

2
𝜔𝑆(𝑡)𝑠𝑖𝑛(2𝐶𝑡)
⏞          

𝑆𝑋

𝐼6

}𝑑𝑡  

                                                                                                                                         (42) 

 

where the integrals I1, I2, … I6 are calculated in the appendix. In respect with the Dirac 

function integration23,  

 
1

𝑇
∫ 𝑒𝑖𝑚𝜔𝑟𝑡𝑑𝑡
𝑇

0
= 𝛿𝑚,0                                                                                                                                        (43) 

 

we have 

 

𝐼1 = ∑ 𝜔𝐼
(𝑚)2

𝑚=−2

{
 
 

 
 

1

2
, 𝑓𝑜𝑟 𝑚𝜔𝑟 = 0

1

4
, 𝑓𝑜𝑟 𝑚𝜔𝑟 + 2𝐶 = 0

1

4
,    𝑓𝑜𝑟 𝑚𝜔𝑟 − 2𝐶 = 0

                                                                (44-1) 

 

𝐼2 = ∑ 𝜔𝐼
(𝑚)2

𝑚=−2 {

1

2𝑖
,   𝑓𝑜𝑟 𝑚𝜔𝑟 + 𝐶 = 0

1

−2𝑖
,   𝑓𝑜𝑟 𝑚𝜔𝑟 − 𝐶 = 0

                                                                (44-2) 

 

𝐼3 = ∑ 𝜔𝐼
(𝑚)2

𝑚=−2 {

−1

4𝑖
,   𝑓𝑜𝑟 2𝐶 +𝑚𝜔𝑟 = 0

1

4𝑖
,   𝑓𝑜𝑟 2𝐶 −𝑚𝜔𝑟 = 0

                                                               (44-3) 
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𝐼4 = ∑ 𝜔𝑆
(𝑚)2

𝑚=−2

{
 
 

 
 

1

2
, 𝑓𝑜𝑟 𝑚𝜔𝑟 = 0

1

4
, 𝑓𝑜𝑟 𝑚𝜔𝑟 + 2𝐶 = 0

1

4
,    𝑓𝑜𝑟 𝑚𝜔𝑟 − 2𝐶 = 0

                                                                (44-4) 

 

𝐼5 = ∑ 𝜔𝑆
(𝑚)2

𝑚=−2 {

1

2𝑖
,   𝑓𝑜𝑟 𝑚𝜔𝑟 + 𝐶 = 0

1

−2𝑖
,   𝑓𝑜𝑟 𝑚𝜔𝑟 − 𝐶 = 0

                                                                (44-5) 

 

𝐼6 = ∑ 𝜔𝑆
(𝑚)2

𝑚=−2 {

−1

4𝑖
,   𝑓𝑜𝑟 2𝐶 +𝑚𝜔𝑟 = 0

1

4𝑖
,   𝑓𝑜𝑟 2𝐶 −𝑚𝜔𝑟 = 0

                                                               (44-6) 

 

We consider selective recoupling of specific terms in the toggling Hamiltonian (Eq. (35)) 

by fulfilling the conditions of the Eq. (36). We considered two classes of selective 

recoupling experiments obtained using, 

 

(a) 𝐶 =
1

2
𝑚𝜔𝑟,                                                                                                                                             (45) 

 

 and  

 

(b) 𝐶 = 𝑚𝜔𝑟 .                                                                                                                                                 (46) 

 

For 𝑪 =
𝟏

𝟐
𝒎𝝎𝒓, we have the first order term of the FME calculated as, 

 

𝐹1
𝜎 = (

1

4
𝐼𝑍 +

1

4𝑖
𝐼𝑋)∑ 𝜔𝐼

(𝑚)
+ (

1

4
𝑆𝑍

2
𝑚=−2 +

1

4𝑖
𝑆𝑋)∑ 𝜔𝑆

(𝑚)2
𝑚=−2                                                   (47) 

 

and for 𝑪 = 𝒎𝝎𝒓, we have the first order term of the FME calculated as, 

 

𝐹1
𝜎 = −

1

2𝑖
𝐼𝑌 ∑ 𝜔𝐼

(𝑚)2
𝑚=−2 −

1

2𝑖
𝑆𝑌 ∑ 𝜔𝑆

(𝑚)2
𝑚=−2                                                                                     (48) 

 

The associate transformation results from 

 

Λ1(𝑡) = ∫ 𝐻̃(𝜏)𝑑𝜏 − 𝑡𝐹1
𝑡

0
                                                                                                                               (49) 

 

where we choose Λ1(0) = 0. After calculations showed in the appendix, we obtained 
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Λ1(𝑡)

= ∑ 𝜔𝐼
(𝑚)

{
 
 
 
 

 
 
 
 [

1

2𝑖𝑚𝜔𝑟
(𝑒𝑖𝑚𝜔𝑟𝑡 − 1) +

1

4𝑖(𝑚𝜔𝑟 + 2𝐶)
(𝑒𝑖(𝑚𝜔𝑟+2𝐶)𝑡 − 1)

+
1

4𝑖(𝑚𝜔𝑟 − 2𝐶)
(𝑒𝑖(𝑚𝜔𝑟−2𝐶)𝑡 − 1)]𝐼𝑍 + [

−1

2(𝑚𝜔𝑟 + 𝐶)
(𝑒𝑖(𝑚𝜔𝑟+𝐶)𝑡 − 1)

+
1

2(𝑚𝜔𝑟 − 𝐶)
(𝑒𝑖(𝑚𝜔𝑟−𝐶)𝑡 − 1)]𝐼𝑌 + [

1

4(2𝐶 +𝑚𝜔𝑟)
(𝑒𝑖(2𝐶+𝑚𝜔𝑟)𝑡 − 1)

−
1

4(𝑚𝜔𝑟 − 2𝐶)
(𝑒𝑖(𝑚𝜔𝑟−2𝐶)𝑡 − 1)]𝐼𝑋 }

 
 
 
 

 
 
 
 

2

𝑚=−2

 

+ Σ𝑆 - 𝑡𝐹1                                                                                                                                                                  (50) 

 

where Σ𝑆 are the sum of the equivalent terms of spin I for spin S. If we choose 𝑪 =
𝟏

𝟐
𝒎𝝎𝒓, 

corresponding also to 𝒎𝝎𝒓 − 𝟐𝑪 = 𝟎, the first-order term of the argument of the operator 

evolution can be evaluated as 

 

Λ1(𝑡) = ∑ 𝜔𝐼
(𝑚){𝑎𝐼𝑋(𝑡)𝐼𝑋 + 𝑎𝐼𝑌(𝑡)𝐼𝑌 + 𝑎𝐼𝑍(𝑡)𝐼𝑍}

2
𝑚=−2 + Σ𝑆(1),                                              (51) 

 

where Σ𝑆(1)are the sum of the equivalent terms of spin I for spin S, and the functions 

𝑎𝐼𝑋(𝑡), 𝑎𝐼𝑌(𝑡), and 𝑎𝐼𝑍(𝑡) are given by 

 

𝑎𝐼𝑋(𝑡) =
1

(8𝑚𝜔𝑟)
(𝑒𝑖(2𝑚𝜔𝑟)𝑡 − 1),                                                                                                               (52) 

 

𝑎𝐼𝑌(𝑡) =
−1

(3𝑚𝜔𝑟)
(𝑒𝑖(

3

2
𝑚𝜔𝑟)𝑡 − 1) +

1

(𝑚𝜔𝑟)
(𝑒𝑖(

1

2
𝑚𝜔𝑟)𝑡 − 1)                                                           (53) 

 

𝑎𝐼𝑍(𝑡) =
1

2𝑖𝑚𝜔𝑟
(𝑒𝑖𝑚𝜔𝑟𝑡 − 1) +

1

8𝑖(𝑚𝜔𝑟)
(𝑒𝑖(2𝑚𝜔𝑟)𝑡 − 1)                                                               (54) 

    

If we choose 𝑪 = 𝒎𝝎𝒓, corresponding to 𝒎𝝎𝒓 − 𝑪 = 𝟎, the first-order term of the 

argument of the operator evolution can be evaluated as 

 

Λ1,1(𝑡) = ∑ 𝜔𝐼
(𝑚){𝑎𝐼𝑋,1(𝑡)𝐼𝑋 + 𝑎𝐼𝑌,1(𝑡)𝐼𝑌 + 𝑎𝐼𝑍,1(𝑡)𝐼𝑍}

2
𝑚=−2 + Σ𝑆(2),                                  (55) 

 

where Σ𝑆(2)are the sum of the equivalent terms of spin I for spin S, and the functions 

𝑎𝐼𝑋,1(𝑡), 𝑎𝐼𝑌,1(𝑡), and 𝑎𝐼𝑍,1(𝑡) are given by 

 

𝑎𝐼𝑋,1(𝑡) =
1

12𝑚𝜔𝑟
(𝑒𝑖(3𝑚𝜔𝑟)𝑡 − 1) +

1

4𝑚𝜔𝑟
(𝑒−𝑖𝑚𝜔𝑟𝑡 − 1),                                                            (56) 

 

𝑎𝐼𝑌,1(𝑡) =
−1

4𝑚𝜔𝑟
(𝑒𝑖(2𝑚𝜔𝑟)𝑡 − 1),                                                                                                                (57)  

 

𝑎𝐼𝑍,1(𝑡) =
1

2𝑖𝑚𝜔𝑟
(𝑒𝑖𝑚𝜔𝑟𝑡 − 1) +

1

12𝑖𝑚𝜔𝑟
(𝑒𝑖(3𝑚𝜔𝑟)𝑡 − 1) −

1

4𝑖𝑚𝜔𝑟
(𝑒−𝑖𝑚𝜔𝑟𝑡 − 1).         (58)  
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High order terms can also be obtained after lengthy calculations and the details of 

calculations are shown in the appendix. The second order terms are computed to be  

for 𝑪 =
𝟏

𝟐
𝒎𝝎𝒓, 

 

𝐹2
𝜎 =

1

2𝑖𝑇
∫ [𝐻̃(𝜏) + 𝐹1, Λ1(𝜏)]𝑑𝜏
𝑇

0
= (𝐼1

′ + 𝐼2
′ + 𝐼5

′)𝐼𝑋 + (𝐼3
′ + 𝐼4

′ + 𝐼7
′ + 𝐼8

′)𝐼𝑌                   (59) 

+(𝐼6
′ + 𝐼9

′ + 𝐼10
′ )𝐼𝑍 + Σ𝑆

(3), 
 

where Σ𝑆(3)are the sum of the equivalent terms of spin I for spin S, and the integrals, 𝐼1
′ , 

𝐼2
′ , 𝐼3

′ , … 𝐼9
′ , and 𝐼10

′  are given in the following and are calculated in the appendix, 

 

𝐼1
′ =

−1

2𝑇
∫ 𝑎𝐼𝑌𝜔𝐼(𝑡)𝑐𝑜𝑠

2(𝐶𝑡)
𝑇

0
𝑑𝑡  

     = −
1

2
∑ 𝜔𝐼

(𝑚)

{
 
 
 
 
 

 
 
 
 
 

0                 𝑓𝑜𝑟 𝑚𝜔𝑟 = 0

−
1

12𝑚𝜔𝑟
                𝑓𝑜𝑟 

5

2
𝑚𝜔𝑟 + 2𝐶 = 0

−
1

6𝑚𝜔𝑟
               𝑓𝑜𝑟 𝑚𝜔𝑟 + 2𝐶 = 0

1

4𝑚𝜔𝑟
                      𝑓𝑜𝑟 

3

2
𝑚𝜔𝑟 + 2𝐶 = 0

−
1

12𝑚𝜔𝑟
               𝑓𝑜𝑟 

5

2
𝑚𝜔𝑟 − 2𝐶 = 0

−
1

6𝑚𝜔𝑟
              𝑓𝑜𝑟 𝑚𝜔𝑟 − 2𝐶 = 0

1

4𝑚𝜔𝑟
                     𝑓𝑜𝑟 

3

2
𝑚𝜔𝑟 − 2𝐶 = 0

2
𝑚=−2                                                (60) 

 

𝐼2
′ =

−1

8𝑇
∑ 𝜔𝐼

(𝑚)2
𝑚=−2 ∫ 𝑎𝐼𝑌

𝑇

0
𝑑𝑡  

    = −
1

8
∑ 𝜔𝐼

(𝑚)
{
0                               𝑓𝑜𝑟 𝑚𝜔𝑟 = 0
−2

3𝑚𝜔𝑟
                        𝑓𝑜𝑟 𝑚𝜔𝑟 ≠ 0

2
𝑚=−2                                                                 (61) 

 

𝐼3
′ =

1

2𝑇
∫ 𝑎𝐼𝑋𝜔𝐼(𝑡)𝑐𝑜𝑠

2(𝐶𝑡)
𝑇

0
𝑑𝑡  

    =
1

16𝑚𝜔𝑟
∑ 𝜔𝐼

(𝑚)

{
 
 
 

 
 
 

0                      𝑓𝑜𝑟 𝑚𝜔𝑟 = 0
1

4
                           𝑓𝑜𝑟 3𝑚𝜔𝑟 + 2𝐶 = 0

−
1

4
                   𝑓𝑜𝑟 𝑚𝜔𝑟 + 2𝐶 = 0

1

4
                          𝑓𝑜𝑟 3𝑚𝜔𝑟 − 2𝐶 = 0

−
1

4
                   𝑓𝑜𝑟 𝑚𝜔𝑟 − 2𝐶 = 0

2
𝑚=−2                                               (62) 

 

𝐼4
′ =

1

8𝑇
∑ 𝜔𝐼

(𝑚)2
𝑚=−2 ∫ 𝑎𝐼𝑋

𝑇

0
𝑑𝑡  

    =
1

8
∑ 𝜔𝐼

(𝑚)
{
0                                    𝑓𝑜𝑟 𝑚𝜔𝑟 = 0
−1

8𝑚𝜔𝑟
                              𝑓𝑜𝑟 𝑚𝜔𝑟 ≠ 0

2
𝑚=−2                                                              (63) 
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𝐼5
′ =

1

2𝑇
∫ 𝑎𝐼𝑍𝜔𝐼(𝑡)𝑠𝑖𝑛(𝐶𝑡)
𝑇

0
𝑑𝑡  

    =
1

4𝑖
∑ 𝜔𝐼

(𝑚)

{
 
 
 
 

 
 
 
 

1

2𝑖𝑚𝜔𝑟
                           𝑓𝑜𝑟 2𝑚𝜔𝑟 + 𝐶 = 0

−5

8𝑖𝑚𝜔𝑟
                         𝑓𝑜𝑟 𝑚𝜔𝑟 + 𝐶 = 0

−
1

2𝑖𝑚𝜔𝑟
                       𝑓𝑜𝑟 2𝑚𝜔𝑟 − 𝐶 = 0

5

8𝑖𝑚𝜔𝑟
                           𝑓𝑜𝑟 𝑚𝜔𝑟 − 𝐶 = 0

−
1

8𝑖𝑚𝜔𝑟
                         𝑓𝑜𝑟 3𝑚𝜔𝑟 − 𝐶 = 0

1

8𝑖𝑚𝜔𝑟
                              𝑓𝑜𝑟 3𝑚𝜔𝑟 + 𝐶 = 0

2
𝑚=−2                                              (64) 

 

𝐼6
′ =

−1

2𝑇
∫ 𝑎𝐼𝑋𝜔𝐼(𝑡)𝑠𝑖𝑛(𝐶𝑡)
𝑇

0
𝑑𝑡  

                                             =

−1

32𝑖𝑚𝜔𝑟
∑ 𝜔𝐼

(𝑚)
{

1                                       𝑓𝑜𝑟 3𝑚𝜔𝑟 + 𝐶 = 0
−1                                  𝑓𝑜𝑟 𝑚𝜔𝑟 + 𝐶 = 0
−1                                    𝑓𝑜𝑟  3𝑚𝜔𝑟 − 𝐶 = 0
1                                     𝑓𝑜𝑟 𝑚𝜔𝑟 − 𝐶 = 0

2
𝑚=−2                                            (65) 

 

𝐼7
′ =

1

4𝑇
∫ 𝑎𝐼𝑍𝜔𝐼(𝑡)𝑠𝑖𝑛(2𝐶𝑡)
𝑇

0
𝑑𝑡  

    =
1

8𝑖
∑ 𝜔𝐼

(𝑚)

{
 
 
 
 
 

 
 
 
 
 

1

2𝑖𝑚𝜔𝑟
                                𝑓𝑜𝑟 2𝑚𝜔𝑟 + 2𝐶 = 0

−
5

8𝑖𝑚𝜔𝑟
                          𝑓𝑜𝑟 𝑚𝜔𝑟 + 2𝐶 = 0

1

8𝑖𝑚𝜔𝑟
                                𝑓𝑜𝑟 3𝑚𝜔𝑟 + 2𝐶 = 0

−1

2𝑖𝑚𝜔𝑟
                               𝑓𝑜𝑟 2𝑚𝜔𝑟 − 2𝐶 = 0

1

2𝑖𝑚𝜔𝑟
                            𝑓𝑜𝑟 𝑚𝜔𝑟 − 2𝐶 = 0

−
1

8𝑖𝑚𝜔𝑟
                          𝑓𝑜𝑟 3𝑚𝜔𝑟 − 2𝐶 = 0

1

8𝑖𝑚𝜔𝑟
                            𝑓𝑜𝑟 𝑚𝜔𝑟 − 2𝐶 = 0

2
𝑚=−2                                         (66) 

 

𝐼8
′ =

−1

8𝑖𝑇
∑ 𝜔𝐼

(𝑚)2
𝑚=−2 ∫ 𝑎𝐼𝑍

𝑇

0
𝑑𝑡  

    =
1

8𝑖
∑ 𝜔𝐼

(𝑚)
{
0                                        𝑓𝑜𝑟 𝑚𝜔𝑟 = 0
−5

8𝑖𝑚𝜔𝑟
                                𝑓𝑜𝑟 𝑚𝜔𝑟 ≠ 0

2
𝑚=−2                                                         (67) 

 

𝐼9
′ =

−1

4𝑇
∫ 𝑎𝐼𝑌𝜔𝐼(𝑡)𝑠𝑖𝑛(2𝐶𝑡)
𝑇

0
𝑑𝑡  
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     =
1

4𝑖
∑ 𝜔𝐼

(𝑚)

{
 
 
 
 

 
 
 
 

−1

3𝑚𝜔𝑟
                                   𝑓𝑜𝑟 

5

2
𝑚𝜔𝑟 + 2𝐶 = 0

−2

3𝑚𝜔𝑟
                                𝑓𝑜𝑟 𝑚𝜔𝑟 + 2𝐶 = 0

1

𝑚𝜔𝑟
                                    𝑓𝑜𝑟 

3

2
𝑚𝜔𝑟 + 2𝐶 = 0

1

3𝑚𝜔𝑟
                                  𝑓𝑜𝑟 

5

2
𝑚𝜔𝑟 − 2𝐶 = 0

2

3𝑚𝜔𝑟
                               𝑓𝑜𝑟 𝑚𝜔𝑟 − 2𝐶 = 0

−1

𝑚𝜔𝑟
                                    𝑓𝑜𝑟 

3

2
𝑚𝜔𝑟 − 2𝐶 = 0

2
𝑚=−2                                    (68) 

 

𝐼10
′ =

1

8𝑖𝑇
∑ 𝜔𝐼

(𝑚)2
𝑚=−2 ∫ 𝑎𝐼𝑌

𝑇

0
𝑑𝑡  

      =
1

8𝑖
∑ 𝜔𝐼

(𝑚)
{
0                                         𝑓𝑜𝑟 𝑚𝜔𝑟 = 0
−2

3𝑚𝜔𝑟
                                  𝑓𝑜𝑟 𝑚𝜔𝑟 ≠ 0

2
𝑚=−2                                                      (69) 

 

For 𝑪 =
𝟏

𝟐
𝒎𝝎𝒓, we have the second order term of the FME calculated as, 

 

𝐹2
𝜎 = ∑ 𝜔𝐼

(𝑚)2
𝑚=−2 (

1

2𝑚𝜔𝑟
) [
1

3
𝐼𝑋 −

1

4
𝐼𝑌 −

1

3𝑖
𝐼𝑍] + ∑𝑆

(3)                                              (70-1) 

 

The propagator derived from the FME can be written as  

 

𝑈(𝜏𝐶) ≈ 𝑒𝑥𝑝{−𝑖𝜏𝐶(𝐹1
𝜎 + 𝐹2

𝜎 +⋯)}                                                                           (70-2) 

 

where 𝐹1
𝜎 , 𝐹2

𝜎 , … 𝑒𝑡𝑐 correspond to the 1st, 2nd … etc… Floquet operator orders, 

respectively. 

 

For 𝑪 = 𝒎𝝎𝒓, 
 

           𝐹2,1
𝜎 =

1

2𝑖𝑇
∫ [𝐻̃(𝜏) + 𝐹1, Λ1,1(𝜏)]𝑑𝜏
𝑇

0
= (𝐼1,1

′ + 𝐼2,1
′ + 𝐼5,1

′ )𝐼𝑋 + (𝐼3,1
′ + 𝐼4,1

′ + 𝐼7,1
′ +

𝐼8,1
′ )𝐼𝑌 + (𝐼6,1

′ + 𝐼9,1
′ + 𝐼10,1

′ )𝐼𝑍 +∑𝑆
(4),                                                                                                 (71) 

 

where Σ𝑆(4)are the sum of the equivalent terms of spin I for spin S, and the integrals, 𝐼1,1
′ , 

𝐼2
′ , 𝐼3,1

′ … 𝐼9,1
′ , and 𝐼10,1

′  are calculated in the following, 

 

𝐼1,1
′ =

−1

2𝑇
∫ 𝑎𝐼𝑌,1𝜔𝐼(𝑡)𝑐𝑜𝑠

2(𝐶𝑡)
𝑇

0
𝑑𝑡                                                                                                            (72) 
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      =
1

8𝑚𝜔𝑟
∑ 𝜔𝐼

(𝑚)

{
 
 
 

 
 
 

0                            𝑓𝑜𝑟 𝑚𝜔𝑟 = 0
1

4
                                       𝑓𝑜𝑟 3𝑚𝜔𝑟 + 2𝐶 = 0

1

4
                                        𝑓𝑜𝑟 3𝑚𝜔𝑟 − 2𝐶 = 0

−1

4
                                  𝑓𝑜𝑟 𝑚𝜔𝑟 + 2𝐶 = 0

−
1

4
                                 𝑓𝑜𝑟 𝑚𝜔𝑟 − 2𝐶 = 0

2
𝑚=−2  

 

𝐼2,1
′ =

−1

8𝑇
∑ 𝜔𝐼

(𝑚)2
𝑚=−2 ∫ 𝑎𝐼𝑌,1

𝑇

0
𝑑𝑡  

      = ∑ 𝜔𝐼
(𝑚)

{
0                                                 𝑓𝑜𝑟 𝑚𝜔𝑟 = 0
−1

32𝑚𝜔𝑟
                                        𝑓𝑜𝑟 𝑚𝜔𝑟 ≠ 0

2
𝑚=−2                                                 (73) 

 

𝐼3,1
′ =

1

2𝑇
∫ 𝑎𝐼𝑋,1𝜔𝐼(𝑡)𝑐𝑜𝑠

2(𝐶𝑡)
𝑇

0
𝑑𝑡  

                                             =

1

8𝑚𝜔𝑟
∑ 𝜔𝐼

(𝑚)

{
 
 
 

 
 
 

0                                       𝑓𝑜𝑟 𝑚𝜔𝑟 = 0
7

12
                                                 𝑓𝑜𝑟 4𝑚𝜔𝑟 + 2𝐶 = 0

1

6
                                                 𝑓𝑜𝑟 𝑚𝜔𝑟 + 2𝐶 = 0

7

2
                                                  𝑓𝑜𝑟 4𝑚𝜔𝑟 − 2𝐶 = 0

1

6
                                                 𝑓𝑜𝑟 𝑚𝜔𝑟 − 2𝐶 = 0

2
𝑚=−2                                (74) 

 

𝐼4,1
′ =

1

8𝑇
∑ 𝜔𝐼

(𝑚)2
𝑚=−2 ∫ 𝑎𝐼𝑋,1

𝑇

0
𝑑𝑡  

      =
1

32
∑ 𝜔𝐼

(𝑚)
{
0                                              𝑓𝑜𝑟 𝑚𝜔𝑟 = 0
−5

4𝑚𝜔𝑟
                                       𝑓𝑜𝑟 𝑚𝜔𝑟 ≠ 0

2
𝑚=−2                                               (75) 

 

𝐼5,1
′ =

1

2𝑇
∫ 𝑎𝐼𝑍,1𝜔𝐼(𝑡)𝑠𝑖𝑛(𝐶𝑡)
𝑇

0
𝑑𝑡  

      =
−1

8𝑚𝜔𝑟
∑ 𝜔𝐼

(𝑚)

{
 
 
 
 

 
 
 
 
1                                       𝑓𝑜𝑟 2𝑚𝜔𝑟 + 𝐶 = 0
−2

3
                                  𝑓𝑜𝑟 𝑚𝜔𝑟 + 𝐶 = 0

1

6
                                      𝑓𝑜𝑟 4𝑚𝜔𝑟 + 𝐶 = 0

−1                                    𝑓𝑜𝑟 2𝑚𝜔𝑟 − 𝐶 = 0
2

3
                                    𝑓𝑜𝑟 𝑚𝜔𝑟 − 𝐶 = 0

−1

6
                                     𝑓𝑜𝑟 4𝑚𝜔𝑟 − 𝐶 = 0

2
𝑚=−2                                   (76) 
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𝐼6
′ =

−1

2𝑇
∫ 𝑎𝐼𝑋,1𝜔𝐼(𝑡)𝑠𝑖𝑛(𝐶𝑡)
𝑇

0
𝑑𝑡  

                                             =

−1

16𝑖𝑚𝜔𝑟
∑ 𝜔𝐼

(𝑚)

{
 
 

 
 
1

3
                                                𝑓𝑜𝑟 4𝑚𝜔𝑟 + 𝐶 = 0

−
4

3
                                          𝑓𝑜𝑟 𝑚𝜔𝑟 + 𝐶 = 0

−1

3
                                               𝑓𝑜𝑟  4𝑚𝜔𝑟 − 𝐶 = 0

4

3
                                              𝑓𝑜𝑟 𝑚𝜔𝑟 − 𝐶 = 0

2
𝑚=−2                                (77) 

 

𝐼7,1
′ =

1

4𝑇
∫ 𝑎𝐼𝑍,1𝜔𝐼(𝑡)𝑠𝑖𝑛(2𝐶𝑡)
𝑇

0
𝑑𝑡  

       =
1

16𝑖𝑚𝜔𝑟
∑ 𝜔𝐼

(𝑚)

{
 
 
 
 

 
 
 
 
1                                    𝑓𝑜𝑟 2𝑚𝜔𝑟 + 2𝐶 = 0
−2

3
                               𝑓𝑜𝑟 𝑚𝜔𝑟 + 2𝐶 = 0

1

6
                                   𝑓𝑜𝑟 4𝑚𝜔𝑟 + 2𝐶 = 0

−1                                 𝑓𝑜𝑟 2𝑚𝜔𝑟 − 2𝐶 = 0
2

3
                                  𝑓𝑜𝑟 𝑚𝜔𝑟 − 2𝐶 = 0

−1

6
                                  𝑓𝑜𝑟 4𝑚𝜔𝑟 − 2𝐶 = 0

2
𝑚=−2                               (78) 

 

𝐼8,1
′ =

−1

8𝑖𝑇
∑ 𝜔𝐼

(𝑚)2
𝑚=−2 ∫ 𝑎𝐼𝑍,1

𝑇

0
𝑑𝑡  

      =
1

16𝑚𝜔𝑟
∑ 𝜔𝐼

(𝑚)
{
0                                        𝑓𝑜𝑟 𝑚𝜔𝑟 = 0
−2

3
                                      𝑓𝑜𝑟 𝑚𝜔𝑟 ≠ 0

2
𝑚=−2                                             (79) 

 

𝐼9,1
′ =

−1

4𝑇
∫ 𝑎𝐼𝑌,1𝜔𝐼(𝑡)𝑠𝑖𝑛(2𝐶𝑡)
𝑇

0
𝑑𝑡  

     =
1

32𝑖𝑚𝜔𝑟
∑ 𝜔𝐼

(𝑚)
{

1                                        𝑓𝑜𝑟 3𝑚𝜔𝑟 + 2𝐶 = 0
−1                                    𝑓𝑜𝑟 3𝑚𝜔𝑟 − 2𝐶 = 0
−1                                   𝑓𝑜𝑟  𝑚𝜔𝑟 + 2𝐶 = 0
1                                      𝑓𝑜𝑟 𝑚𝜔𝑟 − 2𝐶 = 0

2
𝑚=−2                             (80) 

 

𝐼10,1
′ =

1

8𝑖𝑇
∑ 𝜔𝐼

(𝑚)2
𝑚=−2 ∫ 𝑎𝐼𝑌,1

𝑇

0
𝑑𝑡  

        =
−1

32𝑖𝑚𝜔𝑟
∑ 𝜔𝐼

(𝑚)
{
0                                     𝑓𝑜𝑟 𝑚𝜔𝑟 = 0
−1                                   𝑓𝑜𝑟 𝑚𝜔𝑟 ≠ 0

2
𝑚=−2                                            (81) 

 

For 𝑪 = 𝒎𝝎𝒓, we have the second order term of the FME calculated as, 

 

𝐹2,1
𝜎 = ∑ 𝜔𝐼

(𝑚)2
𝑚=−2 (

1

𝑚𝜔𝑟
) [−

11

96
𝐼𝑋 − (

31

384
+

1

16𝑖
) 𝐼𝑌 −

5

96𝑖
𝐼𝑍] + ∑𝑆

(4)                                  (82) 

 

The propagator derived from the FME can be written as  

 

𝑈(𝜏𝐶) ≈ 𝑒𝑥𝑝{−𝑖𝜏𝐶(𝐹1
𝜎 + 𝐹2,1

𝜎 +⋯)}                                                                                                      (83) 
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where 𝐹1
𝜎 , 𝐹2,1

𝜎 , … 𝑒𝑡𝑐 correspond to the 1st, 2nd … etc… Floquet operator orders, 

respectively. 

 

VI.    Application of FE to the Chemical Shielding Hamiltonian during the TOFU 

Pulse Sequence Radiation  

 

Here, we examine the Fer expansion by using the TOFU pulse sequence radiation. 

Using the chemical shielding Hamiltonian when transformed into the recoupling frame 

defined by the Eq. (35), we first calculate the function   

 

𝐹1(𝑡) = −𝑖 ∫ 𝐻̃𝜎(𝜏)𝑑𝜏
𝑡

0
= ∑ 𝜔𝐼

(𝑚)
{(𝑓𝑥(𝑡))𝐼𝑋 + (𝑓𝑦(𝑡))𝐼𝑌 + (𝑓𝑧(𝑡))𝐼𝑍} + Σ𝑆

(5)2
𝑚=−2     (84) 

 

where Σ𝑆(5)are the sum of the equivalent terms of spin I for spin S, and the functions, 

𝑓𝑥 (𝑡), 𝑓𝑦 (𝑡), and 𝑓𝑧 (𝑡), are given by, 

 

𝑓𝑥(𝑡) =
−𝑖

4(2𝐶+𝑚𝜔𝑟)
(𝑒𝑖(2𝐶+𝑚𝜔𝑟)𝑡 − 1) +

𝑖

4(𝑚𝜔𝑟−2𝐶)
(𝑒𝑖(𝑚𝜔𝑟−2𝐶)𝑡 − 1),                                  (85) 

 

𝑓𝑦(𝑡) =
𝑖

2(𝑚𝜔𝑟+𝐶)
(𝑒𝑖(𝑚𝜔𝑟+𝐶)𝑡 − 1) −

𝑖

2(𝑚𝜔𝑟−𝐶)
(𝑒𝑖(𝑚𝜔𝑟−𝐶)𝑡 − 1)                                            (86) 

 

𝑓𝑧(𝑡) =
−1

2𝑚𝜔𝑟
(𝑒𝑖𝑚𝜔𝑟𝑡 − 1) −

1

4(𝑚𝜔𝑟+2𝐶)
(𝑒𝑖(𝑚𝜔𝑟+2𝐶)𝑡 − 1) −

1

4(𝑚𝜔𝑟−2𝐶)
(𝑒𝑖(𝑚𝜔𝑟−2𝐶)𝑡 −

1)                                                                                                                                                                                 (87) 

 

If we choose 𝑪 =
𝟏

𝟐
𝒎𝝎𝒓, we have the function, 

 

𝐹1(𝑡) = ∑ 𝜔𝐼
(𝑚)
{(𝑓1𝑥(𝑡))𝐼𝑋 + (𝑓1𝑦(𝑡))𝐼𝑌 + (𝑓1𝑧(𝑡))𝐼𝑍} + Σ𝑆

(6)2
𝑚=−2                                    (88) 

 

where Σ𝑆(6)are the sum of the equivalent terms of spin I for spin S, and the functions, 

𝑓1𝑥 (𝑡), 𝑓1𝑦 (𝑡), and 𝑓1𝑧 (𝑡), are given by, 

 

𝑓1𝑥(𝑡) =
−𝑖

(8𝑚𝜔𝑟)
(𝑒𝑖(2𝑚𝜔𝑟)𝑡 − 1) −

1

4
𝑡                                                                                                     (89) 

 

𝑓1𝑦(𝑡) =
𝑖

3𝑚𝜔𝑟
(𝑒𝑖(

3

2
𝑚𝜔𝑟)𝑡 − 1) −

𝑖

𝑚𝜔𝑟
(𝑒𝑖(

1

2
𝑚𝜔𝑟)𝑡 − 1)                                                                 (90) 

 

𝑓1𝑧(𝑡) =
−1

2𝑚𝜔𝑟
(𝑒𝑖𝑚𝜔𝑟𝑡 − 1) −

1

8𝑚𝜔𝑟
(𝑒𝑖(2𝑚𝜔𝑟)𝑡 − 1) −

𝑖

4
𝑡                                                          (91) 

 

Using the condition 𝑇 = 𝜏𝐶 =
2𝜋

𝜔𝑟
, we have 

 

𝐹1(𝜏𝐶) = ∑ 𝜔𝐼
(𝑚)

{(−
1

4
𝜏𝐶)𝐼𝑋 + (−

𝑖

4
𝜏𝐶)𝐼𝑍} + Σ𝑆

(6)2
𝑚=−2                                                              (92) 

 

which leads to the zero-order average Hamiltonian for the Fer expansion 
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𝐻̅𝐹𝑒𝑟
(0)
= ∑ 𝜔𝐼

(𝑚)
{(−

𝑖

4
)𝐼𝑋 + (

1

4
)𝐼𝑍} + ∑ 𝜔𝑆

(𝑚)
{(−

𝑖

4
) 𝑆𝑋 + (

1

4
)𝑆𝑍}

2
𝑚=−2

2
𝑚=−2                         (93) 

 

If we choose 𝑪 = 𝒎𝝎𝒓, we have the function 

 

𝐹1(𝑡) = ∑ 𝜔𝐼
(𝑚)
{(𝑓2𝑥(𝑡))𝐼𝑋 + (𝑓2𝑦(𝑡))𝐼𝑌 + (𝑓2𝑧(𝑡))𝐼𝑍} + Σ𝑆

(7)2
𝑚=−2                                    (94) 

 

where Σ𝑆(7) are the sum of the equivalent terms of spin I for spin S, and the functions, 

𝑓2𝑥 (𝑡), 𝑓2𝑦 (𝑡), and 𝑓2𝑧 (𝑡), are given by, 

 

𝑓2𝑥(𝑡) =
−𝑖

12𝑚𝜔𝑟
(𝑒𝑖(3𝑚𝜔𝑟)𝑡 − 1) −

1

4𝑚𝜔𝑟
(𝑒−𝑖𝑚𝜔𝑟𝑡 − 1)                                                                 (95) 

 

𝑓2𝑦(𝑡) =
𝑖

4𝑚𝜔𝑟
(𝑒𝑖(2𝑚𝜔𝑟)𝑡 − 1) +

1

2
𝑡                                                                                                        (96) 

 

𝑓2𝑧(𝑡) =
−1

2𝑚𝜔𝑟
(𝑒𝑖𝑚𝜔𝑟𝑡 − 1) −

1

12𝑚𝜔𝑟
(𝑒𝑖(3𝑚𝜔𝑟)𝑡 − 1) +

1

4𝑚𝜔𝑟
(𝑒−𝑖𝑚𝜔𝑟𝑡 − 1)                  (97) 

 

We have, 

 

𝐹1(𝜏𝐶) = ∑ 𝜔𝐼
(𝑚)

{
1

2
𝜏𝐶} 𝐼𝑌 + ∑ 𝜔𝑆

(𝑚)
{
1

2
𝜏𝐶}

2
𝑚=−2

2
𝑚=−2 𝑆𝑌                                                              (98) 

 

which lead to the zero-order average Hamiltonian for the Fer expansion 

 

𝐻̅𝐹𝑒𝑟
(0)
= ∑ 𝜔𝐼

(𝑚)
{(
𝑖

2
)𝐼𝑌} + ∑ 𝜔𝑆

(𝑚)
{(
𝑖

2
) 𝑆𝑌}

2
𝑚=−2

2
𝑚=−2                                                                       (99) 

 

Using the time modulation given in the Appendix, Eq. (A.1), the Hamiltonian takes the 

form 

 

𝐻̃𝜎(𝑡) = 𝑎𝑋(𝑡)𝐼𝑋 + 𝑎𝑌(𝑡)𝐼𝑌 + 𝑎𝑍(𝑡)𝐼𝑍 + Σ𝑆
(8)                                                                               (100) 

 

where Σ𝑆(8)are the sum of the equivalent terms of spin I for spin S, and the functions, 

𝑎𝑋 (𝑡), 𝑎𝑌 (𝑡), and 𝑎𝑍 (𝑡), are given by, 

 

𝑎𝑋(𝑡) = −
1

2
∑ 𝜔𝐼

(𝑚)2
𝑚=−2

1

2𝑖
(𝑒𝑖(2𝐶+𝑚𝜔𝑟)𝑡 − 𝑒𝑖(𝑚𝜔𝑟−2𝐶)𝑡)                                                           (101) 

 

𝑎𝑌(𝑡) = ∑ 𝜔𝐼
(𝑚)2

𝑚=−2
1

2𝑖
(𝑒𝑖(𝐶+𝑚𝜔𝑟)𝑡 − 𝑒𝑖(𝑚𝜔𝑟−𝐶)𝑡)                                                                       (102) 

 

𝑎𝑍(𝑡) = ∑ 𝜔𝐼
(𝑚)2

𝑚=−2 (
1

2
𝑒𝑖(𝑚𝜔𝑟)𝑡 +

1

4
𝑒𝑖(𝑚𝜔𝑟+2𝐶)𝑡 +

1

4
𝑒𝑖(𝑚𝜔𝑟−2𝐶)𝑡)                                      (103) 

 

The major term in the first-order term is calculated. 
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For 𝑪 =
𝟏

𝟐
𝒎𝝎𝒓, we have 

 

𝐻1.0 (𝑡) = −
1

2
[𝐹1(𝑡), 𝐻̃𝜎(𝑡)] = −

1

2
𝑖{(𝑓1𝑦(𝑡)𝑎𝑍(𝑡) − 𝑓1𝑧(𝑡)𝑎𝑌(𝑡))𝐼𝑋 + (𝑓1𝑧(𝑡)𝑎𝑋(𝑡) −

𝑓1𝑥(𝑡)𝑎𝑍(𝑡))𝐼𝑌 + (𝑓1𝑥(𝑡)𝑎𝑌(𝑡) − 𝑓1𝑦(𝑡)𝑎𝑋(𝑡))𝐼𝑍}                                                                        (104) 

 

and the correspond term  

 

𝐹2,0(𝑡) = −𝑖 ∫ 𝐻1,0(𝑡
′)𝑑𝑡′ = 𝐹2,0

𝑋𝑡

0
(𝑡) + 𝐹2,0

𝑌 (𝑡) + 𝐹2,0
𝑍 (𝑡) + Σ𝑆(9)                                       (105) 

 

where Σ𝑆(9)are the sum of the equivalent terms of spin I for spin S, and the functions, 

𝐹2,0
𝑋 (𝑡), 𝐹20

𝑌 (𝑡), and 𝐹2,0
𝑍 (𝑡), are calculated and results are given below. For simplicity 

reasons without losing the generality of the problem, we have set, 𝑚 = 𝑚′, and obtained, 

                 𝐹2,0
𝑋 (𝑡) =

−
1

2
(∑ 𝜔𝐼

(𝑚)2
𝑚=−2 )2

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

1

6𝑚2𝜔𝑟
2
[
2

5
(𝑒𝑖

5

2
𝑚𝜔𝑟𝑡 − 1) − (𝑒𝑖𝑚𝜔𝑟𝑡 − 1)] −

1

2𝑚2𝜔𝑟
2 ∗

∗ [

2

3
(𝑒𝑖

3

2
𝑚𝜔𝑟𝑡 − 1)

−(𝑒𝑖𝑚𝜔𝑟𝑡 − 1)
] −

1

4𝑚2𝜔𝑟
2
[
2

5
(𝑒𝑖

5

2
𝑚𝜔𝑟𝑡 − 1) −

1

2
(𝑒𝑖2𝑚𝜔𝑟𝑡 − 1)]

−
1

4𝑚𝜔𝑟
[
2

𝑚𝜔𝑟
(𝑒𝑖

1

2
𝑚𝜔𝑟𝑡 − 1)

−𝑖𝑡
]

−
1

2𝑚2𝜔𝑟
2
[
1

5
(𝑒𝑖

5

2
𝑚𝜔𝑟𝑡 − 1) −

1

3
(𝑒𝑖

3

2
𝑚𝜔𝑟𝑡 − 1)]

−
1

8𝑚2𝜔𝑟
2 [
1

7
(𝑒𝑖

7

2
𝑚𝜔𝑟𝑡 − 1)

−
1

3
(𝑒𝑖

3

2
𝑚𝜔𝑟𝑡 − 1)] +

𝑖

9𝑚2𝜔𝑟
2
[(𝑖

3

2
𝑚𝜔𝑟𝑡 − 1)𝑒

𝑖
3

2
𝑚𝜔𝑟𝑡 + 1]

+
1

2𝑚2𝜔𝑟
2
[
1

3
(𝑒𝑖

3

2
𝑚𝜔𝑟𝑡 − 1) − (𝑒𝑖

1

2
𝑚𝜔𝑟𝑡 − 1)] +

1

8𝑚2𝜔𝑟
2 [

1

5
(𝑒𝑖

5

2
𝑚𝜔𝑟𝑡 − 1)

−(𝑒𝑖
1

2
𝑚𝜔𝑟𝑡 − 1)

]

−
𝑖

𝑚2𝜔𝑟
2
[(𝑖

𝑚

2
𝜔𝑟𝑡 − 1)𝑒

𝑖
𝑚

2
𝜔𝑟𝑡 + 1] }

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

𝐼𝑋  

                                                                                                                                       (106) 

 

which is simplified after calculation 

 

𝐹2,0
𝑋 (𝑡) = −

1

2
(∑ 𝜔𝐼

(𝑚)2
𝑚=−2 )

2

(
1

𝑚2𝜔𝑟
2) {−

1

56
𝑒𝑖
7

2
𝑚𝜔𝑟𝑡 −

13

120
𝑒𝑖
5

2
𝑚𝜔𝑟𝑡 + (

1

24
+

𝑖

9
(𝑖
3

2
𝑚𝜔𝑟𝑡 −

1))𝑒𝑖
3

2
𝑚𝜔𝑟𝑡 − (

3

8
+ 𝑖 (𝑖

𝑚

2
𝜔𝑟𝑡 − 1))𝑒

𝑖
𝑚

2
𝜔𝑟𝑡 +

1

8
𝑒𝑖2𝑚𝜔𝑟𝑡 +

1

3
𝑒𝑖𝑚𝜔𝑟𝑡 −

8

9
𝑖 − 𝑖𝑡 +

631

840
} 𝐼𝑋    

                                                                                                                                       (107) 
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We can calculate the expression at 𝜏𝐶 =
2𝜋

𝜔𝑟
, 

 

𝐹2,0
𝑋 (𝜏𝐶) = −

1

2
(∑ 𝜔𝐼

(𝑚)2
𝑚=−2 )

2

(
1

𝑚2𝜔𝑟
2) {−

1

56
𝑒𝑖7𝑚𝜋 −

13

120
𝑒𝑖5𝑚𝜋 + (

1

24
+
𝑖

9
(𝑖3𝑚𝜋 −

1))𝑒𝑖3𝑚𝜋 − (
3

8
+ 𝑖(𝑖𝑚𝜋 − 1))𝑒𝑖𝑚𝜋 +

1

8
𝑒𝑖4𝑚𝜋 +

1

3
𝑒𝑖2𝑚𝜋 −

8

9
𝑖 − 𝑖

2𝜋

𝜔𝑟
+
631

840
} 𝐼𝑋           (108) 

 

and 

  
𝑖𝐹2,0
𝑋 (𝜏𝐶)

𝜏𝐶
= −

1

2
(∑ 𝜔𝐼

(𝑚)2
𝑚=−2 )

2

(
𝑖

2𝜋𝑚2𝜔𝑟
) {−

1

56
𝑒𝑖7𝑚𝜋 −

13

120
𝑒𝑖5𝑚𝜋 + (

1

24
+
𝑖

9
(𝑖3𝑚𝜋 −

1))𝑒𝑖3𝑚𝜋 − (
3

8
+ 𝑖(𝑖𝑚𝜋 − 1))𝑒𝑖𝑚𝜋 +

1

8
𝑒𝑖4𝑚𝜋 +

1

3
𝑒𝑖2𝑚𝜋 −

8

9
𝑖 − 𝑖

2𝜋

𝜔𝑟
+
631

840
} 𝐼𝑋 = 𝐴𝑋𝐼𝑋  

                                                                                                                                       (109) 

 

𝐹2,0
𝑌 (𝑡)

=
1

2
( ∑ 𝜔𝐼

(𝑚)

2

𝑚=−2

)2

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

1

8𝑖𝑚2𝜔𝑟2
[
1

3
(𝑒𝑖3𝑚𝜔𝑟𝑡 − 1) −

1

2
(𝑒𝑖2𝑚𝜔𝑟𝑡 − 1)] +

1

32𝑖𝑚2𝜔𝑟2
∗

∗ [

1

4
(𝑒𝑖4𝑚𝜔𝑟𝑡 − 1)

−
1

2
(𝑒𝑖2𝑚𝜔𝑟𝑡 − 1)

] +
17

64𝑖𝑚2𝜔𝑟2
[1 + (𝑖2𝑚𝜔𝑟𝑡 − 1)𝑒

𝑖2𝑚𝜔𝑟𝑡]

−
1

8𝑚𝜔𝑟
[
1

𝑖𝑚𝜔𝑟
(𝑒𝑖𝑚𝜔𝑟𝑡 − 1)

−𝑡

]

−
1

32𝑚𝜔𝑟
[

1

𝑖2𝑚𝜔𝑟
(𝑒𝑖2𝑚𝜔𝑟𝑡 − 1) − 𝑡]

−
1

16𝑖𝑚2𝜔𝑟2
[
1

3
(𝑒𝑖3𝑚𝜔𝑟𝑡 − 1)

−(𝑒𝑖𝑚𝜔𝑟𝑡 − 1)] −
1

32𝑖𝑚2𝜔𝑟2
[
1

4
(𝑒𝑖4𝑚𝜔𝑟𝑡 − 1) −

1

2
(𝑒𝑖2𝑚𝜔𝑟𝑡 − 1)]

−
1

32𝑚𝜔𝑟
[

1

𝑖2𝑚𝜔𝑟
(𝑒𝑖2𝑚𝜔𝑟𝑡 − 1) − 𝑡]

}
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

𝐼𝑌 

                                                                                                                                       (110) 

 

which is simplified after calculation    

 

𝐹2,0
𝑌 (𝑡) =

1

2
(∑ 𝜔𝐼

(𝑚)2
𝑚=−2 )

2

(
1

𝑚2𝜔𝑟
2𝑖
) {

1

48
𝑒𝑖3𝑚𝜔𝑟𝑡 +

1

64
(−23 + 𝑖34𝑚𝜔𝑟𝑡)𝑒

𝑖2𝑚𝜔𝑟𝑡 −

1

16
𝑒𝑖𝑚𝜔𝑟𝑡 +

77

192
} 𝐼𝑌                                                                                                                                            (111) 

 

We can calculate the expression at 𝜏𝐶 =
2𝜋

𝜔𝑟
, 
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𝐹2,0
𝑌 (𝜏𝐶) =

1

2
(∑ 𝜔𝐼

(𝑚)2
𝑚=−2 )

2

(
1

𝑚2𝜔𝑟
2𝑖
) {

1

48
𝑒𝑖6𝑚𝜋 +

1

64
(−23 + 𝑖68𝑚𝜋)𝑒𝑖4𝑚𝜋 −

1

16
𝑒𝑖2𝑚𝜋 +

77

192
} 𝐼𝑌                                                                                                                                                                      (112) 

 

and  

 
𝑖𝐹2,0
𝑌 (𝜏𝐶)

𝜏𝐶
=
1

2
(∑ 𝜔𝐼

(𝑚)2
𝑚=−2 )

2

(
1

2𝜋𝑚2𝜔𝑟
) {

1

48
𝑒𝑖6𝑚𝜋 +

1

64
(−23 + 𝑖68𝑚𝜋)𝑒𝑖4𝑚𝜋 −

1

16
𝑒𝑖2𝑚𝜋 +

77

192
} 𝐼𝑌 = 𝐴𝑌𝐼𝑌                                                                                                                            (113) 

 

𝐹2,0
𝑍 (𝑡)

= −
1

2
( ∑ 𝜔𝐼

(𝑚)

2

𝑚=−2

)2

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

−2

16𝑖𝑚2𝜔𝑟2
[
1

7
(𝑒𝑖

7
2
𝑚𝜔𝑟𝑡 − 1) −

1

3
(𝑒𝑖

3
2
𝑚𝜔𝑟𝑡 − 1)] +

1

8𝑖𝑚2𝜔𝑟2
∗

∗ [

1

5
(𝑒𝑖

5
2
𝑚𝜔𝑟𝑡 − 1)

+(𝑒𝑖
1
2
𝑚𝜔𝑟𝑡 − 1)

] +
1

18𝑖𝑚2𝜔𝑟2
[1 + (𝑖

3

2
𝑚𝜔𝑟𝑡 − 1) 𝑒

𝑖
3
2
𝑚𝜔𝑟𝑡]

−
1

2𝑖𝑚2𝜔𝑟2
[(
1

2
𝑚𝜔𝑟𝑡𝑖 − 1) 𝑒

𝑖
𝑚
2
𝜔𝑟𝑡 + 1]

+
1

12𝑚𝜔𝑟
[

2

𝑖7𝑚𝜔𝑟
(𝑒𝑖

7
2
𝑚𝜔𝑟𝑡 − 1) −

1

𝑖2𝑚𝜔𝑟
(𝑒𝑖2𝑚𝜔𝑟𝑡 − 1)]

−
1

4𝑖𝑚2𝜔𝑟2
[
2

5
(𝑒𝑖

5
2
𝑚𝜔𝑟𝑡 − 1)

−
1

2
(𝑒𝑖2𝑚𝜔𝑟𝑡 − 1)]

−
1

12𝑚𝜔𝑟
[

2

𝑖3𝑚𝜔𝑟
(𝑒𝑖

3
2
𝑚𝜔𝑟𝑡 − 1) − 𝑡]

+
1

4𝑚𝜔𝑟
[
2

𝑖𝑚𝜔𝑟
(𝑒𝑖

𝑚
2
𝜔𝑟𝑡 − 1) − 𝑡]

}
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

𝐼𝑍 

                                                                                                                                       (114) 

 

which is simplified after calculation, 

 

𝐹2,0
𝑍 (𝑡) =

1

2
(∑ 𝜔𝐼

(𝑚)2
𝑚=−2 )

2

(
1

𝑚2𝜔𝑟
2𝑖
) {

1

168
𝑒𝑖
7

2
𝑚𝜔𝑟𝑡 −

3

40
𝑒𝑖
5

2
𝑚𝜔𝑟𝑡 +

1

12
(−

5

6
+

𝑖𝑚𝜔𝑟𝑡) 𝑒
𝑖
3

2
𝑚𝜔𝑟𝑡 + (

9

8
−
1

4
𝑖𝑚𝜔𝑟𝑡) 𝑒

𝑖
𝑚

2
𝜔𝑟𝑡 +

1

12
𝑒𝑖2𝑚𝜔𝑟𝑡 −

1

6
𝑖𝑚𝜔𝑟𝑡 −

2359

2205
} 𝐼𝑍                 (115) 

 

We can calculate the expression at 𝜏𝐶 =
2𝜋

𝜔𝑟
, 
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𝐹2,0
𝑍 (𝜏𝐶) =

1

2
(∑ 𝜔𝐼

(𝑚)2
𝑚=−2 )

2

(
1

𝑚2𝜔𝑟
2𝑖
) {

1

168
𝑒𝑖7𝑚𝜋 −

3

40
𝑒𝑖5𝑚𝜋 +

1

12
(−

5

6
+ 𝑖2𝑚𝜋)𝑒𝑖3𝑚𝜋 +

(
9

8
−
1

4
𝑖2𝑚𝜋)𝑒𝑖𝑚𝜋 +

1

12
𝑒𝑖4𝑚𝜋 −

1

6
𝑖𝑚2𝜋 −

2359

2205
} 𝐼𝑍                                                                      (116) 

 

and 

  
𝑖𝐹2,0
𝑍 (𝜏𝐶)

𝜏𝐶
=
1

2
(∑ 𝜔𝐼

(𝑚)2
𝑚=−2 )

2

(
1

2𝜋𝑚2𝜔𝑟
) {

1

168
𝑒𝑖7𝑚𝜋 −

3

40
𝑒𝑖5𝑚𝜋 +

1

12
(−

5

6
+ 𝑖2𝑚𝜋)𝑒𝑖3𝑚𝜋 +

(
9

8
−
1

4
𝑖2𝑚𝜋)𝑒𝑖𝑚𝜋 +

1

12
𝑒𝑖4𝑚𝜋 −

1

6
𝑖𝑚2𝜋 −

2359

2205
} 𝐼𝑍 = 𝐴𝑍𝐼𝑍                                                     (117) 

 

which leads to the calculation of the expression of the first-order average Hamiltonian for 

the Fer expansion, 

 

𝐻𝐹𝑒𝑟
(1,0)̅̅ ̅̅ ̅̅ ̅

=
𝑖𝐹2,0(𝜏𝐶)

𝜏𝐶
= 𝐴𝑋𝐼𝑋 + 𝐴𝑌𝐼𝑌 + 𝐴𝑍𝐼𝑍 + ∑ 𝑆

(10).                                                                      (118) 

  

where Σ𝑆(10)are the sum of the equivalent terms of spin I for spin S, and the functions, AX, 

AY, and AZ are calculated and results are given above in the Eqs. (109), (113), and (117), 

respectively. The propagator derived from the FE can be written as  

 

𝑈𝐹𝑒𝑟(𝜏𝐶) ≈ 𝑒𝑥𝑝 {−𝑖𝜏𝐶 (𝐻𝐹𝑒𝑟
(0)̅̅ ̅̅ ̅̅
+ 𝐻𝐹𝑒𝑟

(1,0)̅̅ ̅̅ ̅̅ ̅
+ ⋯)}                                                           (119)                                                            

 

where 𝐻𝐹𝑒𝑟
(0)̅̅ ̅̅ ̅̅
, 𝐻𝐹𝑒𝑟

(1,0)̅̅ ̅̅ ̅̅ ̅
, … 𝑒𝑡𝑐 correspond to the zeroth, 1st … etc… average Hamiltonian orders 

for the Fer expansion, respectively. 

 

VII.    Comparison and Discussion 

 

The Eqs. (47), (48), (93) and (99) are the evaluation of the first-order contributions 

for the FME and the zero-order contributions for the FE, respectively. Both approaches are 

identical at their respective first level. These results show that at the lowest order of 

expansion of the FME and FE, both approaches converge to the same results during the 

TOFU pulse sequence radiation experiment. The FME and FE approaches were developed 

for the improvement of analytic methods for studying quantum systems driven by time-

dependent Hamiltonians in theoretical physics and found their applicability in wide range 

of problems that involve coherent control and manipulation of quantum systems80. Initially, 

both methods (FME and FE) starts with the development of an alternate formula to evaluate 

the time-propagator (U (t, 0)) given by, 

 

𝑈(𝑡, 0) = 𝑇̂ exp (−𝑖 ∫ 𝐻(𝑡′)𝑑𝑡′
𝑡

0
)                                                                                                            (120) 

 

where 𝑇̂ represents the time-ordering operator. However, the operator 𝑇̂ prevent the direct 

integration of the operators in the exponent appearing in the above U (t,0) Eq. (120). 

Furthermore, the calculation of the propagator U (t,0) in systems in control by time-

dependent Hamiltonians is further intensified by the non-commutativity of the 
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Hamiltonians at different times. Both analytical methods (FME and FE) are expressed as 

exponential operator representation (Eqs. (11), (13), and (24)), which explain the reason 

why the two approaches are identical at their respective first level. In addition, one key 

property that needs to be ensured for both approaches is the conservation of unitarity at any 

finite order of series applicable to any time dependent Hamiltonian, which satisfies the 

physical behavior such as the non-violation of norm conservation. 

  

The Eqs. (70-1), (82), and (118) are the evaluation of the second-order contributions 

for the FME and the first-order contribution for the FE, respectively. Both approaches are 

not identical at their respective second level of contribution. The propagator derived from 

the FME (Eq. (83)) is different to the propagator derived from the FE (Eq. (119)). The 

results of the FME (Eq. (83)) compared to results of the FE (Eq. (119)) show that the FME 

approach converges more faster than the FE during the TOFU pulse sequence radiation 

experiment. The spin dynamics evolution is much more complexed during the application 

of FE compared to FME. The low performance of the FE during this scheme can be linked 

or associated to the complexity of spin dynamics during its evolution.  This outlines the 

serious FE limitations with regard to the description of time-evolution of quantum systems. 

Such as derived in section IV, depending on the form of the initial density operator and the 

detection operator, the final form of the signal expression derived from the two 

formulations could differ as showed in the Eqs. (32-b) and (33-b). In the time-propagators 

based on Left running expansion, the 𝐹𝑛(𝑡) operators (of higher order ’n’) act initially on 

the initial density operator, while in the Right running expansion, the 𝐹𝑛(𝑡) operators (of 

lower order ’n’) act initially on the initial density operator. This work supports is in 

agreement with the recent work of Ramachandran80 that also highlighted the over 

dependence on the commutator relations between the operators ([𝐹𝑛(𝑡), 𝜌(0)], [𝐹𝑛(𝑡), 𝐷̂]), 
which limits the utility of the FE approach in time-evolution studies. It is noteworthy that 

for the most part, the current literature stresses more effort on the derivation of the Fn (t) 

operators than the accuracy of the FE method. Based on the approaches revisited in section 

IV and the results of the Eqs. (118) and (119) for FE compared to the Eqs. (70-1) and (70-

2) for FME, we can conclude that, the FE scheme works only in special cases where the 

conditions [𝐹𝑛(𝑡), 𝜌(0)]  ≠ 0 𝑎𝑛𝑑 [𝐹𝑛(𝑡), 𝐷̂]  ≠ 0 are both completed. 

 

VIII.    Conclusion 

 

It is worth stressing that this is the first attempt to apply the FME and FE approaches 

to investigate the TOFU radiation experiment. We have revisited the accuracy of the FE 

scheme and the FME approach as complementary methods to the well-established methods 

in solid-state NMR, namely, the average Hamiltonian theory61-63 and the Floquet theory71-

73. We compared the FME and FE approaches based on the quantification of the effective 

Hamiltonians and propagators, and we found that the FME approach is more appropriate 

to describe the dynamics of spin system during the TOFU pulse sequence radiation 

experiment compared to the FE approach. This manuscript brings the relevance or the 

subtle points of the two expansion schemes and gives new insights into the analysis of the 

TOFU scheme. It is also important to highlight that many aspects of the TOFU pulse 

sequence have still not been worked out. The comparison between the FME and FE give 

us an indication on the performance of the two approaches as well as the relevance of the 
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cross-term effects. Our analysis might suggest the possibility to study the resonance 

condition, what limits the resolution in each case of the recoupling, how the resolution can 

be improved, and issues related to all these points. This pilot study could show more that 

the FME is a promising approach to the study of more complex pulse sequences. Future 

theoretical works are certainly feasible and we hope to approach also other important 

pertinent point such as to do an actual line shape calculation due to the TOFU experiment 

with certain orders of the schemes that will bring out the relevance of the argument. We 

showed in this article that elegant integral calculations are possible with the two approaches 

and that the differences between FME and FE are consistent and the similar calculations 

could be applied to other sequences as well. We believe that all the expressions derived 

can be employed for numerical time evolution for a broad class of time dependent 

Hamiltonians and thus can be utilized for calculating observables in time resolved 

spectroscopy, quantum control, and quantum sensing as well as for the open system 

quantum dynamics when the reduced system density operator is solved in the interaction 

picture with respect to the zeroth order system Hamiltonian. 
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Appendix 

 

1. 

𝑐𝑜𝑠2(𝐶𝑡) =
1

2
+
1

4
exp(𝑖2𝐶𝑡) +

1

4
exp (−𝑖2𝐶𝑡)                                                                                 (A.1) 

𝑠𝑖𝑛(𝐶𝑡) =
1

2𝑖
(𝑒𝑖𝐶𝑡 − 𝑒−𝑖𝐶𝑡)                                                                                                                         (A.2)      

𝑠𝑖𝑛(2𝐶𝑡) =
1

2𝑖
(𝑒𝑖2𝐶𝑡 − 𝑒−𝑖2𝐶𝑡)                                                                                                                  (A.3) 

 

2. 

𝐹2
𝜎 = [

1

2
∑ 𝜔𝐼

(𝑚) (
1

6𝑚𝜔𝑟
) +

1

8
∑ 𝜔𝐼

(𝑚) (
2

3𝑚𝜔𝑟
)

2

𝑚=−2

2

𝑚=−2

] 𝐼𝑋 



 27 

+[
−1

64𝑚𝜔𝑟
∑ 𝜔𝐼

(𝑚)

2

𝑚=−2

− ∑ 𝜔𝐼
(𝑚) (

1

64𝑚𝜔𝑟
)

2

𝑚=−2

− ∑ 𝜔𝐼
(𝑚) (

1

64𝑚𝜔𝑟
) − ∑ 𝜔𝐼

(𝑚) (
5

64𝑚𝜔𝑟
)

2

𝑚=−2

2

𝑚=−2

] 𝐼𝑌

+ [0 − ∑ 𝜔𝐼
(𝑚)
(

1

12𝑖𝑚𝜔𝑟
) − ∑ 𝜔𝐼

(𝑚)
(

1

12𝑖𝑚𝜔𝑟
)

2

𝑚=−2

2

𝑚=−2

] 𝐼𝑍 +∑𝑆(3) 

= ∑ 𝜔𝐼
(𝑚)

2

𝑚=−2

(
1

2𝑚𝜔𝑟
) [
1

3
𝐼𝑋 −

1

4
𝐼𝑌 −

1

3𝑖
𝐼𝑍] +∑𝑆(3) 
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