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Abstract. We classify complete improper affine spheres with singularities

(say improper affine fronts) in unimodular affine three-space R3 whose total

curvature is greater than or equal to −8π. We also study the asymptotic

behavior of complete embedded ends of improper affine fronts. Moreover, we

give new examples for this class of surfaces, including one which satisfies the

equality condition of an Osserman-type inequality and is of positive genus.

1. Introduction

A locally strongly convex improper affine sphere is a surface in unimodular affine

3-space R3 whose affine Blaschke normal vector field is parallel and affine metric

is definite (see Section 2). It is locally obtained as the graph of a smooth function

φ(x, y) on a planner domain satisfying the elliptic Monge–Ampère equation

(1.1) φxxφyy − φ2
xy = 1.

For such surfaces, Ferrer, Mart́ınez, and Milán established a Weierstrass-type rep-

resentation formula as follows ([FMM96], [FMM99]) (see Fact 2.1 for more precise

statement):

(1.2) ψ :=

(
F +G,

1

2
(|G|2 − |F |2) + Re

(
GF − 2

∫
FdG

))
: Σ → C×R = R3,

where a pair (F,G) of holomorphic functions on a Riemann surface Σ is called

Weierstrass data. However, as a global property, a Bernstein-type theorem for

“complete” improper affine spheres is well known ([Cal58], [Cal88], [TW02], [KN12],

[Kaw20], [KK24]). That is to say, any locally strongly convex affine complete (i.e.,

the affine metric is definite and complete) improper affine sphere is the elliptic

paraboloid (Example 2.7). Thus, Mart́ınez [Mar05a] introduced a concept of an

improper affine map (Definition 2.2) (referred to as an improper affine front in this

paper), which is defined by the same representation formula (1.2) and admits a

certain kind of singularities. He also investigated a correlation between improper

affine fronts and flat fronts in hyperbolic 3-space ([GMM00], [KUY04], [KRSUY05])
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in [Mar05b] and [MM14a]. In addition, Mart́ınez, Milán, and Tenenblat [MMT15]

gave a new method to transform improper affine fronts by applying the theory of

Ribaucour transformations.

On the other hand, Mart́ınez [Mar05a] introduced a completeness for improper

affine fronts (Definition 2.4) like other classes of surfaces with singularities (e.g., the

flat fronts in hyperbolic 3-space ([KUY04]), maximal surfaces in Lorentz–Minkowski

3-space ([UY06]), constant mean curvature 1 surfaces in de Sitter 3-space ([Fuj06]))

and showed that the theory of complete improper affine fronts shares numerous

global properties with the theory of complete minimal surfaces in Euclidian 3-space.

As one of them, he proved a Huber–Osserman-type theorem ([Hub57], [Oss64]).

Namely, the Riemann surface Σ is biholomorphic to a compact Riemann surface

Σ minus finite points and the Weierstrass data (F,G) can be extended meromor-

phically to Σ (Fact 2.5). Moreover, he proposed a total curvature for complete

improper affine fronts with respect to a certain complete Riemannian metric ex-

pressed in terms of Weierstrass data and showed an Osserman-type inequality

(1.3) − 1

2π
TC(Σ) ≥ −χ(Σ) + 2(number of ends),

where TC(Σ) denotes the total curvature and χ(Σ) is the Euler number of Σ (Fact

2.6). In this paper, we study the following two topics for complete impoper affine

fronts related to the minimal surface results.

Firstly, we describe an asymototic behavior of complete embedded ends of im-

proper affine fronts in Section 3. Schoen [Sch83] proved that complete embedded

ends of minimal surfaces in Euclidian 3-space with finite total curvature is asymp-

totic to either the plane or the catenoid. And also, Jorge and Meeks [JM83] showed

a relation between embeddedness of ends and the equality of the Osserman in-

equality, and constructed the surface with high symmetry that attains the equality

condition of the inequality. As affine correspondence to these results, we define a

concept “asymptotic” for embedded ends of complete improper affine fronts and

classify an asymptotic classes of embedded ends into three types (Theorem 3.2). It

is associated with an equality condition of the Osserman-type inequality (Corollary

3.3). And we contstruct new examples (Examples 3.4, and 3.5) with embedded

ends, which satisfy the equality condition of the Osserman-type inequality.

Secondly, we study a classification of complete improper affine fronts in terms of

the total curvature in Section 4. Complete orientable minimal surfaces in Euclid-

ian 3-space of low total curvature were classified by Osserman [Oss64] and López

[Lóp92]. So this leads a natural problem “to classify complete improper affine fronts

with low total curvature”. The total curvature of improper affine fronts is −2mπ,

where m is the mapping degree of a certain holomorphic map called the Lagrangian

Gauss map (Section 2). Here, we classify the surfaces of the total curvature greater

than or equal to −8π. Namely, the main result of this paper is the following:
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Theorem 1.1. • Complete improper affine fronts in R3 whose total curva-

ture is greater than or equal to −6π are all genus 0 and constructed the

Weierstrass data as in Theorems 4.2, 4.3, 4.5, 4.6.

• Genus of complete improper affine fronts with the total curvature −8π is

less than or equal to 1.

• Complete improper affine fronts in R3 with the total curvature −8π and

genus 0 are the surfaces described in Theorem 4.8.

• There exists a complete improper affine front in R3 with the total curvature

−8π and genus 1. In particular, it is the one with the maximum total

curvature and positive genus (Proposition 4.9 and Theorem 4.11).

We show the existence in a special case for the fourth statement of Theorem

1.1. In addition, we know that there is at least one parameter family of complete

improper affine fronts with the total curvature −8π and genus 1, each of which has

different compex structure (Remark 4.12). The complete classification is an open

problem in the genus 1 case.

Moreover, the only known example of complete improper affine fronts of genus

1 was composed by Mart́ınez in [Mar05a, Section 4, No.6], whose total curvature

is −12π. In the last of Section 4, we give a new example of genus 1 surface whose

total curvature is −10π.

Acknowledgements. The author would like to express his gratitude to Kotaro

Yamada for his helpful advice and comments on the author’s research. In addition,

the author wishes to thank Masaaki Umehara, Yu Kawakami, and Shnsuke Kasao

for their valuable comments and fruitful discussions in the development of this work.

2. Preliminaries

Firstly, we will briefly describe some definitions and fundamental facts about

geometry of affine immersions in unimodular affine 3-space R3 (see [LSZ93] and

[NS94] for datails). Let Σ be a connected and oriented 2-manifold, ψ : Σ → R3 an

immersion, and ξ a vector field of R3 along ψ which is transversal to dψ(TΣ). Then

there uniquely exist a torsion-free affine connection ∇, a symmetric (0, 2)-tensor h,

a (1, 1)-tensor S, and a 1-form τ on Σ, which satisfy

(2.1)

{
DXdψ(Y ) = dψ(∇XY ) + h(X,Y )ξ,

DXξ = −dψ(S(X)) + τ(X)ξ,

where D is the canonical connection of R3, and X,Y are vector fields on Σ. Here,

h is called the affine metric of ψ with respect to ξ. When h is definite, ψ is

said to be locally strongly convex. Now on, we will only consider the case that

ψ is locally strongly convex (for the indefinite case, see [Nak09], [Mil13], [Mil14],

[MM14c], [MM15], [Mil20]). For given a locally strongly convex immersion ψ, one
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can uniquely choose the transversal vector field ξ which satisfies

(2.2)

{
DXξ = −dψ(S(X)),

det(dψ(X), dψ(Y ), ξ) = (h(X,X)h(Y, Y )− h(X,Y )2)1/2,

where det denotes the determinant function of R3. The transversal vector field

ξ which satisfies (2.2) is called the affine normal vector field, and the pair (ψ, ξ)

(or simply ψ) is called the Blaschke immersion. A Blaschke immersion ψ is said

to be an improper affine sphere if S = 0 holds in (2.2). Then after equiaffine

transformations of R3 (R3 ∋ x 7→ Ax + b ∈ R3, where A is a 3 × 3 matrix with

detA = 1, and b ∈ R3), we can take the affine normal vector field ξ as ξ = (0, 0, 1).

Next, for any improper affine sphere ψ : Σ → R3, considering the conformal

structure induced by the affine metric h, we regard Σ as a Riemann surface. In

[Mar05a], Mart́ınez introduced the following complex representation formula for im-

proper affine spheres similar to the Weierstrass representation formula for minimal

surfaces in Euclidian 3-space (see [Oss69]):

Fact 2.1. [FMM96, Theorem 4], [FMM99, Lemma 1], [Mar05a, Theorem 3] Let

Σ be a Riemann surface, and (F,G) : Σ → C2 a complex regular curve (that is,

F and G are holomorphic functions satisfying (dF, dG) ̸= (0, 0)) which satisfies

|dF | ≠ |dG| and Re
∫
γ
FdG = 0 for any closed curve γ in Σ. Then

(2.3) ψ :=

(
F +G,

1

2
(|G|2 − |F |2) + Re

(
GF − 2

∫
FdG

))
: Σ → C ×R = R3

gives an improper affine sphere with the affine normal vector field ξ = (0, 0, 1).

Conversely, any improper affine spheres ψ : Σ → R3 with the affine normal ξ =

(0, 0, 1) are given in this way and the complex structure of the 2-manifold Σ is

compatible to h.

The pair of holomorphic functions (F,G) is called the Weierstrass data of ψ. We

find that the metric ds2 represented as

(2.4) ds2 := ⟨dX , dX⟩ = |dF |2 + |dG|2 + dFdG+ dFdG

is a non-degenerate flat metric, where X := F + G is the two first coordinates in

(2.3), and ⟨ , ⟩ is the standard Euclidian inner product of C = R2 under canonical

identification. This metric ds2 is called the flat fundamental form. Also, the affine

metric h can be expressed as h = |dG|2−|dF |2. When |dG| = |dF | holds at a point

(i.e, the affine metric h degenerates), the improper affine sphere ψ represented by

(2.3) is not immersed. And the point also corresponds to the point where the flat

fundamental form ds2 degenerates. Hence, using the notations above, Mart́ınez

introduced the following concept of improper affine maps, which is a generalization

of improper affine spheres in the sense of admitting singularities.
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Definition 2.2. [Mar05a, Definition 1] Let Σ be a Riemann surface and (F,G) :

Σ → C2 a complex regular curve satisfying the period condition

(2.5) Re

∫
γ

FdG = 0

for any closed curve γ in Σ. Then the map ψ : Σ → C ×R = R3 given by

(2.6) ψ :=

(
G+ F ,

1

2
(|G|2 − |F |2) + Re

(
GF − 2

∫
FdG

))
is called an improper affine map.

The singular points of an improper affine map correspond with the points where

the affine metric h degenerates, and also with the points where ds2 degenerates. As

shown in [Nak09] and [UY11], an improper affine map becomes a (wave) front. Thus

in this meaning, we call the improper affine map the improper affine front in this

paper. The differential geometry of fronts is discussed in [SUY09] and [SUY22].

We remark that the improper affine fronts are a special case of affine maximal

surfaces with singularities (say affine maximal maps). The affine maximal maps

are investigated in [AMM09a], [AMM09b], [AMM09c], [AMM11].

Remark 2.3. For given an improper affine front ψ : Σ → R3 with Weierstrass data

(F,G), another improper affine front constructed from (F̃ , G̃) defined by

(2.7) (F̃ , G̃) := (αF + βG+ µ, βF + αG+ λ) (α, β, µ, λ ∈ C, |α|2 − |β|2 = 1)

gives an equiaffinely equivalent improper affine front. In particular, for any µ, λ ∈
C, (F + µ,G+ λ) gives a Weierstrass data of parallel translation of ψ in R3. Con-

versely, any improper affine fronts which move to ψ by an equiaffine transformation

whose differential map preserves the affine normal vector ξ = (0, 0, 1) are given in

this way ([Fer02]).

From now on, ψ : Σ → C ×R = R3 is an improper affine front with Weierstrass

data (F,G). Next, we shall review the concepts of completeness and some properties

for complete improper affine fronts, shown in [Mar05a], which play important roles

in this paper.

Definition 2.4. [Mar05a, Definition 2], [KUY04, Definition 3.1] An improper affine

front ψ : Σ → C×R is said to be complete if there exists a symmetric bilinear form

T with a compact support such that

(2.8) d̃s
2
:= T + ds2

is a complete Riemannian metric on Σ, where ds2 is the flat fundamental form.

Fact 2.5. [Mar05a, Proposition 1] Let ψ : Σ → C × R be a complete improper

affine front. Then Σ is biholomorphic to Σ \ {p1, · · · , pn}, where Σ is a compact

Riemann surface, and n ≥ 1 is an integer. Moreover, the Weierstrass data (F,G)

of ψ can be extended meromorphically to Σ. In particular, F and G have at most

a pole at each pj.
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Each puncture point pj is called an end. Taking a small neighborhood U of an

end such that ds2 is non-degenerate on U (i.e., ψ is an improper affine sphere on U ,

which is complete at the end), we also call the puncture point the end of improper

affine sphere. Here, an end p of ψ is said to be an embedded end if there is a small

neighborhood U of p such that ψ|U\{p} is an embedding.

Set Σ = Σg \ {p1, · · · , pn}, where Σg is a compact Riemann surface of genus g,

and let ψ : Σ → C ×R = R3 be a complete improper affine front. Here,

(2.9) ρ :=
dF

dG

defines a meromorphic function on Σ, and ρ is termed the Lagrangian Gauss map.

When we set

L := X + iN ,

where X = F + G and N := F − G, the map L : Σ → C2 becomes the special

Lagrangian immersion. The induced metric dτ2 from C2 given by

(2.10) dτ2 := L∗ ⟨, ⟩C2 = ⟨dX , dX⟩+ ⟨dN , dN⟩ = 2(|dF |2 + |dG|2)

is a complete Riemannian metric and conformal to h at points where h is non-

degenerate, where ⟨, ⟩C2 stands for the standard Euclidian inner product of C2 =

R4 ([Mar05a], Theorem 1).

Fact 2.6. [Mar05a, Section 3] A complere improper affine front ψ : Σ = Σg \
{p1, · · · , pn} → C ×R satisfies the following properties:

• An end pj (j = 1, 2, · · · , n) is embedded if and only if F and G have at

most a simple pole at pj.

• (Osserman-type inequality) When we denote by Kτ and dAτ the Gaussian

curvature and the area element with respect to dτ2, it holds that

(2.11) − 1

2π

∫
Σ

KτdAτ ≥ −χ(Σg) + 2n,

where χ(Σg) = 2− 2g is the Euler number of Σg.

The integral of KτdAτ in the left hand side of (2.11) is called the total curvature

of ψ. [Kaw13, Theorem 1.1, Corollaly 1.2] shows that the Gaussian curvature Kτ

with respect to the conformal metric dτ2 = 2(|dF |2 + |dG|2) = 2(1 + |ρ|2)|dG|2 is

(2.12) Kτ = − 1

(1 + |ρ|2)3

∣∣∣∣ dρdG
∣∣∣∣2 .

Hence, one can varify that the total curvature satisfies

(2.13)

∫
Σ

KτdAτ = −2π deg ρ ∈ −2πZ≥0,

and the Osserman-type inequality (2.11) can be rewritten as

(2.14) deg ρ ≥ 2(g − 1 + n).
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Other global results for complete improper affine fronts are also investigated in

[MM14c] and [ACG07].

In the end of this section, we confirm some examples of complete improper affine

fronts with only embedded ends.

Example 2.7. [Mar05a, Section 4] A complete improper affine front obtained by

taking Σ = Ĉ \ {0} (Ĉ := C ∪ {∞}) and the Weierstrass data (F,G) given by

(2.15) F =
1

z
, G =

b

z
(b ∈ C, |b| ≠ 1)

is called an elliptic paraboloid (Figure 1, (a)). Moreover for each b, we find that the

elliptic paraboloid is equiaffinely equivalent to a rotational paraboloid.

Example 2.8. [Mar05a, Section 4] A complete improper affine front obtained by

taking Σ = C \ {0} and the Weierstrass data (F,G) given by

(2.16) F =
1

z
, G = az (a ∈ R \ {0})

is called a rotational improper affine front (Figure 1, (b)).

Example 2.9. [Mar05a, Section 4] A complete improper affine front obtained by

taking Σ = C \ {0} and the Weierstrass data (F,G) given by

(2.17) F =
1

z
, G = az +

b

z
(a ∈ R \ {0}, b ∈ C \ {0}, |b| ≠ 1)

is called a non-rotational improper affine front (Figure 1, (c)).

(a) Example 2.7 (b) Example 2.8 (c) Example 2.9

Figure 1. Complete improper affine fronts with only embedded ends

3. Asymptotic behavior of complete embedded ends

3.1. Asymptotic behavior of the complete embedded ends. As mentioned in

Fact 2.6, the equality condition of the Osserman-type inequality (2.11) is equivalent

to the condition that all ends are embedded. Using this fact and the condition for

an end to be embedded, we will classify complete embedded ends in the sense
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of “asymptotic”, into three types in a similar way to [KUY02]. Throughout this

section, we take a sufficiently small local complex coordinate neighborhood centered

at an end of a complete improper affine front, and consider a local expression of an

improper affine front ψ : D∗
ε := {0 < |z| < ε} → C ×R (ε > 0) with Weierstrass

data (F,G). By completeness, we may assume thatD∗
ε does not contain the singular

set of ψ, that is, the flat fundamental form ds2 is non-degenerate on D∗
ε . Then ψ

is complete at 0 (that is, the length with respect to ds2 of any path in D∗
ε which

accumulates to 0 diverges to ∞). Hence we may also assume that ψ is an improper

affine sphere on D∗
ε .

Definition 3.1. An improper affine sphere ψ : D∗
ε → C ×R complete at 0 is said

to be asymptotic to a type-P end (resp. type-R end, type-NR end) if there exists a

piece of an elliptic paraboloid (2.15) (resp. a rotational improper affine front (2.16),

a non-rotational improper affine front (2.17))

ψ̃ : D∗
ε → C ×R

which is complete at 0 such that

(3.1) |ψ(z)− ψ̃(z)| = o(1)

holds, where o(1) means a term tending to 0 as z → 0, and | · | is the standard

Euclidian norm. Here, we regard C ×R = R3 as Euclidian space, not affine space.

Theorem 3.2. Let ψ : D∗
ε → R3 be an improper affine sphere complete at 0. Then

the end 0 is embedded end if and only if ψ is asymptotic to one of the type-P end,

type-R end, or type-NR end.

Proof. Assume that the end 0 is embedded. By Fact 2.6, F and G can be expanded

around z = 0 as

(3.2) F =
a−1

z
+

∞∑
n=0

anz
n, G =

b−1

z
+

∞∑
n=0

bnz
n,

and by exchanging F and G if necessary, we may assume that a−1 ̸= 0. After

a parallel translation of R3 and coordinate changes on D∗
ε , we can suppose that

F = 1/z and b0 = 0. In addition, the period condition (2.5) is equivalent to b1 ∈ R.

By (2.6), we obtain the concrete expression of ψ as,

ψ(z) =

(
b−1

z
+

1

z̄
,
1

2

(
|b−1|2

|z|2
− 1

|z|2

)
− 2b1 log |z|

)
+ o(1)

up to additive constant vectors of R3. We divide the situation into the following

two cases.

Case 1 The case of b−1 = 0.

(I) When b1 ̸= 0, ψ is asymptotic to the type-R end. In fact, from Example

2.8, the rotational improper affine front with the Weierstrass data F = 1/z, G =



THE CLASSIFICATION OF IMPROPER AFFINE FRONTS 9

b1z (b1 ∈ R \ {0}) is expressed as

(3.3) ψ̃R(z) :=

(
b1z +

1

z̄
,
1

2

(
b21|z|2 −

1

|z|2

)
− 2b1 log |z|

)
up to an additive constant vector, and it holds that

|ψ(z)− ψ̃R(z)| =
∣∣∣∣−1

2
b21|z|2 + o(1)

∣∣∣∣ = o(1).

(II) When b1 = 0, ψ is asymptotic to the type-P end. In fact, from Example 2.7,

Weierstrass data of the elliptic paraboloid for b = 0, F = 1/z, G = 0 corresponds

to the surface

(3.4) ψ̃P̌(z) :=

(
1

z̄
, − 1

2|z|2

)
,

from (2.6), and one can obtain

|ψ(z)− ψ̃P̌(z)| = o(1).

Case 2 The case of b−1 ̸= 0.

(I) When b1 ̸= 0, ψ is asymptotic to the type-NR end. In fact, from Example

2.9, Weierstrass data is given by F = 1/z, G = b1z + b−1/z (b1 ∈ R \ {0}, b−1 ∈
C \ {0}, |b−1| ≠ 1). Then this surface is expressed as

(3.5) ψ̃NR(z) :=

(
b1z +

b−1

z
+

1

z̄
,
1

2

(
|b−1|2

|z|2
+ |b1|2|z|2 −

1

|z|2

)
− 2b1 log |z|

)
up to an additive constant vector. Hence we have

|ψ(z)− ψ̃NR(z)| = o(1).

(II) When b1 = 0, ψ is asymptotic to the type-P end. Indeed, from Example

2.7, Weierstrass data of elliptic paraboloid for b = b−1 is given by F = 1/z, G =

b−1/z (|b−1| ≠ 1), and then this surface can be expressed as

(3.6) ψ̃P(z) :=

(
b−1

z
+

1

z̄
,

1

2|z|2
(|b−1|2 − 1)

)
from (2.6). Therefore we find

|ψ(z)− ψ̃P(z)| = o(1).

Conversely, we suppose that an improper affine sphere ψ : D∗
ε → R3 complete at

0 is asymptotic to one of those three types. Now, assume that 0 is not an embedded

end. Then, from Fact 2.6, F and G can be expanded to

F =

∞∑
n=k

anz
n, G =

∞∑
n=l

bnz
n (a−k, b−l ̸= 0, k ≤ l, k ≤ −2)

around z = 0. Similarly to the first half, we may assume that F = 1/zk, b0 = 0, and

the period condition is equivalent to bk ∈ R. Putting ψ = (ψ1 + iψ2, ψ3) ∈ C ×R,
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we can compute ψ3(z) as

ψ3(z) =
1

|z|2k

(
−1

2
+O(1)

)
from (2.6), where O(1) is the bounded term as z → 0. If ψ is asymptotic to the

type-R end, then from (3.3), we have

|ψ3(z)− (ψR)3(z)| =
1

|z|2k

∣∣∣∣−1

2
+O(1)

∣∣∣∣ → ∞ (z → 0).

This contradicts to the assumption of asymptoticity. Similarly, we can lead the

contradictions for the cases of the type-P end and the type-NR end. Therefore we

obtain the conclusion. □

Combining the equality condition of the Osserman-type inequality (2.11) with

Theorem 3.2, one can directly show the following corollary:

Corollary 3.3. A complete improper affine front in C×R = R3 attains the equality

in the Osserman-type inequality (2.11) if and only if each end is asymptotic to one

of the type-P end, type-R end, or type-NR end.

Symmetry, uniqueness of solutions of the exterior Plateau proplem associated to

(1.1), and maximum principle at infinity for improper affine spheres are studied in

[FMM96] and [FMM99].

3.2. New examples with embedded ends. We introduce new examples of com-

plete improper affine fronts with embedded ends as a correspondence to the Jorge–

Meeks minimal surface in Euclidian 3-space ([JM83]).

Let n ≥ 2 be an integer and Σ := Ĉ \ {1, ζ, · · · , ζn−1, η, ηζ, · · · , ηζn−1}, where
ζ := exp(2πi/n), η := exp(πi/n) and Ĉ = C ∪ {∞}, and consider (F,G) given by

(3.7) F =

n−1∑
j=0

αj

z − ζj
, G =

n−1∑
j=0

βj
z − ηζj

,

where αj , βj ∈ C \ {0}, and z is the canonical complex coordinate of C. We obtain

the following examples by how we choose these parameters αj , βk.

Example 3.4. We choose αj , βk satisfying

αjη
n−1ζn−j , βkζ

n−k ∈ R (j, k = 0, ..., n− 1).

For example, we put αj = λjηζ
j , βk = µkζ

k, where λj , µk ∈ R \ {0}. Then

(F,G) given in (3.7) induces a complete improper affine front ψ : Σ → R3 with 2n

embedded ends (Figure 2: (a) n = 2, α1 = α2 = i, β1 = β2 = 1, (b) n = 3, α1 =

α2 = β2 = β3 = 1/5, α3 = β1 = −1).

Moreover, we consider the following example in the special case of n = 2. Set

αj = βj = 1 (j = 0, 1) in (3.7). In this case, Σ = Ĉ \ {±1,±i}.
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Example 3.5. Let

(3.8) F =
1

z − 1
+

1

z + 1
, G =

1

z − i
+

1

z + i
.

Since the residues of FdG at each ends are Res(FdG,±1) = Res(FdG,±i) = 0, the

period condition (2.5) is satisfied. Hence (3.8) induces a complete improper affine

front with four embedded ends. This surface is not equiaffinely equivalent to the

surface in Example 3.4, n = 2. (Figure 2, (c))

(a) Example 3.4, n = 2 (b) Example 3.4, n = 3 (c) Example 3.5

Figure 2. New examples with 2n embedded ends

4. Classification of complete improper affine fronts of total

curvature −2mπ

In the minimal surface theory, Osserman [Oss64] and López [Lóp92] classi-

fied complete minimal surfaces in the Euclidian 3-space whose total curvature is

−4mπ (0 ≤ m ≤ 2) (that is, the mapping degree m of the Gauss map satisfies

0 ≤ m ≤ 2). In this section, we will classify complete improper affine fronts, up to

transformations in Remark 2.7, whose total curvatures are 0,−2π,−4π,−6π, and

−8π.

Let ψ : Σ = Σg \ {p1, · · · , pn} → C × R = R3 be a complete improper affine

front with Weierstrass data (F,G). At first, we start from describing three facts

which was showed in [Mar05a] to classify surfaces.

Fact 4.1. [Mar05a, Theorems 5, 6, 7], [AMM11, Theorems 12, 15]

• A complete improper affine front is the elliptic paraboloid if and only if its

Lagrangian Gauss map ρ in (2.9) is constant.

• A complete improper affine front with only one end, which is embedded, is

the elliptic paraboloid referred to in Example 2.7.

• If a complete improper affine front with exact two ends, which are embedded,

then it is either the rotational improper affine front or the non-rotational

improper affine front described in Examples 2.8 and 2.9.
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The first assertion of Fact 4.1 yields the following theorem directly:

Theorem 4.2. A complete improper affine front with the total curvature 0 is the

elliptic paraboloid.

From now on, without loss of generality, we may assume that ρ(p) = ∞ at one

end p ∈ Σ (if necessary, exchange F with G and conduct a transformation (2.7)).

In addition, we remark the following:

• (Residue condition) The residues of F ′ and G′ necessarily have to vanish,

where z is a local complex coordinate and ′ := d/dz, by the uniqueness of

Laurent expansion.

• If ρ has a pole at except ends of order −k, then it is a zero point of G′ of

order k, and F ′ ̸= 0 holds there because (F,G) satisfies the relation

(4.1) dF = ρdG,

and (dF, dG) ̸= (0, 0) on Σ (cf., Definition 2.2). In particular, dG ̸= 0 on

Σ \ ρ−1({∞}).
• Sum of orders of a meromorphic function on a compact Riemann surface is

zero ([Mir95]).

• The number of ends n satisfies n ≥ 1. In fact, if n = 0, then F and G

become holomorphic functions on the compact Riemann surace Σg, so they

have to be constant. It contradicts (dF, dG) ̸= (0, 0).

4.1. The case of total curvature −2π.

Theorem 4.3. A complete improper affine front with the total curvature −2π is

obtained from the Weierstrass deta

(4.2) F = az2, G = z (a > 0)

defined on Σ = C (Figure 3).

Proof. From (2.14), (g, n) satisfies g+n ≤ 3/2. Then we see that (g, n) = (0, 1). We

may assume that Σ = Ĉ \{∞} = C and F,G are both polynomials. Moreover, ρ is

a Möbius transformation because of deg ρ = 1. By (4.1), it holds that G′ = c (̸= 0).

Hence we may set G = z. Since the Möbius transformation ρ satisfies ρ(∞) = ∞,

ρ can be written as ρ = az + b (a ̸= 0). Then we obtain F = az2 + bz. Applying a

coordinate change and equiaffine transformations (2.7), we get (4.2). □

Remark 4.4. The [KRSUY05] criteria of singularities for improper affine fronts

([Kod21]) shows that the improper affine front in Theorem 4.3 has three swallow-

tails. A relation between this surface and a flat front in hyperbolic 3-space with

three swallowtails is refferred to in [MM14b] (see also [MM14c]).

4.2. The case of total curvature −4π.
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Figure 3. Comlete improper affine front with total curvature −2π
: (4.2)

Theorem 4.5. Complete improper affine fronts with the total curvature −4π are

the rotational improper affine front, the non-rotational improper affine front, and

the surfaces constructed by the Weierstrass data

(4.3) F = az3 + bz, G = z (a > 0, b ∈ C),

(4.4) F = az3 + bz2 + cz, G = z2 (a > 0, c ∈ C \ {0})
defined on Σ = C (Figure 4).

Proof. It follows from (2.14) that g + n ≤ 2, and the pairs of (g, n) are (g, n) =

(0, 2), (1, 1), (0, 1). Recalling Fact 4.1, we find that if (g, n) = (0, 2), then the surface

is either the rotational improper affine front (2.16) or the non-rotational improper

affine front (2.17). The case of (g, n) = (1, 1) can not happen by Fact 4.1. So we

only have to investigate the case of (g, n) = (0, 1). As the case of deg ρ = 1, we

may assume that Σ = C. Then F and G are polynomials.

Here, we will consider the following two cases.

(I) The case ord∞ ρ = −2.

We can set G = z and ρ = a2z
2 + a1z + a0 (a2 ̸= 0, a1, a0 ∈ C) by the same

reason as in the proof of Theorem 4.3. Thus F can be computed, and we obtain

(4.3).

(II) The case where there uniquely exists p ∈ C which is a pole of ρ and satisies

ord∞ ρ = ordp ρ = −1.

Without loss of generality, we may assume p = 0. Then we have G′ = az (a ̸= 0).

Hence ρ and G can be written as G = z2, ρ = a1z + a−1/z + a0 (a1, a−1 ∈
C \ {0}, a0 ∈ C), Thus rewriting the parameters of ρ and changing coordinate, we

have the Weierstrass data (4.4).

Therefore, the proof is completed. □

4.3. The case of total curvature −6π.

Theorem 4.6. Complete improper affine fronts with the total curvature −6π are

constructed by the Weierstrass data

(4.5) F = az4 + bz2 + cz, G = z (a > 0),
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(a) (4.3) (b) (4.4)

Figure 4. Comlete improper affine front with total curvature −4π

(4.6) F = az4 + bz3 + cz2 + dz, G = z2 (a > 0, c ̸= 0),

(4.7) F = az4 + bz3 + cz2 + dz, G = z3 (a > 0, d ̸= 0),

(4.8) F = az4 + bz3 + cz2 + dz, G = α(2z3 − 3z2) (a > 0, d, α ̸= 0),

which are defined on Σ = C (Figure 5),

(4.9) F = az2 + bz +
c

z
, G =

1

z
(a > 0, b ∈ R, |c| ≠ 1),

(4.10) F = az +
b

z
+

c

z2
, G =

1

z2
(a > 0, |c| ≠ 1),

(4.11) F =
a

z2
+
b

z
+ cz, G =

1

z
(a > 0, c ∈ R \ {0}),

(4.12) F = az +
b

z
+

c

z2
, G = α

(
1

2z2
− 1

z

)
(a > 0, α ∈ C \ {0}, 2|c| ≠ |α|),

(4.13) F = az2+bz+
c

z
, G = α

(
z +

1

z

)
(a > 0, b, α ̸= 0, c−a ∈ R, |c| ≠ |α|),

which are defined on C \ {0} (Figure 5, 6 and 7).

proof of Theorem 4.6. Seeing (2.14), we find g + n ≤ 5/2, and hence (g, n) =

(0, 2), (1, 1), (0, 1). These cases are the same (g, n) as the case of the total curvature

−4π , but note that at least one end is not embedded in the case (g, n) = (0, 2).

Case 1 (g, n) = (0, 1) (Σ = C).

We further divide Case 1 into the following (I)-(III).

(I) The case ord∞ ρ = −3.

In this case, as with (I) in the case of −4π and (g, n) = (0, 1), we obtain (4.5).

(II) The case where there uniquely exists p ∈ C which is a pole of ρ.

We have to consider the two more cases:

(II-a) ordp ρ = −1, ord0 ρ = −2, (II-b) ordp ρ = −2, ord0 ρ = −1.

(II-a) We can set G′ = α(z − p), and then after some transformations, we get

G = z2. Since ρ is expressed as ρ = a2z
2 + a1z + a−1/z + a0 (a2, a−1 ̸= 0),

computing F from the relation (4.1), and conducting some transformations, we

have Weierstrass data (4.6).
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(II-b) Similarly, as (II-a), we can set G = z3, and ρ is written by the formation

ρ = a−2/z
2 + a−1/z + a0 + a1z (a−2, a1 ̸= 0). Then we obtain (4.7) by (4.1).

(III) The case where there exist distinct points p, q ∈ C which are poles of ρ

of each order −1.

Without loss of generality, we can set p = 0, q = 1. Then G′ can be written as

G′ = αz(z−1) (α ̸= 0), and by retaking the parameter α, we have G = α(2z3−3z2).

Therefore by (4.1), we get (4.8).

(a) (4.5) (b) (4.6) (c) (4.7) (d) (4.8)

Figure 5. Comlete improper affine front with total curvature
−6π, one end

Case 2 (g, n) = (0, 2) (Σ = C \ {0}).
Note that at least one of F and G must not be a polynomial.

Considering this case, we must remark the period condition and completeness.

We divide this case into the following (I)-(III).

(I) The case ord∞ ρ = −3.

We can set ρ = a3z
3 + a2z

2 + a1z + a0 (a3 ̸= 0), and G,G′ must have a pole

at z = 0. And considering (4.1), we can set G′ = α/zk (α ̸= 0, k = 2, 3), and G is

calculated as G = 1/zk−1. Hence after some transformation, F is calculated, and

we have (4.9) and (4.10).

(a) (4.9) (b) (4.10)

Figure 6. Complete improper affine fronts with total curvature
−6π, and two ends, No.1

(II) The case where there uniquely exists p ∈ C which is a pole of ρ.

We have to consider the following two cases:

(II-a) ordp ρ = −1, ord∞ ρ = −2, (II-b) ordp ρ = −2, ord∞ ρ = −1.
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(II-a) In this case, ρ can be expressed as ρ(z) = a−1/(z − p) + a0 + a1z +

a2z
2 (a−1, a2 ̸= 0), and G′ ̸= 0 on C \ {0, p}. Moreover, we divide (II-a) into two

more cases.

(II-a-1) When p = 0, we can set G′ = α/z2, so we obtain G = 1/z. Thus, we have

(4.11).

(II-a-2) When p ̸= 0 (we may assume p = 1), we can set G′ = α(z− 1)/z3. Then

a1 − a2 = 0 must hold because of the residue condition for F ′. Therefore, we get

(4.12).

(II-b) ρ is expressed by ρ(z) = a−2/(z− p)2 + a−1/(z− p)+ a0 + a1z (a−2, a1 ∈
C \ {0}). Moreover, we divide (II-b) into two more cases.

(II-b-1) When p = 0, since G′ = α (α ̸= 0), we can set G = z. Given the residue

condition for F ′, we have F = a/z + bz + cz2. However, by changing coordinates,

we find that this data is the same as (4.11).

(II-b-2) When p ̸= 0, we can set G′ = α(z−p)2/zk (α ̸= 0), and k satisfies k ≥ 4.

Then one can varify that F does not have a pole at ∞. Thus, this is impossible.

(III) The case where there exist distinct points p, q ∈ C which are poles of ρ

of orders −1.

ρ is expressed as ρ = a−1/(z− p)+ b−1/(z− q)+ a0 + a1z (a−1, b−1, a1 ̸= 0). We

will consider the following two cases:

(III-a) When p = 0, G′(q) = 0 of order 1. Then we can set G′ = α(z−q)/zk (α ̸=
0, k ≥ 3). However ord∞ F ′ = ord∞ ρ + ord∞G′ = −1 + (k − 1) = k − 2 ≥ 1, and

this is impossible because both F and G do not have a pole at ∞.

(III-b) When p, q ̸= 0 (we can set p = 1), G′ can be written as G′ = α(z −
1)(z − q)/zk (α ̸= 0), and k satisfies k = 2 if 1 + q = 0, or k ≥ 4. However,

the latter is impossible for the same reason as (III-a). If k = 2, then we obtain

G = α(z + 1/z), ρ = a−1/(z − 1) + b−1/(z + 1) + a1z + a0 (a−1, b−1, a1 ̸= 0).

Retaking parameters, we obtain (4.13).

(a) (4.11) (b) (4.12) (c) (4.13)

Figure 7. Complete improper affine fronts with total curvature
−6π, and two ends, No.2

Case 3 (g, n) = (1, 1).

Let τ be a complex number satisfying Im τ > 0, and set

(4.14) Tτ := C/[1, τ ],
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where [1, τ ] is a lattice defined by [1, τ ] := {m + nτ ; m,n ∈ Z}. In this case,

we may assume that Σ = Tτ \ {[0]} ([x] stands for an equivalence class where x

belongs). Since F ,G, and ρ are meromorphic functions on Tτ , we can identify them

with the elliptic functions on C associated with [1, τ ]. We will use general theory of

the elliptic functions when we consider the case of genus 1 (see [HC44] for datails).

Let Π0 := {x+ yτ ; 0 ≤ x, y < 1} be a fundamental period parallelogram (FPP, in

short). Here, the Weierstrass ℘-function associated to [1, τ ] is defined by

℘(z) :=
1

z2
+

∑
ω∈[1,τ ],ω ̸=0

(
1

(z − ω)2
− 1

ω2

)
,

and the Laurent expansion of ℘ around 0 is

℘(z) =
1

z2
+ 3G4z

2 + 5G6z
4 + · · · ,

where Gk :=
∑

ω∈[1,τ ]\{0}(1/ω
k) (k = 4, 5, · · ·).

Fact 4.7 ([HC44]). (1) Set ej := ℘(ωj) (j = 1, 2, 3), where ω1 := 1/2, ω2 :=

(1 + τ)/2, ω3 := τ/2, g2 := 60G4, and g3 := 140G6. Then ℘ satisfies

(℘′(z))2 = 4℘(z)3 − g2℘(z)− g3,

(4.15) g2 = −4(e1e2 + e2e3 + e3e1), g3 = 4e1e2e3.

(2) An elliptic function has at least one pole in the FPP. In particular, an

elliptic function which is holomorphic on the FPP is constant.

(3) The sum of residues in the FPP of an elliptic function is 0.

(4) The number of zero points in the FPP of an elliptic function is equal to

the number of its poles in the FPP. Here, the number of zero points (resp.,

poles) is the sum of the order at each zero point (resp., pole).

So we divide Case 3 into the following (I)-(III).

(I) The case ord0 ρ = −3.

Here, G′ ̸= 0 holds on Π0 by (4.1). SinceG′ is holomorphic in Π0, G
′(z) = c ( ̸= 0)

holds, and then G(z) = cz, but this is not an elliptic function. Thus (I) does not

happen.

(II) The case where there uniquely exists p ∈ Π0 \ {0} which is a pole of ρ.

We have to consider two more cases :

(II-a) ordp ρ = −1, ord0 ρ = −2, (II-b) ordp ρ = −2, ord0 ρ = −1.

(II-a) In this case, G′(p) = 0 of order 1 and G′ ̸= 0 otherwise. Then z = 0 is the

only pole of G′ of order −1, and thus Res(G′, z = 0) ̸= 0. This is impossible.

(II-b) In this case, z = 0 is the only pole of G′ of order −2, and then z = 0 is

the only pole of G of order −1. This is impossible for the same reason as (II-a).

(III) The case where there exist distinct points p, q ∈ Π0 \ {0} which are poles

of ρ of orders −1.
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Then since G′(p) = G′(q) = 0 of order 1, G′ has the unique pole at z = 0 of

order −2. Hence this is impossible for the same reason as (II-b).

Summing up the arguments above, we find that there does not exist complete

improper affine fronts of genus 1 with total curvature −6π. □

4.4. The case of total curvature −8π. In this case, from Osserman-type inequal-

ity (2.14), we obtain g+n ≤ 3 and find (g, n) = (0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (0, 3).

The cases (g, n) = (1, 2), (2, 1) can not happen by Fact 4.1.

Theorem 4.8. Complete improper affine fronts with genus 0 whose total curvature

is −8π are constructed by the Weierstrass data

(4.16) F = az5 + bz3 + cz2 + dz, G = z (a > 0),

(4.17) F = az5 + bz4 + cz3 + dz2 + ez, G = z2 (a > 0, e ∈ C \ {0}),

(4.18) F = az5 + bz4 + cz3 + dz2 + ez, G = z3 (a > 0, e ∈ C \ {0}),

(4.19) F = az5 + bz4 + cz3 + dz2 + ez, G = z4 (a > 0, e ∈ C \ {0}),

(4.20) F = az5+bz4+cz3+dz2+ez, G = α(2z3−3z2) (a > 0, α, e, F ′(1) ̸= 0),

(4.21) F = az5+bz4+cz3+dz2+ez, G = α(3z4−4z3) (a > 0, α, e, F ′(1) ̸= 0),

(4.22) F = az5 + bz4 + cz3 + dz2 + ez, G = α(3z4 − 4(1 + r)z3 + 6rz2)

(a > 0, r /∈ {0, 1}, α, e, F ′(1), F ′(r) ̸= 0), defined on Σ = C,

F = az3 + bz2 + cz +
d

z
, G =

1

z
(a > 0, c ∈ R, |d| ≠ 1),(4.23)

F = az2 + bz +
c

z
+

d

z2
, G =

1

z2
(a > 0, |d| ≠ 1),(4.24)

F = az2 + bz +
c

z
+

d

z2
, G =

1

z
(a > 0, d ̸= 0),(4.25)

F = az +
b

z
+

c

z2
+

d

z3
, G =

1

z2
(a > 0, d ̸= 0),(4.26)

(4.27) F = az2 + bz +
c

z
+

d

z2
, G = α

(
−1

z
+

1

2z2

)
(a > 0, b ∈ R, α, F ′(1) ̸= 0, 2|d| ≠ |α|),

(4.28) F = az +
b

z
+

c

z2
+

d

z3
, G = α

(
− 1

2z2
+

1

3z3

)
(a > 0, F ′(1) ̸= 0, 3|d| ≠ |α|),

(4.29) F = az +
b

z
+

c

z2
+

d

z3
, G =

1

z
(a > 0, d ̸= 0),

(4.30) F = az +
b

z
+

c

z2
+

d

z3
, G = α

(
−1

z
+

1

z2
− 1

3z3

)
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(a > 0, F ′(1) ̸= 0, 3|d| ≠ |α|),

(4.31) F = az +
b

z
+

c

z2
+

d

z3
G = α

(
1

2z2
− 1

z

)
(a > 0, α, d ̸= 0),

(4.32) F = az3 + bz2 + cz +
d

z
, G = α

(
z +

1

z

)
(a > 0, α, F ′(±1) ̸= 0,−c+ d ∈ R, |d| ≠ |α|),

(4.33) F = az +
b

z
+

c

z2
+

d

z3
G = α

(
−1

z
+
p+ 1

2z2
− p

3z3

)
(a > 0, α ∈ R, p ∈ C \ {0, 1}, α, F ′(1), F ′(p) ̸= 0, 3|d| ≠ |α||p|),

(4.34) F = az3 + bz2 + cz +
d

z
, G = α

(
z2 − 6z +

8

z

)
(a > 0, α(3d+ 4c) ∈ R, α, F ′(1), F ′(−2) ̸= 0, |d| ≠ 8|α|),

(4.35) F = az2 + bz +
c

z
+

d

z2
, G = α

(
z +

3

4z
+

1

8z2

)
(a > 0, α(a+ 3b− 4c) ∈ R, F ′(1), F ′(−1/2), α /∈ C \ {0}, 2|d| ≠ |α|),

(4.36) F = az2 + bz +
c

z
+

d

z2
, G = α

(
z +

1

z

)
(a > 0, α, d, F ′(±1) /∈ C \ {0}, α(b− c) ∈ R),

(4.37) F = az3 + bz2 + cz +
d

z
, G = α

(
z2 + 2(pq − 1)z +

2pq

z

)
(a > 0, p ̸= q, p, q ̸= 0, 1, p+ q = −qr, (d− c)pq − d ∈ R, |d| ≠ 2|pq|, F ′(p), F ′(q),
F ′(1) /∈ C \ {0}),

(4.38) F = az2 + bz +
c

z
+

d

z2
, G = α

(
z +

q2 + q + 1

z
− q(q + 1)

2z2

)
(a > 0, α ̸= 0, q ̸= 0,±1, α(4c − 4b(q2 + q + 1) + aq(q + 1)) ∈ R, 4|d| ≠ |αq(q +
1)|, F ′(1), F ′(q), F ′(−1− q) /∈ C \ {0}), defined on C \ {0}, and

(4.39) F = az +
b

z − 1
+
c

z
, G =

α

z − 1
(a > 0, c, α ∈ R \ {0}, |b| ≠ α)

(4.40) F = az +
b

z − 1
+
c

z
, G = α

(
1

z
− 1

z − 1

)
,

(a > 0, Im(b+ c) = 0, α ∈ C \ {0}, |b|, |c| ≠ |α|),

(4.41) F = az +
b

z − 1
+
c

z
, G = α

(
pq − 1

z − 1
− pq

z

)
,

(a > 0, α ∈ Ĉ \ {0}, p, q /∈ {0, 1}, pq ̸= 1, p + q = 2pq, Im(1 − 2pq) = 0, Im(2(b −
c)pq+2c− a) = 0, |c| ≠ |α||pq|, |b| ≠ |α||pq− 1|), defined on Σ = C \ {0, 1} (Figure
8).

Proof. In the exact same way as before cases of (g, n) = (0, 1), (0, 2), we get the

above Weierstrass data.

Hence we only need to consider the case of (g, n) = (0, 3).
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In this case, the three ends are all embedded. We may assume that Σ = C\{0, 1}
and ρ(∞) = ∞. Firstly, we shall divide this case into the following (I)-(IV).

(I) The case ord∞ ρ = −4.

By (4.1), we find G′ ̸= 0 on C, and observe that (ord∞G′, ord0G
′, ord1G

′) =

(4,−2,−2). Hence, G′ can be expressed as G′ = α/z2(z − 1)2 (α ̸= 0). However,

since Res(G′, 0) = 2α ̸= 0, this case does not happen.

(II) The case where there uniquely exists p ∈ C which is a pole of ρ.

In addition, we must investigate two cases (II-a) p ∈ {0, 1} and (II-b) otherwise.

(II-a) The case p ∈ {0, 1}.
It is sufficient to consider the case of p = 0. Moreover, this case has to be divided

into the following two cases by the orders of ρ:

(II-a-1) The case (ord∞ ρ, ord0 ρ) = (−1,−3).

We observe (ord∞G′, ord0G
′, ord1G

′) = (4,−2,−2), (2, 0,−2), (0, 2,−2). The

first case is the same as (I), so impossible. The second is also impossible by

ord∞ F ′ = ord∞ ρ + ord∞G′ = −1 + 2 = 1. For the last case, G′ can be writ-

ten as G′ = αz2/(z − 1)2 (α ̸= 0). Then we find Res(G′, 1) = 2α ̸= 0, and this is

impossible.

(II-a-2) The case (ord∞ ρ, ord0 ρ) = (−2,−2).

One can find (ord∞G′, ord0G
′, ord1G

′) = (4,−2,−2), (2, 0,−2), (0, 2,−2). We

find Res(G′, 1) ̸= 0 in the first and second cases, so they are not possible. In the

third case, we obtain

G =
α

z − 1
(α ∈ C \ {0}).

From (4.1), we get the Weierstrass deta (4.39).

(II-b) The case p /∈ {0, 1}.
Furthermore, this case is divided into the following three cases:

(II-b-1) The case (ord∞ ρ, ordp ρ) = (−3,−1).

In this time, we observe ordpG
′ = 1, ord0G

′ = ord1G
′ = −2, and ord∞G′ = 3.

Hence we can write G′ as

G′ =
α(z − p)

z2(z − 1)2
(α ∈ C \ {0}),

and by Res(G′, 0) = α(1− 2p),Res(G′, 1) = α(2p− 1), p must be p = 1/2. Thus we

obtain

G = α

(
1

z
− 1

z − 1

)
(α ̸= 0).

We rewrite α/2 as the same α. Then F can be calculated by (4.1), and we get the

Weierstrass data (4.40).

(II-b-2) The case (ord∞ ρ, ordp ρ) = (−2,−2).

In this case, the orders ofG′ satisfies (ord∞G′, ord0G
′, ord1G

′, ordpG
′) = (2,−2,

− 2, 2). Hense G′ can be expressed as G′ = α(z − p)2/z2(z − 1)2 (α ̸= 0). Then it

hold that Res(G′, 0) = 2αp(p− 1). Thus p ̸= 0, 1 yields a contradiction.

(II-b-3) The case (ord∞ ρ, ordp ρ) = (−1,−3).



THE CLASSIFICATION OF IMPROPER AFFINE FRONTS 21

Then (ord∞G′, ord0G
′, ord1G

′, ordpG
′) = (1,−2,−2, 3), and we can express

G′ as G′ = α(z − p)3/z2(z − 1)2 (α ̸= 0). It is necessary to hold Res(G′, 0) =

αp2(2p + 3) = 0 and Res(G′, 1) = α(p − 1)2(2p + 1) = 0, but it is impossible for

p ̸= 0, 1.

(III) The case where there exists distinct points p, q ∈ C which are poles of ρ.

We will check the three cases (III-a) p = 0, q = 1, (III-b) q = 0, p /∈ {0, 1}, and
(III-c) p, q /∈ {0, 1}. The first case (III-a) is impossible for the same reason as (II-a).

(III-b) The case q = 0, p /∈ {0, 1}.
In this case, the orders of ρ are

(ord∞ ρ, ord0 ρ, ordp ρ) =
(1) (−2,−1,−1),(2) (−1,−2,−1),(3) (−1,−1,−2),

and ord1G
′ = −2 must hold.

(III-b-1) The case (ord∞ ρ, ord0 ρ, ordp ρ) = (−2,−1,−1).

Since ordpG
′ = 1, ord0G

′ ≥ 1, ord∞G′ ≥ 2, and ord1G
′ = −2, we know that∑

x∈Ĉ ordxG
′ ≥ 1 + 1 + 2− 2 = 2. This is impossible.

(III-b-2) The case (ord∞ ρ, ord0 ρ, ordp ρ) = (−1,−2,−1).

We know that (ord∞G′, ord0G
′, ord1G

′, ordpG
′) = (1,−2, 0, 1), (1, 0,−2, 1). In

the first case, we find Res(G′, 0) ̸= 0. In the second case, we also find Res(G′, 1) ̸= 0.

Hence these cases are impossible.

(III-b-3) The case (ord∞ ρ, ord0 ρ, ordp ρ) = (−1,−1,−2).

Given ordpG
′ = 2, ord∞G′ = 1, and ord1G

′ = −2, we know ord0G
′ = −1.

However, this is impossible.

(III-c) The case p, q /∈ {0, 1}.
Furthermore, this case is divided into the following two cases:

(ord∞ ρ, ordp ρ, ordq ρ) =
(1) (−2,−1,−1),(2) (−1,−2,−1).

(III-c-1) The case (ord∞ ρ, ordp ρ, ordq ρ) = (−2,−1,−1).

We observe (ord∞G′, ord0G
′, ord1G

′, ordpG
′, ordq G

′) = (2,−2,−2, 1, 1) and

can set

G′ =
α(z − p)(z − q)

z2(z − 1)2
= α

(
pq − p− q + 1

(z − 1)2
+
pq

z2
+
p+ q − 2pq

z − 1
+

2pq − p− q

z

)
.

Then p+ q = 2pq, pq ̸= 0, 1 must hold. Hence we obtain

G = α

(
pq − 1

z − 1
− pq

z

)
,

and by (4.1), we get the Werstrass data (4.41).

(III-c-2) The case (ord∞ ρ, ordp ρ, ordq ρ) = (−1,−2,−1).

In the same way of the case of (III-c-1), we have (ord∞G′, ord0G
′, ord1G

′,

ordpG
′, ordq G

′) = (1,−2,−2, 2, 1). Then we obtain

G′ = α

(
− (q − 1)(p− 1)2

(z − 1)2
− p2q

z2
− (p− 1)(2pq − p− 1)

z − 1
+
p(p+ 2q − 2pq)

z

)
and 2pq − p− 1 = 0 and p+ 2q − 2pq = 0 must hold, but these do not coincide.
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(IV) The case where there exist distinct points p, q, r ∈ C which are poles of ρ

of each order −1.

And we investigate three more cases:

(IV-a) The case p = 0, q = 1, and r /∈ {0, 1}.
Then ordr G

′ = 1, ord0G
′, ord1G

′, ord∞G′ ≥ 1 hold. Hence we have∑
x∈Ĉ ordxG

′ ≥ 4, and it does not happen.

(IV-b) The case p = 0, and q, r /∈ {0, 1}.
It holds that ord1G

′ = −2, ordq G
′ = ordr G

′ = 1, ord0G
′ ≥ 0 and ord∞G′ ≥ 1.

Thus
∑

x∈Ĉ ordxG
′ ≥ 1 holds, and this is a contradiction.

(IV-c) The case p, q, r /∈ {0, 1}.
Then we find that (ord∞G′, ord0G

′, ord1G
′, ordpG

′, ordq G
′, ordr G

′) = (1,−2,

− 2, 1, 1, 1). Hence

G′ = α

(
a

(z − 1)2
+

2pqr − pq − qr − rp+ 1

z − 1
− b

z2
+
pq + qr + rp− 2pqr

z

)
(a, b ∈ C, α ̸= 0) holds, but this does not happen. In fact, 2pqr−pq−qr−rp+1 = 0

and pq + qr + rp− 2pqr = 0 must hold, but they do not coincide.

Therefore, the proof is finished. □

(a) (4.39) (b) (4.40) (c) (4.41)

Figure 8. Complete improper affine front with total curvature
−8π, genus 0, and three embedded ends

We will investigate the rest case (g, n) = (1, 1). We may assume that Σ =

Tτ \ {[0]}, where Tτ is in (4.14), and ρ([0]) = ∞, and identify ρ, F, and G with the

elliptic functions on C. Since deg ρ = 4, ρ may have other poles except 0. We shall

divide this case into the following (I)-(IV).

(I) The case ord0 ρ = −4

By (4.1), G′ ̸= 0 on Π0 \ {0} and G′(0) ̸= ∞. In particular, G′ is holomorphic

on Π0, so G
′ is a non-zero constant. Hence G is not elliptic.

(II) The case where there exists p ̸= 0 which is a pole of ρ.

(ord0 ρ, ordp ρ) =
(a) (−1,−3),(b) (−2,−2),(c) (−3,−1).

(II-a) The case (ord0 ρ, ordp ρ) = (−1,−3).

In this case, since ordpG
′ = 3 and G′ ̸= 0 on Π0 \{0, p}, ord0G′ = −3, and then

ord0G = −2. Hence, G is given by G = c℘ (c ̸= 0). Also, ord0 F
′ = −3 holds.
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Thus Weierstrass data is given by

F = a℘′ + b℘, G = c℘ (a > 0, c ̸= 0).

(II-b) The case (ord0 ρ, ordp ρ) = (−2,−2).

Since ordpG
′ = 2, we know ord0G

′ = −2 and ord0G = −1. This is impossible.

(II-c) The case (ord0 ρ, ordp ρ) = (−3,−1)

Since ordpG
′ = 1, we find that ord0G

′ = −1. This is also impossible.

(III) The case where there are p, q ∈ Π0 \ {0} (p ̸= q) which are poles of ρ.

If ordp ρ = ordq ρ = −1, ord0 ρ = −2, then ordpG
′ = ordq G

′ = 1, and ord0G
′ =

−2, so ord0G = −1. This does not happen. On the other hand, we assume that

ordp ρ = ord0 ρ = −1, ordq ρ = −2. Then we obtain ordpG
′ = 1, ordq G

′ = 2 and

then ord0G
′ = −3. From this, we find that ord0G = −2. Hence G can be written

as G = c℘ (c ̸= 0). Thus for the same reason as (II-a), we have Weierstrass data

F = a℘′ + b℘, G = c℘ (a > 0, c ̸= 0).

(IV) The case where there are distinct points p, q, r ∈ Π0 \ {0} which are poles

of ρ of each order −1.

Since ord0G = −2, we obtain

F = a℘′ + b℘, G = c℘ (a > 0, c ̸= 0).

Also, in each case, since G′(p), G′(q), G′(r) = 0, the points p, q, and r are half

periods of [1, τ ] because of G′ = c℘′ and Fact 4.7. Thus the case (II-a) and (III)

do not happen. Indeed, for the case (II-a), 3p ≡ 0 mod [1, τ ] ([HC44]). So p is

not a half period, which is impossible. (III) is also impossible for the same reason

as (II-a). Therefore we only have to consider the case of (IV) and may assume

p = 1/2, q = (1 + τ)/2, r = τ/2.

Now, we shall consider the period condition (2.5). Direct computations give that∫
FdG = c

(
a

30
℘′′′(z) +

2

5
ag2ζ(z)−

3

5
ag3z +

1

2
b℘(z)2

)
up to additive constant, where ζ(z) is the Weierstrass ζ-function which satisfies

ζ ′(z) = −℘(z) and limz→0(ζ(z) − 1/z) = 0, and g2, g3 are in (4.15). In addition,

consider two curves γ1(t) := 1/4 + τt, γ2(t) := t + τ/4 (t ∈ [0, 1]), which generete

the fundamental group of T , and a loop γ around the origin. Then it holds that∫
γ1

FdG =
1

5
ac (2g2η2 − 3g3τ) ,

∫
γ2

FdG =
1

5
ac (2g2η1 − 3g3) ,

∫
γ

FdG = 0,

where η1, η2 are constant numbers, which are determined by the lattice [1, τ ], sat-

isfying η1 = ζ(z + 1) − ζ(z), η2 = ζ(z + τ) − ζ(z) for all z ∈ C. Hence the period

conditions (2.5) are equivalent to

(4.42)

{
c (2g2η2 − 3g3τ) ∈ iR,

c (2g2η1 − 3g3) ∈ iR.
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Proposition 4.9. Complete improper affine fronts with genus 1 whose total cur-

vature is −8π are constructed by the Weierstrass data

(4.43) F = a℘′ + b℘, G = c℘ (a > 0, c ̸= 0),

defined on C/[1, τ ] \ {[0]} and satisfying the period condition (4.42).

Remark 4.10. Nore that Proposition 4.9 still does not show the existence of

the surface because we need to determine the modulus τ of the torus and choose

c ∈ C \ {0} that satisfy the period condition (4.42). If τ = i (i.e., Tτ is a square

torus and this case corresponds with the Chen–Gackstatter [CG82]minimal surface

case) or τ = e(2πi)/3 (i.e., Tτ is a equilateral triangle torus), then one can observe

that these cases are impossible. In fact, when τ = i, it holds that g2 > 0, g3 = 0

and η1 = −iπ ([AS64, Section 18]) and then (4.42) yields c = 0. When τ = e(2πi)/3,

it holds that g2 = 0, g3 > 0 and η1 = 2π/
√
3. Then (4.42) implies c = 0.

From now on, we will show existence of the surface in the special case where

τ = eiα (α ∈ (0, π)) in Proposition 4.9. If the period condition (4.42) holds, then

one can see that

Im
(
(2g2η1 − 3g3)(2g2η2 − 3g3τ)

)
= 0.

Since the inveriants of the ℘-function and the ζ-function, namely g2, g3, η1, and

η2 are continuous functions of τ , we put g2 = g2(τ), g3 = g3(τ), η1 = η1(τ), and

η2 = η2(τ). We then set

(4.44) P (α) := Im
(
p1(α)p2(α)

)
,

where p1(α) := 2g2(e
iα)η1(e

iα)− 3g3(e
iα), p2(α) := 2g2(e

iα)η2(e
iα)− 3g3(e

iα)eiα.

Theorem 4.11. There exists α0 ∈ (π/3, π/2) such that P (α0) = 0. In particular,

there exists a complete improper affine front ψ : C/[1, eiα0 ] \ {[0]} → R3 of genus

1 whose total curvature is −8π (Figure 9).

Proof. [AS64, Section 18] shows that the concrete values of g2, g3, η1 and η2 are

g2

(π
3
i
)
= 0, g3

(π
3
i
)
> 0, η1

(π
3
i
)
=

2π√
3
, η2

(π
3
i
)
=

2π√
3
e−

iπ
3 ,

g2(i) > 0, g3(i) = 0, η1(i) = π, η2(i) = −iπ.
Then, direct computations give that P (π/3) = (9

√
3g23)/2 > 0, P (π/2) = −4g22π

2 <

0. Since the function P (α) is continuous on (0, π), the intermidiate value theorem

yields that there exists α0 ∈ (π/3, π/2) such that P (α0) = 0.

Here, either p1(α) or p2(α) does not vanish for any α ∈ (0, π). In fact, if

p1(α) = p2(α) = 0 for some α, then it holds that

2g2(e
iα)(η1(e

iα)eiα − η2(e
iα)) = 0.

By the Legendre’s identity η1(e
iα)eiα−η2(eiα) = 2πi, one can observe that g2(e

iα) =

0 and then the torus is a equilateral torus. From Remark 4.10, it is impossible.
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Thus, we choose as complex number c in (4.43) the non-zero either of

c = ip1(α0) and c = ip2(α0)

and hence one can observe that the period conditions (4.42) is satisfied. Therefore,

we complete the proof. □

Figure 9. Complete improper affine front of genus 1 with total
curvature −8π when c = ip1(α0). The values of α0 and c can be

estimated as α0 ≈ 1.37048, c = ip1(α0) ≈ 1265.89 + 370.33i by
using the Mathematica software.

Theorem 4.11 shows that there is a complete improper affine front with the

maximum total curvature and positive genus.

Remark 4.12. Now we consider a function

(4.45) P̃ (τ) := Im
(
p̃1(τ)p̃2(τ)

)
,

where p̃1(τ) := 2g2(τ)η1(τ) − 3g3(τ), p̃2(τ) := 2g2(τ)η2(τ) − 3g3(τ)τ are defined

on the upper half plane H := {τ ∈ C; Im τ > 0}. Theorem 4.11 shows that

P̃ (eiα0) = P (α0) = 0. On the other hand, the invariants g2(τ), g3(τ), η1(τ), and

η2(τ) have an expression by the Weierstrass θ-function. The Mathematica software

computes

dP̃

dα
(eiα)

∣∣∣∣∣
α=α0

≈ −7.74116× 106 ̸= 0.

Thus, from the implicit function theorem, there exists an interval I (∋ 0) and a

smooth curve ϕ : I → C such that

ϕ(0) = eiα0 , P̃ (ϕ(t)) = 0 (t ∈ I).

Hence, when we set W :=
{
τ = ϕ(t) ∈ H; P̃ (ϕ(t)) = 0 (t ∈ I)

}
and choose as c the

non-zero either of ip̃1(τ) and ip̃2(τ) for each τ ∈ W , the period condition (4.42)

holds. Therefore, it implies the existence of an real one parameter family with

respect to the modulus τ of complete improper affine fronts of genus 1 and the

total curvature −8π.



26 JUN MATSUMOTO

Finally, we give a new example of a complete improper affine front of genus 1 (for

known examples of genus 1 whose total curvature is −12π, see [Mar05a, Section 4,

No.6]).

Example 4.13. Let Σ = C/(Z ⊕ iZ) \ {[0]} be the square torus minus one point

and define F,G by

(4.46) F = ℘′′ +
5g2
7π

℘, G = ℘′.

One can verify that these F,G satisfy the period condition (2.5). Therefore, (F,G)

induces a complete improper affine front ψ : Σ → R3 of genus 1 with the total

curvature −10π (Figure 10).

Figure 10. Complete improper affine front of genus 1 with total
curvature −10π
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