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Abstract—To satisfy dynamic requirements of power systems, 
it is imperative for grid-tied inverters to ensure good disturbance 
rejection performance (DRP) under variable grid conditions. This 
letter discovers and theoretically proves that for general networks, 
synthesizing grid-following (GFL) inverters and grid-forming 
(GFM) inverters can always more effectively ensure the DRP of 
multiple inverters, as compared to homogeneous inverter-based 
systems that solely utilize either GFL or GFM inverters. The 
synthesis of GFL inverters and GFM inverters can concurrently 
increase the smallest eigenvalue and decrease the largest 
eigenvalue of the network grounded Laplacian matrix. This can be 
equivalent to rematching the proper short-circuit ratio (SCR) for 
GFL and GFM inverters, thereby ensuring the DRP of inverters 
both in weak and strong grids. The results reveal the necessity of 
synthesizing diverse inverter control schemes from the network-
based perspective. Sensitivity function-based tests and real-time 
simulations validate our results. 
 
Index Terms—Grid-following inverter, grid-forming inverter, 
grounded Laplacian matrix, short-circuit ratio, disturbance 
rejection performance. 

I. INTRODUCTION 

In the pursuit of decarbonizing electrical energy, the large-
scale integration of power electronic inverters into the electrical 
grid becomes essential, serving as the interfaces for the 
renewable energy sources. Commonly, grid-following (GFL) 
inverter and grid-forming (GFM) inverter are two typical 
control schemes for the inverters [1]. 

Given the fact that external disturbances, including a step 
change in the load or harmonic disturbances, are inevitable 
from the public grid [2], it is imperative for the inverter 
controllers to exhibit disturbance rejection performance (DRP) 
[3]. This is essential to satisfy the dynamic requirements of 
power systems [4]. For example, a GFL inverter is expected to 
maintain the high-quality terminal voltage waveform for the 
power system, even in the event of disturbance [4]. However, 
achieving this becomes a challenge in a weak grid (i.e., a grid 
with the low short-circuit ratio (SCR)), and it could lead to 
oscillation instability issues [4],[5]. In comparison to the GFL 
inverter, the GFM inverter has attracted increasing research 
interest due to its ability to support the grid frequency and 
voltage, as well as their superior performance in weak grids. 
However, under strong grid conditions, the GFM control 
performance may be diminished [6].  
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Both the existing GFL and GFM controllers generally 
consider a single inverter-based system (SIBS), but provides no 
assurance on the DRP of multiple inverters. It has been revealed 
that the interactions among GFL inverters could deteriorate the 
overall performance in response to the disturbance, compared 
to the SIBS [7],[8]. Also, the similar issues have been found in 
homogeneous systems of GFM inverters [9]. It is challenging 
to ensure the DRP of multiple GFL or GFM inverters under 
variable grid conditions. Some studies apply a combination of 
GFL and GFM controllers to tackle this concern, the 
effectiveness of which has been verified in a simple two-bus 
system [10]. However, it is still necessary to give a theoretical 
explanation for the more general network topology. 

To fill this gap, this letter provides a network-based insight, 
demonstrating that the DRP of the hybrid GFL-GFM inverter 
system can always be at least superior to that of a homogeneous 
system composed exclusively of either GFL or GFM inverters, 
for general networks. Instead of numerical tests, we will present 
an analytical proof and further reveal the necessity of 
synthesizing diverse inverter control schemes to ensure the 
DRP of multiple inverters under variable grid conditions. 
Frequency- and time-domain tests from an experimental system 
are presented to validate the analysis. 

II. PROBLEM FORMULATION 

Without the loss of generality, we examine a set of n inverter 
nodes, indexed by {1,..., }i n , dynamically coupled though an 
ac network. Consider three multi-inverter systems, denoted as 
Γ1, Γ2 and Γ3. Each system shares the same network, but with 
different types of inverters (i.e., GFL or GFM inverters) 
connected to their nodes. Specifically, Γ1 and Γ2 represent 
homogeneous systems of GFL and GFM inverters, respectively, 
while Γ3 represent a hybrid system with identical GFL inverters 
(connected to node 1~n1) and identical GFM inverters 
(connected to node n1+1~n2), 1 2n n n  . The linearized 
closed-loop dynamics of the three systems can be represented 
by the block diagram in Fig.1 [7].  

As depicted in Fig.1, ( ) ( )N s F s Y B represents the 
admittance model for the network dynamics [7], which is same 
in all three systems; n nB  represents the network 
susceptance matrix [7] and also is the network grounded 
Laplacian matrix that preserves n inverter nodes and eliminates 
infinite nodes and interior nodes [11]; 

2
0 0 0 0( ) [ , ; , ] / ( / )F s s s s      ; ( )G sY  represents the 
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block-diagonal transfer function of admittance models of 
inverters, that is, 
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where n  represents a n-by-n identity matrix;  denotes 
Kronecker product; YGFL(s) and YGFM(s) are the 2×2 admittance 
transfer function matrices of the GFL and GFM inverter, 
respectively, whose detailed expressions can be found in [12]; 
ΔIper and ΔUper represent the external voltage disturbance in 
series with each branch and current disturbance in parallel with 
each node for inverters, respectively, which can be equivalent 
to the disturbances from the public grids in terms of small 
disturbance; ∆I and ∆U represent the current and voltage 
response vectors of inverters following the disturbance, 
respectively. 

 
Fig.1 Block diagram of closed-loop systems with multiple GFL or GFM 
inverters under the external disturbance. 

The multi-inverter systems in Fig.1 are the multivariable 
feedback systems [3]. In the presence of the external 
disturbances denoted as ΔUper(s) or ΔIper(s) in Fig.1, the DRP 
of the systems can be quantified by using the sensitivity 
function, as it mirrors the gain of the closed-loop system in 
response to the disturbance [3]. Let s j , and the sensitivity 
function can be formulated as  

 1 1
2( ) ( ( )) , ( ) ( ) ( ),n N Gj j j j j       S L L Y Y  (2) 

 2: { ( )} 1/ { ( )},nj j      S L  (3) 

2max ( ( )) max{1/ { ( )}} ( ) ,P nj j j
 

     


   S L S

 (4) 
where ( )jS  and ( )jL represent the sensitivity function and 
the open-loop transfer function of systems in Fig.1, respectively; 

{}  and {}  denote the maximum and minimum singular 
values of a matrix, respectively; { ( )}j S  can quantify the 
DRP of the system under the external disturbance at the 
frequency point ω; P  represents the sensitivity peak and can 
be the DRP indicator within the wide frequency range; the 
lower P  means the better DRP of the system [3]; || ||  
denotes  norm. 

Based on the above formulations, we now articulate the 
interested problem as follows. 
Problem. Could the synthesis of GFL and GFM inverters in 
system Γ3 more effectively ensure the DRP of multiple inverters, 
compared to homogeneous inverter-based systems like system 
Γ1 or system Γ2, which solely utilize either GFL or GFM 
inverters? That is, do we have 3 1 2max{ , }P P P


     ? 

III. MAIN RESULTS 

A. Relationship Between DRP and SCR 

Considering that the inverter control performance is 
commonly related to the grid conditions [1], we firstly illustrate 
the role of SCR in the DRP of a GFL-based or GFM-based SIBS. 
The sensitivity function and its peak of SIBS can be formulated 
as  

 1 1 1
2 /( ) ( ( )) , ( ) ( )SIBS SIBS SIBS

SCR GFL GFMj j j F Y j        S L L
 (5) 

 1 1
2 /max{1/ { ( ) ( )}}SIBS

P SCR GFL GFMF j Y j


        (6) 

where ( )SIBS jS and ( )SIBS jL  represent the sensitivity 
function and the open-loop transfer function of SIBS, 
respectively; SIBS

P  represents the sensitivity peak of SIBS; 
1

lineSCR L   represents the SCR [7]. lineL represents the grid 
inductance in the SIBS. 

Fig. 2 shows curves of the maximum singular value of 
sensitivity function { ( )}SIBS j S  for the GFL/GFM-based 
SIBSs in (5) with SCR varying from 3.0 to 7.0. Parameters of 
inverters can be founded in TABLE A.I in the Appendix A. It 
can be seen from Fig. 2 that SIBS

P in GFL-based SIBS varies 
from 29.1 dB to 6.2dB and SIBS

P  in GFM-based SIBS varies 
from 5.1dB to 10.7dB with SCR increasing. Thus, the DRP of 
GFL-based SIBS is improved with SCR increasing, while the 
DRP of GFM-based SIBS is deteriorated, which are consistent 
with empirical views [1],[6].  

As a result, SCR can be served as a network-based indicator 
for quantifying the DRP of the SIBS based on a GFL or GFM 
inverter, comparable to the sensitivity peak. 

 
Fig. 2 Curves of the maximum singular value of sensitivity function for GFL-
based and GFM-based SIBSs with SCR increasing from 3.0 to 7.0. 

B. DRP Quantification of Homogeneous Systems   

Based on the preceding analysis in the SIBS, this subsection 
illustrates that the DRP of homogeneous systems of GFL or 
GFM inverters (i.e., systems Γ1 and Γ2) can be quantified by the 
SCR in the equivalent SIBSs of these two homogeneous 
systems.  

The maximum singular value of sensitivity functions of 
systems Γ1 or Γ2 in (3) can be rewritten as  
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Notice that the network grounded Laplacian matrix B in (7) 
is a positive definite matrix, and thus existing a unity matrix 

n nW  makes  
 * *

1{ ,..., },n ndiag    W BW W W   (8) 

where  is a diagonal matrix whose elements satisfy 
10 ... ...i n       , {1,..., }i n ; 1 { }  B  and 
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{ }n  B  represent the smallest and largest eigenvalues of the 
network grounded Laplacian matrix B, respectively; (∙)* 
represents the conjugate transpose. 

Since singular values are invariant for a unity transform [14], 
the maximum singular value of the sensitivity function in (7) 
can be rewritten as (for simplicity, the following derivations 
omit jω) 
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 (9) 
By combing (6) and (9), the DRP of systems Γ1 and Γ2 can 

be quantified by the eigenvalues , {1,..., }i i n   which can be 
regarded as SCR of n equivalent SIBSs in (9). It is noteworthy 
that 1 { }  B  can be regarded as the so-called generalized 
SCR (gSCR) when the inverter capacities are rated [7].  

More specifically, by combing the illustration from Section 
III.A, the DRP of system Γ1 with GFL inverters can be 
determined by that of SIBS with the lowest SCR (i.e.,

1 { }  B ), and the DRP of system Γ2 with GFM inverters can 
be determined by that of SIBS with the highest SCR (i.e.,

{ }n  B ). Thus, we have  
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C. Comparison with Synthesizing GFL and GFM Inverters 

This subsection quantifies and compares the DRP of the 
hybrid GFL-GFM inverter system (i.e., system Γ3) with that of 
the homogeneous systems composed solely of GFL and GFM 
inverters (i.e., system Γ1 and Γ2).  

Considering the interactions between GFL and GFM 
inverters, we firstly demonstrate how the hybrid GFL-GFM 
inverter system can be decoupled into two homogeneous 
subsystems of GFL and GFM inverters. According to [13], the 
closed-loop characteristic equation of system Γ3 in Fig.1 can be 
formulated based on that of two homogeneous subsystems 1 
and 2 as  

 3
1 2

1 2
2 2 20 det{ } det{ }det{ }sub sub

n n n
    L L L    (11) 

where  
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where 1subL and 2subL represent the open-loop transfer function 
matrices of the homogeneous subsystems 1 and 2 of system Γ3, 
respectively; 1sub

NY and 2sub
NY  represent the network admittance 

transfer function matrices of homogeneous subsystems 1 and 2, 
respectively, as follows 

 
2

1
1 1 1 2 2 2

1
2 1

[ , ] ( [ , ] )( [ , ]

) ( [ , ] )

sub
N

n GFM

n n F n n F n n F
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 2
1( / )sub

N n F Y B  (14) 

where 1 1[ , ]n nB denotes the submatrix of B with rows indexed 
by n1 and columns indexed by n1, and 1 2[ , ]n nB , 2 1[ , ]n nB  and 

2 2[ , ]n nB  are all the submatrices of B  with the same notation; 
1

1 2 2 2 1 1 1 1 2/ [ , ] [ , ] [ , ] [ , ]n n n n n n n n n B B B B B denotes the 
Schur complement of 1 1[ , ]n nB in B  [14].  

Remark 1: Since the smallest singular value naturally 
reflects the singularity degree of a matrix [12], we can derive 

3
1 2

1 2
2 2 2{ } min{ { }, { }}sub sub

n n n     L L L    based on 
(11). Then, the sensitivity peak of system Γ3 in (4) can be 
rewritten as 
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Thus, the DRP of the hybrid system Γ3 can be equivalent to 
that of the two decoupled homogeneous subsystems 1 or 2 in 
(11).  

Fig. 3 further shows the equivalence of system Γ3 in Remark 
1. It can be seen from Fig. 3 that subsystems 1 and 2 of system 
Γ3 can be formed as homogeneous GFL and GFM inverters 
interconnected to the network admittance 1sub

NY  and 2sub
NY  

instead of NY , respectively. This inspired us to compare the 
DRP of system Γ3 with that of systems Γ1 and Γ2 from a 
network-based perspective. 
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Fig. 3 Illustration of decoupled subsystems of system Γ3 with the combination 
of GFL and GFM inverters. 

The network admittance transfer function matrix of 
subsystem 1 in (13) can be further rewritten as [12]  

 1
mod 2( / )sub

N n F Y B  (16) 

where 2mod 0 eq nB  B B   represents the modified 
susceptance matrix including the equivalent susceptance of 
GFM inverters; 0eqB  represents the equivalent susceptance 
of GFM inverters to approximate GFMY  in (13) at the interested 
frequency points [12];  denotes the direct sum.  

Lemma 1: The network grounded Laplacian matrix of 
subsystem 1 can be considered as mod 2/nB  in (16). The smallest 
eigenvalues of the network grounded Laplacian matrices of 
subsystem 1 and system Γ1 satisfy 

 mod 2{ / } { }n B B  (17) 

Proof. The detailed proof is given in the Appendix B. 
Lemma 2: The network grounded Laplacian matrix of 

subsystem 2 can be considered as 1/nB  in (14). The largest 
eigenvalues of the network grounded Laplacian matrices in 
subsystem 2 and system Γ2 satisfy 

 1{ / } { }n B B  (18) 

Proof. The detailed proof is given in the Appendix C. 
Remark 2: For homogeneous GFL inverters, the DRP of 

system Γ1 and subsystem 1 both can be quantified by the 
smallest eigenvalues of the network grounded Laplacian 
matrices, accordingly. Increasing smallest eigenvalue can be 
regarded as matching an increased SCR in the equivalent SIBS 
of the homogeneous GFL-based systems and improving its 
DRP. Based on Lemma 1, the smallest eigenvalue of 



subsystem1 (i.e., mod 2{ / }n B ) is larger than that of system Γ1 
(i.e., { } B ). Thus, the DRP of subsystem 1 is better than that 
of system Γ1, that is,  

 1
1

1 1
2max{1/ { }} .sub sub

P n P


     L  (19) 

Remark 3: For homogeneous GFM inverters, the DRP of 
system Γ2 and subsystem 2 both can be quantified by the largest 
eigenvalues of the network grounded Laplacian matrices, 
accordingly. Decreasing largest eigenvalue can be regarded as 
matching a decreased SCR in the equivalent SIBS of the 
homogeneous GFM-based systems and also improving its DRP. 
Based on Lemma 2, the largest eigenvalue of subsystem 2 (i.e., 

1{ / }n B ) is smaller than that of system Γ2 (i.e., { } B ). Thus, 
the DRP of subsystem 2 is better than that of system Γ2, that is, 

 2
2

2 2
2max{1/ { }} .sub sub

P n P


     L  (20) 

By combing Remarks 1~3, we illustrate that the synthesis of 
GFL and GFM inverters can more effectively ensure the DRP 
of multiple inverters for the general networks. In other words, 
the DRP of the hybrid system Γ3 is proved to be at least superior 
to that of homogeneous systems Γ1 and Γ2 composed solely of 
either GFL or GFM inverters, as follows 
 3 1 21 2max{ , } max{ , }.sub sub

P PP P P
 

         (21) 

IV. CASE STUDY 

Without the loss of generality, we take a three-inverter power 
system as the experimental system, as shown in Fig. 4. In such 
a system, three GFL/GFM inverters are connected at node 1~3; 
node 7 is specified as the infinite bus and node 4~6 are interior 
nodes of the grid. Parameters of inverters and networks are 
given in TABLE A.I in the Appendix A.  

 
Fig. 4 One-line diagram of the three-inverter test system. 

To validate the theoretical findings in Section III, we firstly 
construct systems Γ1~Γ3 by applying three combinations of 
GFL and GFM controllers to Inverter 1~3 as shown in TABLE. 
I (n=3, n1=1, n2=2). Then, two scenarios are created in the grid 
by setting a scaling parameter k as 1.0 and 0.1, which is 
proportional to each line length in the per-unit system. The 
parameter is employed to uniformly decrease (or increase) all 
line impedances in the power network simultaneously. The 
frequency-domain curves of { ( )}j S  of systems Γ1~Γ3 in 
Scenario 1~2 are depicted in Fig. 5(a)~(b), respectively; the 
sensitivity peaks P  as the DRP indicator are also listed in 
TABLE. I, accordingly. 

The results in TABLE. I and Fig. 5 show that the sensitivity 
peaks of system Γ1~Γ3 in Scenario 1(k=1) and Scenario 2(k=0.1) 
both satisfy 3 1 2max { , }P P P     . It is suggested that the 
synthesis of GFL and GFM inverters contributes to the low 
sensitivity peak of systems both in the weak and strong grids, 
thereby can more effectively ensure the DRP of multiple 
inverters. The observations from TABLE. I and Fig. 5 are 

consistent with those obtained from (21), which verifies the 
correctness of our analysis results in Section III. 

The analysis results are further validated using hardware-in-
the-loop (HIL) real-time simulations. The HIL setup includes a 
simulator, a digital controller (NI PXIe-1071), a host computer 
and an oscilloscope, as shown in Fig. 6. The HIL simulator, 
equipped with CPU and FPGA resources, enables high-fidelity 
simulations with a small step size (less than 0.5 μs). Here the 
grid and inverters (excluding controllers) are simulated using 
the FPGA. The controller for Inverter 1 is implemented in the 
digital controller, while the controllers for Inverter 2~3 are 
implemented on separate CPU cores in the HIL simulator. 

TABLE. I 
DRP QUANTIFICATION OF THREE INVERTER-BASED SYSTEMS IN TWO 

SCENARIOS 

System Cases 
System Γ1 System Γ2 System Γ3 
GFLs at 
node1-3 

GFMs at  
node 1-3 

GFLs at node 2 
GFMs at node 1,3 

Scenario 1 (k=1) 
DRP Indicator 1 25.2dBP    2 10.8dBP    3 19.6dBP P     

Scenario 2 (k=0.1) 
DRP Indicator 1 3.2dBP    2 16.2dBP    3 213.7dBP P     

 
Fig. 5 Maximum singular values of sensitivity functions { ( )}j S of system 
Γ1~Γ3 (a) in Scenario 1(k=1); (b) in Scenario 2(k=0.1). 
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(Software：RT-LAB)
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Fig. 6 HIL real-time simulation setup. 

Fig. 7 (a) and (b) display the time-domain responses of 
systems Γ1 and Γ3 in Scenario 1(k=1), respectively; Fig. 7 (c) 
and (d) display the time-domain responses of systems Γ2 and Γ3 
in Scenario 2(k=0.1), respectively. For systems Γ1~Γ3 in the two 
scenarios, the same 10% voltage dips as the external 
disturbance are applied to node 7 and then are cleared after 
0.05s. It can be seen from Fig. 7 (a)-(d) that the system Γ3 (with 
the synthesis of GFL and GFM inverters) is small-disturbance 
stable both in the two scenarios and has the better DRP than 
system Γ1 or system Γ2, which again validates the effectiveness 
of our results in Section III. 
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Fig. 7. Time-domain active power responses of the three-inverter systems under 
the same voltage disturbance. (a) and (b) are in Scenario 1(k=1); (c) and (d) are 
in Scenario 2(k=0.1). 

V. CONCLUSION 

The paper analyzed the advantage of synthesizing GFL and 
GFM inverters to ensure the DRP of multi-inverter systems. It 
was demonstrated that the synthesis of GFL and GFM inverters 
could contribute to the low sensitivity peak of the systems, both 
in weak and strong grids. Hence, the DRP of multiple inverters 
could always be more effectively ensured than in homogeneous 
inverter-based systems that only use either GFL or GFM 
inverters. The results suggested that the necessity of 
implementing diverse inverters in power systems and 
potentially offered a basic guidance for planning and operating 
the large-scale integration of GFL and GFM inverters in the 
future grid. 

APPENDIX 

A. System Parameters 
TABLE A.I 

PARAMETERS OF INVERTERS AND POWER NETWORKS 

Base Values for per-unit Calculation 
Voltage base value: Ubase=0.69 kV   Power base value: Sbase= 1.5MVA 
Frequency base value: fbase = 50Hz 

Parameters of the Filter Part (per-unit values) 
Inverter-side inductor: Lf = 0.05        LCL capacitor: Cf = 0.05 
Grid-side inductor: Lg = 0.05            R/L ratio of grid impedance: τ = 0.1 

Parameters of the GFL Controller (per-unit values) 
PI parameters of the current control loop: 0.3, 10  

Voltage feedforward control: KVF = 1, TVF= 0.004s 
PI parameters of the active-reactive power control loop: 0.4, 8 

PI parameters of the phase lock loop (PLL): 20, 8020  
Parameters of the GFM Controller (per-unit values) 

PI parameters of the current control loop: 0.3, 10 
Voltage feedforward control: KVF = 1, TVF= 0.004s 

PI parameters of the voltage control loop: 6, 20 
Parameters of virtual synchronous generator (VSG): J = 2, D= 25 

Networks Parameters 

Z14 = 0.04+j0.05, Z25 = 0.04+j0.05, Z36 = 0.04+j0.05, 
Z45 = 0.02+j0.39, Z46 = 0.02+j0.46, Z56 = 0.02+j0.53, 
Z47 = 0.02+j0.53, Z57 = 0.02+j0.19, Z67 = 0.02+j0.46. 

 

B. Proof of Lemma 1 

Due to 0eqB  in (16), modB and B are positive-definite 
matrices and they satisfy mod 20 eq nB   B B B . Then, the 
smallest eigenvalues of modB and B  have mod{ } { } B B . 

According to Theorem 2.1 in [14], the smallest eigenvalue of 
modB  further has mod 2 mod{ / } { } { }n   B B B , and thus 

conclude the proof ■. 

C. Proof of Lemma 2 

Refer to Theorem 2.1 in [14] and the largest eigenvalue of B
has 1{ / } { }n B B . This concludes the proof ■. 
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