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SUTURED HEEGAARD FLOER AND EMBEDDED CONTACT

HOMOLOGIES ARE ISOMORPHIC

VINCENT COLIN, PAOLO GHIGGINI, AND KO HONDA

ABSTRACT. We prove the equivalence of the sutured versions of Heegaard Floer

homology, monopole Floer homology, and embedded contact homology. As

applications we show that the knot versions of Heegaard Floer homology and

embedded contact homology are equivalent and that product sutured 3-manifolds

are characterized by the fact that they carry an adapted Reeb vector field without

periodic orbits.

1. INTRODUCTION

Heegaard Floer homology, monopole Floer homology and embedded contact

homology are three drastically different-looking incarnations of the same closed

3-manifold invariant. Heegaard Floer homology, introduced by Ozsváth and Szabó

[OSz1, OSz2], is easily seen to be topological and admits a combinatorial descrip-

tion via nice Heegaard diagrams [SW]. Embedded contact homology (ECH), de-

fined by Hutchings [Hu1, Hu2, Hu3] and Hutchings-Taubes [HT1, HT2], encodes

the dynamical properties of an auxiliary Reeb vector field. Both were defined as

symplectic counterparts of monopole Floer homology, defined by Kronheimer and

Mrowka [KM1]. The latter was shown to be isomorphic to ECH by Taubes in

[T2, T3, T4, T5, T6] and to Heegaard Floer homology by Kutluhan-Lee-Taubes

in [KLT1, KLT2, KLT3, KLT4, KLT5]. Heegaard Floer homology and ECH were

independently shown to be isomorphic to each other in [CGH0, CGH1, CGH2,

CGH3].

All three homologies admit natural extensions to compact 3-manifolds with su-

tured boundary [Ju1, CGHH, KM2]. Sutured manifolds were introduced by Gabai

[Ga] in the context of foliation theory and are now understood to be a bridge be-

tween contact geometry and its convex surface theory [Gi] on one hand and geo-

metric decompositions of 3-manifolds/gauge-theoretic invariants on the other hand.

In particular, sutured Heegaard Floer homology, developed under the impulsion of

Juhász [Ju2], has striking applications to low-dimensional topology.

Baldwin and Sivek proved in [BS] that the sutured versions of monopole Floer

homology and Heegaard Floer homology are isomorphic and that the isomorphism

identifies the contact invariants. For what concerns the relation between the sutured
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versions of Heegaard Floer homology and ECH, we have the following conjecture,

which is a slight strengthening of Conjecture 1.5 in [CGHH].

Conjecture 1.1. If (M,Γ, ξ) is a sutured contact 3-manifold, then

ECH(M,Γ, ξ, A) ≃ SFH(−M,−Γ, sξ + PD(A))

as relatively graded vector spaces over Z/2Z, where A ∈ H1(M ;Z), sξ is the

canonical Spinc-structure determined by ξ, ECH(M,Γ, ξ, A) is the sutured ECH

of (M,Γ, ξ) in the homology class A, and SFH(−M,−Γ, sξ + PD(A)) is the

sutured Heegaard Floer homology of (−M,Γ) in the Spinc-structure sξ +PD(A).
Moreover the isomorphism identifies the contact invariant of ξ inECH(M,Γ, ξ, 0)
to that of SFH(−M,−Γ, sξ).

Remark 1.2. ECH admits a unique lifting to the integers defined by a coherent

orientation of the moduli spaces defining the boundary map, while Heegaard Floer

homology admits different liftings called orientation systems. In order to state the

conjecture over the integers, one would need to identify a canonical orientation

system for SFH , which has not been done yet.

In this paper we prove part of Conjecture 1.1. In particular, we obtain the fol-

lowing result.

Theorem 1.3. Let (M,Γ, ξ) be a sutured contact manifold. Then

(1.4) ECH(M,Γ, ξ) ≃ SFH(−M,−Γ),

where ECH(M,Γ, ξ) is the sutured ECH of (M,Γ, ξ) summed over all homology

classes and SFH(−M,−Γ) is the sutured Heegaard Floer homology of (−M,−Γ)
summed over all relative Spinc-structures.

For technical reasons we are unable to say anything about the contact invari-

ants of ξ and only prove a partial splitting of Equation (1.4) into relative Spinc-

structures; see Theorem 5.1 for the precise statement. However, this partial split-

ting is sufficient to give a complete splitting into relative Spinc-structures in the

knot invariant case; see Corollary 1.7 and its stronger version Corollary 5.2.

We give two applications of Theorem 1.3. The first is the topological invariance

of sutured ECH.

Corollary 1.5. The vector spaces ECH(M,Γ, ξ) are topological invariants of

(M,Γ) (and of the canonical Spinc-structure of ξ if we also take into account the

partial decomposition in terms of relative Spinc-structures).

Previously it was only known that ECH(M,Γ, ξ) is an invariant of (M,Γ, ξ)
by Theorem 10.2.2 in [CGH0] and Theorem 1.2 in [KS].

As another application of Theorem 1.3, we characterize product sutured 3-mani-

folds by the fact that they carry compatible Reeb vector fields without periodic

orbits (Theorem 6.1). This extends the proof of the Weinstein conjecture [T1] to

contact 3-manifolds with sutured boundary. We also show that if (M,Γ, ξ) is a taut

sutured contact 3-manifold of depth greater than 2k with H2(M) = 0 and if an
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adapted Reeb vector field Rλ is nondegenerate and has no elliptic orbit, then it has

at least k + 1 hyperbolic orbits (Theorem 6.3).

We also prove an isomorphism of sutured ECH with the sutured version of

monopole Floer homology, denoted SHM :

Theorem 1.6. Let (M,Γ, ξ) be a sutured contact manifold. Then

ECH(M,Γ, ξ) ≃ SHM(−M,−Γ).

The proofs of Theorems 1.3 and 1.6 go through the construction of a contact

embedding of any sutured contact manifold (M,Γ, ξ) into a closed contact mani-

fold (Y, ξ), called the contact closure, on which we control the Reeb dynamics. We

abuse notation by using the same name for both contact structures; this is justified

by the fact that they agree where they are both defined, i.e., on M . We identify

ECH(M,Γ, ξ) as a summand in ÊCH(Y, ξ) and find the analogous identification

on the Heegaard Floer side, given by a result of Lekili [Le]. The isomorphism

between the summands then follows from the isomorphism between ÊCH(Y, ξ)

and ĤF (−Y ), proven in the series [CGH0, CGH1, CGH2]. On the other hand, the

closed 3-manifold Y is the same closure Kronheimer and Mrowka used to define

sutured monopole Floer homology, and therefore Theorem 1.6 follows from the

computation of ÊCH(Y, ξ) and Taubes’ isomorphism between monopole Floer

homology and ECH proven in the series [T2]–[T6].

Juhász observed that the hat version of knot Floer homology of a knot in a 3-

manifold can be interpreted as the sutured Floer homology of the knot complement

with a pair of meridian sutures. Then the isomorphism between the sutured Floer

homologies, in its stronger form taking into account the partial splitting according

to relative Spinc-structures proved in Theorem 5.1, can be translated into an iso-

morphism between knot Floer homology and ECH of a sutured manifold associated

to the knot:

Corollary 1.7. Let K be a null-homologous knot in a closed manifold M and

S a Seifert surface of K . If M(K) is the complement of a tubular neighbor-

hood of K , ΓK a pair of oppositely oriented disjoint meridians in ∂M(K), and

(M(K),ΓK , ξ) a sutured contact manifold, then, for every d ∈ Z,

(1.8)

ĤFK(−M,−K, [S], d) ≃
⊕

〈c1(sξ)+2PD(A),[S]〉=2d

ECH(M(K),ΓK , ξ, A).

Here c1(sξ) ∈ H2(M(K), ∂M(K)) is the relative Chern class of the canonical

Spinc-structure sξ . Spano in his thesis [Sp] gave evidence for this isomorphism by

showing that the graded Euler characteristic of SFH(M(K),ΓK , ξ) is the Alexan-

der polynomial.

When K ⊂ M is a fibered knot and ξ is the Thurston-Winkelnkemper contact

structure on M(K), then ECH(M(K),ΓK , ξ) is isomorphic to a version of the

periodic Floer homology of the monodromy which will be defined in Section 2.4.

Thus we have the following corollary of corollary:
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Corollary 1.9. Let M be a closed manifold and K a fibered knot in M of genus g
and fiber S. If h is an area-preserving representative of the monodromy with zero

flux, then

(1.10) PFH♯(h, d) ≃ ĤFK(−M,−K, d − g).

Remark 1.11. It is possible to refine Equations (1.8) and (1.10) by taking into

account the splitting according to relative Spinc-structures; the precise statement

will be given in Corollary 5.2.

When d = 1, periodic Floer homology reduces to the usual symplectic Floer ho-

mology of a surface automorphism, and therefore Corollary 1.9 generalizes previ-

ous results of Ni [Ni] and Ghiggini–Spano [GS]. The proof here is similar in spirit

to that of [Ni], which goes from the knot to a (different) closed manifold and uses

the isomorphism between monopole Floer homology and periodic Floer homol-

ogy due to Lee-Taubes [LT], followed by the isomorphism of [KLT1]–[KLT5]. On

the other hand, the proof in [GS] is almost completely independent of the isomor-

phisms as it uses only the (simpler) open-closed map of [CGH1] and “standard”

symplectic geometry.

In [KM2] Kronheimer and Mrowka defined knot monopole Floer homology

groups HKM(M,K, [S], d), where M is a closed manifold, K ⊂ M a null-

homologous knot, S a Seifert surface for K , and d ∈ Z, as the monopole Floer ho-

mology of the sutured manifold (M(K),ΓK). The same argument proving Corol-

lary 1.7 also proves the following corollary:

Corollary 1.12. Let K be a null-homologous knot in a closed manifold M and S
a Seifert surface of K . Then, for every d ∈ Z,

(1.13)

HKM(−M,−K, [S], d) ≃
⊕

〈c1(sξ)+2PD(A),[S]〉=2d

ECH(M(K),ΓK , ξ, A).

Remark 1.14. The reason why sutured monopole Floer homology does not have

a decomposition into relative Spinc summands but knot monopole Floer homology

does have an Alexander grading is the same reason why we could not get a full

Spinc-decomposition in Theorem 1.3 but we could prove that the isomorphism in

Corollary 1.7 preserves the Alexander grading.

Acknowledgements. A significant advance in this project was made when the first

two authors met at the “Singular Workshop”, held at the Renyi Institute as part

of the Erdős Center’s semester on singularities and low dimensional topology, and

we are grateful to the organizers for the opportunity. We warmly thank Francesco

Lin for suggesting to us the proof of Lemma 3.9 which establishes the vanishing

of the U -map for monopole Floer homology in the relevant Spinc-structures. We

thank John Pardon for his question leading to Theorem 6.1 and which motivated

us to investigate a sutured version of our isomorphism. KH is grateful to Yi Ni and

the Caltech Mathematics Department for their hospitality during his sabbatical in

2018.



SUTURED HF = SUTURED ECH 5

2. SUTURED MANIFOLDS AND THEIR FLOER HOMOLOGIES

In this section we review some ingredients from [CGHH], [CGH0] and [Ju1].

All the Floer-type homology groups will be defined over the ground field F =
Z/2Z.

2.1. Balanced sutured manifolds. The various sutured invariants mentioned in

the introduction are defined for balanced sutured manifolds, a restricted class of

sutured manifolds introduced by Juhász in [Ju1]. Here we present the definition in

a slightly modified form because it is convenient for us to present M as a manifold

with corners and include the choice of a tubular neighborhood of the suture in the

definition.

Definition 2.1. A balanced sutured 3-manifold is a triple (M,Γ, U(Γ)), where M
is a compact 3-manifold with boundary and corners, Γ is an oriented 1-manifold

in ∂M called the suture, and U(Γ) ≃ [−1, 0] × Γ × [−1, 1] is a neighborhood of

Γ ≃ {0}×Γ×{0} in M with coordinates (τ, t) ∈ [−1, 0]× [−1, 1], such that the

following hold:

• M has no closed components;

• U(Γ) ∩ ∂M ≃ ({0} × Γ× [−1, 1]) ∪ ([−1, 0] × Γ× {−1}) ∪ ([−1, 0] ×
Γ× {1});

• ∂M \ ({0}×Γ× (−1, 1)) is the disjoint union of two submanifolds which

we call R−(Γ) and R+(Γ), where the orientation of ∂M agrees with that

of R+(Γ) and is opposite that of R−(Γ), and the orientation of Γ agrees

with the boundary orientation of R±(Γ);
• the corners of M are precisely {0} × Γ× {±1};

• R±(Γ) have no closed components and χ(R−(Γ)) = χ(R+(Γ)).

Definition 2.2. If (M,Γ, U(Γ)) is a sutured 3-manifold, (M,Γ, U(Γ), ξ) is a su-

tured contact manifold if there exists a contact form λ for ξ with Reeb vector field

Rλ such that:

(C1) Rλ is positively transverse to R+(Γ) and negatively transverse to R−(γ);
(C2) λ = Cdt+ β on U(Γ) for some constant C > 0, where β is independent

of t. In particular, Rλ = 1
C ∂t on U(Γ).

A contact form λ satisfying (C1) and (C2), and the contact structure ξ = ker λ, are

said to be adapted to (M,Γ, U(Γ)).

From now on, to simplify notation, we will always omit the neighborhood U(Γ)
in the data associated to a sutured contact manifold. Sometimes we will even regard

M as a manifold with (smooth) boundary and Γ as a closed codimension-one sub-

manifold with boundary; in such a case it is understood that we introduce convex

corners along the boundary of a neighborhood of Γ.
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2.2. Sutured Floer homology and knot Floer homology. The sutured Heegaard

Floer homology SFH(M,Γ) of a balanced sutured 3-manifold (M,Γ) is a topo-

logical invariant of (M,Γ). It decomposes according to relative Spinc-structures:

SFH(M,Γ) =
⊕

s∈Spinc(M,Γ)

SFH(M,Γ, s).

We refer to the original paper [Ju1] for the definition.

If M is a closed manifold and B ⊂ M is a closed ball, we define the balanced

sutured manifold (MB ,ΓB), where MB = M \ int(B) and ΓB is a connected,

embedded closed curve in ∂MB ≃ S2. (In [Ju1] the sutured manifold (MB ,ΓB)
is denoted by M(1).) By [Ju1] there is a tautological isomorphism

(2.3) ĤF (M) ≃ SFH(MB ,ΓB).

When K is a knot in a 3-manifold M , one can form the sutured manifold

(M(K),ΓK) = (M \ int(N(K)),ΓK),

where N(K) is a tubular neighborhood of K in M and ΓK consists of two dis-

joint curves parallel to the meridian of K in ∂N(K). Let ĤFK(M,K) be the

hat version of knot Floer homology defined in [OSz3]. Then by [Ju1] there is a

(tautological) isomorphism

(2.4) ĤFK(M,K) ≃ SFH(M(K),ΓK).

Assume now that K bounds an oriented embedded surface Σ ⊂M . LetM0(K)
be the 3-manifold obtained by zero-surgery on M along K , where the surgery

coefficient is computed with respect to the framing induced by Σ. Then the knot

Floer homology group decomposes according to Spinc-structures on M0(K):

ĤFK(M,K) =
⊕

s∈Spinc(M0(K))

ĤFK(M,K, s).

Let Σ̂ ⊂ M0(K) be the closed surface obtained by capping off Σ. Every relative

Spinc-structure s ∈ Spinc(M(K),ΓK) extends uniquely to a Spinc-structure s ∈
Spinc(M0(K)) such that

〈c1(s), [Σ]〉 = 〈c1(s), [Σ̂]〉

and Equation (2.4) can be refined to

(2.5) ĤFK(M,K, s) ≃ SFH(M(K),ΓK , s).

Finally we recall that one defines, for d ∈ Z,

ĤFK(M,K, [Σ], d) =
⊕

s ∈ Spinc(M0(K))

〈c1(s), [Σ̂]〉 = 2d

ĤFK(M,K, s).

The integer d is called the Alexander grading.
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2.3. Sutured ECH. Let λ be a nondegenerate contact form adapted to (M,Γ)
and J a tailored almost complex structure from [CGHH, Section 3.1]. Since such

a J prevents families of holomorphic curves in the symplectization of M from

exiting along its boundary [CGHH, Proposition 5.20], Hutchings’ definition of

ECH extends in a straightforward manner to (M,Γ, λ, J). Just recall here that the

sutured ECH chain complex ECC(M,Γ, λ, J) is generated over F by orbit sets

γ = {(γi,mi) | i = 1, . . . , k; k ∈ Z≥0} — this includes the empty set — where

γi is a simple orbit of the Reeb vector field Rλ, mi ∈ Z>0, and mi = 1 whenever

γi is a hyperbolic orbit. We will sometimes write the orbit set γ multiplicatively as∏
i γ

mi
i . We call mi the multiplicity of γi in γ.

Convention 2.6. In this paper, when we write “orbit” we mean “closed/periodic

orbit”.

The coefficient 〈∂γ,γ ′〉 in the differential counts ECH index I = 1 J-holo-

morphic curves in the symplectization of (M,λ) that are asymptotic to the orbit

sets γ at +∞ and γ
′ at −∞; see [Hu1]. The ECH index 1 property implies

strong restrictions on the asymptotic behavior of a curve approaching an orbit,

called partition conditions, for which we refer to [Hu2, Definitions 4.13 and 4.14

and Theorem 4.15]. Relying on the analogous result for closed manifolds, we

proved in [CGH0, Theorem 10.2.2] (see also [KS]) that sutured ECH, denoted by

ECH(M,Γ, ξ), is an invariant of the sutured contact 3-manifold (M,Γ, ξ). As

in the closed case, there exists a direct sum decomposition into homology classes

A ∈ H1(M ;Z) of orbit sets as follows:

ECH(M,Γ, ξ) =
⊕

A∈H1(M ;Z)

ECH(M,Γ, ξ, A).

If M is a closed manifold, B ⊂ M a closed ball, ξ is a contact structure that is

adapted to (MB ,ΓB) and A ∈ H1(M ;Z) ≃ H1(MB ;Z), then we define

ÊCH(M, ξ,A) = ECH(MB ,ΓB , ξ, A).

The hat version of ECH was originally defined as the mapping cone of a U -map,

and its equivalence with a sutured ECH was proved in [CGH0, Theorem 10.3.1].

2.4. Periodic Floer homology and sutured ECH. When K is a fibered knot in

M , the sutured ECH of (M(K),ΓK) can be interpreted as a version of the periodic

Floer homology of a special representative of the monodromy of K .

Let S be a fiber of K and let (ρ, θ) be coordinates on a collar neighborhood

[−1, 0] × S1 ⊂ ∂S such that ∂S = {0} × S1. There exist a 1-form λ and a

representative h : S
∼
→ S of the monodromy such that:

• dλ is an area form on S and λ = eρdθ near ∂S;

• h∗λ− λ is exact;

• the periodic points of h in int(S) are nondegenerate; and

• h|∂S = id∂S and the linearized first return map at every point of ∂S is of

the form
(
1 0
a 1

)
with a < 0 (i.e., ∂S is a negative Morse-Bott circle of

fixed points).
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The existence of λ and h follows from [CGH0, Lemma 9.3.2] and a standard gener-

icity argument for nondegenerate periodic points.

The mapping torus N(S,h) of (S, h) carries a suspension flow which is transverse

to the fibers and whose first return map is h. The boundary of N(S,h) admits an S1-

family of simple orbits of the suspension flow and we choose one orbit that we

call h. As in the definition of ECH, the periodic Floer homology chain complex

PFC♯(h) is generated, as a vector space over F, by orbit sets γ = {(γi,mi) | i =
1, . . . , k; k ∈ Z≥0} (including the empty set), where γi is a simple orbit of the

suspension flow in int(N(S,h)) or the orbit h on the boundary, mi ∈ Z>0, and

mi = 1 whenever γi is a hyperbolic orbit or h (i.e., h is treated as a hyperbolic

orbit, hence the symbol h). The name “periodic Floer homology” is due to the

fact that closed orbits of the suspension flow are in bijection with orbits of periodic

points of h.

The manifold N(S,h) carries a natural stable Hamiltonian structure (α0, ω) in-

duced by dλ (see [CGH1, Section 3.1]). Let J be a generic almost complex struc-

ture on R × N(S,h) which is adapted to (α0, ω) in the sense of Definition [CGH1,

Definition 3.2.1]. The analytical foundations of ECH go through for stable Hamil-

tonian structures on mapping tori (see [Hu1] and [LT]) and therefore we define

the boundary operator on PFH♯(h) by counting I = 1 J-holomorphic maps in

R × N(S,h) asymptotic to orbit sets at the positive and negative ends. Here the

situation is less standard than the one considered in [LT] due to the presence of the

orbit h belonging to a Morse-Bott family. This situation was treated in detail in

[CGH0, Section 7], where a similar chain complex ECC♯(N(S,h), α) is defined for

a contact form α on N(S,h), and the argument goes through unchanged for periodic

Floer homology.

Periodic Floer homology splits as a direct sum over homology classes

PFH♯(h) =
⊕

A∈H1(N(S,h))

PFH♯(h, A),

as usual. We also define, for d ∈ Z,

PFH♯(h, d) =
⊕

A·[S]=d

PFH♯(h, A),

where [S] is the class of a fiber and A · [S] is the algebraic intersection number.

Note that N(S,h) ≃M(K). We have the following isomorphism.

Lemma 2.7. Let ξ be a contact structure on (M(K),ΓK) obtained by a small

perturbation of the tangent planes of the fibers. Then, for every A ∈ H1(M(K)),

ECH(M(K),ΓK , ξ, A) ≃ PFH♯(h, A).

Proof. The lemma follows from [CGH0, Theorem 10.3.2] and the arguments of

[CGH1, Section 3.6]. �

3. PROOFS OF THEOREMS 1.3 AND 1.6

3.1. Reduction to connected sutures. In this subsection we show that we may

assume without loss of generality that the suture of (M,Γ, ξ) is connected.
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Lemma 3.1. If Theorems 1.3 and 1.6 hold for sutured contact manifolds with con-

nected sutures, then they hold for all sutured contact manifolds.

Proof. Let (M,Γ, ξ) be a sutured contact manifold with disconnected suture. We

glue sutured contact product 1-handles (H×[−1, 1], ker(dt+β)) to (M,Γ), where

t is the coordinate of [−1, 1] and β is a Liouville form on H , i.e., we take an

interval-fibered extension, to obtain a sutured contact manifold (M ′,Γ′, ξ′) with a

connected suture Γ′. From [CGHH, Section 9] we obtain the isomorphism

ECH(M ′,Γ′, λ′) ≃ ECH(M,Γ, λ).

From [Ju1, Lemma 9.13] we obtain the isomorphism

SFH(−M ′,−Γ′) ≃ SFH(−M,−Γ),

since (−M,−Γ) is obtained from (−M ′,−Γ′) by a sequence of product disk de-

compositions along the cocores of H × [−1, 1]. Finally from [KM2, Lemma 4.6,

Proposition 6.5 and Proposition 6.7] we obtain the isomorphism

SHM(−M ′,−Γ′) ≃ SHM(−M,−Γ),

since there is a product annulus splitting (−M ′,−Γ′) into the disjoint union of

(−M,−Γ) and a product sutured manifold. �

3.2. The contact closure. Let (M,Γ, ξ) be a sutured contact 3-manifold with

connected suture. We pick a compact, oriented surface S of genus g ≥ 3 with

connected boundary, together with a [−1, 1]-invariant contact structure ξ1 on S ×
[−1, 1]t such that:

• the dividing set of S × {±1} consists of a single circle in int(S) × {±1}
bounding a disk D × {±1};

• D×{+1} is the negative region of S×{+1} and D×{−1} is the positive

region of S × {−1}; and

• the characteristic foliation, oriented in the usual way, enters S along ∂S.

We then glue the product (S × [−1, 1], ξ) to (M,Γ, ξ) along ∂S × [−1, 1] ≃ Γ×
[−1, 1]. We obtain a contact 3-manifold (YΣ, ξ) with boundary components

Σ+ = R+ ∪∂R+≃∂S×{1} (S × {1}),

Σ− = R− ∪∂R−≃∂S×{−1} (S × {−1}).

Lastly we consider the closed contact 3-manifold (Y, ξ) obtained by identifying

Σ+ and Σ− by a ξ-compatible diffeomorphism

ψ̃ : Σ+ → Σ−

that is the identity between S × {1} and S × {−1}. We denote

ψ = ψ̃|R+(Γ) : R+(Γ) → R−(Γ)

and assume that ψ is the identity between U(Γ) ∩R+(Γ) and U(Γ) ∩R−(Γ).

1Since the contact structures will be glued, the contact structures will all be denoted by ξ in this

subsection.
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We let Σ be the glued Σ+ = Σ− in Y , oriented as Σ+. Let e(ξ) be the Euler

class of ξ. Then

〈e(ξ), [Σ]〉 = χ(Σ)− 2.

The topological part of such a construction — turning a sutured manifold into a

closed one — was first considered by Kronheimer and Mrowka in the context of

monopole Floer homology [KM2].

The key technical result of this article is the following isomorphism:

Theorem 3.2. Let (M,Γ, ξ) be a sutured contact 3-manifold with connected suture

and (Y, ξ) its contact closure. Then

(3.3)
⊕

A·[Σ]=1

ÊCH(Y, ξ,A) ≃ ECH(M,Γ, ξ)⊕ ECH(M,Γ, ξ)[1].

The proof of this theorem will occupy Section 4.

3.3. Proofs of Theorems 1.3 and 1.6 assuming Theorem 3.2. We introduce the

notation

ĤF (−Y |Σ) =
⊕

〈c1(s),[Σ]〉=χ(Σ)

ĤF (−Y, s),

ÊCH(Y, ξ|Σ) =
⊕

A·[Σ]=1

ÊCH(Y, ξ,A).

Similar notation will be used also for HF+ and monopole Floer homology.

Lemma 3.4. ĤF (−Y |Σ) ≃ ÊCH(Y, ξ|Σ).

Proof. Let sξ be the canonical Spinc-structure determined by ξ. Since 〈e(ξ), [Σ]〉 =
χ(Σ)− 2, the map

A 7→ sξ + PD(A)

gives a bijection between the homology classes satisfying A·[Σ] = 1 and the Spinc-

structures satisfying 〈c1(s), [Σ]〉 = χ(Σ). Finally, by [CGH1, Theorem 1.2.1] there

is an isomorphism

ÊCH(Y, ξ,A) ≃ ĤF (−Y, sξ + PD(A)). �

Theorem 3.2 provides a link between ECH(M,Γ, ξ) and ÊCH(Y, ξ|Σ). In or-

der to prove Theorem 1.3 assuming Theorem 3.2, it remains to relate ĤF (−Y |Σ)
to SFH(−M,−Γ).

Lemma 3.5. If R+(Γ) and R−(Γ) have minimal genus in their relative homology

class in H2(M,Γ), then Σ has minimal genus in its homology class.

Proof. In this lemma we use Gabai’s original definition of sutured manifolds, i.e.,

we allow empty boundary and empty sutures. Suppose that R±(Γ) is genus-

minimizing in its class in H2(M,Γ). Writing M = M ′#N where ∂N = ∅ and

M ′ is irreducible, R±(Γ) is still genus-minimizing in its class in H2(M
′,Γ), and

therefore (M ′,Γ′) is a taut sutured manifold; see [Ga, Definition 2.10].
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We have connected sum decompositions YΣ = Y ′
Σ#N and Y = Y ′#N . Since

(M ′,Γ) is obtained from Y ′
Σ by a sequence of product annulus and disk decompo-

sitions, Y ′
Σ, seen as a sutured manifold with empty suture, is taut by Lemma [Ga,

Lemma 3.12]. Then there is a taut foliation on Y ′ with Σ as a closed leaf (see

[Ga, Section 5]), and therefore Σ minimizes the genus in its class in H2(Y
′) by

the genus-minimizing property of closed leaves in taut foliations; see Corollary 2

of Section 3 of [Th]. Finally Σ also minimizes the genus in Y because any min-

imal genus surface Σ̃ in the homology class of Σ can be made disjoint from the

connected sum sphere by an isotopy because it is incompressible. �

Lemma 3.6. ĤF (−Y |Σ)) ≃ SFH(−M,−Γ)⊕ SFH(−M,−Γ)[1].

Proof. If Σ is not genus-minimizing, then ĤF (−Y |Σ) = 0 by the adjunction

inequality [OSz2, Theorem 1.6], together with [OSz2, Proposition 2.1] and [OSz2,

Theorem 2.4]. On the other hand, if Σ is not genus-minimizing, then R±(Γ) are

not genus-minimizing either by Lemma 3.5. Then SFH(−M,−Γ) = 0 by [Ju1,

Proposition 9.18] and [Ju1, Proposition 9.15]. This proves the lemma in the trivial

case when Σ is not genus-minimizing.

When Σ is genus-minimizing, [Le, Theorem 24] shows that

(3.7) HF+(−Y |Σ) ≃ SFH(−M,−Γ),

and moreover by [Le, Corollary 20]

(3.8) ĤF (−Y |Σ) ≃ HF+(−Y |Σ)⊕HF+(−Y |Σ)[1],

because theU -map is zero when restricted to Spinc-structures s such that 〈c1(s), [Σ]〉 =
χ(Σ). �

Proof of Theorem 1.3. Theorem 1.3 follows from Lemma 3.4, Equations (3.7) and

(3.8), and Theorem 3.2. �

In order to prove Theorem 1.6, we prove the analogue of [Le, Corollary 20], i.e.,

the vanishing of the U -map in the relevant Spinc-structures, for monopole Floer

homology. The proof of the following lemma was suggested to us by Francesco

Lin.

Lemma 3.9. Let Y be a closed, connected and oriented 3-manifold and Σ ⊂ Y an

embedded closed, connected, oriented surface of genus at least 2. Then for every

Spinc-structure s such that 〈c1(s), [Σ]〉 = χ(Σ), the map

U :

̂

HM •(Y, s) →

̂

HM •(Y, s)

is trivial.

Proof. Since s is nontorsion, there is an isomorphism̂

HM •(Y, s) ≃ ĤM •(Y, s),

because HM •(Y, s) = 0, as its definition only involves reducible solutions. Then

it suffices to prove that the map

U : ĤM •(Y, s) → ĤM •(Y, s)
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is trivial.

First we consider the case Y = S1 × Σ. By [KM2, Lemma 2.2],

ĤM (S1 ×Σ|Σ) ≃ F,

and therefore U is trivial on ĤM •(S
1 × Σ, s) for every s such that 〈c1(s), [Σ]〉 =

χ(Σ). We treat the general case by a cobordism argument. Take W = [−1, 1]×Y .

Then the map

ĤM (W ) : ĤM •(Y, s) → ĤM •(Y, s)

is the identity. Now let W0 ⊂W be the union of (i) a closed tubular neighborhood

of {0} × Σ contained in [−1
3 ,

1
3 ] × Y ; (ii) [−1,−2

3 ] × Y ; and (iii) a tube (i.e.,

a neighborhood of an arc) connecting them. Then W0 is a cobordism from Y to

Y#(S1 × Σ) and W1 := W \ int(W0) is a cobordism from Y#(S1 × Σ) to Y ,

and moreover ĤM (W1) ◦ ĤM (W0) = ĤM (W ) = Id. Since U commutes with

the cobordism maps, to prove the lemma it suffices to prove that U vanishes on

ĤM (Y#(S1 × Σ), s#), where s# is the restriction to Y#(S1 × Σ) of the Spinc-

structure on W induced by s. If the connected sum is performed along balls that

do not intersect Σ′ = {θ} × Σ ⊂ S1 × Σ, then 〈c1(s#), [Σ
′]〉 = χ(Σ′), and

the vanishing of U on ĤM (Y#(S1 × Σ), s#) follows from Bloom, Mrowka and

Ozsváth’s connected sum formula (see [Lin, Theorem 5]) and the vanishing of U

on ĤM •(S
1 × Σ, s#|S1×Σ). �

Proof of Theorem 1.6. By the definition of sutured monopole Floer homology [KM2,

Definition 4.3],

(3.10) SHM(−M,−Γ) ≃

̂

HM •(−Y |Σ).

Let H̃M •(−Y |Σ) be the cone of U -map in

̂

HM •(−Y |Σ). Then by Equation (3.10)

and Lemma 3.9,

H̃M •(−Y |Σ) ≃ SHM(−M,−Γ)⊕ SHM(−M,−Γ)[1].

By [T2] there is an isomorphism between

̂

HM •(−Y |Σ) and ECH(Y, ξ|Σ) which

commutes with theU -maps, and therefore induces an isomorphism H̃M •(−Y |Σ) ≃

ÊCH(Y, ξ|Σ). The theorem then follows from Theorem 3.2. �

4. ECH OF THE CONTACT CLOSURE

4.1. Construction of a Reeb vector field. The proof of Theorem 3.2 relies in

large part on a careful construction of a Reeb vector field, which is given in this

subsection. We decompose Y = Y ′ ∪ Y ′′, where

Y ′′ = S × S1 = S × ([−1, 1]/ − 1 ∼ 1) and Y ′ =M/(R+
ψ
∼ R−).

The submanifolds Y ′ and Y ′′ are glued along their torus boundary. The Reeb vector

field is constructed in three steps: first we modify the contact form on Y ′ near the

boundary to introduce a “buffer zone” which will restrict holomorphic curves from

going between Y ′ and Y ′′, then we construct a contact form on Y ′′ whose Reeb
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vector field is Morse-Bott and easy to understand, and finally we perturb the Reeb

vector field to make the relevant Reeb orbits nondegenerate.

4.1.1. The buffer zone. Let λ be a contact form on Y ′, obtained by gluing a contact

form adapted to (M,Γ). The goal of Section 4.1.1 is to make a particular modifi-

cation to (Y ′, λ) on a collar neighborhood N ⊂ Y ′ of ∂Y ′, which we refer to as

“installing a buffer zone”.

Let N := [−1, 1]s × T 2
φ,t ⊂ Y ′ be a collar neighborhood of ∂Y ′ = {s = 1}

such that φ is the coordinate in the Γ-direction and t is still the coordinate in the

fiber direction. Without loss of generality, we may assume that λ|N = esdφ + dt.
Choose ǫ > 0 small. On N we consider a contact form λ0|N of the form

λ0|N = a(s, t)dφ+ b(s)dt,

whose Reeb vector field Rλ0|N is parallel to − ∂b
∂s∂φ +

∂a
∂s∂t −

∂a
∂t ∂s. Here a and b

are chosen such that:

(C1) The contact condition b∂a∂s −a
∂b
∂s > 0 holds. Geometrically this means that

along the curve (a(s, t), b(s)) for fixed t, ((∂a∂s ,
∂b
∂s), (a, b)) is an oriented

basis.

(C2) a(s, t) = es for s near ±1 and a does not depend on t when s 6∈ [−ǫ, ǫ].
(C3) b(s) = 1 for s near 1 and b(s) = 1 + δ for s near −1 and δ > 0 small.

(C4) On s ∈ [−1,−ǫ] (resp. s ∈ [ǫ, 1]), as s increases, (∂a∂s ,
∂b
∂s) rotates in the

clockwise (resp. counterclockwise) direction from horizontal to nearly ver-

tical (resp. nearly vertical to horizontal). See Figure 1.

a

b (a(−1), b(−1))

(a(1), b(1))

(a(−ǫ), b(−ǫ))

(a(ǫ), b(ǫ))

FIGURE 1. The curve (a(s), b(s)) on [−1,−ǫ] and [ǫ, 1].

(C5) On [−ǫ, ǫ] × S1
t , a is a Morse function C1-close to 1, with two index one

critical points h+,0 and h−,0, a local maximum e+,0, and a local minimum

e−,0, and whose level sets are drawn in Figure 2, and b satisfies ∂b
∂s < 0.

We define the contact form λ0 on Y ′ such that λ0|Y ′\N = (1 + δ)λ|Y ′\N and

on N agrees with λ0|N constructed above. We will refer to (N,λ0|N ) as the buffer

zone.

Next we describe the dynamics of the Reeb vector field Rλ0|N on the buffer

zone. Write Y = ∂a
∂s∂t −

∂a
∂t ∂s for the st-component of Rλ0|N .
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s

t h+,0

e+,0

h
−,0

e
−,0

FIGURE 2. The buffer zone for s ∈ [−ǫ, ǫ]. The level sets of the

Morse function a are oriented by the projection of the Reeb vector

field to the (t, s)-annulus.

Remark 4.1. Since da(Rλ0|N ) = da(Y ) = 0, Rλ0|N is tangent to the level sets of

a.

On [−ǫ, ǫ] × S1
t , the function a has a minimum, a maximum, and two saddle

points. By (C5) and Figure 2, each saddle has a homoclinic connection that gives a

closed level line which is positively transverse to {t = const} away from the zero

of Y , and there are two heteroclinic connections between the two saddle points

that together form a closed level line which is negatively transverse to {t = const}
away from the zeros of Y . Thus there are 4 horizontal orbits e−,0, h−,0, h+,0,

and e+,0 corresponding to the critical points of a, where e−,0 (resp. e+,0) corre-

sponds to the minimum (resp. maximum) of a, and no orbit has negative algebraic

intersection with {t = const}.

Convention 4.2. Given a torus parallel to T 2
φ,t with induced (φ, t)-coordinates, we

define the slope of a curve tangent to q∂φ + p∂t (or isotopic to such a curve) to be

(q, p).

Lemma 4.3. There are two families of Morse-Bott tori of slope (n, 1) accumulating

to the suspension of each homoclinic orbit of Y , and no other orbits of the same

slope. When s < 0 (resp. s > 0) the Morse-Bott tori are positive (resp. negative).

Proof. By Remark 4.1, Rλ0|N is tangent to the level sets of a, viewed as a function

on N . The closures of the homoclinic trajectories of h+,0 and h−,0 times S1
φ are

singular tori T+ and T− that are tangent to Rλ0|N . By (C4), the region between

{−1} × T 2 and T+ is foliated by tori, each of which is foliated by Rλ0|N so that

the slope rotates clockwise with positive derivative as s increases. Symmetrically,

the region between T− and {1} × T 2 is foliated by tori and the slope induced by

Rλ0|N rotates counterclockwise as s increases. Moreover, whenever such a slope is

rational, the foliation given by Rλ0|N has an S1-family of (closed) orbits, and the

S1-family is Morse-Bott by (C4). The case of slope (n, 1) is a special case. �

The lemma, informally speaking, says that the Reeb vector field in the buffer

zone makes (up to a perturbation) a windshield wiper movement from vertical to

horizontal and then to vertical again.
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Remark 4.4. There can be very long orbits that wind around the two horizontal

elliptic orbits e−,0 and e+,0 and have zero intersection number with Σ. They can

be excluded from the ECH chain complex of Y by an easy direct limit argument

applied to a sequence of contact forms that do not have horizontal orbits of action

≤ L as L→ ∞, besides multiples of e−,0, h−,0, e+,0, h+,0.

4.1.2. A Morse-Bott contact form on Y . Let S be a compact oriented surface of

genus g ≥ 3 with connected boundary. We pick a closed disk D1 ⊂ S and a larger

closed disk D2 such that D1 ⊂ int(D2). Let (r, θ) be polar coordinates on D2 so

that Di = {r ≤ i} for i = 1, 2. We define a contact form

(4.5) λ0 = g(r)dt+ h(r)dθ

on D2 × S1
t , where g, h : [0, 2] → R satisfy:

• gh′ − g′h > 0 (contact condition; the Reeb vector field Rλ0 is parallel to

h′∂t − g′∂θ);
• (g, h) makes less than a π-rotation in a counterclockwise manner from

(g(0), h(0)) = (−1, 0) to (g(2), h(2)) with g(r) = 1 near r = 2 and

h(2) < 0;

• (g′(0), h′(0)) = (0,−1) and (g′(2), h′(2)) = (0, 1) (Rλ0 is vertical at

{r = 0, 2});

• (g′(1), h′(1)) = (1, 0) (Rλ is horizontal at {r = 1});

• h′g′′ − g′h′′ > 0 (Morse-Bott condition; hence Rλ0 rotates counterclock-

wise with nonzero derivative in the basis (∂θ, ∂t)).

Then we choose a one-form β on S \ int(D2) and a Morse function f : S \
int(D2) → R close to 1 such that

• dβ is an area form;

• the Liouville vector field of β points into S along ∂S and into D2 along

∂D2;

• f has a Morse-Bott minimum along ∂S;

• f has 2g index one critical points in the interior of S \ int(D2);
• f has a Morse-Bott maximum along ∂D2; and

• the contact form fdt + β agrees with the contact form given by Equa-

tion (4.5) and the contact form λ0 on Y ′.

Then we define λ0 on Y by fdt+ β on (S \ int(D2))× S1, by Equation (4.5)

on D2 × S1 and by λ0 on Y ′.

Convention 4.6. Given a torus parallel to ∂D2 × S1 with induced (θ, t)-coor-

dinates, we define the slope of a curve tangent to q∂θ + p∂t (or isotopic to such a

curve) to be (−q, p).

4.1.3. Morse-Bott perturbations and excavating the ball. Fix an unbounded, mono-

tonically increasing sequence of positive real numbers Li, i ≥ 1, such that Li is

not the period of an orbit of Rλ0 and fix a sequence of small functions fi : Y → R

that perturb all the Morse-Bott tori of period less than Li and slope (n, 1) or

(±1, 0) (computed with respect to Conventions 4.2 and 4.6) contained in N ∪
(D2 \ int(D1)) × S1 into an elliptic-hyperbolic pair of nondegenerate orbits as in
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[CGH0, Section 4] (see also [Bou]), and leaving the nondegenerate orbits of period

less than Li unchanged. Then the Reeb vector field Rfiλ0 of fiλ0 has two nonde-

generate orbits, one elliptic and one hyperbolic, for every Morse-Bott torus of Rλ0
of period less than Li.

We additionally assume that each Li is larger than the period of the simple Reeb

orbits foliating ∂D1 × S1, and that the perturbed orbits e0 and h0 (where e0 is

elliptic and h0 is hyperbolic as usual) are supported on ∂D1×{0} and ∂D1×{1
2},

respectively. The open disk int(D1) × {0} is negatively transverse to the flow of

Rfiλ0 for every i, and therefore we can take a sequence2 of closed balls Bi with

concave corners such that Bi+1 ⊂ int(Bi) as follows: we choose a small solid

torus neighborhood Ni(e0) of e0 whose boundary is tangent to the Reeb flow of

fiλ0, and define the ball Bi to be the union of Ni(e0) together with a very small

thickening of the disk D1 × {0}. See Figure 3.

Bi

h0

FIGURE 3. The concave ball Bi in D2 × S1, obtained by rotating

the shaded region about the vertical central axis.

We let YBi := Y \ int(Bi) and ΓBi a closed, connected 1-manifold in ∂Bi ∩
∂Ni(e0) parallel to e0. Then (YBi ,ΓBi , fiλ0) is a sutured contact manifold. We

also set Y ′′
Bi

= Y ′′ \ int(Bi). We make the following observation, which is imme-

diate from the construction:

Claim 4.7. All the Reeb orbits of fiλ0 in YBi intersect Σ nonnegatively, and the

only orbit of fiλ0 in Y ′′
Bi

:= Y ′′ \ int(Bi) that does not intersect Σ is h0.

Let ECC<Li(YBi ,ΓBi , fiλ0|Σ) be the ECH chain complex generated by or-

bit sets of total action less that Li which intersect Σ once algebraically, and let

ECH<Li(YBi ,ΓBi , fiλ0|Σ) be its homology. By Morse-Bott theory there are

canonical inclusions

ECC<Li(YBi ,ΓBi , fiλ0|Σ) →֒ ECC<Lj(YBj ,ΓBi , fjλ0|Σ)

for j > i; see [CGH0, Yao1, Yao2]. We observe that the Morse-Bott correspon-

dence of [Yao1] applies to Morse-Bott cascades of planar holomorphic curves, and

this hypothesis is satisfied here by [HS1].

2We cannot choose the ball once and for all i because the support of the perturbations fi near

∂D1 × S1 must shrink as i increases.
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We define

C = lim−→ECC<Li(YBi ,ΓBi , fiλ0|Σ)

and denote by HC its homology. Since homology commutes with direct limits we

have

lim−→ECH<Li(YBi ,ΓBi , fiλ0|Σ) ≃ HC.

Lemma 4.8. HC is isomorphic to ÊCH(Y, ξ|Σ).

Proof. Fix a reference sutured manifold (YB0 ,ΓB0), where B0 is a closed ball

with concave corners and is a slight enlargement of B1. Fix diffeomorphisms

φi : (YB0 ,ΓB0) → (YBi ,ΓBi) such that φi = id outside a fixed small neighbor-

hood of B0 and consider the contact forms λi = φ∗i (fiλ0). Then

ECH<Li(YBi ,ΓBi , fiλ0|Σ) ≃ ECH<Li(YB0 ,ΓB0 , λi|Σ)

tautologically, and by Lemma 10.2.1 and Corollary 3.2.3 of [CGH0], we have

ECH(YB0 ,ΓB0 , ξ|Σ) ≃ lim
−→

ECH<Li(YB0 ,ΓB0 , λi|Σ).

Hence ECH(YB0 ,ΓB0 , ξ|Σ) ≃ HC. Finally

ECH(YB0 ,ΓB0 , ξ|Σ) ≃ ÊCH(Y, ξ|Σ)

by [CGH0, Theorem 10.3.1]. �

4.1.4. List of orbits contributing to C. We describe a partially defined trivializa-

tion τ of ξ with respect to which we compute the Conley-Zehnder indices of the

orbits. (Here “partially defined” means the trivializations do not extend globally to

a trivialization of ξ.)

(1) On (S \ int(D2))× S1, τ comes from the fibration: More specifically, let

τ ′ be a trivialization of T (S \ int(D2)). Then let τ be the pullback of τ ′ to

ξ on (S \ int(D2))× S1.

(2) On (int(D2) \ int(D1/2))× S1, τ has first component −∂r.

(3) On the buffer region N = [−1, 1]s × T 2
φ,t ⊂ Y ′ of ∂Y ′ = {s = +1}, τ

has first component ∂s.

Now we describe the orbits in Y ′′ and in the buffer zone N which contribute

to the generators of the chain complex C. We can regard them equivalently as

nondegenerate orbits of the Reeb flow of the perturbed contact form fiλ0 for i
sufficiently large, or as possibly degenerate orbits of Rλ0 via the Morse-Bott corre-

spondence. In computing the Conley-Zehnder index the first point of view will be

taken, while for every other aspect, we will switch from one to the other without

mention. Whenever we say “orbit” without further specification, this convention

has always to be understood. For the next several pages we encourage the reader

to refer to Figure 4 for a more graphical description. Summarizing the above con-

struction of λ0, we have:

Lemma 4.9. The following is the list of orbits in Y ′′ which can appear in orbit sets

that generate C, where the Conley-Zehnder indices µCZ are computed with respect

to τ :
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h+

e+

h
−

e
−

δ1
δ2

δ2g

e2

h2

D1

∂D2

e1/n

h1/n

h0

S × {1/2}

· · ·

FIGURE 4. The orbits that intersect S × {0}, given by pink dots.

All the orbits except for h0 intersect S × {0} once; the orbits be-

sides h0, e1/n, h1/n are “vertical”, i.e., parallel to the S1-fibers;

the orbit h0 in pink lies on S × {1/2} and bounds D1 × {0}. The

downward gradient trajectories of f are given in blue.

• Over int(S \ D2), 2g vertical hyperbolic orbits δ1, . . . , δ2g of µCZ = 0,

where g is the genus of S.

• Over ∂D2, a vertical (i.e., of slope (0, 1)) µCZ = 1 elliptic orbit e2 and a

µCZ = 0 hyperbolic orbit h2.

• For every n ∈ Z>0, a µCZ = 1 elliptic orbit e1/n and a µCZ = 0 hyper-

bolic orbit h1/n in (int(D2) \D1) × S1, both of slope (n, 1) with respect

to (θ, t)-coordinates.

• Over ∂D1, a µCZ = 0 hyperbolic orbit h0 of slope (1, 0).

See Figure 4.

The following is the list of orbits in the buffer zone N = [−1, 1] × T 2 that

intersect Σ at most once, where the Conley-Zehnder indices µCZ are computed

with respect to τ :

• On {1} × T 2 = ∂S × S1, a µCZ = −1 vertical elliptic orbit e− and a

µCZ = 0 vertical hyperbolic orbit h−.

• On {−1} × T 2, a µCZ = 1 vertical elliptic orbit e+ and a µCZ = 0
vertical hyperbolic orbit h+.

• For every n ∈ Z>0, a µCZ = −1 elliptic orbit e−,1/n and a µCZ = 0

hyperbolic orbit h−,1/n in (0, 1) × T 2, both of slope (n, 1) with respect to

(φ, t)-coordinates.

• For every n ∈ Z>0, a µCZ = 1 elliptic orbit e+,1/n and a µCZ = 0

hyperbolic orbit h+,1/n in (−1, 0) × T 2, both of slope (n, 1) with respect

to (φ, t)-coordinates.

• Four horizontal (i.e., of slope (±1, 0)) orbits e−,0, h−,0, h+,0, and e+,0 of

µCZ = −1, 0, 0, 1, respectively; see Figure 2.
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Remark 4.10. Recall that a Morse-Bott perturbation also creates uncontrollable

very long orbits, but they do not contribute to the direct limit, and therefore do not

appear in the generators of C.

4.2. Proof of Theorem 3.2. In this section we will regard the holomorphic curves

contributing to the differential of C either as Ji-holomorphic curves in R×YBi for

an almost complex structure Ji which is tailored to (YBi ,Γ0, fiλ0) (see [CGHH,

Section 3.1]) for i sufficiently large, or as Morse-Bott cascades consisting of J-

holomorphic maps in R × Y for an almost complex structure J adapted to λ0,

augmented by gradient flow trajectories in the Morse-Bott tori. Since the two types

of moduli spaces are in canonical bijection by Morse-Bott theory provided that the

almost complex structures Ji are chosen to be suitable perturbations of J , we will

switch from one point of view to the other without explicit mention, very much as

we do for Reeb orbits. For this reason the almost complex structure will usually be

omitted from the notation.

4.2.1. The slope. Topological constraints on holomorphic curves derived from the

positivity of intersections will play a central role in the proof of Theorem 3.2.

Here we develop some basic tools. We start by recalling the standard orientation

convention for the transverse intersection of two surfaces in a 3-manifold.

Convention 4.11. If C and T are transversely intersecting oriented surfaces in an

oriented 3-manifold Z (in that order), then at x ∈ C ∩ T , let (n, v) be an oriented

basis for TxC , where n is an oriented normal to T and v ∈ Tx(C ∩ T ). Then v
orients Tx(C ∩ T ).

Definition 4.12 (Slope sℓ(u, T )). Let u : Ḟ → R×Z be a nontrivial finite energy

holomorphic curve in the symplectization of a contact manifold Z ,C the projection

to Z of the image of u, and T ⊂ Z an oriented 2-torus which:

(1) is foliated by (closed) Reeb orbits;

(2) does not contain any orbits that the ends of u limit to; and

(3) has a neighborhood which is foliated by tori which in turn are foliated by

Reeb orbits.

Then the slope sℓ(u, T ) of u along T is defined as follows: The projection C
has a finite number of singularities and, away from those, is an immersion that is

transverse to the Reeb vector field. If T does not contain a singular point of the

projection, then C is transverse to T and its intersection C ∩ T is an immersed

oriented 1-manifold in T . Its homology class in H1(T ;Z) is the slope sℓ(u, T ) of

u along T . If T contains a singular point of the projection, then sℓ(u, T ) is defined

as sℓ(u, T ′) for a sufficiently close parallel torus T ′.

Claim 4.13. The positivity of intersections immediately implies the following:

(1) if C is the projection to Z of the image of u, then C ∩ T is positively

transverse to the Reeb vector field outside of its singular points, i.e., (v,R)
is an oriented basis, where v orients T (C ∩ T ); and

(2) if T is foliated by (closed) Reeb orbits in the homology class σ, then

sℓ(u, T ) · σ > 0.
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See [CGH0, Section 5.2] for a more detailed account. One should observe that,

while the image of a holomorphic curve is canonically oriented, the torus T is not,

and the sign of sℓ(u, T ) depends on the orientation of T . However, the sign of

an intersection point also depends on the orientation of T , and therefore the claim

holds for both orientations.

Remark 4.14. We usually write the slope with respect to a chosen basis ofH1(T ;Z).
We recall that our convention is the following:

• if T is parallel to ∂Y ′, then we take (1, 0) = −∂S and (0, 1) to be the fiber

[0, 1]/ ∼ (Convention 4.2);

• if T is parallel to ∂D2 × S1 we take (1, 0) = −∂D2 and (0, 1) to be the

fiber S1 = [0, 1]/ ∼ (Convention 4.6).

4.2.2. Decomposing the differential. A generator γ of C splits as γ = γ0 ∪ γ1,

where γ0 is an orbit set in int(Y ′) and γ1 is an orbit set in Y ′′. Note that by

construction e− and h− belong to Y ′′, while every other orbit in the buffer zone N
belongs to int(Y ′). Since [γ] · [Σ] = 1 and no orbit intersects Σ negatively,3 we

are left with two possibilities:

(0) [γ0] · [Σ] = 0 and [γ1] · [Σ] = 1, or

(1) [γ0] · [Σ] = 1 and [γ1] · [Σ] = 0.

We denote by C0 the subspace generated by the orbit sets of type (0) and by C1 the

subspace generated by the orbit sets of type (1). We write the differential ∂ : C → C

with respect to the decomposition C = C0 ⊕ C1 as a matrix

∂ =

(
∂0,0 ∂1,0
∂0,1 ∂1,1

)
.

For j = 0, 1 we introduce sets P ′
j ⊂ H1(int(Y

′);Z) and P ′′
j ⊂ H1(Y

′′;Z) ≃
H1(Y

′′
Bi
;Z) consisting of homology classes A such that A · [Σ] = j. We denote

ECC(−,P⋆
j ) =

⊕

A∈P⋆j

ECC(−, A),

where P⋆
j stands for either P ′

j or P ′′
j . It is clear that

C0 = lim−→

(
ECC<Li(int(Y ′), fiλ0,P

′
0)⊗ ECC<Li(Y ′′

Bi ,ΓBi , fiλ0,P
′′
1 )
)
,

C1 = lim−→

(
ECC<Li(int(Y ′), fiλ0,P

′
1)⊗ ECC<Li(Y ′′

Bi ,ΓBi , fiλ0,P
′′
0 )
)
.

For the moment the identifications above are only as vector spaces; later we will

prove that they are identifications as chain complexes. Inspired by these identifica-

tions, we will write γ0 ⊗ γ1 for γ0 ∪ γ1.

First we prove a preliminary lemma.

Lemma 4.15. The only holomorphic curve contributing to the differential of C

whose projection to Y is not contained in Y \ (int(D1) × S1), after removing all

covers of trivial cylinders, is a holomorphic plane completely contained inD1×S1

and asymptotic to h0.

3Those which did have been intercepted by the balls Bi.
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Proof. Since C has no generators inside int(D1) × S1, the projection of such a

curve intersected with ∂D1 × S1 must be homologous to a multiple of the merid-

ian. Then by Claim 4.13 it must have ends at h0. The only possibility for such

a curve to have index I = 1 is to be a holomorphic plane asymptotic to h0 to-

gether, possibly, with covers of trivial cylinders. Such a holomorphic plane was

constructed in [We2, Section 3.1] in the Morse-Bott setting, and the transition from

the Morse-Bott setting to the nondegenerate one is the “easy case” of the Morse-

Bott correspondence, since there is no need to glue Morse trajectories. �

Lemma 4.16. ∂0,1 = 0.

Proof. We will show that there is no ECH index 1 holomorphic curve from an

orbit set γ0 ⊗ γ1 of C0 to an orbit set γ ′
0 ⊗ γ

′
1 of C1. The element γ1 is one of the

following list:

(4.17)
e−, h−, δi, e2, h2, e1/n, h1/n,
e−h0, h−h0, δih0, e2h0, h2h0, e1/nh0, h1/nh0,

and the element γ′
1 is either h0 or ∅. Moreover every holomorphic curve con-

tributing to ∂0,1 projects to Y \ (int(D1)× S1) by Lemma 4.15. We introduce the

notation γ
♭
1 to denote γ1 with e− and h− removed.

Let u be a J-holomorphic curve from γ0 ⊗ γ1 to γ
′
0 ⊗ γ

′
1. We analyze how the

curve u approaches the buffer region in Y ′ from the Y ′′-side using the following

homological argument: Take a torus T parallel to and oriented in the same way as

∂Y ′ and slightly inside Y ′′; we may assume that T and its nearby tori are linearly

foliated by Reeb orbits by adjusting the construction of the contact form. Let Z ⊂
Y ′′ be a slight retraction of Y ′′ \(int(D1)×S

1) obtained by excising the thickened

torus between ∂Y ′′ and T , and let uZ be the projection to Z of the restriction of u
to R × Z . Then uZ ∩ T is homologous to γ

♭
1 − γ

′
1 in H1(Z) via the surface uZ .

Let b be the homology class of −∂S and f the homology class of the S1-fiber in

H1(Z) ≃ H1(S \ int(D1))⊕H1(S
1). Since [γ♭1] = nb+ f , n ≥ 0, or b, or 0, and

[γ′1] = 0 or b, there are five possibilities:

(1) sℓ(u, T ) = (0, 1), in which case u cannot cross ∂Y ′′ since it is blocked

by the vertical flow along ∂Y ′′; see the Blocking Lemma 5.2.3 in [CGH0].

Then u has an end at e− or h− and therefore does not contribute to ∂0,1.

(2) sℓ(u, T ) = (n, 1), n ≥ 1, in which case u is either stopped inside the

buffer zone by a negative orbit of slope (n, 1), or has a negative end at an

orbit of slope (n−k, 1), 0 < k ≤ n. In the latter case, sℓ(u, {s0}×T
2) =

(k, 0), where s0 > 0 is smaller than the s-value of the torus foliated by

orbits of slope (n− k, 1). Then u is blocked in the buffer zone by k orbits

of slope (1, 0). By this we mean the hyperbolic orbit must have multiplicity

at most 1 but the elliptic orbit can have multiplicity k or k−1 and the same

number of ends limiting to it.

(3) sℓ(u, T ) = (1, 0), in which case u has positive ends at h0 and either at e−
or h−. Then sℓ(u, {s1} × T 2) = (1, 1) for s1 slightly smaller than 1, and

u is blocked in the buffer zone by a negative orbit of slope (1, 1).
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(4) sℓ(u, T ) = (−1, 1) or (−1, 0), in which case u has a negative end at h0 and

no orbits e1/n, h1/n at the positive end. We consider sℓ(u, {r = 2 − ǫ}),

where {r = 2 − ǫ} is a torus in D2 × S1 which is close to the boundary.

The slope sℓ(u, {r = 2 − ǫ}) must be (−1, 0) due to the negative end h0
and the absence of orbits e1/n, h1/n at the positive end, but (−1, 0) is not

positively transverse to the Reeb vector field, contradicting Claim 4.13.

(5) sℓ(u, T ) = 0, in which case γ1 = h−, e−, h−h0, or e−h0. The trapping

lemma [CGH0, Lemma 5.3.2] implies that either u consists of a holomor-

phic cylinder from h− to e−, and therefore does not contribute to ∂0,1; or

uZ intersects T , and this is incompatible with sℓ(u, T ) = 0 by Claim 4.13.

Hence we are left with Cases (2) and (3).

We explain how to compute IECH(u) in Case (3). The projection C of the

embedded surface u(Ḟ ) to Y \ (int(D1) × S1) from γ
+ = h0e− or h0h− to an

orbit γ− = e−,1/1 or h−,1/1 in N of slope (1, 1) is constructed by surgering a

horizontal section over an enlargement of S \ int(D2) together with an annulus.

(Surgering with an annulus changes χ by −1.) Since C is embedded and all the

orbits involved are simple,

(4.18) IECH(u) = ind(u) = −χ(Ḟ ) + 2〈c1(ξ, τ), C〉+ µCZ(γ
+)− µCZ(γ

−).

Here c1(ξ, τ) is the first Chern class of ξ relative to the trivialization τ . Then

χ(Ḟ ) = −2g−1, 〈c1(ξ, τ), C〉 = −2g, µCZ(h0) = 0, µCZ(h−) = 0, µCZ(e−) =
−1, µCZ(e−,1/1) = −1, µCZ(h−,1/1) = 0, and

IECH(u) ≤ (2g + 1)− 4g − 1− 0 ≤ −2g < 0,

since g ≥ 3. This is a contradiction.

Next we consider Case (2). In this case C goes from the orbit set γ
+ =

h0e1/(n−1), h0h1/(n−1), e1/n, h1/n, or a vertical orbit (6= e− or h−) times h0
to the orbit set γ− = e−,1/n, h−,1/n, e−,1/(n−k)e

k−1
−,0 h−,0, h−,1/(n−k)e

k−1
−,0 h−,0,

e−,1/(n−k)e
k
−,0, or h−,1/(n−k)e

k
−,0, where e−,0 and h−,0 are the slope (1, 0) orbits.

When C is from γ
+ = e1/n or h1/n to γ

− = e−,1/n or h−,1/n, C is an n-fold

cover of an enlargement of S \ int(D2) and has χ = 2ng. If γ+ is changed to h0
times an orbit, then C is modified by surgering with an annulus. (This changes χ
by −1 as before.) If γ− is changed to e−,1/(n−k)e

k−1
−,0 h−,0, h−,1/(n−k)e

k−1
−,0 h−,0,

e−,1/(n−k)e
k
−,0, or h−,1/(n−k)e

k
−,0, thenC is modified by adding k−1 branch points

and surgering with an annulus. (This changes χ by −k.) Even though e−,0 may

have multiplicity ≥ 0, Formula (4.18) still holds because all ends at e−,0 are simple

by the partition condition and the multiples of e−,0 still have Conley-Zehnder index

−1. The number of ends l satisfies 2 ≤ l ≤ 3 + k < 3 + n, χ(Ḟ ) = 2− 2ng − l,
〈c1(ξ, τ), C〉 = −2ng, µCZ(γ

+) ≤ 1, and µCZ(γ
−) ≥ −k − 1. Thus we have

IECH(u) ≤ (2ng + l − 2)− 4ng + 1− (−k − 1) ≤ −2ng + 2n+ 3 < 0,

since g ≥ 3. This is also a contradiction. �

A consequence of ∂0,1 = 0 is that ∂20,0 = ∂21,1 = 0 and ∂1,0 is a chain map.
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4.2.3. Computation of the homologies of C0 and C1.

Lemma 4.19. H∗(C1, ∂1,1) = 0

Proof. The elements of C1 are linear combinations of elements of the form γ ⊗ h0
or γ ⊗ ∅. By the proof of Case (4) of Lemma 4.16, no holomorphic curve in Y ′′

Bi
has h0 as a negative end, and by the argument of Case (3) of Lemma 4.16, the only

holomorphic curve with a positive end at h0 and no other positive end in Y ′′ is the

holomorphic plane over (D1 × S1) \B0. Thus we can decompose ∂1,1 as

∂1,1(γ ⊗ ∅) = ∂′γ ⊗ ∅,

∂1,1(γ ⊗ h0) = ∂′γ ⊗ h0 + γ ⊗ ∅,

where ∂′ is the differential in ECC(int(Y ′), λ0). The map K : C1 → C1 defined

by

K(γ ⊗ ∅) = γ ⊗ h0, K(γ ⊗ h0) = 0

satisfies ∂1,1 ◦K +K ◦ ∂1,1 = id, and therefore H∗(C1, ∂1,1) = 0 �

The following lemma enumerates the holomorphic curves that are involved in

the calculation of H∗(C0, ∂0,0).

Lemma 4.20. The list of all connected I = 1 holomorphic curves in R× Y ′′ with

ends in P ′′
0 ∪ P ′′

1 consists of:

(A) Two cylinders each from δi to e−, a cylinder from h2 to e−, a cylinder

from e2 to h−, and two cylinders each from e2 to h2 and h− to e− that

correspond to gradient trajectories of a Morse perturbation of f on S \
int(D2).

(B) Two cylinders each from e1/n to h1/n and pairs-of-pants in R × (D2 \

int(D1)) × S1 from e2h0 to e1/1; h2h0 to h1/1; e1/nh0 to e1/(n+1); and

h1/nh0 to h1/(n+1). The pairs-of-pants all belong to moduli spaces of

cardinality 1 mod 2 (after quotienting by target R-translations).

(C) A holomorphic plane over (D1 × S1) \B0 with a positive end at h0.

Proof. Let u be a connected holomorphic curve in R × Y ′′ with positive ends at

P ′′
0 ∪ P ′′

1 . We first note that u either projects to (S \ int(D1))× S1 or to D1 × S1

by Lemma 4.15, and in the latter case it is a holomorphic plane with a positive end

at h0. Next we show that if u projects to Y ′′ \ (D1 × S1), then it either projects to

Y ′′\(int(D2)×S
1) or to (D2\D1)×S

1: Suppose the projection of u intersects both

regions. Since in Y ′′\(int(D2)×S
1) we consider only orbits in the homology class

of the S1-fiber, sℓ(u, ∂D2×S
1) can only be one of (0,−1), (0, 0), (0, 1). However

none of the three values is possible by Claim 4.13 because the Reeb vector field on

∂D2 × S1 has slope (0, 1).
(A), (B), and (C) correspond to u with I(u) = 1 in Y ′′ \ (int(D2) × S1),

(D2 \D1)× S1, and D1 × S1, respectively.

(A) There exists an adapted almost complex structure J on R×(S\int(D2))×S
1

such that there is a bijection between gradient trajectories δ : R → S \ int(D2) of

f modulo domain R-translation and finite energy J-holomorphic cylinders Zδ in

R× (S \ int(D2))× S1 that project to Im(δ), modulo target R-translation.
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(B) A perturbation of the Morse-Bott torus {r = rn} containing e1/n and h1/n
gives the two cylinders from e1/n to h1/n. The remaining curves follow from

adapting Hutchings-Sullivan [HS1, Theorem 3.5], but a few remarks are in place:

(a) In [HS1, Theorem 3.5], there could be curves with more than one negative

puncture or more than two positive punctures (the latter are obtained by

the “double rounding” operations). Those curves are not considered here

because the homology class of their ends is not one we are considering

here; see the complete list of orbits given by Lemma 4.9.

(b) The computation in [HS1] is made for perturbations of negative Morse-

Bott tori and the actual computation we use is the dual one from [HS2].

(c) The work [HS1] is done in the context of periodic Floer homology and

requires a “d-regularity” assumption on the almost complex structure and

Reeb vector field. However in [HS2] the argument is extended to ECH

where d-regularity is not needed.

(C) is immediate from the first paragraph of the proof. �

We define

C′′
0 = lim−→ECC<Li(Y ′′

Bi ,ΓBi , fiλ0,P
′′
1 ).

As a vector space it is generated by the orbit sets of the list (4.17) and its differential

∂′′0,0, which is determined by Lemma 4.20, is:

(1) ∂′′0,0(γh0) = γ, where γ = e−, h−, δi,

(2) ∂′′0,0(e2) = h−,

(3) ∂′′0,0(h2) = e−,

(4) ∂′′0,0(e2h0) = e1/1 + e2 + h−h0,

(5) ∂′′0,0(h2h0) = h1/1 + h2 + e−h0,

(6) ∂′′0,0(e1/nh0) = e1/(n+1) + e1/n,

(7) ∂′′0,0(h1/nh0) = h1/(n+1) + h1/n,

and vanishes on all other generators.

Let ∂′0,0 be the differential on ECC(int(Y ′), λ0,P
′
0). We recall that

C0 = ECC(int(Y ′), λ0,P
′
0)⊗ C′′

0

as a vector space. In the next lemma we prove that the differential splits.

Lemma 4.21. For every generator γ0 ⊗ γ1 of C0 we have

∂0,0(γ0 ⊗ γ1) = ∂′0,0(γ0)⊗ γ1 + γ0 ⊗ ∂′′0,0(γ1).

Proof. Let u be a connected holomorphic curve from γ0 ⊗ γ1 to γ
′
0 ⊗ γ

′
1 that

contributes to ∂0,0. We show that the projection of u cannot intersect a torus T ′ ⊂
Y ′ that is parallel to ∂Y ′, foliated by Reeb orbits, and separates γ0,γ

′
0 from γ1,γ

′
1.

Suppose this is not the case. Since [γ0] · [Σ] = [γ′
0] · [Σ] = 0, we have sℓ(u, T ′) =

(k, 0), where k > 0 by the positivity of intersections with the vertical Reeb orbits

in ∂Y ′. Since h0 cannot be at a negative end by an argument similar to that of Case

(4) of Lemma 4.16, the remaining possibilities for γ1 and γ
′
1 are:

(a) γ1 consists of e1/n or h1/n where n > 0 and γ
′
1 consists of a vertical orbit,

e1/n′ , or h1/n′ where n > n′; and
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(b) γ1 consists of h0 and a vertical orbit, e1/n, or h1/n where n > 0 and γ
′
1

consists of a vertical orbit, e1/n′ , or h1/n′ where n+ 1 > n′.

Both (a) and (b) can be ruled out as in Case (2) of Lemma 4.16 by considering the

ECH index of u. �

Finally we compute H∗(C0, ∂0,0):

Lemma 4.22. H∗(C0, ∂0,0) = ECH(int(Y ′), λ0,P
′
0)⊗ 〈[e1/1], [h1/1]〉.

Proof. By Lemma 4.21 and the Künneth formula we have

H∗(C0, ∂0,0) ≃ ECH(int(Y ′), λ0,P
′
0)⊗H∗(C

′′
0, ∂

′′
0,0),

and therefore the proof of the lemma reduces to the computation of H∗(C
′′
0, ∂

′′
0,0).

First we observe that the orbit sets e1/n, h1/n, e1/nh0, h1/nh0, n ∈ Z>0, form

a subcomplex (C′′′
0 , ∂

′′′
0,0) with homology H∗(C

′′′
0 , ∂

′′′
0,0) = 〈[e1/1, h1/1]〉. Note that

[e1/1] = [e1/n] and [h1/1] = [h1/n] for every n ∈ Z>0.

The quotient complex C′′
0/C

′′′
0 can be identified with the mapping cone of

h0C∗(S \ int(D2), ∂S)
h0γ 7→γ
−−−−→ C∗(S \ int(D2), ∂S),

where C∗(S \ int(D2), ∂S) is the Morse complex of a Morse perturbation of the

Morse-Bott function f . This mapping cone is clearly acyclic because the map

h0γ 7→ γ is an isomorphism. The lemma then follows. �

4.2.4. Completion of the proof of Theorem 3.2. We now complete the computation

of ÊCH(Y, ξ|Σ). By Lemma 4.16, the chain complex C can be written as the cone

of C1
∂1,0
−−→ C0. Using the corresponding exact sequence on homology and Lemmas

4.19, 4.22 and 4.8 we obtain that:

ÊCH(Y, ξ|Σ) ≃ ECH(int(Y ′), λ0,P
′
0)⊗ 〈[e1/1], [h1/1]〉.

Let Ỹ ′ be the manifold obtained by excising a thin collar C of ∂Y ′ so that ∂Ỹ ′

is foliated by orbits of Rλ0 of irrational slope. We assume that all the orbits of Rλ0
in C intersect Σ many times, so that

ECH(int(Y ′), λ0,P
′
0) ≃ ECH(Ỹ ′, λ0,P

′
0).

We also consider a contact form λ̃ on Ỹ ′ obtained from λ by a modification on a

slight enlargement C′ of C such that:

• R
λ̃
= Rλ0 near ∂Ỹ ′;

• λ̃ = λ on int(Y ′) \ int(C′) which contains all the orbit sets in P ′
0; and

• all Reeb orbits in int(C′) intersect Σ many times.

Then ECH(int(Y ′), λ,P ′
0) ≃ ECH(Ỹ ′, λ̃,P ′

0). Moreover,

ECH(Ỹ ′, λ̃,P ′
0) ≃ ECH(Ỹ ′, λ0,P

′
0),

by [CGH0, Proposition 7.2.1] and

ECH(int(Y ′), λ,P ′
0) ≃ ECH(M,Γ, ξ)
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by [CGHH, Theorem 1.9]. Putting the isomorphisms together yields

ECH(int(Y ′), λ0,P
′
0) ≃ ECH(M,Γ, ξ).

In [CGHH], Theorem 1.9 is proven modulo (i) the invariance of sutured ECH with

respect to the contact form and the almost complex structure and (ii) the existence

of cobordism maps in sutured ECH that are similar to the ones given by Hutchings-

Taubes [HT3] in the closed case. The invariance (i) and the existence of cobordism

maps with good properties (see [CGHH, Section 10.4] for the precise requirements)

(ii) are both given in [CGH0, Theorem 10.2.2].

Therefore we obtain

ÊCH(Y, ξ|Σ) ≃ ECH(M,Γ, ξ) ⊗ 〈[e1/1], [h1/1]〉,

completing the proof of Theorem 3.2.

5. DECOMPOSITION ALONG SPIN
c-STRUCTURES

In this section we describe how the isomorphism between sutured Floer ho-

mology and sutured ECH behaves with respect to the decomposition along relative

Spinc-structures. Let (M,Γ, ξ) be a sutured contact manifold and letψ : R+ → R−

be a diffeomorphism which, near the boundary, coincides with the identification

induced by the coordinates in the neighborhood U(Γ). Let i± : R± → M be the

natural inclusions and let Kψ ⊂ H1(M) be given by

Kψ = Im(i−∗ ◦ ψ∗ − i+∗).

Let Mψ := M/(x ∼ ψ(x)) be the 3-manifold with torus boundary obtained by

gluing R+ to R− using ψ, and which contains a distinguished surface R corre-

sponding to R+ and R−. Using the Mayer-Vietoris sequence one computes that

H1(Mψ;Z) ≃ (H1(M ;Z)/Kψ)⊕ Z,

where the Z-factor is generated by a cycle γ that intersects R once.

Theorem 5.1. Let (M,Γ, ξ) be a sutured contact 3-manifold and ψ : R+ → R− a

diffeomorphism as above. Then, for every A ∈ H1(M ;Z),
⊕

c∈A+Kψ

ECH(M,Γ, ξ, c) ≃
⊕

c∈A+Kψ

SFH(−M,−Γ, sξ + PD(c)).

Proof. First assume that Γ is connected. Let (Yψ, ξψ) be the contact closure of

(M,Γ, ξ) as defined in Section 3.2. Here it is convenient to record the gluing

diffeomorphism ψ in the notation and to distinguish ξ from its extension. For

every A ∈ H1(M ;Z) we denote by [A] its image in H1(M ;Z)/Kψ and define

A = [A]+γ. Here we identify H1(Mψ;Z) with its image inH1(Yψ;Z) because the

map induced by the inclusion is injective. An inspection of the proof of Theorem

3.2 gives the following refinement of the isomorphism (3.3):
⊕

c∈A+Kψ

(ECH(M,Γ, ξ, c) ⊕ ECH(M,Γ, ξ, c)[1]) ≃ ECH(Yψ, ξψ, A).
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Similarly, by Proposition 19, Corollary 20, Theorem 21, and Theorem 24 of Lekili

[Le] (note that in [Le] M is denoted Y , while Yψ is denoted Yn), we have

⊕

c∈A+Kψ

(SFH(−M,−Γ, sξ + PD(c))⊕ SFH(−M,−Γ, sξ + PD(c))[1])

≃ ĤF (−Yψ, sξψ + PD(A)).

Although [Le, Theorem 24] does not explicitly mention the decomposition of

ĤF (M,Γ) along relative Spinc-structures, the proof first uses [Le, Theorem 21]

that keeps track of them, followed by the identification of SFH(M,Γ) and the ad

hoc homology QFH ′(Yψ) where they are not carefully tracked. The only thing to

point out is that this second step is actually done by an isomorphism between chain

complexes that automatically respects Spinc-structures.

Now by the isomorphism for closed manifolds [CGH1],

ĤF (−Yψ, sξψ + PD(A)) ≃ ÊCH(Yψ, ξψ, A),

and this concludes the proof of the theorem if Γ is connected. The general case

is obtained by observing that the isomorphisms in the proof of Lemma 3.1 behave

well with respect to homology classes and relative Spinc-structures. �

We now turn our attention to knot Floer homology.

Corollary 5.2. Let K be a null-homologous knot in a closed manifold M and ξ a

contact structure that is compatible with the sutured manifold (M(K),ΓK). Then

ECH(M(K),ΓK , ξ, A) ≃ ĤFK(−M,−K, sξ + PD(i∗(A))),

where A ∈ H1(M), sξ is the canonical relative Spinc-structure of ξ, sξ is its

extension to a Spinc-structure on M0(K), and i∗ : H1(M(K)) → H1(M0(K)) is

the isomorphism induced by the inclusion i : M(K) →M0(K).
IfK is fibered and h is an area-preserving representative of the monodromy with

zero flux, then

PFH♯(h, A) ≃ ĤFK(−M,−K, sξ + PD(i∗(A))).

Proof. Knot Floer homology can be identified with the sutured Heegaard Floer

homology of the knot complement with two meridian sutures. Then the corollary

follows from Theorem 5.1 by observing that, when R+ and R− are annuli, Kψ =
{0} for every choice of gluing diffeomorphism ψ. The statement about periodic

Floer homology follows from that of ECH and Lemma 2.7. �

Proof of Corollaries 1.7 and 1.9. Corollaries 1.7 and 1.9 are just weaker formula-

tions of Corollary 5.2. �

Proof of Corollary 1.12. The proof is exactly the same as the proof of Corollary

5.2, which is based only on formal properties that holds also for monopole Floer

homology; see [KM2, Section 5]. �
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6. A DYNAMICAL CHARACTERIZATION OF PRODUCT SUTURED MANIFOLDS

In this section we prove dynamical results which were announced in [CH], as

corollaries of Theorem 1.3. The following answers a question of Pardon.

Theorem 6.1. If (M,Γ, ξ = kerλ) is a taut balanced sutured contact manifold

whose Reeb vector field Rλ has no orbit, then (M, ξ) is a product tight sutured

contact manifold (S× [0, 1], ξ), where ξ is [0, 1]-invariant. Moreover, if S is planar

and Rλ has no orbit, then every orbit of Rλ flows from S × {0} to S × {1}; in

particular Rλ has no trapped orbits.

Proof. If Rλ has no orbit, then ECH(M,Γ, λ) ≃ F〈[∅]〉 and hence

HF (−M,−Γ) ≃ F.

Moreover, by Hofer [Hof] (applied without modification to our sutured situation

thanks to the control on holomorphic curves given by [CGHH, Proposition 5.20]),

M is irreducible and ξ is tight. By [Ju2, Theorem 9.7] and the irreducibility of

M , (M,Γ) is a product sutured manifold (S × [0, 1], ∂S × [0, 1]). (We remark

that it is also possible to prove this result directly using the theory of end-periodic

diffeomorphisms of end-periodic surfaces.)

Next we show that ξ is [0, 1]-invariant. We decompose S × [0, 1] along a collec-

tion of compression disks of the form a1×[0, 1], . . . , ak×[0, 1], where {a1, . . . , ak}
is a basis of arcs for S. Each circle ∂(ai×[0, 1]) intersects the dividing set ∂S×{1

2}
in exactly two points, i.e., (S × [0, 1], ∂S × [0, 1]) is product disk decomposable.

Hence, by the usual convex surface theory, there is a unique tight contact structure

on (S × [0, 1], ∂S × [0, 1]), and it is [0, 1]-invariant.

It remains to prove that the Reeb vector field Rλ itself flows from S × {0} to

S × {1} when S is planar. We use the well-known technique of foliating R× S ×
[0, 1] by holomorphic curves, due to Eliashberg-Hofer [EH] when S is a disk, and

to Wendl [We] when S is a more general planar surface. For that, we embed our

product as a part of an open book decomposition. We have a page S0 transverse

to the Reeb vector field to start the foliation by holomorphic curves asymptotic

to the binding and, even if the contact form is not adapted, there is no possibility

of breaking since all orbits intersect the pages positively. Since the Reeb flow is

transverse to the foliation, there must be a first return map on S0 and the conclusion

follows. �

Question 6.2. Can one prove that if there is no orbit in S × [0, 1], then there is

also no trapped orbit even when S is not planar?

In the higher-dimensional case, such a normalization theorem does not hold, as

shown by Geiges, Röttgen and Zehmisch in [GRZ] where they exhibit a situation

with trapped orbits without periodic ones in a product sutured contact manifold.

Finally, we relate the Reeb dynamics and the depth of the sutured manifold, i.e.,

the minimum number of steps in a sutured hierarchy needed to get to a product

sutured manifold. This is also the minimal depth of a supported foliation.
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Theorem 6.3. If (M,Γ, ξ = ker λ) is a taut balanced irreducible sutured contact

manifold of depth greater than 2k with H2(M) = 0 and if Rλ is nondegenerate

and has no elliptic orbit, then it has at least k + 1 hyperbolic orbits.

Proof. Under the hypothesis of the theorem, Juhász [Ju3, Theorem 4] shows that

rkHF (−M,−Γ) ≥ 2k+1.

By our isomorphism, the ECH chain complex must have rank ≥ 2k+1. When there

are no elliptic orbits, this implies the existence of at least k + 1 hyperbolic orbits

for Rλ. �

Notice that every Reeb vector field can be perturbed to possess only hyperbolic

orbits up to a certain action threshold L [CGH1, Theorem 2.5.2], typically a num-

ber going to infinity with L whenever there is an elliptic orbit to start with.
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