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BLOW UP OF COMPACT MEAN CURVATURE FLOW SOLUTIONS WITH
BOUNDED MEAN CURVATURE

ZICHANG LIU

ABSTRACT. In 1994, Veldzquez constructed a countable family of complete hypersurfaces flowing
in R?V (N > 4) by mean curvature, each of which develops a type II singularity at the origin in
finite time. Later Guo and Sesum showed that for a non-empty subset of Veldzquez’s solutions, the
mean curvature blows up near the origin, at a rate smaller than that of the second fundamental form;
recently Stolarski proved another subset of these solutions has bounded mean curvature up to the
singular time. In this paper, we follow their arguments to construct compact mean curvature flow
solutions in R” (n > 8) with bounded mean curvature.
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Let M"~! be a smooth manifold, F : M"~! x [0, T) — R" be a one-parameter family of immer-
sions depending smoothly on both space and time. We say F' satisfies the mean curvature flow

equation, if

(1.1) OF(x,n* = H(x,1), xe M, 1€ [0,T),

where 0, = %, 1 denotes the component of a vector perpendicular to the image of F(-, ), and H(:,f)
is the mean curvature vector of the immersion F(-, ). Usually, we regard the image of F(-, ) as an

Date: March 26, 2024.



2 1

immersed submanifold of R”, denoted by X(¢). From this viewpoint, the family of hypersurfaces
{Z(t)}o<i<T is considered to move by its mean curvature, regardless of the way it is parameterized.

According to [Hui84], when M"~! is compact, then for any smooth immersion Fy = F(-,0) :
M" ! — R”" as an initial value, equation (1.1) has a unique solution for a short time. A natural
question is: will the solution exist permanently, or develop a singularity (blow up) in finite time?
How can we characterize the first blow-up time of (1.1)? Actually, when M"~! is compact, (1.1)
will always develop a finite-time singularity, and [Hui84] tells us that the norm of the second funda-
mental form must become unbounded at the first singular time. In [AC11], Cooper tells us that the
inner product of the mean curvature vector and the second fundamental form, H - A, must blow up as
the flow becomes singular. One may naturally ask that “does the mean curvature necessarily blow
up at the first singular time”, which was presented as an open problem in [Man11], Open Problem
2.4.10. At least for small n, people believe this is true, and in fact Li and Wang gave an affirma-
tive answer in [LW19] for compact embedded surfaces flowing in R3. For 4 < n < 7, the answer
remains unknown. However, in higher dimensions, things become completely different. Veldzquez
[Vel94] constructed a series of complete, embedded hypersurfaces flowing by mean curvature in R”
for each even number n > 8, such that they “approach” the Simons’ cone at the first singular time:

Theorem 1.1. ([Vel94]) Let N > 4, | > 2 be integers. For ty < 0, |ty| << 1, there exists a family of
O(N) X O(N)-invariant mean curvature flow solutions {ZIZN _l(t)},OSKO in R2N such that

(1) {Zi(®)}sy<t<0 develops a type I singularity at 0 € RN in the sense that there exists o =
o (N) > 0 s.t. A,y (the second fundamental form of Z,(t)) satisfies

limsup  sup (—t)%”’ |As, ] > 0.
70 2(HNBO0, V=)
(2) The type I rescaled hypersurfaces (—t)_%Zl(t) converges in the C? sense to Simons’ cone on
any compact subset of R?N — {0} ast /0.

(3) The type Il rescaled hypersurfaces (—t)_%_‘”Zl(t) converges uniformly to a minimal hyper-
surface tangent to Simons’ cone at infinity, on any compact subset of R*N ast /0.

Guo and Sesum [GS18] performed more detailed analyses on Veldzquez’s solutions; in particular
they improved the convergence results (2) (3) in Theorem 1.1 to C®, and used those estimates to
show:

Theorem 1.2. ([GS18]) For the mean curvature flows {Z/(t)}s,<i<0 in Theorem 1.1, if N > 5 and
=2, then

lim sup sup(—t)%“r2 |As, (1) < +00.
/0  2(r)
In addition, Hs, ), the mean curvature of 2,(t), blows up as t /* 0 at a rate smaller than that of the
second fundamental form. More precisely,

. 1_
lim sup sup (=1)272|Hs, | > 0,
0 S OnBO.CNY-? )
and there exists 0 < & < 0 s.t.

lim sup sup(—t)%+&|H22(,)| < +00.
t/0  Zh()



BLOW UP OF COMPACT MEAN CURVATURE FLOW SOLUTIONS WITH BOUNDED MEAN CURVATURE 3

Stolarski [Sto23] showed that another subset of Velazquez’s solutions has uniformly bounded
mean curvature, using a blow-up method:

Theorem 1.3. ([Sto23]) For the mean curvature flows {Zi(t)},<i<0 in Theorem 1.1, if | > 4 is an
even number, then
sup sup|Hs,pl < +o0.
1€[t9,0) (1)

In [Vel94], Simons’ cone and the minimal hypersurfaces tangent to it are important models for
Veldzquez’s construction, but they only exist in even dimensional Euclidean spaces. To cover gen-
eral cases, we use the so-called “Lawson’s cones” and related minimal hypersurfaces as models
instead, which were thoroughly discussed in [Dav04]. The author showed the “Lawson’s cones”
are globally area minimizing in certain dimensions, by constructing minimal hypersurfaces tangent
to them at infinity, and regarding the volume form of these hypersurfaces as a calibration form. In
our paper, we obtain a compact mean curvature flow solution with an asymptotic behavior similar
to [Vel94] by writing down the initial compact hypersurface explicitly. [GS18] provided a simpler
proof of the CY estimate, but the argument does not work when N = 4; instead we turn to the
original proof in [Vel94], which is inspired by [HV]. Here we present a complete proof. Finally,
it should be noted that the condition “/ is even” in Theorem 1.3 is superfluous, if one performs a
careful observation to the estimates in [Vel94]. In brief, we improve and generalize their results as
the following theorem:

Theorem 1.4. For each dimension n > 8, there exists a smooth, compact, embedded mean curvature
flow (£ (O} serro.0) € R" such that
limsup sup |As)(x)| = 400, sup sup |[Hyp(x)| < +oo.
170 xex(r) 1€[19,0) x€X(r)
Acknowledgements: I would like to thank J.J.L. Velazquez, Siao-Hao Guo, Natasa Sesum, and
Maxwell Stolarski for their insights into this problem. I also thank my advisor, Xiaoli Han, for
helpful instructions.

2. MiNntMAL HYPERSURFACES TANGENT TO LAWSON’s CONES AT INFINITY

We first take a glance at the models we shall use, i.e. Lawson‘s cones and related minimal
hypersurfaces. From now on, we fix n € Z, n > 8, and two integers p, ¢ > 2 with p + g = n. If
n = 8, we require p, ¢ > 3. Any point in R" is denoted by z = (x,y), x € R”, y € RY,

Let O(p) be the group of isometries of R” which fix the origin. For (g, #) € O(p) X O(q), we define
the group action of O(p) X O(g) on R" by (g, h)(x,y) = (g(x), h(y)). We shall restrict our discussion
to hypersurfaces in R” which are invariant under the action of O(p) X O(q).

Let y: x! = &(r), y' = n(¢) be a smooth curve lying in the first quadrant of the x'y'-plane, i.e. the
points with X, y1 >0,x>=..=x" = y2 = ... = y? = 0, where ¢ belongs to some real interval,
say J, and &% + 1'% £0. Then the set X = {(E(@)v,n(Hw)| t € J, v € SP7!, w € S} is a smooth
hypersurface in R" = R” X RY, possibly singular at the points where x = 0 or y = 0. We say X is the
hypersurface generated by y (by the action of O(p) X O(g)), and v is the profile curve of .

Write u = \/ZE and let C, , be the Lawson’s cone, i.e. the hypersurface generated by the ray

1’
2.1) g = 1" yDIy! = px!, X' >0}
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According to [Dav04] and [Vel94], there is a smooth minimal hypersurface
M= d(Nw) r=0, ve S wesil

tangent to C,,, at infinity, with J/(r) satisfying the equation

wu ,ﬁ/

2.2) 11972 +(P—1)——(61—1)J/—
and

g >0, §(0) > 0, §(0) = 0, J(r) > pur,
(2.3) lim, s yeo 207 = (1 4 42) %

1im,— +c0 W =a(l + /Jz)
where

a= %(3 —n+ Vn2 - 10n+17) € [-2,-1)
is a root of
2.4) x(x=1D+m-2)x+1)=0
The profile curve
(2.5) M= {(r,g(r)l r = 0)

of M can also be parameterized as a graph over [, ;; more precisely,

M= rihp l)l r > 90—

NN e Iy
(SR o)

}

(2.6) ) > (0)——).

\/1+,uz’ V1 +p? 1+ u?
The function (r) satisfies
@7 Vs p-nitY My,
1 +y”? r— ur+v

and

V> 0, IO0)£=) = \/& VGO =) = 4.
(2.8) lim, ;o l//r(:) =1,

lim, 400 57 = @.

More generally, for each k > 0, we can define
My = k™5 M,
then M is also a smooth minimal hypersurface tangent to C), ; at infinity. Denote by M the profile

curve of M, then My = kT M. Clearly, My can be parameterized as (2.5) with ¢/ replaced by i,
and

Ji(r) = kT (kT p).
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1@5 satisfies (2.2), and (2.3) with the two limits replaced by k(1 +,uz)aT+1 and ka(1 +,uz)% respectively.
M. can also be parameterized as (2.6) with i replaced by vy, and

W) = KT y(k T ),
Yy, satisfies (2.7), and (2.8) with ¢ replaced by i, and the two limits replaced by k and ke respec-

tively.
Moreover, as in [GS18], we have
2.9) Ji(r) = i (r) > 0, y(r) = r(r) > 0,
(2.10) lim Vi) — (1) ;:wk(r) = k(1 - )1 +A)F, Jim i) ~ i) ;ar‘”k(r) - k(1 - ),
n 1 n n 1
QI O = s G0 = ) > 0, 0 = =S Uk) = () > 0.

Also, we have the following higher order estimates:

(m)
(2.12) lim Vi ”) =ka(a—-1)a-2)...a—m+1)(m=>2),

r—+oco p@—Mm

(2.13) |¢§(m)(r)| < C(p, g, mkr*™ (m > 0, r > J(0) \/lli—,uz)’
g ()

lim = ka(a — (@ =2)..(a —m+ DA + 2T (m>2),

r—o+oc0 pa—m

(2.14) Wi(r) — ™| < C(p, g, k(T + r)*™ (m = 0, r > 0).

Next, we derive an estimate of the difference between i and its asymptotic function appeared in
(2.12), which was proved in [GS18], Lemma 2.5 for Simons’ cones. Things are slightly different
for general Lawson’s cones, however:

Lemma 2.1.
(2.15) ~
|‘//1(¢m)(r) —ka(a — D)a-2)..(a-m+ Dr* " <C(p,q, m)k%:r&_m, (m >0, r>i(0) H 2),
1+u
where
20—1 (1 >
& (n=38),

and & = %(3 —n— Vn? — 10n + 17) is another root of (2.4).
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Proof: We may assume k = 1; the conclusion for general k follows by a simple scaling argument.
In order to turn (2.7) into an autonomous equation, we set

2.17) s=Inr, W(s)=ey(e®) (s > In( (0)——)), Z =W,
1+ p?
and then
(2.18) w(r) = rWdnr), &' ()= W+ W)inr), ") = %(W’ + W)(In ).
Now, (2.7) becomes
(2.19) wi=Z
' 7 =-Z—-mn-2)1 +(W+Z)2)(%(W+Z)+ ).

Since ¢ and i’ are asymptotic to 7% and ar®~! respectively, as r — +oo, we know W (resp. Z) is
asymptotic to W, := €@~ (resp. Z, := (@ — 1)e!*™1%), as s — +00, by making use of (2.17) and
(2.18). Clearly, W, and Z, satisfy the following equation

{W; = Z..

(2.20)
Zl =-Z, - (n-2)QW, + Z,).

Now subtract (2.20) from (2.19) to get

22 W-W.) =Z-Z.,
' (Z-2) ==Z-Z)-(n=-2QW - W) +(Z - Z)) + f(9),

where
-2
f@w=U_m£a+ﬂqwfw*—mww—WMV+a%—«W+ZY+W%@W+zmw,
with

f(5) = 0(**™D%) (s — +o0, by (2.13)).
Also, we have
W =W, = 0(e“™%), Z=Z. = 0(e™ %) (s - +00, by (2.8)).
Rewrite (2.21) further as

W—W*'_AW—W* 0) ,_ 0 1
z-72.) "N z-z ) ) 2T\ —2-2) —(n—]))'

Since A has two distinct eigenvalues @ — 1 and @ — 1 witha -1 <a -1 <0, and

Lo 1 1 a-1 0 1 I
“leo-1 a-1 0 a-1)\a-1 a-1) "

U\ ([ 1 1\ w=w (e [ 1 1 Yo
(V)_(a—l &-1) (Z—Z*)’ (h(s))_(a—l &—1) (f(s))’

we set
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to get the equation which U, V satisfy:

U =(@-1)U + g(s),
V' = (& - 1)V + h(s).

Again, we still have the estimates
8(s) = 0> ™), h(s) = 0> ™) (s = +o0),
U = o(e®%), V = 0(e! %) (5 —» +00),
and there exists a constant C(p, q) > 0 s.t.

12()l, ()] < C(p, @)@ (5 > In(y (0)——) + 1).

V1 +u?

For 59 > s > In(/(0) \/1#+7) +1,

S
U(s) = e DE=0 (o) + f VD a(p)dt,

50

+00
|U(S)| < e((l—l)se—((l—l)S()|U(SO)| + C(p, q)e((l—l)s f e((l—l)l‘dt
N

(222) — e(w—l)se—(a—l)so|U(S0)| + C(p, q)eZ((z—l)s.
Since so > s is arbitrary, if we let so — +oo, the first term of the right side of (2.22) tends to zero,
which implies
U] < C(p, g)e™ 1.
Similarly, for s > so = In(/1(0) \/;17) +1,

A
(2.23) V(s) = @ DE0y(50) + f VD) dy.

S0

Clearly, the first term of the right side of (2.23) is O0(e'%D%) as s — 400, and the second term is
bounded by

(2.24) C(p, s f " Qla-D—@-y g,

S0

If n =8, then 2(o¢ — 1) < @ — 1, and (2.24) is bounded by

+00
C(P, q)e(@—l)sf 8(2(0—1)—(@—1))l‘dt — C(p, q)e(&—l)s'

S0

Ifn > 9, then 2(a — 1) > @ — 1, and (2.24) is bounded by

C(p,q)e*™"” f | =Dy Cp, @,

(%Y
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and the first term of the right side of (2.23) is also O(¢*@~D%). In summary, no matter which case
happens, we always have

U], V()] < C(p, ™D (5> In(h1 (0)—E—) + 1),

V1 + p?

W = W.l, |1Z = Z. < C(p, )% (s > In(f11 (0)——) + 1).
1+ p?

namely,

Applying the transform (2.17), (2.18) again, we get

(2.25) by (r) = 1| < C(p, r®, W/ (r) — ar®™'| < C(p, g)r*™!

for all » > el (0)—2=. By continuity, (2.25) holds for all r > iJ; (0)—2=.

Vine o
The higher order estimates (i.e. (2.15) with m > 2) follows by differentiating (2.7) and induction
on m. The start point m = 2 is a direct consequence of (2.25).

[

3. ApwmissiBLE FLow
From now on in this paper, we fix the following constants:
nez,n>S§;
P, q€Z, p+q=n, p, q=2(f n =8, we require further that p, g > 3);
leZ, 1>2,
and set the following real constants to be determined:
A > 1 (depending on p, g, [);
0 < p < 1 (depending on p, q,[, A);
3.1 B> 1 (depending on p, q, [, A);
R > 1 (depending on p, g, 1, A);

to <0, |to] < 1 (depending on p, q,l, A, p, [, R).

Assume fy < 7 < 0, and there is a one-parameter family of smooth hypersurfaces {Ze}y<i<i In R™.
We say {X;}, <; is admissible if

(1) {Z¢},,</<i depends smoothly on both space and time, moves by its mean curvature, and every
time-slice %, is a compact, embedded, O(p) X O(g) invariant hypersurface.

(2) For some € > 0 and all #, < ¢ < 7, the profile curve of £, N B(0,2(1 + €)p) can be parame-
terized by a single function, as

3.2) (x, i(x, 1)),

where #i(x, t) is a positive smooth function, defined at least for 0 < x < % V;’ Note that
+
in this case (1) implies @(x, f) satisfies

~1? i\tl 1
it =——=+(p-1D——(g—-D=.
it =17 (p-D—-(g-D~
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We denote by ’ the derivative in space variables. Moreover, the even extension of (-, f) is
smooth, and particularly #'(0, ¢) = 0.
(3) For some € > 0 and all 7y < ¢ < 7, the profile curve of =, N (B(0,2(1 + €)p) — B(0, 3(1 —

e)ﬁ(—t)%”’)) (where B denotes a closed ball) can be parameterized by a single function, as
X —uu(x,t) ux+u(x,t)
V1 +u? ’ 1+ 2
where u(x, t) is a smooth function, defined at least for (1 — e)ﬁ(—t)%“” <x<(l+¢€)p,and
A
1-a

(The meaning of A; will be interpreted later, see Proposition 3.1.) In this case (1) implies
u(x, t) satisfies

(3.3) ),

1
g] = ,/112—5(1—(1')+l.

M” u + l/t’ 1— ﬂu’
34 ou=—+ -1 — -1 .
(34 =1 (p )x—,uu (g )MHM
(4) The following estimate
(3.5 XN u(x, 1) < A((—1) x? + x4+

holds forall i = 0, 1,2, B(~-1)2*" < x < p,and ty < t < .

Rescaling is a common technique for analysis of blow-up behaviors of mean curvature flows. In
the later discussion, we roughly divide the space into three (time dependent) regions and dilate each
region at different rates:

(1) The outer region: ¥, — B(0, R V—1).

(2) The intermediate region: =, N (B(0, R V=1) — B(0, B(—1)>*7)).

(3) The tip region: X, N B(0, B(~1)2*77).
In the outer region, we mainly analyze the unrescaled mean curvature flow, especially, the function
u(x,t) defined in (3.3), and the equation (3.4).
In the intermediate region, we perform the “type I”” rescaling

1
3.6) Il = (=) 72X |i=—e,
the time interval becoming sy < s < §, where so = —In(~tg), § = —In(-7). Note that 5o > 1 iff
lto] < 1.

Under rescaling (3.6), the piece of the profile curve of X, which can be parameterized as (3.3) is
now rescaled and parameterized as

y =y, s) py+v(y,s)
Vit T+2

with

3.7) V(. 8) = (=) 2 u( N1y, Olm—es
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satisfying the equation

v’ u+v l-w 1 ,
3.8 Osv=——+(p-1 -(g-1 + (= + ).
(3.8) Vet )y_ﬂv (g )ﬂyﬂ S )
The condition (3.5) becomes
(3.9) Y10, )l < Ae (G0 +y* ), i=10,1,2, BT <y < pe?, 5o < 5 < .

In this region, we mainly investigate the function v(y, s) defined in (3.7), and the equation (3.8).
In the tip region, we perform the “type II” rescaling

(3.10) T, = (-1 G0y,

. '
1==Q07) 1

the time interval becoming 79 < 7 < ¥, where 79 = (207)~!(=19)™%%!, * = (20)~!(=£)>’". Note that
70 > 1 1ff |£p] < 1.
Under rescaling (3.10), the piece of the profile curve of X; which can be parameterized as (3.2) is
now rescaled and parameterized as
(2, W(z, 7)),
with
(3.11) W(z,7) = (—l‘)_(%+a-’)i\t((—t)%+o-’z, ) = ems‘A)(e—msZ’ s)|s_L P
t=—Q07) 20 T 20y !

satisfying the equation

17 Wl % + O-I

1
[ — —1__ _1_
1HAV,2+(1D )Z (q )w+ 5

(3.12) 0w (=2 + W).

ag T

The piece of the profile curve of X, which can be parameterized as (3.3) is now rescaled and param-
eterized as

2= uw(z,7) pz+w(z, 1)

(3.13) , )
V1 +u2 V1 + 2
with
—(L 1 -
(3.14) w(z,7) = (=)~ u((=1)2 "z, 1) B L CREE) M S

t:—(20‘1‘r)727”1
satisfying the equation
17

w
37W2m+(p—1)

1
1 —uw' 5+0;
i (=" +w).

u+w -1
7—uw q uzZ+w 20T

The condition (3.5) becomes

2/11+1 l+i
—),i=0,1,2, B<z<pQRom)? %1, 19 < T T,
Qo)
In this region, we mainly investigate the function Ww(z, 7) defined in (3.11), and the equation (3.12).
In Veldzquez’s construction, the first step of a priori estimates is to show that the type-I rescaled

(3.15) 210wz, Tl < A" +
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flow satisfies the property that v(y, s) tends exponentially to zero. For this reason, we linearize the
right-hand side of (3.8) at v = 0. More precisely, (3.8) can be rewritten as

(3.16) o,v =Ly +Qy,

where

n-—2 n-—

2 1 » 2 n—2 1
+ =)y = n=2 ,—g\—ln=2 = - + =
=0 TR (S

Lv=v"+( —%)v'+(

is the linear part of the right-hand side (note that £ depends only on n), and

2 ! -1
o G+ + =S
Qv =- Vi +(n-2)
417 (L= ud -+
is the remaining part. We will use the following properties of the linear operator £ shown by
Veldzquez (see [Vel94], Proposition 2.1):

Proposition 3.1. Let

2
H = L*((0, +00); X" 277 (a weighted L? space).

For u,v € H, let {u,v) be the inner product in H and |ulg be the norm in H, namely,

(u, vy = f " u(x)v(x)x”_ze_%dx, lulg = Vu, u).
0

Then there exists a countable set of eigenvalues {A;};>0 of L, with corresponding normalized eigen-
Sfunctions {¢;}is0 C H, satisfying Ly; + Aip; = 0. They are given by:

1
A= —5(1—a)+i,

. n—1 y?
(3.17) Piy) = ey Mi=isa + = 2,
where M(a, b; x) is the Kummer’s function defined by
a@+1)..(a+j-1)x/

b+ 1)..(b+j—1)j!

+00
M(a,b;x) = 1 +Z
j=1

and satisfying

xM"(a,b; x) + (b — x)M'(a, b; x) — aM(a, b; x) = 0,
and c; > 0 is a normalizing constant s.t. |pilg = 1.
Moreover, the set of eigenfunctions {¢;}i>o forms an orthonormal basis of H.

Note that
A< <0< <A3<...,

i.e. Ay is the first positive eigenvalue of L. The eigenfunction ¢; can be written as
(3.18) Q) = ey (1= Ki1y” + Kioy* + .+ (D' Kiy™),

where {K] ;}1< < are positive constants. The term of ¢; of highest power has positive sign when [ is
even, but has negative sign when [ is odd.
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4. CONSTRUCTION OF VELAZQUEZ’S SOLUTIONS

The main idea of the construction can be summarized as follows. Our goal is to find a family of
O(p) x O(g)-invariant, smooth, compact hypersurfaces {X;};,<;<o C R" moving by mean curvature,
which blows up at 0 € R"” and r = 0 but remains smooth elsewhere; the type-I rescaled flow
converges to the Lawson’s cone C,,,; the type-II rescaled flow converges to M, for some k ~ 1, i.e.
a smooth minimal hypersurface tangent to C), ; at infinity, introduced in Section 2.

To achieve the goal, we begin with the construction of the initial hypersurface %;,. In fact we will
choose a family of hypersurfaces {22)}, where a = (agp,ay, ...,a;-1) is an [-dimensional parameter
with |a] <« 1. The hypersurfaces {Eﬁ‘o } have uniformly bounded curvature outside the ball B(0, p);
they are “close” to C,,, after type-I rescaling and “close” to M; after type-II rescaling. Then we
can show for each #, < 7 < 0, there exists a parameter a such that the corresponding mean curvature
flow {Z?O Y=, €Xists up to time 7, and behaves in our prescribed way. In addition, this flow satisfies
some uniform smooth estimates. Finally, by the compactness theory, we then get a solution of MCF
which exists and has the desired behavior on the whole time interval 7y < t < 0, and satisfies the
same uniform estimates.

Now, let’s write down 7, the profile curve of {Z{ } in the first quadrant, in an explicit way.

Let

ac B0, cR,

where @ is defined in (2.16) with @ — a < 0.
In the region /(x1)2 + (y)? > 1, i is parameterized by a single smooth function as

(X 88, o)), —— < x <2, (see (3.2))

241 + u?

where

%x, <x< 2 -0,

(3]
o=

fi(x, 1) = { smooth and concave,
V4 — x2,

with 0 < 6 <« 1 (depending on p, g).
In the region /(x!)? + (y!)> < 1, 2 is parameterized by a single smooth function as

2

—

+

[\

X — pu(x) ux + u(x)
V1 +p2 ’ V1 +u2

u

V1 + p?

~ 1
)s Witag+ar+..+a (0) (=t0)2™" < x <1, (see (3.3))

where

(~to) 3*7Vx - 3B

A1) u(x,tg) = u(x, t038) = (—10)2 Yt rayrar s sar (—10)” D)1 = 1p( ))

B
ol xS a0 a8 2p
+H10) \/__m>+;cj¢,( v—_m))"( v mE—=),
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with 7 : R — R a smooth, non-decreasing function satisfying

0, x<0,

(4.2) n(x) = { Loxsl,

and {c,} ;>0 the normalizing constants defined in Proposition 3.1.
For simplicity, we usually write a; = 1. According to (3.18),

by Lo X N Y X
() (o x/—_to”jzzocﬁo’( \/__IO»

l l l
= (Y ap=10)'x" = () Kjap(—1) ¥ + (Y Kjoap)(=t0) 22 + .+ (= 1) K px*
=0 =1

Jj=2

@3) =Y (Z J)(—)l (ZK,m,)(—)l1+<Zsza,><—)”+ A+ (D'Ky).

j=2
Thus, for all x > 0,
-

44) X m)z”/( = Z DI < Cln, Di(—10)x* + 241, 1 =0,1,2,
=0

and by (2 ]2) f0r X > w1+a0+a|+ A4a- I(O) ‘\/_( t0)2+0-l

(4.5) X0 (=10) T agsars..vars (—10)" PR < C(p. g)(—to)'x, i = 0,1,2.

Therefore, according to (4.4), if A > 1 (depending on #, /), then (3.5) holds. Moreover, by (4.4),
(4.5), and (4.1) (the definition of u), for %B(—to)%”’ < x <2p,

u(x, to)

, _ 1. _
| |, 1t (x, 10)l < CU, p, @)(B*" + p*) < 5 min{y, h,

provided 8 > 1, p < 1 (depending on [, p,q). Thus the curve y; lies in the first quadrant, and
the hypersurface X} generated by y; is smooth, compact, embedded, satisfying the admissible
condition. In addition, £} depends smoothly on a.
Next, for each a € B(0,5% %), by the short-time existence (see [Hui84], Theorem 3.1), the mean
curvature flow starting from X} has a unique solution for a short time, denoted by {£?}. Define the
set O C B(0,5%%) x [~t, 0) as follows: (a, ) € O iff

(1) the corresponding (smooth) MCF {X2} exists for fy < ¢ < 7 and can be extended beyond 7.

(2) {2} is admissible forfo < 7 < 7.
From the smooth dependence of MCF on the initial data, O is a (relatively) open subset of B(0, 5%™%)x
[~1,0).
Forty <t <0, let

0; = {a € B0, (a,1) € O},
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then O; is an open subset of B(0,3%7), and is decreasing in . Obviously, O, = B(0,8%%).
Recall the function v(y, s) = v(y, s;a) (3.7) in the type-I rescaled flow {II1?} (3.6). We define a map
®:0 — R'by

D(a, 1) = e (coP(y, 53), 0o (), (17, 552), @1 (), ... (11 TV, 83 @), P11 ()Y 5= In(-1)»
where
(4.6) Wy, 538) = n(e”y = Byn(pe? = y)v(y, 5; ),

(:,+) is the inner product defined in Proposition 3.1, and 7 is defined in (4.2). According to the
admissible condition, @ is well-defined, and continuous (actually smooth) on O. For 1y < ¢ < 0, we
also define

O;(a) = O(a, 1), acO;.
When ¢ = ty, we have the following lemma (see [GS18], Lemma 4.3):

Lemma 4.1. If so > 1 (depending on n, 1, p,8), then
50 —(n—
(e 0y = Bnlpe™ = i), @;()) = 6;jl < C(n, 1, B)e” "1 207150,
(1 =7y = Bn(pe? = y))gil < Cln, 1, fe” 212070,
forall 0 <1, j <1, where so = — In(—typ).

By (4.1),
1 -1 ai o
4.7) V(v 503 8) = e VU= @) + D L), B <y < pe?,
Cl =) Cj

and we know from Lemma 4.1 that ®,, converges uniformly to the identity map on B(0,3%7%) as
to /" 0. Thus, if |fg| < 1 (depending on n, [, p, 3), we have
@;,1(0) cc B0,

(in general, we say two sets A CC B iff A has compact closure, and A C B,) and the topological
degree
deg(q)l()’ Ol‘o’ 0) = deg(q)lo’ B(Oaﬂa_a)’ 0) = deg(ld, B(O’ﬁa_a/)’ O) = 1
When
(4.8) (a,f) € O and ®y(a) = 0,
and if (3.1) holds, we have the a priori estimates which are crucial for the extension of solution:

Proposition 4.2. Set
n—-3+2a
49 = min{l, ———
(4.9) = min(1, )
(if n = 8, we require further that 0 < ¢ < "‘2_(?:'62!‘)’ and ¢ is fixed, e.g. ¢ = % ).
If (4.8) and (3.1) hold, then for all tg < t < f,

(1) lal < C(p,q.1, A, B)(~to)s" < 1%
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(2) In R" — B(0,2p), the second fundamental form of ¢ is uniformly bounded by a constant

C(p.q,p).
(3) The profile curve of Z; N (B(0,3p) — B(0, %ﬂ(—t)%“”)) can be parameterized by a single
function as (3.3), with

o A
(4.10) X0 u(x, 1) < 5((—;)’)&* + 2 20,12, B(=)2HT < x < p,

and for x > p in this region,

{|@|, lu'(x, 0 < L minfu, u~'},

4.11) (

|’ (x,1)] < —ﬁ’q) .

(4) The profile curve of X, N B(0, 3p) can be parameterized by a single function as (3.2). More-
over, if we perform the type-1l rescaling, the rescaled function W(z,T) defined in (3.11)
satisfies

J1(2) < Wz 1) < da(2),
(4.12) WO, 7)=0<W (1) <u+1,
W (z, 1)l < C(p, 9),

for0<z< B
1+u?

Furthermore, we have the following smooth estimates near the origin, which describe precisely
the asymptotic blow-up behavior of the solution:

Proposition 4.3. If (4.8) and (3.1) hold, then there exists k € R satisfying
(4.13) k- 1| < C(p, q,1, A, B)(—t)",
such that for any non-negative integers m, r, and all ty < t < i, the following estimates hold:

(1) In the outer region, the function u(x, t) defined in (3.3) satisfies

k
(4.14) XN, (ulx, 1) - C—l(—t)lﬁ%sﬂz(\/i_t))l < C(p, @, L, A m, r)(R2 + p2h) 2]

forR\-t < x < %p.
(2) In the intermediate region, if we perform the type-I rescaling, then the function v(y, s) de-
fined in (3.7) satisfies

k
(4.15) YOOy, 5) = —e o) < Cp, g, L A, B, R, m, r)e” 1040y
Cl

1
for e 2791 <y < R, where

1 n-1+2a 1
4.16 = min{=, s ,
(4.16) K=mint e S T

and

@17 YIS0, 8) — € YY) < C(p, g Ay, )T 20T s e
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1
for %,Be_‘”s <y < e 297 where

1
(4.18) 0= min{g(l - ). 2.

(3) In the tip region, if we perform the type-II rescaling, then the function W(z,T) defined in
(3.11) satisfies

(4.19) (1 + )™ (W(z, T) — (@) < C(p, g, 1, m, r)ﬁ@‘%:—o)—@(l +2)°

for0<z< ¥ _
1+u?
Note that our estimates in Proposition 4.3 are slightly different from those in [GS18] that our
ones cover the region where ¢ is close to the initial time #.

Lemma 4.4. Assume (3.1) holds. If there is a sequence {(aj,tj)}j>1 C O s.t. @,;(aj) = 0 for all
J= 1, and (aj,tj) = (aw, o) With te <0, then (A, 1) € O, and ®,_(as) = 0.

Proof: First, by (1) of Proposition 4.2, a,, € B(0,3% ). Then, from the smooth dependence of
MCEF on the initial data, the flow {E?""} exists on fy < t < t, and satisfies all the conditions in
Proposition 4.2 on this time interval. But obviously those conditions imply a uniform bound on the
second fundamental form of {E?“’ }to<i<t.,» and thus the flow can be smoothly extended past time .,
with the help of Theorem 8.1 in [Hui84]. The statements in Proposition 4.2 still hold for 7y < < t..
It’s straightforward to check that the conditions in Proposition 4.2 imply the flow is admissible, i.e.
(Ao, 1) € O, and ®,_(a,) = 0 follows from the continuity of ®. (If 7, = #y, things become trivial.)
[
A direct consequence of Lemma 4.4 is, for any fy < < 0, O~ 10) N (R x [to,7]) is a compact
subset of 0. Thus d)zil(O) cC O;, and deg(®d;, O;, 0) is well-defined. Moreover, by the homotopy
invariance of degree,

deg(®;, 0y, 0) = deg(®y,, 0y, 0) = 1, and @;'(0) # 0,
as long as O; # 0. To show O; is indeed non-empty, we define
t =sup{tl o <t <0, O, # 0}.

If * < 0, then O = 0. Choose a sequence {(a;,1;)};>1 C ®~1(0) such that tj /' t*, and we may
assume (by passing to a subsequence) a; — a*. Using Lemma 4.4 again, we know a* € O, which
is a contradiction, i.e. O; # @ forall ¢y <t < 0.

Now it’s time to state and prove the existence result of our desired solutions.

Theorem 4.5. Assuming (3.1) holds, then there exists an a € B(0,5%7%) s.t. {Z2} exists for all
to <t <0, satisfying all the conditions in Propositions 4.2 and 4.3 on this time interval.

Proof: Choose a sequence {(aj,7;)}>1 C O~ 1(0) s.t. t; /0, and we may assume a; — a €
B(0,8%). Again, by the smooth dependence of MCF on the initial data, the flow {Z?} exists on
fo <t < 0, and satisfies all the conditions in Proposition 4.2 on this time interval. In addition,
the estimates in Proposition 4.3 hold for {Z?j }zogszj with k replaced by some k; satisfying (4.13).
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We may again assume k; — ko, satisfying (4.13). Thus the estimates in Proposition 4.3 hold for
{Z}4,<i<0 with k replaced by k..
[

5. CY EsTiMATES

In this and the next sections, we finish the proof of Propositions 4.2 and 4.3. The C? estimates in
these Propositions are the main topic of this section.
From now on in this and the next sections, we always assume (4.8) holds for some 7y < 7 < 0.
We start from the following estimate in the intermediate region:

Proposition 5.1. If0 < p <« 1, 8> 1 (depending on p, q, 1, A), and sy > 1 (depending onn, 1, p,B),
then (1) of Proposition 4.2 hold. Moreover, there exists k € R satisfying (4.13), such that for any
®€(0,1), anyR > 1, and all sy < s < § = —In(~1), if we require further that so > 1 (depending
on R, ), then the function v(y, s) defined in (3.7) satisfies

k ~
-1 V(. $) = —e @) < C(p. .1, A, B, R)e 104y
Cl

for %e‘ﬁ‘m <y < 2R, where

n—-3+2a n—1+2«a 1
F=min{l -9, (1 - —"=% (1_9 .
k= min{ =D D30 S 1+

}

n—1+2a 1
= min{l — 1- .
min{l — ¢, (1 —9) ) , S, }

Ar+1

The idea of proving Proposition 5.1 mainly comes from [HV], especially Sections 4 and 5, which
were devoted to the construction of an example of rotationally symmetric type-1I blow up solution
of a semilinear heat equation. The computation is quite lengthy, but we present it here for the sake of
completeness. [GS18] gave an easier proof but could not cover the case where n = 8. We linearize
the right-hand side of (3.8) at v = 0 and do Fourier expansion (see (3.16)); the ¢; term is regarded
as the “main frequency”, and the terms of “lower frequency”, i.e. ¢; terms with 0 < j < /-1, are
controlled using (4.8).
Let X be the completion of C°((0, +00)) w.r.t. the norm

« 2 oo
o = ([ @07 + 0P Tl ¢ € €0, ),
0
Denote by X* the dual space of X, and define the norm on X* in a standard way as

lulx- = sup  |u(®)l.
¢eX, Iglx=1

We need the following lemma about the eigenfunctions {¢;} ;>o defined in Proposition 3.1:

Lemma 5.2. Forall j >0, ¢; € X, and

lpilx < C(m)(1 + [4;)).
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Proof. According to (3.18), ¢}, go;. e H. Forh> 1, let

2h —
0in(x) = n(Txmhx — D),

where 7 is the cut-off function defined in (4.2). Clearly, ¢;; € C((0, +00)), and ¢, — ¢; in H as
h — +o0. Look at its derivative:

2h — 1, 2h—
P9 = N = D)) + Gy (hx = 1) = 2o () (0.

Again, (=) (hx - D¢/(x) = ¢(x) in Has h — +0o, and

1, 2h— " 2 12 2
Gy (hix = 1) = 2/ (= — “ )0l < Ck f e dx f X207 dx)
h= h
2
< COP27" 4 JA=1e=5) 5 0 (7 — +o0),
where C is independent of /. Thus, ¢;; — ¢;jin X ash — +oo,ie. ¢; € X.

According to Proposition 3.1 of [GS18], if u € X, then @ € H, and we can define a bilinear form
on X as

—2 1 2
1 + u(v()) X e Tdx, u,v e X,
x2 2

—+00
B(u,v) =f W () (x) = (
0
satisfying the estimate

n?=10n+ 17
(n—3)?

3n-17
2(n—3)

(5.2) B(u,u) > '3 — luly, u e X.

Letting u = v = ¢;, and integrating f0+°° go;(x)go;.(x)x"_ze_%dx by parts, (noting that ¢ j(x)go;.(x)x"‘ze
0as x \, 0, x » +00) we find that
Blgj,¢)) = ~(Loj ) = Ajle )l
and by (5.2),
I@fH < C)(A +14Dlpjlfy = Co)(1 + |4,
Therefore,
lpilx < CO(L +14,)).

Proof of Proposition 5.1: Let

70y, 5) = n(e™y = P(pe? = yv(y, s)
(see (4.6)), then according to (3.16),
(5.3) Os—Lv:=f,9):=fi+ L+ fz
with ,

[, 9) = 1™y = Bpe? = yQV(Y, ),
-2 1
L0, 8) =17y = B (=2V'(y, 5) + (—nT + (o + E)y)V(y, ) = 1"y = BT v(y, 5),

_a?
T —
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£0.9) =1 (pe> —y)((ge% _y n-

2 .
5 W, 8) +2V' (v, 8) — " (pe2 — y)v(y, s).

If 0 < p < 1 <« B (depending on p,q,l,A) and s¢p > 1 (depending on n, [, p,3), the following
estimates of f hold for all 59 < s < §:

(5:4) A9 < Cp.g Me >y 2 +y W 2 o5 00,
(5.5) A0, I < Cn, LA, Be™ Y 2 geo1s g 1y (V)
(5.6) 0.9 € Cou R 22y 55 o).
In fact, according to the admissible condition (3.9),
1 .
61 D9l <A@ + g2 < S minge ), B <y < pef, so <5<,
y

if 0 < p < 1 < B (depending on p, g, [, A). Therefore, (5.4) is verified by putting (3.9) and (5.7)
into the definition of @; (5.5) and (5.6) are also proved directly by (3.9).
We claim that

(58) /G 9lx < C(p,g, 1A, Bre 19,

for all 59 < s < §, provided s > 1 (depending on n, [, p, 3).
Take any ¢ € C7((0, +0)). Let’s estimate f first:

| f £ 02T dy]

A

[

oe 2 pe 5
< C(p, g, Me™>5( Oy dy + f )y !y e T dy)
,3670-15 lBefo']s

= C(p, g, Ne (I + I),

—+00 2 +00 2
h< f 6Oy e T dy < ( f SOy e dy) f W22, gy
0 0

= C(n, Dlgla < C(n, Diglx.
To estimate /1, assuming n > 9 first, we integrate by parts (by choosing the indefinite integral of

yratn- 5)((& vzrpez)(y) which takes 0 at 0), and use the fact that ||¢|'(y)| = |¢’(¥)| for a.e. y € (0, +c0):
1 et 2-n( 2a+n—4 2a+n—4 2
h=-5—"""2 f YT = (Be )¢l (v) — —|¢(y)l)y" ‘Tdy
a+n—4 Jgoon
+oo 2
2—((P 2)2(z+n -4 (ﬁe—m‘v)Za+n—4) ) 2 n(|¢| (y) _ _|¢(y)|)yn ze_dey
a+n—4 e
o 2
<CIPIRIC | 3PP = (B (L 4y T dy)
Be*(TlS

—+00

2 o1
S y2—n(1 + yz)e_ Tdy)?} = C(n)|plx (11,1 + 112),
pe

+(pe% )2&+n—4(
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(@if so > 1 (depending on n, L, p, 8))

s s

e 2 we? 2o
11’1 < \/5( y4(l+rl—6(1 + y2)e—7dy 4 (ﬂe—()'/S)4(l/+2n—8 f y2—n(1 + yZ)e—Tdy)i
ﬂe—lrls ﬁe—(r[.Y
< C(n), 4a +n -5 > 0 (if 59 > 1 (depending on n, [, 3)),
T C(BeTrsyzatn=S)  4q 4+ n—5<0.

L5 < C(n)(pe?)2*4¢™¢% < C(n) (if s > 1 (depending on n, p)).
When n = 8, 2a + n — 5 = —1, and similarly we have

Ii=- f ¥ (iny = In(Be™" (4 ) = Z#0IY' e dy

Be—(r,s
+00

—(In(pe?) —In(Be ™) | Y (Il (y) - §|¢(y>|>y"‘2e‘%dy

s
pe?

Bl

e 2
< Cm)lglx{( Y (Iny — In(Be™)2(1 + y2)e™ T dy)?
ﬁe—o'ls
s oo 2 2 .\"2 1
+(In(eed)| + 1 nBe N[ V(1 +yDe Tdy)2) = Colglx(], + 1 ).
pe?

For0 < é¢é « 1,

[T

pe% V2 e
0o< VA [ P anyRA + yPe T dy + (In(Be ) f

Be—(r]A' IBe—u'lX

2
YL+ D) T dy)?

< C(n,f)(ﬁe_‘”s)f_% (if s9 > 1 (depending on n, 1, B, £)),
I, < C(n)( In(pe?)| + |ln(ﬂe_(’”)|)e_’”l7 < C(n) (if so > 1 (depending on n, [, p, B)).
No matter which case, we always have (recalling the definition of ¢, (4.9))
(5.9) LAC 9lxe < C(p, g, 1, A)e I,

Similarly, we can estimate f> (by choosing the indefinite integral of y‘”"‘”’)((ﬁe-(rls’(ﬁ +1ye-o5)(y) which
takes O at 0):

+00 ) 2 (B+1)e”71¢ 5 5 )2
| L0, P Tdy| < Cln, 1A, e f lpY* =y “e” T dy
0 ﬂe“o—l‘g
1 G+he 2 3 3 y ) Y
= C(n, I, A, p)e S (———— f YO = (BTN (18 (v) — S1e()NY" e T dy
a+n-— 3 ’Be—u'ls 2

(%)

1 e _ e _ + _ , P2
—————— (B + 1)e™T15)¥¥n73 — (Bem15)x*n=3) Yol () = ZIgDy e T dy)
a+n-— 3 (ﬁ+1)e—0'[.s 2
(B+1)e™1* 2
< C(n, 1, A, Bre " lplxi( YT = (Bem ) TI2(1 + yH)e T dy)?
ﬁe*(rls
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+00

2
+((B+ DeT)x+m3 _ (Bem1syan=3y( V(L + e T dy)?)
(B+De 718

= C(n, I, A, B)e” " |glx (I + I1),

(B+1)e~o18 2
13 < ﬁ(f y20+n—4(1 + yz)e_Tdy + (ﬁe—015)20+2n—6 f
B

e—U'IS Be—d'lj'

(B+1)e s EI
YL+ )T dy)?
S C(n)ﬁ—% (ﬂe—a'lS)%(2(1+n—3),

14 < C(n)(ﬂe—O'IS)%(26l+n—3)’
and thus (recalling (4.9))

(5.10) 140, lx < Cn, L, A, Ble M+,
The estimate of f3 is much simpler:
16 Ok < 1BC O < Cln, Ae™ (| Y277 dy)z
pe2 -1

(5.11) < C(n, A)e 5 ((ped Mt 2e=oed =001 < ) Ay 1493

(@if sg > 1 (depending on n, [, p)). Combining (5.9), (5.10), (5.11), we get (5.8).
Now, we first estimate the “lower frequency” terms in the Fourier expansion of 7(:, s). For 0 < j <
[ — 1, according to (5.3) (with integration by parts) and the condition (4.8), we have

(5.12) 35@(: ) @)+ AT, 9,90 = (fC,9),97)s
@, $), ¢y =0.
Thus, for all so < s < 5,

[P, 8), 001 = | f eVENF (L, €), p)del < lpjlx f D) £ )l de

N

—+00

(5.13) <C(p,q.l, A’ﬂ)e—(/ll—l)s f e(/ll—l)f—(1+§)/lt§d§ =C(p,q.1, A,ﬁ)e—(lﬂ“)ﬂzs,

s

where we used (5.8) and Lemma 5.2. In addition, for 0 < j < /- 1, we compute from Lemma 4.1
and (4.7) that

) | -1 .
"0, 50), €)= ajl = Kn(e™y = Bimlpe? = y)(—@iy) + ) | 2 o). ) — a
Cl m=0 Cm

n-1

<Cn,l,B)e” S0 < C(n, 1, B)e 260,
and combining with (5.13) we get
(5.14) laj| < 1M, 50), ;) — ajl + 1€V TC, s0)s o) < C(p. g 1, A, B)e S,
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which is exactly (1) of Proposition 4.2.
Next we estimate the “main frequency” term of ¥(-, s). According to (5.3) (with integration by parts)
and Lemma 4.1, we have

|10 (5(-, 50), crepr) — 1] < C(n, 1, B)e~ 2545,

{ag(emw(-, ) o) = eVS(FC, 9), 1),

Set
k= e (, ), cipn),
then for all sg < 5 < §,

€S, 9), cipry = Kl = |0, 5), cupry — €T, ), el = ey f (S, €), pi)dé]

s

S
(5.15) < cllilx f Y f (L OIxdé < C(p.q. 1 A B,
s
ie.
k
(5-16) T ), @) =~ < C(p. g L A Ble” O,
Cl

where we used (5.8) and Lemma 5.2 again. Moreover, by Lemma 4.1 and (5.15),
(SA7) k=11 < |G, s0), cigry = kI + [, 50), cipr) = 1] < Cp, g, 1, A, Be™ ™,

which is exactly (4.13).

The estimate of the “higher frequency” terms of ¥(-, 5), i.e. ¢; terms with j > [ + 1, is much more
complicated. It is divided into two parts, a “short time” estimate and a “long time” estimate; the
short time part is achieved by writing down an integral representation of ¥, involving f, the initial
value (-, so), and the “heat kernel” of the operator L.

Lemma 5.3. Forall sg < s < $andy > 0, we have the integral representation formula:

too s oo
00 = [ Konzs=soiGoodz+ [ [ Koz =g odads
50

where
Z.n_g "7 e73yz ey + 22
(5.18) K(y,z,5) = (;)2 \/)’_22(1 _ e—‘Y)I%“’(Z(] _ e_s))eXP(—m)
is the “heat kernel” of L, and I, (v > 0) is the modified Bessel function of the first kind, satisfying
(5.19) X1 (x) + x(x) — (X +Vv),(x) = 0
and
(5.20) L(x) ~ 2y, x\, 0.

Tv+1)2
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Proof: Let
n X
(5.21) V(x, 1) = x27 V=ti(—=, - In(-1)),
v
then V satisfies
OV =0 + 1oV + F(x,1) := AV + F(x,1),
X
where
=3 = L o+ 17, P x%flf( X In(=r)
= a=—=Vn*—-10n , F(x,t) = — f(——, — In(-1)).
T 2 NN
One may first let
X
a(x’ t) = \/__tf/(_’_ln(_t))
=
(see (3.7)), to get
n—2 n—2 1 X
Ot = 0%t + —= 0,1 + ii + ,—In(-1)),
= i =0+ = = (= In=0)

and then let V = x371i to eliminate the 0,01 term.
The heat kernel of the operator A, is

VXw  _ w?
2

xw
B(x,w,t) = e 4 [ (—), x,w,t>0,
( ) ; y(2t)

which is known as the “Bessel heat kernel”. Actually, this kernel can be derived with the help
of Hankel transform, see [BDLC18], Section 1. (To compute the inverse transform, one may use
Weber’s formula, see [Wat22], 13.31, Formula (1).)

Now, V : (0, +00) X [f9, £] — R is smooth and compactly supported. We claim that for all 1y < t < 7
and x > 0,

(5.22) V(x,t) = f " B(x,w,t —ty)V(w, to)dw + f f B B(x,w,t — &)F(w, &)dwdé.
0 Iy 0

By direct computation using the equation (5.19), for x, w,t > 0,

1 2

OBx,w,1) = (B + S T)BCw,1) = Ay Bk, )

Differentiating the right-hand side of (5.22) (with #; > #¢ in the place of #y) w.r.t. #; yields

+00 +00 +00
—f 0 B(x,w,t—11)V(w, { )dw+f B(x,w,t—1t1)0,V(w, i )dw—f B(x,w,t—t))F(w, t;)dw
0 0 0

+00

+00 +00
= —f Ay wB(x,w, t=t1)V(w, tl)dw+f B(x,w, t—11)0,;V(w, tl)dw—f B(x,w, t—t))F(w, t1)dw
0 0 0

+00 +00 +00
= —f B(x,w, t=t1)A, V(w, tl)dw+f B(x,w, t—t1)0,V(w, tl)dw—f B(x,w,t—t))F(w, t1)dw = 0,
0 0 0
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1

i.e. the right-hand side of (5.22) is independent of 1, when ¢ is fixed. In order to compute the limit
when t; " t, we use variable changing:

_ w—-X
RV

+00 +00
f B(x,w,t —t1)V(w, t1)dw :f Bx,2Nt—tir+x,t —t)VQ2~Nt — tir + x,11)2 Vi — tHdr
0 _ X

(5.23)

+00
f—' X
24t-11

24f1=

3 .

\/x(zmr+x) eeyEnr® (2 N\f =117 + X)

=) VRt —t )2t — tidr.
2(t_t1) ! 7( 2(t t) ) ( 1r+x, ]) 1ar

According to Formula (2.13) of [BDLC18],

(5.24) Jim 7y (x)( \/_)‘
thus by (5.20), there exists C(y) > 0 s.t.
xYe*
(5.25) L) < Cloy)———, x> 0.
(x+ 1)r+2

By (5.24), as t; " t, the integrand of (5.23) tends to

#e" V(x,1), and is dominated by

2
C(y)e sup  [V(w,11)l,

w>0, to<t <t

and the integral domain tends to (—oo, +00). Therefore, by Dominated Convergence Theorem,

+00

lim B(x,w,t—t1))V(w, t))dw = V(x,1).
n/tJo

Similarly, the integral

f+°° B(x,w,t — & F(w,&)dw
0

is bounded for #p < & < ¢, and

limffOoB(x,w,t—f)F(w,f)dwdsz.
1/t 131 0

Thus, (5.22) is proved.
Applying the inverse transform of (5.21), we have

1_,

2e4

P(y.5) = y' it V(e ly, —e™)
s(f Be™2 y, ,—e “+e NV (w, —e SO)dw+f f B(e™ 2y, w, —e =& F(w, £)dwdé)

=yl=3 g(‘f B(e 2y, e” T e te “OV(e” Tz, —e e Tdz



replaced by V;(x,1) := x2
transform (5.21) is still used here. Note that (95 — .E)(e‘ﬁfsgo i(»)) = 0. It suffices to check if the

computation above is still valid here.
According to (3.18), fori =0, 1, 2,
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S +00
+ f f B(e iy, e 2z, —e " + e )F(e 2z, —e_T)e_%szd‘r)
so JO

+00

I n_1 nee_ _3%0 _s _% _ — S0\~
= (—); le1(5=50)=7 B(e 3y,e 2z,—e * +e *)(z, s0)dz
n

0 y
St . " . s B
+ f (2)27 et e 2 Be72y, 6727, —e ™ + ¢77) f(z, T)dzdT
so YO y
+00

S +00
=jﬂ K@JJ-smenm&+jﬁjﬁ KOsz, 5 - 7)f(z, T)dzdr.
0 so JO

Parallel to Lemma 5.3, we have the integral formula of eigenfunctions ¢;:

Lemma 5.4. For j >0,y >0, s > s,

+00
@i(y) = U0 f K(y,z, s = s0)p(2)dz,
0

where K(y,z, s) is defined in (5.18).

- O(x>~1*), x N\ 0,
19l Y/, —

X' Vi(x, 0 { 0(xg+2/1j)’ X — +00,
O(x>~*),  x\,0,
O(x%+2’lf_2), X — +00,

ath(X, t) = {

xiaily(x) =0(x"), x \, 0,
O L (x) = O(%), X = +oo,

and thus when x > 0 is fixed,

Wi Bx,w, ) = O(w> ™), w\, 0,

. _(wfx)2 .
0., B(x,w,1) = O(e” % w'), w > +00,

oW ™), w\0,
alB(x, w, t) = { _ (wf)c)2

O(e™ a w?), w— +oo,

25

Proof: The proof is similar to that of Lemma 5.3, with #(y, s) replaced by e~*i%p i(y) and V(x,1)
_1(_1‘)/1/""%"0]-(%_7), except that V; here is not compactly supported. The

uniformly when ¢ is bounded. Also, by the derivative formula of 7, ((BDLCI8], Formula (2.14)),
fori=0,1,2,
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uniformly when ¢ is bounded and away from 0. Therefore the integral

+00
f B(x,w,t = 11)Vi(w, t1)dw
0

converges absolutely (7o < #; < ¢), and all the steps below are legal, including differentiating under
the integral sign and integrating by parts:

+00
o, f B(x,w,t —t))Vi(w, t))dw
0
+00 +00
=- f 0:B(x,w,t —t)Vi(w, t1)dw + f B(x,w,t —11)0,V(w, t))dw
:)-oo 0 +00
=- f Ay wBx,w, t — 1)V i(w, t)dw + f B(x,w,t = 11)0,;Vj(w, t1)dw
0 0

+00 +00
=- f B(x,w,t —1)A,Vi(w, t1)dw + f B(x,w,t —11)0;Vj(w, t1)dw = 0.
0 0
In the dominated convergence argument, the integrand

1B, 2NT— 117 + x,1 — 1)V, NT= 7+ x,1)2 VT = 11] < Ce™ (1 + [r|372Y),

where C is independent of ¢ if #p < 1] < 1.

Next, we estimate the evolution of the “non-homogeneous” term f:

Lemma 5.5. Let . e
S,s) = f f K(y,z, s — 7)f(z, T)dzdr.
so YO
If (5.4), (5.5), (5.6) hold, and sy > 1 (depending onn, L, p, B, R,?), then for any sop < s < min{s, so+
1}, %e‘ﬁ‘m <y <2R
IS, ) < C(p, g, 1, A, B, Rye™ TNy,

Proof: According to (5.25), for y,z > 0, 0 < s < 1, there exists a constant C(n) s.t.

-5 2
(5.26) KO, 2, 5)] Sc(n)yas—(%m)zn—zm(l +c)£)—(g—1+a) eXp(_(e zi 2) )
Ky N

_1 .
where ¢ = %e 2. Write

-5 N2
H(y,2,8) = (1 + 2767170 eXP(_(eZZL—Z)
N s

).
By (5.3),

3 s +00
S,s) = Z Si(y,s), Si(y,s) = f fo K(,z, s — 7)fi(z, T)dzdT.
i=1 %

Let’s start from the estimate of S ;. By (5.4) and (5.26),

T

e?

S e O
1510 9)I < C(p. g, A4y f (s =y (7 f @ 4 MO, 2 s - T)dzd
50 ﬁefu'l'r
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S +00
< C(p, q, A)e_Z/l[SOyaf (S _ T)—("2|+(Y)f Zn—2+a'(Z2a/—3 + 24/11_1)H(y, 7,8 — T)dZdT
) Be~71%0
(=)
= C(p.q, A)e‘”’my“(S L1 +S12),

o 2
Slj(y,s)—f(s R +‘*>f by e 25 )<z—1+“)e xp(— w)dzdr ji=1,2,
B s — 4(s —

e~ 7150 )
b] 220—3, b2=4/11—1.
We introduce new variables

2
(527) W=, £= 2,
s—T s—T
to get
S1,;(, )
2
2+b a(f fiaf %bl -2 n—2+01+bj(1+CW\/E)—(%—1+Q)GXP(_1(6—VT£ \/E—W)z)deé:
= YO Cﬁe U'léo ‘/> 4
2+b -

n 1 _2
—5bj— 2f \f n—2+a+bj(1 +cw \/g‘)_(i_lﬂl) exp(—Z(e_ny \/E—W)z)def
(TIYO

1 %\/E 2 \E +00
g1073bi7Y( dw + f dw + f ..dw)dg
¥ gpev0 & IVE 2V¢

= Sl,j,l + Sl,j,2 + Sl’j’3.
In the rest argument, we denote by ¢ a positive universal constant, which may change from line to
line.

Y )
N\'—
R
D=

2+h j—a

N\—

2+b; S 1p.—2 3 VE 2+a+b; 2\—(2-1
Siji<y* f‘“f £2972b5- e-cff wiErerbi] 4 ew?)y GO gy ge
O éﬁe*(rljog

2
(noting }? =s—-7<1).

+00 1 1 +00 i
Sl,l,l < ya—l f g—za—Ze—Cff Wn—5+3(l(1 + cwz)—(§—1+a)dwd§;'
0 epe1%0 £

If n—-5+3a > -1, then
Sl 1 <ya lf é: Z(k—— —ct f Wn—5+30z(1 +CW2)—(%—1+a)dwd§

— C(n)ya—l < C(l’l, l)eﬂ/llso < C(n, l)e(l—l?)/llso (since y > %e—ﬂ(ns > %e—ale—ﬂmso).
Ifn—-5+3a < -1, then
—+00 . | —+00
Sl,l,l < ya—l f §—2(t—2e—c§f Wn_5+3adwd§
0 ¢

Vﬁe_‘rlso ﬁ

= Cn By () fo §7 e g = Cln, e (=) 1
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_(1_.9\n=3+2a =
< C(n, 1, B)e%0e~ =D 40 < C(p, 1, B)e 1 M50,
42,+1 e 1 21 3 %\/g 3 41
Sy < yHrle f £207 273 o7k f Wi gy e
0 0

+00
= C(n, hy*ti-« f £ g = C(n, Y"1~ < C(n, L, R).
0

+00
Sl,j,2 < C(n’ bj)y2+bj_df f%&-%b/‘—2§%(ﬂ—2+a+b/)(1 + Cg)—(%—l+a) \/Edf
0

—+00
= C(l’l, bj)y2+b_i—af 5%4—&(1 + Cf)_(%_l+a)d§ — C(I’l, bj)y2+bj—a,
0

S 112 < C(n)yfl’—l < C(I’l, l)eﬁ/llso < C(l’l, l)e(l—l?)/l[so’
S122 < Cn, Dy * 1= < C(n, I, R).

2+bj—a e lo-1b—2 —c¢ e n-2+a+b; —cw?
S1,j3<y i £297207 %™ w Te~ " dwdé
¥ 2VE
2
. . L 1 _1
(since w > 2 V€, we have exp(—1(e” % VE — w)?) < 716" < 72" e7§6).

+00 1 1 +00 5
S1,1,3 < ya—l f é_-—ioz—ie cff Wn—5+3ae—cw dwdf
¥ 2VE

Ifn-5+3a > -1, then

+00 1 1 +00 5
S1i3 <y f f_za_ze_cff e
0 0

= C(m)y*™" < C(n, De™ < C(n, e P45,
Ifn—-5+3a < -1, then

e +oo +00
Stz <y f gremreet f w3 ywde = C(nyy*! f ¢ gt g
0 2VE 0

= C(n)y™™" < C(n, el 0%,

+oo 3 +00 X
S103 < y4/ll+l—a fz é'_-fa—Z/ll—j f W3 rardd —ew dwd¢
Y 0

+00
= C(n, Dyt f £29273 gg = C(n, ).
y2
Now we have obtained

|S 107, S)| < C(p, q, l, A’ﬂ’ R)e—(l+7<)/l,soya‘
Next we estimate S,. By (5.5) and (5.26),

|S2(y$ S)| < C(n, l, A,ﬁ)e_/llsoy(l

s e (B+1)e™71%0 ., )
Xf (S_T)-(zua)f e Yz y G-+ exp(—(e y-2) Ydzdt
50 0 §s—T 4(s — 1)

— C(I’l, l’ A,B)e—/l[soy(l



BLOW UP OF COMPACT MEAN CURVATURE FLOW SOLUTIONS WITH BOUNDED MEAN CURVATURE

o0 (B+1)e10 & . 1 _2
% f2 é:_l f Wn—4+2(1/(1 +cw \/g_-)—(j—lﬂl) exp(_Z(g_Tf \/E — W)z)detf
Y 0

5=50

(using (5.27) again)

B+De 10 L
< C(I’l l A ﬂ)e—/bSo f f 1 —Cff ’ Wn—4+2(tdwd€;
0

—7<1l,and (B+ l)e“”S‘)i < 1 /& provided sy > 1 (depending on n, 1, 8,1%))

~~
LN
Il

+o0
= C(n l A ﬁ)e—/lzso a( _UISO) (n_3+2a)f §n2s+a Cfdf
0

< C(n,1, A, Bye 10y e 1=NTZ 0 < C(n, 1, A, Be (10502,
Finally we estimate S3. By (5.6) and (5.26),
|S3(y, S)l < C(n, A)e—/lmoya

T _ 2
f(s— Vsz (1 4 o2 10 e =D e = o
peZ—l

s — 4(s — 1)
- C(n, A)e—ﬂlsOy2/11+4

+00 +00 n 1 —2
x fz g%(z—/ll—b‘f 0 Wn+2(l+2/11(1 +cw \/E)—(Q—H'a) eXp(__(e_)Zs‘ \/g' - W)z)def
y (pe2 -1 ¥ 4

=50

(using (5.27) again)

+0oo +00
< C(n, A)e—/llsoy211+4f é;%a—/ll—?a f N Wn+2a+2,1,e_cw2dwd§
»2 pe? -1
((pe? - 1)%5 > 2 & provided so > 1 (depending on p, R))
< Cn,l, A)e—/ll‘Y()yZ/l/+4e—%c(pe%0—1)2 +00 f%a_/ll_?’dé:

y2

= Cln, L, Ay 50y 30 F < < 1, Ao+,
if so > 1 (depending on n, [, p, ).

The proof of this lemma is finished by combining the estimates of S, 52, S 3.
The following lemma deals with the evolution of the initial value:

Lemma 5.6. Let
g(y) = ¥(y, so) — (V(-, 50), e@i(y).

T(y,s)= ) K(y,z, s — 50)g(2)dz.

29

If (5.14) holds, and sy > 1 (depending on n,lL, p,B,R, ), then for any so < s < min{s, sg + 1},

le—ﬁms <y< 2R,
IT(y, $)| < C(p, g, 1, A, B, Rye™1T0As0y
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Proof. For the function g(y), there holds:

C(p, q l, A’ﬁ)e—(l+g)/l1xo(ya +y2/11+1)’ (ﬂ + l)e—a'lso <y< pe%o _ 1’
C(n, e~ oy 4 24ty otherwise.

(5.28) gl < {

Actually, by Lemma 4.1, (4.7), (5.14), and (3.18), for (8 + 1)e™ 70 <y < pe%0 -1,

-1
_ laj| 1 _ -
g0 < €0 3" =Ll )]+ |—e ™0 = (5, 50), @l a3
0 Cj C|
-1
< C(p.q. L ABE O N Il + Cln. L B)e™ Pl )
j=0
S C(P, q’ l, A,ﬁ)e—(l-i-g‘)/lmo(ya + y2/11+1)’
and similarly, for other y,
-1 |a

=S i 1 _ S ~ =150 (1,&
800 < €7 3 = Flgi + (e + G 50), @pDIgi)] < Clon, e + 72,
=0

Thus, we can write
(B+1)e~71%0 e STO -1 +00
T(y,s) = (f +f o+ f 5 KO,z 5 = 50)8(@)dz := Ti(y, 5) + T2y, 8) + T3(y, ).
0 B+Der0 Jpe? -1
Then we estimate 7 (1 < j < 3) one by one. If s > 1 (depending on n, [, p,5), then (8 + 1)e™7"*0 <
1< pes?0 — 1. By (5.28) and (5.26),

IT1(y, )| < Cln, e~ 0y (s — So)_(%m)

(B+1)e~150 . -0 N2
xf Zn—2+2a/(1 +c D )—(§—l+a) GXP(— (e y Z) Ydz.
0 5= 80 4(s — s0)

If 5o > 1 (depending on n, [, 8, ), then
e—%y > %e—(%ﬂn)e—ﬁmso > 2(8 + l)e—(rlsoe%(l—ﬂ)(r]xo > 26%(1—19)0'1soz,
and therefore 1
IT1(y, $)| < C(n, De "0y (5 — 50)" 7+

2
65(1—19)015%2

(B+1)e71% e3I=Driso 2
xf z"_2+2“(1 + c—)_(f_““) exp(——————)dz
0 § = S0 4(s — 50)

By introducing a new variable
b4

Vs =50

w= e%(l—ﬂ)o'lso

we get

n—1+2a

oo n M72
IT1(y, )l < C(n, l)e—/llsoe—(l—ﬂ)m_a)/l/soyaf WIm2(] 4 o2y 14, g
0
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< C(n, l)e—(l+l~<)/1130y(x‘
Similarly,
IT2(y, )| < C(p. q, 1, A,ﬁ)e_(”g)/l’s"y“(s — s0) (7

+00 _% Y
xf Zn—2+2(1/(1 + Z2/1[+l (l)(l + C ) ( —1+a) exp(_ (e 2 y Z) )dZ
0 4(s = 50)

= C(p.q. 1, A, e 1m0y (5 — )7+ f Azt f
2y

= C(p, q, 1, A, B)e” TS0V (Ty | + T 5),

. 2y 2 -0 0 2
Toy < Cln)(s = s0) "2+ f 21 Py exp- 2 y-97,
0 4(s — so)

2 _T 2
= COn(1+y 105 - s59)° fo yexP(—(e ki

4(s — s0)

_5S
Z—e 2y

—+00 W2
< C(n)(1 + y*it1-o) f e~ Tdw(w= N
—00 — 50

= C(n)(1 + y*"*1=%) < C(n, I, R).

+00 2

n—1 _ _ [ S

T2’2 < (S — SO)_( 3 +(l)f Zn 2+2(l’(1 + Z2/’.1+1 (I)e T60-50) 7
0

+ 00 wz
— f Wn—2+2(l(1 + (W /S — S0)2/11+1—(l)e—ﬁdw (W — )
0

Z
VS — S0
+00 w2
< f W22 (] 4 W20 gy = C(n, ).
0
Therefore,
T2y, $)| < C(p, g, 1, A, B, R)e™ 1Ty < C(p, g, 1, A, B, R)e™ U0y,

Also,
IT5(y, )l < C(n, l)e—my%s — s9) T+

(e Ty -z

% . P 1+oz+2/11(1 +o— ) (2—1+a/)e (- )dZ
pe%’ s PTG 0
el —+00 2
< C(n, l)e_/llsoya(s _ SO)—(Tﬂx) f © Zn_H‘HM]e_mdz
pe2 —1
(z2 pe%o — 1 > 4R > 2y provided sg > 1 (depending on p, R))
e [T W2 z
= Cn, D™y (s — 50)V 7" f S W2 oy = )
(pe? ~1)(s-50)3 N

—+00 W2
< C(n, l)e—/IZSOya/f 0 Wn—1+a/+2/he—ﬁdw < C(n, l)e—/lls()yae 32(pe 2 —1)% < C(I’l l)e_(l+K)/llS0y ,
pe2 —1
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if 5o > 1 (depending on n, [, p, 9).
The proof of this lemma is finished by combining the estimates of T, T3, T3.
[
As a consequence, we are able to prove the short-time estimate of Proposition 5.1:

Corollary 5.7. Under the assumptions of Proposition 5.1, the estimate (5.1) holds for all s < s <
min($, so + 1}, 3¢777 <y <2R.

Proof: If s9 > 1 (depending on n,l, p,(, R, ), then for %e‘ﬁ”’s <y < 2R, v(y,s) = ¥(y,s), and
according to Lemmas 5.3 and 5.4,

ko 3 k s
vy, s) — o VS oi(y) = 9y, 5) — o° 5 0(y)

+00 S —+00 k )
= f K(y,z, s — s0)¥(z, s0)dz + f f K(y,z,s — 1)f(z,7)dzdt - C—e_/l”gol(y)
0 so VO )

—+00 k
=80,9) +T(,5) +, s0), o) fo K(y,z, s = so)pi(2)dz - C—le_i’stpz(y)
k

_1 _
e ei(y).

1
=S, 5) + T(,s) + (T, 50), gryett™ — C—J)e‘“sm(y) -

By Lemmas 5.5 and 5.6, if 5o < s < min{$, so + 1},
IS, |+ 1T, 9| < Cp, g, L, A B, R)e™ 00y < C(p, q,1, A, B, R)e™ 1017y,

(if s = 50, then the estimate holds obviously.) By Lemma 4.1 and (4.7),

1 ,

¢, 50), @0)e"™ = =] < Cn, LB < C(n, 1, Be M,

Cl

By (5.17),
k=11 < C(p, g, 1, A, Be™"* < Clp, q,1, A, Be™™™.
And we know from (3.18) that
lei) < C(n, L, R)Y", 0 <y <2R.

Combining all the estimates above, the Corollary is proved.
[
The long time estimate (s > sg + 1) of Proposition 5.1 is obtained by writing down the Fourier
expansion of ¥ under the basis {¢;} ~0, and directly estimating the infinite series.

Lemma 5.8. Forall so < s <38,

+00 +0o0 s
(529) W)= D eMOTGEC, 50), 00 0+ Y f eV 1), )T @),
Jj=0 Jj=0 %0
where both of the two infinite sums converge in H. Moreover, for so < s < §,
+00 too
(5.30) f K(y, 2,5 = 50)7(z, s0)dz = ), e, 50),07) - 9,00,
0

J=0
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(5.31) f ‘ f K(y,z,s—T)f(z,‘r)dszzz f | eSS 1), 0)dT - (),
so 0 j=0 %0

as elements in H.

Proof: {{V(-, 50), ¢;}} j>0 is the Fourier coeflicient of the function ¥(-, s9), so

Z(e‘ﬂﬂs—m)@(,, 50), 9))* < Z(fz(-, 50), @j)” < +oo.

j=2 j=0

Similarly, {{f(-,7), ¢;}} j>0 is the Fourier coeflicient of the function f(-, ), and

2 f TS, 1), Ty < Y f K ppldn)® < f QU0
j=2 % j=0 %0

S0 ]:0
(5.32) < ((s=s0) sup |fC,Dlm)* < +oo,
SOSTSS
thus both series converge in H.
For all j > 0, the function (V(-, 5), ;) satisfies the following ODE (see (5.12)):
Os(V(, ), 05) + AV, 8), 050 = (fC, 9), 95,
thus we have
(TG, 9),0) = €V, 50), ) + f I ),
50
So (5.29) is indeed the Fourier expansion of ¥ under the basis {¢;} 0.

2
To prove (5.30), we first observe from (5.18) and (5.25) that for s > 0,y > 0, K(y, z, (e ) e
H, where the integral variable is z. Furthermore, by Lemma 5.4, for any M > 0,

oo M M
(5.33) j; K(y,z, 5 — So)(Z(f/(', 50), @) - @j(2))dz = Z e~ VTG 50), 97) - ().
J=0 j=0

As M — +oo,
M
D (T 50),9)) - 9 = (-, 50)
j=0

in H, so the left hand side of (5.33) converges to

+00
f K(y,z, s — s0)¥(z, s0)dz
0

in a pointwise manner, for y > 0. On the other hand, the right hand side of (5.33) converges to

+00

DTG s0),67) - 0

j=0
in H, thus the two sides of (5.30) must be the same element in H.
(5.31) is a direct consequence of (5.29), (5.30), and Lemma 5.3.
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L]
To estimate the infinite sum directly, we first derive some uniform bounds on the eigenfunctions
{¢j}j20, using the properties of Kummer’s functions:

Lemma 5.9. ForanyR > 1, j > 1,

n—

. 3+2a
lpjMI < C(r,R)j + y*, 0<y<2R.

Proof. Recall (3.17), the expression of ¢;. Set b = a + % According to [Tem15], (10.3.58), for
j=1land 0 <y <2R,

2
(5.34) \M(~J, b, yﬂ < C(n.R).

On the other hand, the normalizing constant c; satisfies

+00 2 2 +00
ijz _ f V22 M, %)2@ _ 2n—2+2a/f P M(= ), b, x)2dx.
0 0

By [GP90], (A.150),

['(b);! _Th)T(+1)
bb+1)..b+j-1) Tb+))

2—%(n—2+2a) F(b + J) 2—%(n—2+2a/) bt
¢j= . ~ J7 (= +0),
I'(b) FG+1) I'(b)

using Stirling’s formula I'(x + 1) ~ V27rx(§)x (x > +0o0). Therefore,

—+00
f e M(=j, b, x)*dx =
0

1.€.

(5.35) cj<Cm)j'T,

and the lemma follows from (3.17), (5.34), and (5.35).
O
The estimate of “higher frequency” terms in a long time period is also divided into two parts, the
part caused by evolution of the initial value ¥(-, so) and the “non-homogeneous” term f, respectively.
We proceed the initial value part first:
Lemma 5.10. Let

+00

P(y, s) = Z e TG, 50), 0 - ;).

Jj=l+1
If § > so + 1, then the series converges for all y > 0, so+ 1 < s < §. Moreover, if so > 1 (depending
onn,l,p,B), then for any R > 1, there holds
IP(y, )| < C(n,1,B,R)e" "0y 0 <y <2R, 5o+ 1<s<8.

Proof:. Since s > s+ 1and A; = A; + j — [ for all j,

+00 -1

_ e (1M )i _ 1 a
IP(y, 5)| < § e~ Ut D(s=50) ,=(i=I=1)(s SO)lV(‘,S()) —e /USO(C_ZSDI + § c—m<Pm)|H |90j|H |<PJ()7)|
j=l+1 m=0 "
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+0o
< [0, 50) =€ m( oo Z ol Y| e IR0 D ()
m=0 m j=I1+1
+0o0
< C(n, 1B, Ry~ OO0 (1eDlsoya 37 p=(=1-1) 7 (by Lemmas 4.1 and 5.9)
Jj=l+1

— C(n, l,ﬁ, R)e—(1+l~()/l1sy(l.
Since R > 1 is arbitrary, the series of course converges for all y > 0.

The following lemma deals with the “non-homogeneous” part:

Lemma 5.11. Let .
00, 9= Y f D, T 1),

Jj=l+1
If $ > so + 1, (5.4), (5.5), (5.6) hold, and sy > 1 (depending on n,1,p,B3,R, ), then for any
so+1<s<38 anyR > 1, and almost all %e‘ﬁms <y < 2R, there holds

100, $)| < C(p, q.,1, A, B, R)e™1+0Usy

Proof: Formally we can write (noting s > sg + 1)

00, s) = Z f e T, ppdT - )(9) + Z f U 1), 0))dT - 0()

Jj=l+1 Jj=l+1

=010, 9) + 2y, 9).
From (5.32) we know both two series above converge in H. We estimate O using Cauchy-Schwartz
inequality:

|Q1(y,s)|sf (Z L2 ()73 (Z fC.7 )goJ

0 Jj=l+1 Jj=l+1
s—1 ST),0; 2
zf e—ﬂm(s—r)(z /l;e—Z(Aj—/lHl)(s—‘r)(pj(y)Z)%(Z <f( ) ®j) Var
%0 J=I+1 j=m 4;
s el
<<Z B (1)) f e WD Dl <Z —

Jj=l+1 J=l+1 J
Using Lemma 5.9, the uniform estimate of {¢;};>0, and noting {4} ;»¢ is of linear growth, we get
(for0 <y < 2R)

+00
(> Be U053 < Cln L R)Y” < +oo,
Jj=l+1
and by Lemma 5.2,
o el o L+l
( )2 < C(n)( —)2 =C(n) < +o0
-l

3
Jj=l+1 /1j
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(again, {4} ;>0 is of linear growth). Thus

s—1
101G, 9)] < C(n, 1, R)y” f e~ WD £ 1) x-dr

S0

s—1
< C(p,q, I, A, B, R)y*e Uths f T4 (by (5.8))

S0
< C(p,q, 1, A, B, R)ye 1005

for 0 <y < 2R, since 1 &4 > 47 > 0.
As for the estimate of Q,, we write

+00 5 1 s
00, = ) f 1e-ﬂf“")<f<-,r>,so,->dr-so;(y)—Z f TG T 00)
J=0 57 j=0 Vs~

= f 1 fo K(y,z,s — 1) f(z, 7)dzdT — Z f 1 N 1), 0)dT - () (by (5.31))
S— s

=021+ O22.

According to Lemma 5.5 (with s — 1 in the place of ),
N . 1
10211 < C(p, g, LA B, Re™ MUy < C(p, g, LA B R)TTHONY, Ze7071 <y <OR,

and using (5.8) again,

!
Q20| < C(n) sup [f(, Dlx: Z lejlxlo;0| < C(p, q. 1 A B, R)e™ 01y 0 <y < 2R,

s—1<7<s 7=0

The lemma is proved by adding up the estimates of Q1, 021, O2..

Now it’s time to prove the long-time estimate of Proposition 5.1:

[

Corollary 5.12. Under the assumptions of Proposition 5.1, if § > so + 1, then the estimate (5.1)

holds for all so+1 < s <5, %e‘ﬁ‘”s <y<2R

Proof: If so > 1 (depending on n,[,p,,R, 1), then for %e‘ﬁ(’” <y < 2R, v(y,s) = P(y,s).

According to Lemma 5.8,

k k
v(y,5) = —e pi(y) = 1y, 5) — —e P i(y)
Cl Cl
-1 k
= D) 9100 + (51 ) = )
=0

+ D NTVGC s50),00) 000+ ) f NS D)9, 0)

j=I+1 Jj=1+150
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-1

k
= D 90.6)) 9,00 + (G 9 01) = - )g) + P02 ) + Q0. 9).

Jj=0
All the equalities above, except the first one, mean the two sides represent the same element in H.
By Lemmas 5.10 and 5.11, if s + 1 < s < §, then for almost all 3¢7* <y < 2R,

IP(y, $)| + |00y, $)| < C(p,q,1, A, B, R)e”1H0Usya,
According to (5.13) and (5.16), for all 0 < y < 2R,

-1

~

~ k—s —(1+R)As @
WEQMMW%@WHWQ@MD—Ee”waﬂsan%hkﬁRk“””y-
J

I
(=]

Thus (5.1) holds for all %e‘ﬁ"” <y < 2R, and actually all these y, because v(-, s) is continuous.
1
The proof of Proposition 5.1 is now finished, by putting Corollaries 5.7 and 5.12 together.
1
For brevity, in the rest part of this and the next sections, we always fix ¢ = %, and therefore k¥ = «
(see (4.16)). It’s noteworthy that the choice of ¥ € (‘11_‘;’, 1) makes no essential difference in the
is necessary in the proof of Proposition 5.14; see

—l-a

following discussion. The lower bound ¢ > 5=

[GS18], Proposition 6.6.

Next, we provide an estimate in the outer region, for the function u(x, ) with R V=t < x < p. The
original proof appears in [Vel94], Lemma 4.3. By a simple observation, it’s not hard to see the
argument applies to both even and odd /.

Proposition 5.13. If0 < p < 1 (depending on p,q,l,A), R > 1 (depending on n,l), and |ty| < 1
(depending on p,q,l, \,p,B,R), then

k | x
lu(x, £) — — (=" 2p(——=)| < C(n, HR™ 2524+
¢ @l =

for2RV-t<x<p to<t<i

Proof: We prove it by constructing sub- and supersolutions.
To investigate the equation (3.4) further, we rewrite it as

(5.36) O = Lu + Qu,
where (see (3.16))

. —2 2
Lu:u"+n u'+n2u,
x X
” (2L + 5y 4 (u—p s
Qu=——2 —u” +(n=2) o -~ T x
1+u (I =pDA+p73)

Assume [ is an even number first. Define

ui(x, t) — C(j):(x2/11+1 _ Cj:(_t)xl/l[—l)’
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where Cg > 0, C* > 0 are constants to be determined later, with C(i)’ bounded and away from 0
(depending on n, [). Direct computation yields

~ -t
0 — Dt = CEPN(C* - My + CiMzﬁ),

My =QAuy+ DRy +(n—-2)24+2) >0,
My = QA4 - DA =2) + (n—2)(24) > 0.
Set Ct =2M,, C~ =0, then
@ — Dt > CaMX*" >0, (0, - Du~ = -CiM*! <.

Since Cj is bounded and away from 0 (depending on n,0), if t < 0, V-t<x<pandp < 1
(depending on p, g, [), then

Qu*| < C(p.q, Dx* ™" < CiM M7,

i.e. u™ (resp. u~) is a supersolution (resp. subsolution) of (3.4).
Next we verify the initial and boundary values of u. Under the transform (3.7), Proposition 5.1
implies

(537)  lu(x,t) - g(—z)“%w(\/—x_tn < C(p,q, [, A, B, R)(—OMx*M*1 ) x = 2RV—1, tg < t < .
The formula of v(:, sp), (4.7), together with the estimates (5.14), (5.17), indicates

VG, $0) f,e_ﬂ”%oz(y» < C(p,q, 1, A fe” 002t oR <y < pe?,
ie.

k
(538)  luCx.10) = =(=10)" a
1

N < C(p,q, 1, A, B)(~t0) M x*¥*! 2R /=1 < x < p.
_to

By (5.36) and the admissible condition, (3.5), if 1y <t < £, V-t<x<pandp <1 (depending on
p>q, 1, \), then
Ol < "] + (1= 2|+ (n = 2)| 5] + 1Qul < C(n, A~
X X
Moreover, by (3.18),
k
(= (=Y pi(—=)) = k(=) 2" — Kyt (=)~ %2 4+ Kyn(=0) 2™ 4 4 (— 1) Kyt
c A
= —k(I(=0)""'x% = (1 = DK (=0)"2x82 + (1 = D)Ko (=0)" 32 + L+ (D)Ko x@ 20Dy,
If t < 0 and x > V-1, then

k i X
10,(— (=" 20 (—=))| < C(n, >4,
! | 4 \/—t
and in particular, for f) < t < 7,

k
10, (u(p, 1) — c—l(—r)“%w(%)n < Cln, 1, AP = C(n, 1, A)p 224,
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Taking (5.38) into account, we get
k 1 .
(5.39) lu(p, 1) - —(—t)”"*zw(\/’;_n < C(p.q. LA P, B) (1) o> g <t < .
Cl -t

Set
Q={(x,f) cRxR|1y<t<i 2RV-1 < x < p)},

then (5.37), (5.38), (5.39) together imply that on Z2Q, the parabolic boundary of Q (see ??),
k
(e, 1) = — (0" L @(==)] < C(pg. L A p. B R)(—1p) x>V,
¢l V-t
On the other hand, using (3.18) again,
k
(5.40) 1= (=) gy (—=) — kKXY < Cln, DR™23A), 1< 0, x > 2RV,
Cl V-t

namely, on &Q,
lu(x, 1) — kK < (C(p, g, 1, A, p, B, R)(— )Y + C(n, HR™)x*41*!

(5.41) < C(n, DR2x*"*1 if |1y| < 1 (depending on p, g, 1, A, p, B, R).
Now we can determine the constants Cg in ut. Let
_ M _
C¢ = (kKyy + Cs.an(n, DR™2)(1 - 2—R12 L

Cy = kK — Cs.41)(n, DR™2.
Here the subscript indicates we choose exactly that constant appeared in (5.41). Obviously, if R > 1
(depending on n, ), and |ty| < 1 (depending on p, q, [, A, 8), then (recall (5.17))

1
EKI’Z < C, <C§ <2Ky,

i.e. they are indeed bounded and away from O (depending on #n, [). And on &Q,
+ _ 20+ —1 +_22+1 M,
u’ = Cyx™ (1—2M1F)ZCO)C ! (l_ﬁ)
= (kK1 + C(s.41)(n, DR >,
u = {kK;; - C(5441)(l’l, l)R_z})CMI+1 <u.

Making use of Theorem ?? (the comparison principle), we deduce for all (x,7) € Q,

C6x2/l,+l —u <u< u+ < Caxz/lﬁrl,
in other words, (5.41) holds on the whole Q with a probably larger constant, by noting an elementary
fact that (1 — %)‘1 <1+ % when R > 1 (depending on n,[). Combining this with (5.40), we
finally get

(i, 1) — g(—n"*iw(v—x__tn < Co, DR, (x,1) € O

The situation is very similar if / is odd, except that the subsolution and the supersolution are re-
versed. More precisely, we shall let Cj < 0 now, still bounded and away from 0 (depending on n, ).
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If we set C* = 0, C~ = 2M; in this case, then we can get a subsolution u* and a supersolution u~
in the same way. (5.40) and (5.41) remain valid, if we replace K;; with —Kj;. The final choice of
Cg is
Cg = —kKl’l + C(5_41)(n, l)R_z,
- -2 M, -1
Cy = {-kKj; — C5.41(n, DR™}(1 — W)
L]
Below is an estimate in the tip region, for the function Ww(z, 7) with 0 < z < (20'17')%. Again, this is
proved by the method of sub- and supersolutions, which is exactly the same as [GS18], Proposition
6.6, and thus we omit the proof here.

Proposition 5.14. If3 > 1 (depending on p, q,1), and t¢9 > 1 (depending on p, q,l, A, p, 8, R), then
2Q077)i

NI

W(z,7) — ¥(2)| < C(p, q)ﬁd_“(Tl)_Q(l +2)% 0<z< To<T<T,
0

where @ is defined in (2.16), and o is defined in (4.18).

Finally, we provide an estimate of the remaining part, by virtue of a well-known interior estimate
for hypersurfaces moving by mean curvature in R", due to Ecker and Huisken ([EH91], Theorems
2.1 and 3.1). The original estimate is “interior” in both space and time. We first state a slightly
variant version of the theorem, which can extend the estimate to the initial time, and simplify
subsequent arguments.

Theorem 5.15. Let {M"'}o<;<r C R" be a smooth family of embedded hypersurfaces moving by
mean curvature. Assume E = {(X,1)| x € M,,0 <t < T,r(x,1) < L%} is compact, and on E,
(v,w) > 0, where L > 0 is a constant, r(X,t) = |x — Xo|> + 2(n — D)t, Xo € R" is a fixed point,
w € R" is a fixed vector, and v = v(X,t) is a unit normal vector of M; at X. (In other words, E
can be regarded as graphs over the hyperplane perpendicular to w.) Then for any ty € [0,T] and
0€(0,1),

(5.42) sup V<=6 sup WV
XEM;),r(X,10)<OL> xeMy,r(x,0)<L?
(5.43) sup AP <81 -6 sup APV +CmL21 -6 sup v
XeMy,,1(X,10)<0L? x€Mo,r(x,0)<L? XEMo,r(x,0)<L?

where v = (v, w)”! is the “gradient function”, and A is the second fundamental form of M.

Actually, Theorem 5.15 remains true if the mean curvature flow is merely immersed.
Proof: (5.42) follows immediately from Theorem 2.1 of [EHI1].
The proof of (5.43) is essentially the same as that of Theorem 3.1 of [EH91], except that we do not
cut off along the ¢ direction. More precisely, in the original proof, the author derived the following
inequality:

d 1
(2 = M) < —2kg’n = 2ev Vv + 7'Vip) - Vign) + Cn)((1 + Pl L),
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where A and V are the Laplacian and gradient on the hypersurface M,, ¢ = ¢(1?) = 1_"—;2, g =

IAPe(v), n = (L* - )%, 4 is the derivative along a curve y(f) € M, whose velocity equals the mean
curvature of M;, and

1 ) _
k=—- inf vZ>0.
2 xeM,r(x.n<L?,
0<t<ty
At a point (X1, 1) Where supy., . <z2. &7 is attained, if 7y = 0, then
0<<ty

sup  gn<  sup  gn.

xeMy, (X t0)<L? xXeMy,r(x,0)<L?
If t; > 0, then at (x, #;) we have (4 (gn) > 0, A(gn) <0, V(gn) = 0)
2 1 2
2kg'n < C(n)((1 + —)r + L7)g,
kv?
i.e. (note r < L2, kv* < % v>1)

C 1 C
n < ﬂ(l + ﬁ)LZ < ﬂLZ < C(n)L? sup W
1%

k k*v2 xeM,r(x,H<L?,
0<t<ty
Thus,
sup gn < sup gn+ C(n)L2 sup v
xeM,O,r(x,t())SL2 XEMy,r(x,0)<L? XeM,,r(x,H)<L?,
0<t<ty
Since 5
V
gn = AP (L* - r? < 2JAPVLY,
1-kv?
gn > |AP(1 - 0)°L* (r < 6L?),
we have
(5.44) sup AP <2(1-6)2  sup APV +CL21-60)2  sup vt
XEM,.r(X,10)<OL? XeMo,r(x,0)<L? XeM,.r(x,H<L?,
0<t<ty

Replace L? in (5.44) by %}Lz and 6 by 22:

ﬁ .
(5.45) sup AP <81 -6)2  sup APV +C)L73(1 - 6)72 sup v,
XEMtO ,r(X,l())SGLZ XE[W(),}’(X,O)SL2 XEM,,r(x,1)< %LZ’
0<<1y

Putting (5.42) (with ITJ'Q in the place of ) into the last term of (5.45), we arrive at (5.43).
[
The following statement justifies a part of the estimates in Proposition 4.2:

Proposition 5.16. If p < 1 (depending on p, q, 1), and |ty| < 1 (depending on p, q,1, p,B), then for
alltg <t <1,

(1) The statement (2) of Proposition 4.2 holds.
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(2) The profile curve of ; N (B(0, 3p) — B(0, %p)) can be parameterized by a single function as
(3.3), and (4.11) holds for all x > %p in this region.

Proof: Let’s first parameterize (a part of) the initial hypersurface X} = %, as (3.3), i.e.

X — pu(x,tp)  px + u(x, fo)
w,
V1 +u? V1+u?

where u(x, ty) is constructed in (4.1), with %p < x < 1. The (outward) unit normal vector of %, at
x = x(u(x, t), w, P) is

$), we S pesi!,

(5.46) X(u(x, tp), w, @) = (

(= — ' (x, 19))w, (1 — put’ (x, 10))p)
I+ 21T+ (x, 10)? '

According to (4.4), if p <« 1 (depending on p, ¢, !) and |ty| < 1 (depending on n, [, p, 8), then for all
1
gp S X S la

Nl‘o(x) =

u(x, tg)

’ 24 1 . —_
(5.47) | o Cxs to)l, e (v, 10)] < - minu, h,

and every point in X, N (B(0, 1) — B(0, %p)) can be parameterized as (5.46) with ép < x < 1. Now,
for 1p < x; < 1, w; € SP7L, ¢; € S71, x; = x(u(xj, to), wj, ), j = 1,2,

X1 — Xof?
1
= Ty U0 = puCar, to))eor = (xz — puCez, to)wal” + |(uxy + u(xi, 10))p1 = (uxz + u(x2, 10))¢al)
1
= Tﬂz{((xl = pu(xy, 10)) = (%2 — pua(x2, 10)))* + 2(xy — pua(xy, 1)) (x2 — pu(x2, 10))(1 = (wi, w2))

H((uxy + u(x1,10)) — (uxa + u(xa, 10)))* + 2(ux1 + u(xy, 10))(uxz + u(xa, 10))(1 = (b1, $2))}

{Ocr —pu(xy, 0)) (2 — pu(xz, 10))(1 —{w1, w2 )+ (uxy +ulxy, o)) (uxa +u(xz, 10))(1—{¢1, ¢2))}

T4l
1 2
(5.48) > 3P (1 — max{{w, w2), {1, p2)}).
For the fixed unit vector e = %\/‘—"’;‘), the “gradient function” of X, (see Theorem 5.15) at x, is
e
1+ 1) 1+ (x2, 19)?
(5.49) (Niy(x2), €)= U+ i1+ i, o)

T + u (x, 10))wr wa) + (1 — ' (x2, 1)1, 62)
By (5.48) and (5.49), there exists 0 < d = 6(p, q) < 21—0 s.t. if [x; — x| < dp, then

(5.50) (Njy(x2),€)~" < \/1 + (% min{u, u~'})?,
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namely, for any x; = X(u(x1, 70), w1, ¢1) € E;, N (BO, 3) = B0, p)) and any x, € Z;, N B(xi1, 6p),
(5.50) holds. Then (5.42) implies, there exists 0 < 0(p, g) < 6(p, g) s.t. for all X’ € T, N B(x1,0p)

< N2
and all #g < 7 < 1y + 2

= the (outward) unit normal vector of %, at X’ satisfies

(5.51) KN(x'), &)™ < \/1 + (% min{u, p~'})>.

If lro] < {225, then (5.51) holds for all tg < 7 < /.
By direct computation, the norm of the second fundamental form of %, at x = x(u(x, fp), w1, ¢1) is

" +u 1 —

) (0= DT+ (g = D)), = ulx o)

+u X — pu ux+u

According to (5.47), for x; as above, if xo € ;) N B(x1,6p),

C(p,
Ayt < S2D.
Jo,

(5.52) A, = («

1+ u’?

Applying (5.43) and (5.50), we get, for all X’ € ¥, N B(x;,6p) and all ty < t < 7,
, Clp,q)

(5.53) AP < =22

On the other hand, %, — B(0, %) is a compact hypersurface (with boundary) depending only on p, g,

so there exists 0 < € = &(p, q) < }1 s.t. for every x; € X;, — B(0, %), and x € X;) N B(x1, €), then

A, (x2)I* < C(p, q), (Niy(X2), Nyy(x1))™' < C(p,q).

Again, (5.42) implies, there exists 0 < &(p,q) < &(p,q) s.t. for all X' € I; N B(xq,&) and all
to <t <ty+&,
A < C(p, g).
Assuming dp < , this estimate holds for all #) < 7 < 7.
It’s known that %, lies in the (closed) V2(n — 1)(t — #p) neighborhood of %;, from [Wan04], Corol-

lary 2.1, and hence, for all 7o <t < #p + 2(((,51”)1), - B(0, 3 p) lies in the (closed) dp neighborhood of

%~ B0, (4§ = 8)p). Since ol < 2% and § < b for all 1o < 1 < 7. £, — B0, 1) lies in the (closed)

dp neighborhood of X,, — B(0, 4p). Therefore, for any o <t < £, and x € X, — B(0, 3p), there is

Al < SPD

which verifies (1) of this Proposition.
To prove (2), we first notice that for x;,y; > 0, w; € sp-1, ¢;€ sa-1 j=1,2,
(X101 +y161) — (w2 + y282)I* = [x1w1 — 202 + [y161 =yl
= (x1 = x2)” + 2x1200(1 = (w1, W2)) + (1 = y2)* + 2y132(1 = (B1, $2))
> (x1 — 02)* + (1 — y2)* = (x1,y1) — (2, ).
From the discussion above, for all 7y < t < 7, %, N (B(0, 3) — B(0, %p)) lies in the (closed) op

neighborhood of %;, N (B(0, %) — B(0, }Lp)). Taking the profile curve y? = v, of Z; into account,
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we deduce that for all 1y < t < 7, y, N (B%(0, %) — B(0, %p)) C U, where U is the (closed) 6p
neighborhood of y;, N (B%(0, %) - B%(0, }Lp)), and B? and B? are the open and closed balls on the
2-dimensional plane respectively. If y, is (locally) parameterized as (3.3), with

X — puu(x,t) ux+ u(x,t)

Ve e
then we may assume
|(X — pu(x, t)’ px +u(x, 1) (xo — pu(xo, fo)’ pxo + u(xo, lo))l < 3. lp <x<l,
Vit AT+ Vi+i? VI+4? 6
ie.
|Cx, u(x, 1)) = (x0, u(x0, 10))| < bp.
By (5.47),

u(x,0), _ uo, 1)l +3p _ min{u, ' Yxo + Sp . minfu, u~Hp + 5p
x T xp=0p X0 — Op B lp—dp .

If we choose 0 < 1 (depending on p, q), then

u(x, 1) 1 . _
| < 5 min{u, 1 .

| X
Moreover, by (5.49) and (5.51), (letting w; = w3, ¢1 = ¢, in (5.49),)

1
' Cx, 0 < = min{u, 7',
and from (5.52), (5.53) we know

|wmmswwm+wmﬁﬁsg%ﬂx=mmww¢>

Finally, during the flow, the curve y; N (B%(0, %) - B%(0, %p)) never leaves U N (B*(0, %) - B%(0, %p)),
and has a uniformly bounded gradient as a graph over the ray [, , (see (2.1)). At the initial time #,
Vo N (B%(0, %) - B%(0, %p)) is written globally as a (single-valued) graph over [, 4, s0 y; N (B%(0, %) -
B%(0, %p)) is always a graph over [, 4, for fy < t < i. The proof of (2) is now complete (provided
p=< é).

[

6. SMooTH ESTIMATES AND DETERMINATION OF THE CONSTANT A

In this section, we will first derive the higher order estimates in Propositions 4.2 and 4.3, and
then describe how to determine the constant A defined in the admissible condition. The main tools
come from the “standard” theory of parabolic equations, including Schauder’s estimates and Holder
continuity estimates for linear equations; see [Lie96] for a reference.

Proposition 6.1. If (3.1) holds, then we have the estimates (4.14), (4.15), (4.17) and (4.19).
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The key steps of proof are (taking (4.15) for example): estimate the Holder continuity of v and
its spatial derivative, use Schauder’s theory to obtain a smooth estimate of v, and use Schauder’s
theory again together with C? estimates obtained in the last section to get the desired result. See
Section 7 of [GS18] for details. One may use the estimates near the bottom in addition to the interior
estimates, in order to let our results “global” in time. Before deriving (4.19), a gradient estimate is
required, which can be derived using maximum principle. The equation (3.12) is singular at z = 0,
so to obtain (4.19) one should regard W as a radially symmetric function of p variables and apply
the corresponding estimates to it.

Until now, the proof of Proposition 4.3 is complete. In order to justify (4.10), we need one more
estimate for the function u(x, r), x ~ p. The argument differs from that in [GS18].

Lemma 6.2. If |tg| < 1 (depending on n, 1, p,B), then for %p <x<pth<t< £i=0,1,2,
X|ou(x, D) < Clp, g, DX,

Proof: Rewrite the equation (3.4) as

6.1) g = ——u + Lpcw + Loy,
1+ u? X x X2 x
where
_ -1 _ _
6.2) P(x) = (n-2)1 + (u u)x)’ o) n-2

(1= p)(1+ 1) T ()
From our construction of initial value, (4.1), and (3.18), we know if |fy| < 1 (depending on n, [, p, ),
then for %p <x< %p, i=0,1,2,3,
(6.3) 10.u(x, 10)] < C(n, D>,
Putting (4.11) (which holds for x > %p, by Proposition 5.16) into the equation (6.1), we get for

p<x<3p g <t<i,

G, ) < S22D.

1.e.

lu(x, 1) — u(x, ty)] <

C(p’Q)It—tol
P

Assuming further that |fy] < 1 (depending on n, [, p), for (x, t) as above, there is (by (6.3))

juCx, 0l < C(p, g, D™,
Now, fix X, = (x., t,) satisfying to < t, < f, %p < x < p. Using (4.11) again, we get

24+1
|u|0’Q(X*,%p)t0 S C(pa q’ l)p " ’ |MI|O,Q(X*,%p)t0 S C(pv Q),

1

1 _u o1 _u
T2 00 oy, T PIZP Do 1y, * P 15200k oy, < COD:

|
Also,

. ) < 2+1
Iu( ’ tO)|3,B(X*,%p) — C(nv l)p *
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Here O(X., R);, = (B(x+, R) X (£, — R?,t,)) N {t > to}, and the meaning of the norm is shown in the
following example:

2 2
IMIZWQ lulo.o + pluli.q + o [ulag + P~ [ul2sy.0.

where the subscript denotes a seminorm in which the exponents w.r.t. x are twice those w.r.t. 7, s.t.
the norm is invariant under parabolic scaling.
Applying Holder continuity estimate to (6.1), we deduce there exists a universal constant y € (0, 1)

S.t.
2
py[u]%Q(X*,%p)fo S C(p’ q’ l)p /l[+1.

According to the gradient Holder continuity estimate, we may assume for the same vy,

Py ox. ey, < CP2a:D.

Thus,
1
) “py@ ®) ;
|1 + M’2| ,0(Xs, 5P)0 pl ( )| v,0(Xs, p)o | Q(x)l,y Q(X ip )f() C(p’ q, )
Applying Schauder’s estimate to (6.1)
) 20+1
4l o b, S CP-4: P

which obviously implies the Lemma.
L]
Below we will eventually prove Proposition 4.2, as well as the main existence result Theorem
4.5:

Proposition 6.3. If A > 1 (depending on p,q,l), p < 1, B> 1, R > 1 (depending on p,q,l,\),
and ty > 1 (depending on p, q, 1, \, B, R), then Proposition 4.2 holds.

Proof: Actually, (1) is exactly (5.14), and (2) is shown in Proposition 5.16, (1). (4.11) is proved
in Proposition 5.16, (2), and (4.12) is implied by (4.19), provided 8 > 1 (depending on p, q, ).
The statement “The profile curve of X, N (B(0, 3p) — B(0, %ﬁ(—t)%”’ )) can be parameterized by a
single function as (3.3)” is a consequence of the admissible condition (2), (3), Proposition 5.16,
(2), and the C° and C! estimates in (4.12), and the statement “The profile curve of X; N B(0, 3p)
can be parameterized by a single function as (3.2)” follows from the admissible condition (2), and
Proposition 5.16, (2), especially (4.11).

Now, it remains to prove (4.10). By Lemma 6.2, if A > 1 (depending on p, g, [), then (4.10) holds
for3p<x<p,ty<t<i.

By (3.18), for x > vV=1,i=0,1,2,

.k 1 X
KA(—= (=" 20 (—=))| < C(n, D4,
X ¢ @1 \/—_[
Thus by (4.14), if we choose R > 1, p < 1 (depending on p, g, [, A), then

o 3 o
ﬂ%mLmscmﬁﬁmﬁRVSstZmmsrsni=aLz
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and (4.10) holds for (x, ¢) as above, provided A > 1 (depending on n, [).
Again, by (3.18), fory > 0,i=0,1,2,

ok ,

IO e eI < Cln e (" + .

Thus by (4.15), if we choose s¢9 > 1 (depending on p, q, [, A, 8, R), then
yila;v(y’ S)| < C(n, l)e—/l/S(y(I +y2/11+1), e—%()'/s <y< R, s0< s < sz’ i= O, 1’2,
i.e.
Ao u(x, 0] < Cln, D((=t)x + 24N, (=227 < x <RV=1, tg <t <4, i=0,1,2,
and (4.10) holds for (x, ¢) as above, provided A > 1 (depending on 7, [).
7 M —os ;7 —

By (2.13), for y > ¢+(0) We ,i=0,1,2,

Y18 (e (e y)| < C(p. e *y".
Thus by (4.17), if we choose 8 > 1 (depending on p, g, [, A), then

L 3
Y10 v(y, $)| < C(p, ey, BT <y eI gy <s<3,i=0,1,2,
1.e. 3
A u(x, 1) < C(p, g)(—1)x*, Eﬁ(—z)%“’f <x< (=02 o <t<i i=0,1,2,

and (4.10) holds for (x, ¢) as above, provided A > 1 (depending on p, g).

B 28 .
By (2.14), f = <z< =0,1,2,
y ( ), for e Z=< ok i , 1,

Z10.W0n(2) - p2)l < C(p @z
Thus by (4.19), if we choose 8 > 1 (depending on p, g, [), then
1
2 LB
V1 V1 + 2

— B . .
Z0,(W(z, 7) — uz)l < C(p, 9)z", —— <z To<7T<t i=0,1,2.
+u

Using the linear transform
X+uy —px+y

T(x,y)=( , ,
VI+p2 1+u2
we let
T(z,w(z,7)) = (21, w(z1, 7)),
then
Wz, 1) —pz Wizt -p 22 W(z,7)
B e —— ’ :A—9 ’ = 1+ 2,\—9
ME D= T e DT e Y S O o Ty
and

1

2B 2B

<z<

1+ u? Vit 2

T0<7<7,1=0,1,2.

Z10tw(z1, 1)l < C(p, 9)2%,

47
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If 8> 1 (depending on p, g), then z; = mz, and thus
o DI < Cp ), B< o< 3B, o ST =01,
ie.
X0u(x, D] < Clp, )(=1)x, B(=1)T+" < x < %ﬁ(—r)%“ﬂ, n<t<i i=0,1,2,

and (4.10) holds for (x, ¢) as above, provided A > 1 (depending on p, g). The proof is finished.

[

7. VANISHING THEOREMS OF PARABOLIC EQUATIONS ON LAWSON’S CONES AND THE RELATED MINIMAL
HYPERSURFACES

In order to bound the mean curvature of the MCF solution we have constructed above near the
singularity, we need a blow up argument as in [Sto23], which further requires some ‘“vanishing
theorems” for solutions to a kind of linear parabolic equations like d;u = (A + |A|*)u on the limit
spaces (Lawson’s cone C), ;, and the related minimal hypersurface My), with certain growth control.
Actually the right-hand side of the equation is the so-called “Jacobi operator” of hypersurfaces,
which is closely related to the stability of such minimal hypersurfaces. We present the following
results, which can be proved similarly to those in [Sto23]:

Theorem 7.1. Let u = u(|x|, t) be a smooth, radially symmetric, ancient solution to
O = Mgt + 1A pg P, (X, 1) € My X (—00,0]

for some k > 0, where Ay, Ap, denote the Laplacian and the second fundamental form of My
respectively. If there exists C > 0 and 6 > 0 s.t.

jux, 0] < C(1+ XD, (x,1) € My X (=0, 0],
thenu = 0.
Theorem 7.2. Let u = u(|x|, t) be a smooth, radially symmetric, ancient solution to
O = Ac, u+lAc,,Pu, (x,1) € (Cpqy—{0}) X (=00,0].
If there exists C > 0and 0 <6 <n—3 +2a s.t.
ju(x,1)] < CIXI*, (%,1) € (Cpg = 0}) X (~20, 0],

then u = 0.

8. BOUNDEDNESS OF THE MEAN CURVATURE

In this section, we will show the mean curvature of Veldzquez’s solution {X?} = {X;}, obtained
in Theorem 4.5, remains bounded up to the singular time ¢ = 0, provided the parameter [ is suffi-
ciently large. In the outer region [x| > V~7, the boundedness of mean curvature is in fact a direct
consequence of the estimates obtained in Proposition 4.2.
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Proposition 8.1. [fp < 1 (depending on p,q,l, A), then

sup |Hs, (X)| < +o0,
xeX,—B(0,V=1)

to<t<0

where Hs (X) is the mean curvature of X; at X.
Proof: First of all, by (2) of Proposition 4.2,

sup  |Hx,(X)] < C(p.q,p) < +oo.
xeX,~B(0,20)
tp<t<0
To estimate the remaining part, it’s not hard to compute directly that if a planar curve has the form
(3.3), then the mean curvature (w.r.t. the upward unit vector) of the corresponding O(p) X O(q)

invariant hypersurface at (=% lu(x’zt)a), = )\7%) ®) (w € SP7!, ¢ € S971), which is denoted by H(u(x, 1)),
+u i
is
l 144 l,l+ /
H 1) = +(p—-1 —(g-1
we0) = = * )x (g )ux+u)
1 u” u
(8.1 P(— ) + 0(= )—)

+
Vi e

where P, Q are defined in (6.2). For the part of the profile curve (3.3) lying in B(0, 3p), if x > p,
then (4.11) gives a bound of H(u(x,t)). If % v—t < x < p, then by (4.10), we also have IM(%’Z)I <
%min{,u,,u‘l}, provided p < 1 (depending on p,q, [, A), and thus P(%), Q(3) are bounded. Then
(4.10) also gives a bound of H(u(x, t)). Since the part of the profile curve (3.3) lying in B%(0, 3p) —
B%(0, v/—t) is covered by the two cases above, the proof is complete.
L]
To bound the mean curvature in the intermediate and tip regions, we employ a blow up argu-
ment as in [Sto23], which in addition requires some convergence results of certain rescaled flows.
They are presented in the following two lemmas, which can be derived from the estimates in in
Proposition 4.3. For two sequences of real numbers {a;}, {b;}, we write a; < b; if a; = o(b;) as
1 — 400,

Lemma 8.2. For any sequence to <t;<0,; /0, and \; = (— tl) ~91, the sequence of flows
= AiZg4 . (f0 = A? < T < —t;A?

converges smoothly to My, (a stationary MCF ) in any bounded space-time region in R" X R.

Proof: By Proposition 4.2, i’T N B(0,3pA;) can be parameterized as (x, iz;(x, 7)) (see (3.2)), and
£L N (B(0,3pA) — B0, 1B(—1; — A;ZT)%_HT’A[)) can be parameterized as (ZHU) prHu(E)y (oo

V142 ’ Vi+?

(3.3)). Thus it suﬂiceis to consider the convergence of i; and u;.
By the definition of X and (3.11),

1
fi(x, 7) = Ni(AT x, 1+ AP T) = Al-(—ti—A;%ﬁ”%(z\;l(—ti—A;ZT)*%*‘”)x, 27l(—z,-—z\,.—zr)—zm)
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1
= (1= (=101 = (1)) e, (1) (L =717 ).
o

According to (4.19), for any M > 0, w(x
2B
1+2°

interval, and sz(_;i)—an (1=7(=1;)%71)~201 zim(—t,-)_zc” converges smoothly to T on any bounded 7-

, zim(—ti)‘z"’ + 7) converges smoothly to f(x) on 0 < x <

lt| < M. Since 1 — 7(—#;)?"" and all its powers converge smoothly to 1 on any bounded 7-

interval, forany 0 < € < 1 < M, i@1;(x, T) converges smoothly to &k(x) on [0, 2—ﬁ(l —e)|xX[-M, M].
Viee

Similarly,
1
i, 7) = (1 = T(=1)* ) T (1 = (=), 2 (21 2T = T(=1)* ),
o
According to (4.17),

e T o a
Zm+2r|a;naf;(w(z’ ) — Y@ < C(p,q,1, A,m, )" (T_o) 0,

for %[3 <z< (20'17')? T > 79, m,r > 0. Due to the same reason as above, u;(x,T) converges
smoothly to ¥(x) on [%/3(1 + €), M] X [-M, M]. Therefore, the profile curve of i’T converges
smoothly to the profile curve of My in any bounded space-time region. Moreover, since the even
extensions of i;(-, 7) and § are smooth, the flow £ also converges to M; in the desired way.

[

Lemma 8.3. For any sequence to < t; < 0, t; /0, and any sequence {\;} s.t. (—ti)‘% < A<
(—t,-)_%“”, the sequence of flows

Si= AiZye gy (1= 1A} < T < —t;A?
converges smoothly to Cp, 4 (a stationary MCF) in any compact space-time region in (R" —{0}) X R.

Proof: By Proposition 4.2, i’T N (B(0,3pA;) — B(0, %ﬁ(—ti - Ai‘z‘r)%*"l/\i)) can be parameterized as
(x—;mi(x,t) px+ui(x,t)

By (4.15) and (3.18), for €271 < y<1,s> s> 50, mr >0,
ym+2r|8’;18§v(y, $)| < Cn, I,m, r)e”45y?.

) (see (3.3)). Thus it suffices to consider the convergence of u;.

Set ¥(y, s) = e” 7 yYr(e®y). According to (2.13), in the domain of v, y > U (0) \/’“’_Ze‘””, there
+

l+u
holds for all integers m, r > 0 : (note k ~ 1):

(82) 18355y, ) < Clp, g, m, r)e " y* ™.

Now (4.17), (8.2) tell us, for 38e™715 < y < ¢35, 5 > s,

(8.3) YOI, ) < C(p, g, 1, A, m,r)e ™ y*

Thus, (8.3) holds for %ﬁe"r"" <y <1,s > s;. By the definition of i’, and (3.7),

wi(x,7) = Au(AT x 1+ A7) = A=t = A2 T 0(AT (=t — AT20) 2 x, — In(=1; — A7)
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2 1 2 _1 Y

= (=6iA] = DI(=6AF = )72, = In(=1; = A7),

Therefore, if %ﬂ(—li - A;ZT)%"’G'IAI' <x< (—z‘l-[\i2 — 7-)%’ > A%(—e_sl -1),
X2 ui(x, 7)) < C(p, g, 1, A, m, r)(—t; — AZZT)(I_”)(%”’)A}“’x".

Since (—1;)"* < A; < (~1;)"2!, on any bounded 7-interval, (—#; — Ai‘2r)(1‘a)(%+"l)A}‘“ - 0
uniformly, and (—t,-—Ai‘ZT)%WIAi — 0, (—tiAl.z—T)% — 400 uniformly. Also, Al.z(—e“‘1 —1) > —o0,
which implies for any M > 1, u;(x,7) — 0 smoothly on [M~, M] x [-M, M], and the flow i’T also
converges to C,, in the desired way.
L]
The next proposition bounds the mean curvature in the intermediate and tip regions:

Proposition 84. If —a <a < 1-«, and
a 1
4 l-—)—-=-2>0,
(8.4) M=) =52

then 1
sup (1 + (=)@ |x|)?|Hy, (%)| < +oo.

x€Z,NB(0, V=1)
1p<t<0

Proof: Suppose our assertion is not true, then there exists a sequence 1o < 7; /" 0 s.t.
1
Mi:= sup (1+ (=07 X)) Hy, (®)] = +oo,
X€X,NB(0, V-1

to<t<T;

and thus we can find ¢; € [to, T;] and x; € &, N B(0, v/=1;) s.t.
(8.5) (I+ (_li)_(%er)lXil)alHZ,i(Xi)| = M;.

After passing to a subsequence, there are several possibilities of the behabior of the sequence (x;, t;)
as i — +oo:
1
(1) Ixil = O((—t;)2%).
() 1) < x| < V-t
Q) Ixi| ~ v=t; (i.e. [xi| = O(v/=1;) and v—1; = O(|xy])).

When (1) happens, define a sequence of rescaled flows as

£ = Ay o, (- )A] ST <0,
A%

where A; = (—ti)‘%“”. Then

Mi=  sup  (1+ (=" T Vx| Hy, (%)
x€X,NB(0, V-1)
10 <t<t;
_ (L _
= sup (1 + (=1, = AP0 TNy AdlHs: (v)).
yeSinB(0, \/~1;A?-1)

(to—t)A?<7<0
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Now, define functions u; : £. — R as
A;
ui(y,7) = ﬁ’iHi;(Y)

(the sign of H can be chosen, e.g. corresponding to the outer unit normal vector). According to
[EH91], Lemma 1.1, (iv), along the mean curvature flow (whose velocity equals the mean curva-
ture), u; satisfies
Ozt = Agiu; + |Asi Puj,
and
(1+ (1 = A0 T Ay iy, 1)) < 1, y € £ 0 BO, \[-68% = 1), (to — t)A? < 70,
(1 + lyi)*ui(yi, Ol = 1(y; = Aixy).

Since A;! < y/=1;,asi — +oo, (fo—1;)A? — —o0, ‘/—z,-Af — T — 400, (—t;— Ai—zf)—@wz\;l -1
uniformly on compact 7-intervals, and in particular {u;} are uniformly bounded in any bounded
space-time region. By Lemma 8.2, the sequence of flows {X} converges to the stationary flow My

locally smoothly, and thus, using Schauder’s estimate, we may assume (by passing to a subsequence
if necessary) that {u;} converges locally smoothly to a smooth ancient solution u, to

Orlloo = Apflico + IAMk|2uc>o’

defined on My X (—o0, 0], satistying

(8.6) luoo(y, DI < (1 + lyD™

on this domain. Since y; = A;x; are uniformly bounded, we may also assume y; — Yoo € My, with
lttoo(Yoos O) = (1 + [yee])™ > 0.

But (8.6) and Theorem 7.1 imply us = O (note that —a < @), which is impossible.
When (2) happens, define a sequence of rescaled flows as

SUNN -1 -2
Zfr = |Xi| Zti+|xi|27’ (t() - ti)|Xi| <7< 0.

Then 1
Mi= sup (1 + (=) 2" |x|)*|Hy,(x)|
xXeX,NB(0, V=1)
10 <t<t;
(L _
= sup (1 + (= = [P x| [y Ixd ™" [Hs: (¥

yeZinB(0, V—tilx;|"2-7)
(to—t)lx;|2<7<0

-1 2_\—(4 -1
> sup (A (=t = PTG AL x|y || Hs ()L,
yEiiﬁB(O, —l‘,‘|X,’|_2—T)
(to—t)Ix;| "2 <7<0

1 . ~.
where A; = (—t;)"277". Now, define functions u; : 2! — R as
Ad[x;[97!

ui(y,7) = YA
l

Hsi(y).



BLOW UP OF COMPACT MEAN CURVATURE FLOW SOLUTIONS WITH BOUNDED MEAN CURVATURE 53

Again, along the mean curvature flow (whose velocity equals the mean curvature), u; satisfies
Ozt = Asiu; + |Asi Puj,
and
(A7 (=t = %Py G0y h(y, T < 1, y € £ BO, V=iixil 2 = 1), (to — t)Ixil 2 <7 <0,
(1 il AT iy O] = 1(yi = il o).

Since A7 < |x;| < v=Tj, as i — +00, (tg — 1)[xi 7> = —oo, (L + x| ' AT - 1, \/—tilx;| 2 -7 >
+00, (Ai_l(—ti - |X,'|2T)_(%+(T D)* — 1 uniformly on compact 7-intervals, and in particular {i;} are
uniformly bounded in any compact space-time region in (R" — {0}) X (—0,0]. By Lemma 8.3,
the sequence of flows {X!} converges to the stationary flow C,,, locally smoothly, and thus, using

Schauder’s estimate, we may assume (by passing to a subsequence if necessary) that {«;} converges
locally smoothly to a smooth ancient solution us, to

Orteo = A, Uioo + |Ac, ,[Ftlco
defined on (C) 4 — {0}) X (=00, 0], satistying
(8.7) luoo(y, T < Iy
on this domain. Since u;, u, are radially symmetric, for all yoo € Cp 4, [yool = 1,
[Uoo (Yoo, 0) = 1 > 0.

But (8.7) and Theorem 7.2 imply us, = O (note that « — (n —3 + 2a) < @ — 1 < —a < @), which is
impossible.

When (3) happens, then there exists 0 < € < 1 s.t. for all i large enough, x; = (344 (). K x"+”(x"’2t")¢,-),

Vin2 Visg?
with w; € SP7!, ¢; € ST71, ey/=1; < x; < \/—1;. By the formula (8.1) and the estimate (4.10),

|Hs, (x)] < C(—y""2,
where C > 0 is independent of i. Thus,
(1 + (=) ) Hy, (x)] < C(=1;y17379 < € < +oo,

since A; — % — ao = 0, which contradicts to (8.5).
Because all the possible cases are impossible, our assertion follows.

Corollary 8.5. Ifn>9,1>3,0orn=28,1 >4, then
sup |Hs, (X)| < +oo.
xe%,NB(0, V=1)
to<t<0

Proof: The condition (8.4) is equivalent to

a<(l-a)d- 2%11)'
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Since we also require —a < a < 1 — @, such « exists iff

a(:)l>1—a,

1
ca<-ol-3 64>

whichis true iffn > 9,1 > 3, orn = 8, [ > 4. Choosing a satisfying the conditions above and noting

(1+ (—t)‘(%” D|x|)? > 1, this corollary is a direct consequence of Proposition 8.4.
L]
The main Theorem 1.4 follows from Theorem 4.5, Proposition 8.1, and Corollary 8.5.

Remark 8.6. Using the blow up argument in Proposition 8.4, one can prove for any € > 0,

1
sup (—1)277"€|Hy, (X)| < +oo
xeX,; th<t<0
ifl =2, or
sup  (—1)¢|Hsx,(x)| < 400
xeX,;,th<t<0
ifn =8, | = 3. Actually, in order to derive a contradiction, the assertion in Proposition 8.4 should
be
1 1
sup (=027 + (=) V|| Hy, (X)] < +o00
xeX;NB(0, V=1)
tp<t<0

with—a <a < (1 -a)1 - A (o - €) if | =2, or

sup  (=0°(1 + (=) G |x|)| Hy, (x)] < +00

x€X,NB(0, V=1)
1p<t<0

with—a<a<(l-a)1-'G-€)ifn=81=3.
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