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Abstract

The quantum states of an ellipsoidal nanocluster of a heterophase system 7Ind4s/Gads are
studied using an exact analytical approach, in contrast to the generally accepted theoretical
model based on the adiabatic approximation. It is shown that the spectrum of a nanoobject
is formed from local groups, consisting of discrete levels, separated by terahertz frequency
intervals. A double random degeneration of certain spectrum states is revealed. Allowed
mid-infrared (IR) optical transitions between different spectral states are analyzed. The role
of dimensional parameters and features of the shape of a nanoobject in the characteristics
of unipolar transitions is assessed. The absorption spectrum for the transition in the lower
part of the substructure spectrum is calculated.
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1. Introduction

The development of efficient semiconductor radiation sources in the mid-IR range is of great
practical importance in key areas of science and technology. The creation of lasers of this kind
is associated with certain difficulties, for the solution of which they usually resort to the use
of growth technologies of heterostructures, superlattices and multicomponent solid solutions
with a variable band gap. For these purposes, unipolar quantum cascade lasers, as well as
interband lasers based on lead chalcogenides, are more often used. At the same time, the
promise of using structures with quantum dots (QDs) in radiation sources in the noted range
is obvious. This is due to the well-known advantages of QDs over structures with quantum
wells with two-dimensional electron gas [1], [2]. Epitaxial crystallization methods provide the
opportunity for targeted profiling of the geometry and holding potential of QDs for specific
practical purposes. This is the key to the formation of an optimal spectrum of states and
selection rules for interlevel transitions in order to ensure the desired radiative process, where
the sources are the structural components of the nanomedium. In particular, during the self-
organized growth of epitaxial /n4s on the Gads substrate, disk-shaped islands with vertical
dimensions of several nanometers and lateral dimensions of several tens of nanometers (
20 —100nm ) are formed, which can be attributed to the shape of a highly oblate ellipsoid of
revolution [3-8]. Below, for the model of a highly oblate ellipsoidal (HOE) QD system
InAs / GaAs , within the framework of the approach [7], allowing an exact solution with
complete separation of variables, the features of the energy spectrum, selection rules and
oscillator strengths for intraband radiative transitions between levels of the lower part of the
c—zone spectrum are studied (Fig.1). As a detailed theoretical analysis shows, the energy



spectrum of an HOE cluster consists of discrete families of levels separated by wide forbidden
intervals. Each family consists of closely spaced dimensional quantization levels, the interlevel
intervals of which correspond to the terahertz range. At the same time, the fact that some of
the discrete states corresponding to such levels are degenerate has been established. This
work analyzes the nature of unipolar transitions under the conditions of quantum limitation
of the ellipsoidal geometry of HOE QDs. Transitions between certain levels of neighboring
discrete families in the lower part of the spectrum, allowed by selection rules, correspond to
the mid-IR range. Such transitions, due to the possibility of suppressing the role of non-
radiative processes, can become the basis for the generation of mid-IR radiation. Indeed,
lattice absorption near the frequencies of optical phonons, due to the strong spatial limitation
and localization of lattice vibrational modes in an ellipsoidal nanocluster, can be significantly
suppressed with an appropriate choice of elastic parameters of the heterophase system. So,
the mechanism of unipolar transitions under consideration can be used as a possible
embodiment of laser lasing in the mid-IR range, using an HOE QD array as a working medium,
as well as in quantum-sized IR photodetectors. It should be noted that for structures of the
specified geometry, the adiabatic approximation is usually used, within which the concept of
“fast” and “slow” subsystems is acceptable, representing, respectively, the movement along
the short dimension of the ellipsoidal cluster and in its cross section. And when averaging the
states of the “slow” subsystem over the states of the “fast” subsystem, motion in the
transverse plane for weakly excited states is reduced to the model of a plane oscillator. This
formulation of the problem leads to an equidistant spectrum of levels and to its own system
of allowed and forbidden transitions, in accordance with certain selection rules [5], which are
radically different from the results and physical consequences derived below for the exact
solution. It is also worth pointing out a number of alternative approaches [9-10], which
emphasizes the relevance of studying objects of the chosen geometry.

2. Quantum states of the HOE cluster

For the HOE QD model, with an isotropic quadratic law of electron dispersion, a quasi-

spherical system of ellipsoidal coordinates x =nrsinfcosg,y =nrsin@sing,z=rcosé is
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introduced, where the surface of the ellipsoid of revolution —=—+— =1,a =cn has the
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form of a sphere with radius 7 =c and 0< @ <27,0<0<7,0<r<c [7].

Fig.1. Ellipsoid of revolution diagram



Stationary states in a rectangular potential well of finite depth in the form of HOE QD in the
effective mass approximation are determined by the Schrédinger equation.
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In the limiting case of a strongly oblate ellipsoid (7> 1, where n=2_is the degree of
c

oblateness of the ellipsoid), by introducing a cylindrical radius p =7siné,0< p < ¢ instead of
the polar angle @, we can proceed to orthogonal curvilinear coordinates r, p, ¢, with a

volume element dV = n® pd pdrdp. The form of the Laplacian in the system », p,
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constructed using the Lamé coefficients H =1,H, =n,H,=np in the parabolic

approximation, allows complete separation of variables and leads to a solution for the wave
function of the particle
w = Nexp(iMp)J,, (pnp)cos(kr) (1)
Here J,, — is the Bessel function. k,p—are discrete components of the particle wave
vector, which, based on the boundary conditions for the variables 7, p, ¢, determine the
energy spectrum
E=E(k)+E(p) 2)
N — is a normalization constant. That is, the spectrum of electrons in such QDs is formed
from the levels of two possible states of motion in an ellipsoidal well. The first type of

motion occurs along a short dimension of the disk, which corresponds to the basic structure
272
—, with large distances between levels. The

c

conditions for the continuity of the wave function of the carrier motion along the radial

of the spectrum of the electron E (k)=

direction of the sphere and its derivative on the surface of the sphere with radius
r =c = const in the system r, p, ¢ lead to the standard dispersion equation

q ._2m
tg(ke) =7 .q" == (AE-E(k)) (3)
Here m, — is the mass of the carrier in the matrix Gads, g— is the decay rate of the
exponential decay of the wave function in Ga4s. At 7 =0, the magnitude of the potential

step at the heterointerface in the ¢—zone AE =0,7eV, the effective mass of the electron

in Inds - m. =0,027m,, and in Gads - m_, =0,065m,,, and at the average thickness of the

cluster 2c¢ =24 A", the solution of the dispersion equation (3) leads to the value of the
energy E(k)=0,523eV at k¢ =0,73. The second type of motion, not equivalent to the

first, occurs in the transverse plane of the disk, forming a substructure of closely spaced
2 2
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levels of the spectrum of the QD £ ( p) = 5 L
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which is determined by the conditions of

cyclicity of the wave function in the variables @ (i.e., in p) and in ¢ . When inverting

spatial coordinates, the wave function (1) is transformed according to the —)(—1)M 14



law. So in a one-particle problem, the parity of the state in p coincides with the parity of
the number M , where M =0,1,2,3,..., due to the periodicity of y in the variable ¢. To

demonstrate the cyclicity of the wave function y in @ (i.e.,in p ), we choose the interval
of change of @ as —% <O< %, and accordingly —c < p <c. Then the conditions for the

cyclicity of the wave function in @ along the surface of the QD, in accordance with (1),
are represented in the form

Jy (pnc)=J,, (—pnc) (4)
Jy (pne)=J,, (—pnc) (5)
Since for odd M
Iy (—=pnc)=—J,, (pnc)
then the cyclicity condition (4) leads to a dispersion equation for determining the
substructure levels for odd A
Jy (YS(M))=O,YS(M)=pnc=pa,M=l,3,... (6)
Here Y (M)— are the dimensionless roots of the Bessel functions, which are characterized
by the number 5. For even M we have J/, (—pnc)=—J,, (pnc), so condition (5) leads to
the conclusion
g, (ZS (M))zO,ZS (M) = pnc=pa,M =0,2,4,... (7)
where Z (M )— are the dimensionless roots of the derivative of the Bessel functions. That
is, for even M , condition (7) can be used as a dispersion equation. As a result of the analysis

in Table 1, Fig. 2 and Fig. 3 present a fragment of the lower part of the spectrum of the ¢—
zone of the HOE QD in the form of tabulated energy values and the relative location of the

electronic levels E(f,M,S) =E(k )-l-E ( p) of the substructure, corresponding to a certain
(lowest) level of the main structure. f — is a quantum number characterizing the level of
the main structure, M, S — are the quantum numbers of substructure levels. In this case, in

a QD of composition /n4s in the matrix Gads, only one electronic level of the main
structure, i.e. f =1, is usually placed.

E(HS) —0,9615¢V (125) =0,9473¢V | E,,; =1.334eV
(105) =0,6289%¢V | E,,, =0,6289¢V | E,,, =0.6157eV | E,,, =0,9325¢V
oy =0.366%V | E, ., =0,3669V | E, =0,3516eV | E,,, =0,6eV

E,, =0.3376eV
Ejy =0.1745¢V | B, =0,1745¢V | E,,, =0,1591eV
Ejp) =0.052¢V | B, =0,052¢V | E,, =0,033eV | E,, =0,1443¢V
M =0 M=1 M=2 M =3

Table 1. Energy levels of the ¢ — zone substructure with cluster parameters 2¢ =24 4" 2a =400A4°
,corresponding to the size-quantized level of the main structure f =1.



Note that the substructure levels that actually appear in the QD HOE are located in the
I(k) =AE, —E(k) =0,177eV energy interval (lower part of Table 1). So, given the thickness

2c=244", diameter D=2a =4004" and the value of the interval I(k), a total of 5

electronic levels E are placed in the cluster in the parabolic approximation for the

(f:M.S)
energy spectrum of electrons in /nds: E(m),E(m),E(m),E(lzz),E(Hz). And of these levels

E(102) = E(111)’E(103) = E(uz) (8)
are doubly degenerate, which is obvious from the relationship between the zeros of the Bessel
function and the derivative of the Bessel function Z (0)=Y_, (1) [8]. The doubly degenerate

levels of the HOE QD spectrum correspond to the following pairs of eigenfunctions

{(102),(111)};{(103),(112)} 9)
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Fig.2. Configuration of the spectrum of the ¢ — zone of the HOE QD depending on the quantum numbers
f=1,M,S for the cluster parameters 2¢ =24 4" and 2a =4004".
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Fig.3. Energy level diagram and allowed transitions of the HOE cluster for parameters 2¢ =24 A",

2a =4004" and f =1

3. Electrodipole transitions between states of the c¢—zone of the size-quantized
spectrum of the HOE QD

The nature of intraband dipole electrical transitions between states of the substructure is
determined by the strength of the transition oscillator m — k
2m.w,,

el I8} (10)

here £ =( M S’) and m=( fMS) denote the states of different levels of the c¢—zone

FP =

(k = m), the state functions of which are orthogonal at M = M’, where f=f"=1, @, —

are the transition frequency, and y, = <k| p| m> Here, for non-degenerate states we have

1
Hyy = 28N\ NI [ T3 (W (M) x) T, (W (M) x) el
0
where WS(M):YS(M), for odd Ar, WS(M)zZS(M)for even M, x:B,
c

Ib ::EE 1+

c( suzl;kcj’c:mnm_ is the thickness of the HOE cluster,
C

1 o
N, = 77 — are normalization constants.

1
2
Zﬂazj[JM (WS (M)x)} xdx -1,
0
In the case of a transition between degenerate states




i=l j=1

| J7H (11)

where g, g, —are the multiplicities of degeneracy of the levels involved in the dipole
transition. In the lower part of the spectrum of the HOE QD substructure, one can note a
series of allowed optical transitions, the intensities of which can be characterized by the
values of the oscillator strengths (Table 2).

Wavelength, mkm Transition Oscillator strength ‘kan ‘
2,9621 {(102),(111)} > {(103),(112)} 0,00332
2,8775 (121) N (122) 0,00255
1,8850 (122)_>(123) 0,00548
1,8859 {(103),(112)} > {(104),(113)} 0,01527
1,8772 (131)_>(132) 0,00339
1,3849 {(104),(113)} > {(105),(114)} 0,02126

Table 2. Oscillator strength for some transitions in the lower part of the spectrum of the HOE QD
substructure.

In a nanocluster with parameters 2c=244", 2a=4004", I1(k)=0,177eV, possible

transitions in the mid-IR range occur (upper part of Table 2)
{(102),(111)} -122,5meV —{(103),(112)};(121)-126,1meV” —(122).

Moreover, for the transition between non-degenerate states (121) —(122) we have

. =(122)] o 120))
and for the transition between degenerate states {(102),(1 1 l)} - {(103),(1 12)}

i =)((103)| p|(102)) +[((112)] o] (111

It is obvious that by varying the structural parameters a,c,l(k), it is possible, for practical

purposes, to increase the number of states of the substructure corresponding to a certain size-
quantized level of the main structure, which actually appear in the quantum well of the HOE
QD. This will make it possible to use a system of discrete families of substructure levels to
study, in particular, cascade processes of carrier relaxation under conditions of size
quantization.

Of great practical importance is the identification of possible changes in the charge
configuration of the system during unipolar transitions between states of individual families
of levels. This purpose can be served, first of all, by calculating the dipole moments of the
states of HOE QDs in the transverse direction, perpendicular to the growth axis of the



structure. Since solution (1) has a certain parity, it is obvious that when inverting coordinates,
the probability density does not change. That is, the charge distribution in non-degenerate
states (1) has a center of symmetry and the electric dipole moment in the transverse plane is
equal to zero. A similar picture occurs for degenerate states of HOE QDs. This can be verified
by constructing for degenerate quantum states (9) orthogonal superposition basis vectors

Vo) EV
)~ \/5

dipole moments in the transverse direction d:ej.w*i(j)(r,p,go)ﬂ//i(j) (7,p.@)dV . Here, in

without a certain parity, such as the combination . , and calculating the

contrast to the hydrogen atom, which is characterized by /—degeneracy (/- is the orbital

guantum number), transitions between the states of the degenerate pair Y 102) and y,,, are

prohibited by selection rules. So there is no mixing of degenerate states with the same energy
Y02 v,,,and, accordingly, the formation of their own dipole moment [11-14]. In the group

of states belonging to degenerate levels (8), the electric moment can appear only as a result
of polarization in an external electric field, leading to splitting of the levels and removal of
degeneracy.
During electric-dipole transitions between levels of the substructure, in an axially symmetric
field of an ellipsoidal cluster, the law of conservation of the projection of the total moment is
satisfied

J=J +J

zph?

(12)
where J_,J! — are the projections of the total moment on the z axis, respectively, for the
initial and final states of the quantum system involved in the transition, Sy — 18 the projection

of the total moment of the electric dipole radiation. Taking into account the fact that the spin
state of a quantum system does not change during a dipole electric transition, (12) takes the
form (in units of %)

M’ :M_|_szh, (13)

Equation (13) is consistent with the selection rule for the quantum number M only in the
case of radiation linearly polarized in the transverse plane, for which I =0.

4. Optical absorption in an HOE QD array

From the point of view of the practical implementation of “self-organized” structures during
epitaxy of strongly mismatched materials /nAs and GaAs, the analysis of optical absorption
during unipolar transitions in HOE QDs is relevant. This is important, in particular, for the
design of such unipolar device structures as quantum-sized IR photodetectors. It is also of
interest to study the influence of the anisotropy factor of the quantum confinement shape on
the absorption coefficient and sensitivity of photoreception in the IR range during transitions
between states of the substructure of the HOE QD spectrum. Let's calculate the absorption
coefficients using the following expression [15] (Fig. 4)
)
N.—N.)|d.| o.
052( J l) U Ué’g(”awg) (14)
2hcynyg,




where N, N, — are the concentrations of QDs in the states involved in the transition |]> —>|i>

, gG<a),a)l.j)— is the spectral (Gaussian) form factor describing the inhomogeneous

broadening of the absorption spectrum of QDs due to their size dispersion, n,— is the
refractive index of the medium, ¢, — is the speed of light, ¢, — is the electrical constant,
Aw, — is the total width Gaussian line at half-maximum level. The value of the absorption

47rn2
coefficient at the center of the broadening band is obtained by substituting g;* = %
Wg
into (14). And the maximum absorption during an allowed transition from the lowest state
(121) — (122) is the following

- 2

N|d.| o

Q. =2N7ln2 17 (15)

hAwgn,c,&,
where =(12l),i:(122), ‘C_l;l]‘ ~e-0,169nm, w, =1,9158-10"s7", n,=3,3, N—is the
concentration of absorbing centers (near equilibrium N = N(m) )). Table (3) shows the

values of the absorption coefficient in the center of the spectral absorption band at the
volume concentration of QDs 10" cm™ when A, ~ (0,15.1014 —1,5-1014)s‘1.

>>N(

122

Aw, (s’l) A (cm’l)
0,15-10" 29,76
0,675-10" 6,847
1,5-10" 2,98

Table 3. Calculated values of Ao in an environment with HOE QD.




Fig.4. Absorption line for the (121)—(122) transition in the HOE QD medium of the
heterophase system Inds/Gads:blue line - Aw,=0,15-10"s", yellow line -
Aw, =0,675-10"s7", green line -Aw, =1,5-10"s7".

5 The discussion of the results

Analysis of quantum states shows that the spectrum of the HOE QD substructure, related to a
certain (f = 1) level of the main structure, is formed from discrete families of

E L E\Es LB E i E sy By E 5. levels, separated by wide forbidden intervals
%/_/

& & &
& —&=923meV;e,—&, =163,1meV;.... Moreover, certain levels of each family

(E111=E|12>E113aE1|4»E115>---) are doubly degenerate. In particular, the spectrum of the

considered nanoobject of the heterophase system Inds/ GaAs contains the first two families
g and g,. Each family consists of closely spaced dimensional quantization levels, the

interlevel intervals of which correspond to the terahertz range. It can be assumed that with
increasing state energy, the localization region of the electron narrows, moving away from the
transverse plane of the maximum cross section of the HOE QD. This in turn leads to an increase
in the degree of overlap of the wave functions of the states involved in unipolar transitions,
as a consequence of the convergence of their localization regions and, accordingly, to an
increase in the strengths of the transition oscillator as one moves up the energy scale (Table
2). The fact of random degeneration of the levels noted above determines a number of
features of the system’s behavior. Thus, a comparison of the data in Table 2 leads to the
conclusion that transitions between neighboring degenerate

{(102),(111)} = {(103),(112)};{(103),(112)} - {(104),(113)};
{(104),(113)} > {(105),(114)};...

levels are more likely than transitions between non-degenerate levels of the corresponding
families. In this case, the strength of the transition oscillator between degenerate levels
increases with increasing family numbers. The discussed unipolar optical transitions can only
occur with the participation of radiation linearly polarized in the transverse plane, as a
consequence of the laws of parity conservation and the projection of the total moment onto
the symmetry axis of the system. As a result of the calculations carried out, one can also note
the revealed analytical dependence of the characteristics (oscillator strength) of unipolar
transitions on the dimensional parameters and geometry of the HOE QD. In particular, in
addition to the implicit one, there is also an explicit inversely proportional dependence of the
strength of the transition oscillator on the degree of flattening n of the HOE QD within the
feasibility of condition n>1. This makes it possible to control the characteristics of
transitions by varying the dimensional parameters a and c. The ellipsoidal geometry and
features of quantum confinement, which shape the dynamics of the behavior of carriers in
the nanoclusters under consideration, can lead to other physical consequences that are of
practical interest. In particular, the characteristic frequencies of motion along the short
dimension of the ellipsoid of rotation (the "fast" subsystem) are greater than the characteristic
frequencies of motion in the transverse plane (the "slow" subsystem). Accordingly, the
frequency of “impacts” of the carrier on the barriers and the probability of tunneling from the
potential well of the HOE QD in the longitudinal (along the axis of structure growth) direction

10



are higher than in the transverse direction. This difference becomes more significant in the
case of applying an electric field in the longitudinal direction. Carriers filling the working levels
of the HOE QD by illuminating radiation with a frequency in the interband absorption band
appear in a state lying closer to the edge of the continuum. Here, the width of the barrier
separating discrete states and states of a continuous spectrum is smaller than in the absence
of an electric field. This can lead to an effective increase in tunneling penetration through the
potential barrier (QD ionization) and an increase in the photocurrent. Of course, the tunneling
coherence requirement must be met. The tunneling lifetime of an electron at the resonance
level 7~ h/F, where I'— is the width of the resonance level, must be less than the

characteristic relaxation time of the electron along the momentum 7, taking into account all
scattering mechanisms. The allowed optical transition (121) - (122), which we considered in

Section 4, occurs between the levels of different discrete groups of the spectrum of the HOE
QD substructure. To compare the results obtained with known data, we present the value of
the dipole moment of transition between neighboring levels of a harmonic oscillator for the
model of a parabolic potential well in a spherical QD, with an energy difference 7@, =0,13eV’

, calculated in [2],

c?‘ ~e-1,15nm. And the calculation for a two-dimensional infinitely deep

well of width L for the transition between the ground and first excited levels gives
‘6710‘ ~e-0,18L [16]. So the underestimated value of the dipole moment (and, accordingly, the

absorption coefficient) that we obtained is apparently explained by the peculiarities of the
overlap of the wave functions of the states involved in the optical transition, which have
different functional characteristics of spatial localization. Note that the absorption coefficient
exhibits (like the strength of the transition oscillator), in addition to an implicit one, also an
explicit inversely proportional dependence on the degree of oblateness n of the HOE QD
within the limits of the feasibility of condition » > 1. So, in order to enhance absorption, you
can vary the dimensional parameters of the structural units of a,c. Of course, it is also
necessary to reduce the spectrum width due to a narrower size distribution of QDs. It is
obvious that more efficient absorption is observed in optical transitions between degenerate
states (type {(102),(111)} —){(103),(112)}), provided that the lower operating level of the
transition is filled by illuminating radiation with a frequency in the interband absorption band.
An important factor in structural analysis is the effects of deformation under elastic stresses
in a heterophase system InAds/GaAs . It should be noted that due to the difference in the
lattices (with a mismatch 79 for a pair Inds/GadAs), the overgrown islands In4s in the
matrix Gads are coherent elastic inclusions that create long-range elastic stress fields
throughout the overgrown heterophase system, when the distance between the islands
becomes comparable to the sizes of the islands [1]. The deposited matrix material above the
islands is elastically stressed and this can affect the band characteristics of the materials. The
anisotropy of the strain distribution in the heterophase system InAs/GaAs leads to a
displacement of the edges of the conduction band of the heteropair in the center of the
Brillouin zone. Uneven shifts of the edges of the ¢—band at the heterointerface lead to a
decrease in the depth of the potential well and the binding energy of the electron in /n4s. In
addition to the inhomogeneous spatial distribution of elastic deformations, factors such as the
anisotropic piezoelectric potential associated with the appearance of polarization charges due
to shear deformations at the InAds/GaAs interfaces, also influence. However, the wave

11



functions of the lowest states of the electron are localized at distances |r| << ¢, i.e., far from

the ellipsoidal surfaces of the QD. So the effects at the interfaces of the heteropair
InAs / GaAs have little effect on the characteristics of the unipolar transitions considered
above. This conclusion is also supported by the relatively large depth of the potential well
AE. =0,7eV .

6 Conclusion

The geometric features of quantum limitation in HOE QD predetermine the use of the well-
known analytical approach of complete separation of variables by introducing an orthogonal
guasi-spherical coordinate system. This leads to a classification of the forms and characters of
movement states, which forms the structure of the spectrum, consisting of separate groups
of discrete levels. Allowed unipolar transitions between degenerate levels of neighboring
lowest groups, corresponding to the mid-IR range, are characterized by relatively large values
of the transition oscillator strengths and occur with the participation of radiation linearly
polarized in the transverse plane. The charge distribution in the quantum states of HOE QDs,
while not spherically symmetric, has a center of symmetry, which is preserved during unipolar
transitions. The anisotropy of the quantum confinement shape is reflected in the absorption

coefficient during unipolar transitions, revealing the structural dependence of ~ —-.
n
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