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Abstract 
 

The quantum states of an ellipsoidal nanocluster of a heterophase system  are 
studied using an exact analytical approach, in contrast to the generally accepted theoretical 
model based on the adiabatic approximation. It is shown that the spectrum of a nanoobject 
is formed from local groups, consisting of discrete levels, separated by terahertz frequency 
intervals. A double random degeneration of certain spectrum states is revealed. Allowed 
mid-infrared (IR) optical transitions between different spectral states are analyzed. The role 
of dimensional parameters and features of the shape of a nanoobject in the characteristics 
of unipolar transitions is assessed. The absorption spectrum for the transition in the lower 
part of the substructure spectrum is calculated. 
 
Keywords: spectrum, radiation, range, degeneracy, oscillator, interval. 
 

1. Introduc*on 
 
The development of efficient semiconductor radia6on sources in the mid-IR range is of great 
prac6cal importance in key areas of science and technology. The crea6on of lasers of this kind 
is associated with certain difficul6es, for the solu6on of which they usually resort to the use 
of growth technologies of heterostructures, superla@ces and mul6component solid solu6ons 
with a variable band gap. For these purposes, unipolar quantum cascade lasers, as well as 
interband lasers based on lead chalcogenides, are more oDen used. At the same 6me, the 
promise of using structures with quantum dots (QDs) in radia6on sources in the noted range 
is obvious. This is due to the well-known advantages of QDs over structures with quantum 
wells with two-dimensional electron gas [1], [2]. Epitaxial crystalliza6on methods provide the 
opportunity for targeted profiling of the geometry and holding poten6al of QDs for specific 
prac6cal purposes. This is the key to the forma6on of an op6mal spectrum of states and 
selec6on rules for interlevel transi6ons in order to ensure the desired radia6ve process, where 
the sources are the structural components of the nanomedium. In par6cular, during the self-
organized growth of epitaxial  on the  substrate, disk-shaped islands with ver6cal 
dimensions of several nanometers and lateral dimensions of several tens of nanometers (

) are formed, which can be aQributed to the shape of a highly oblate ellipsoid of 
revolu6on [3-8]. Below, for the model of a highly oblate ellipsoidal (HOE) QD system 

, within the framework of the approach [7], allowing an exact solu6on with 
complete separa6on of variables, the features of the energy spectrum, selec6on rules and 
oscillator strengths for intraband radia6ve transi6ons between levels of the lower part of the 

zone spectrum are studied (Fig.1). As a detailed theore6cal analysis shows, the energy 
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spectrum of an HOE cluster consists of discrete families of levels separated by wide forbidden 
intervals. Each family consists of closely spaced dimensional quan6za6on levels, the interlevel 
intervals of which correspond to the terahertz range. At the same 6me, the fact that some of 
the discrete states corresponding to such levels are degenerate has been established. This 
work analyzes the nature of unipolar transi6ons under the condi6ons of quantum limita6on 
of the ellipsoidal geometry of HOE QDs. Transi6ons between certain levels of neighboring 
discrete families in the lower part of the spectrum, allowed by selec6on rules, correspond to 
the mid-IR range. Such transi6ons, due to the possibility of suppressing the role of non-
radia6ve processes, can become the basis for the genera6on of mid-IR radia6on. Indeed, 
la@ce absorp6on near the frequencies of op6cal phonons, due to the strong spa6al limita6on 
and localiza6on of la@ce vibra6onal modes in an ellipsoidal nanocluster, can be significantly 
suppressed with an appropriate choice of elas6c parameters of the heterophase system. So, 
the mechanism of unipolar transi6ons under considera6on can be used as a possible 
embodiment of laser lasing in the mid-IR range, using an HOE QD array as a working medium, 
as well as in quantum-sized IR photodetectors. It should be noted that for structures of the 
specified geometry, the adiaba6c approxima6on is usually used, within which the concept of 
“fast” and “slow” subsystems is acceptable, represen6ng, respec6vely, the movement along 
the short dimension of the ellipsoidal cluster and in its cross sec6on. And when averaging the 
states of the “slow” subsystem over the states of the “fast” subsystem, mo6on in the 
transverse plane for weakly excited states is reduced to the model of a plane oscillator. This 
formula6on of the problem leads to an equidistant spectrum of levels and to its own system 
of allowed and forbidden transi6ons, in accordance with certain selec6on rules [5], which are 
radically different from the results and physical consequences derived below for the exact 
solu6on. It is also worth poin6ng out a number of alterna6ve approaches [9-10], which 
emphasizes the relevance of studying objects of the chosen geometry. 
 

2. Quantum states of the HOE cluster 
 
For the HOE QD model, with an isotropic quadra6c law of electron dispersion, a quasi-
spherical system of ellipsoidal coordinates  is 

introduced, where the surface of the ellipsoid of revolu6on  has the 

form of a sphere with radius  and  [7].  
 

 
Fig.1. Ellipsoid of revolu2on diagram 
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Sta6onary states in a rectangular poten6al well of finite depth in the form of HOE QD in the 
effec6ve mass approxima6on are determined by the Schrödinger equa6on.  

                                                          

In the limi6ng case of a strongly oblate ellipsoid ( , where  is the degree of 

oblateness of the ellipsoid), by introducing a cylindrical radius  instead of 
the polar angle , we can proceed to orthogonal curvilinear coordinates , with a 
volume element . The form of the Laplacian in the system   

                                      

constructed using the Lamé coefficients  in the parabolic 
approxima6on, allows complete separa6on of variables and leads to a solu6on for the wave 
func6on of the par6cle 
                                                                                              (1) 

Here  is the Bessel function. are discrete components of the particle wave 
vector, which, based on the boundary conditions for the variables , determine the 
energy spectrum  
                                                                                                                        (2) 

 is a normalization constant. That is, the spectrum of electrons in such QDs is formed 
from the levels of two possible states of motion in an ellipsoidal well. The first type of 
motion occurs along a short dimension of the disk, which corresponds to the basic structure 

of the spectrum of the electron , with large distances between levels. The 

conditions for the continuity of the wave function of the carrier motion along the radial 
direction of the sphere and its derivative on the surface of the sphere with radius 

 in the system  lead to the standard dispersion equation  

                                                                                             (3) 

Here  is the mass of the carrier in the matrix ,  is the decay rate of the 
exponential decay of the wave function in . At , the magnitude of the potential 
step at the heterointerface in the zone , the effective mass of the electron 
in  -  and in  - , and at the average thickness of the 

cluster , the solution of the dispersion equation (3) leads to the value of the 
energy  at . The second type of motion, not equivalent to the 
first, occurs in the transverse plane of the disk, forming a substructure of closely spaced 

levels of the spectrum of the QD , which is determined by the conditions of 

cyclicity of the wave function in the variables  (i.e., in ) and in . When inverting 

spatial coordinates, the wave function (1) is transformed according to the  
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law. So in a one-particle problem, the parity of the state in  coincides with the parity of 
the number , where , due to the periodicity of  in the variable . To 
demonstrate the cyclicity of the wave function  in  (i.e., in ), we choose the interval 

of change of  as , and accordingly . Then the conditions for the 

cyclicity of the wave function in  along the surface of the QD, in accordance with (1), 
are represented in the form  
                                                                                                                 (4) 
                                                                                                                 (5) 
Since for odd  

 
then the cyclicity condition (4) leads to a dispersion equation for determining the 
substructure levels for odd  
                                                                        (6) 
Here  are the dimensionless roots of the Bessel functions, which are characterized 
by the number . For even  we have , so condition (5) leads to 
the conclusion 
                                                                     (7) 
where  are the dimensionless roots of the derivative of the Bessel functions. That 
is, for even , condition (7) can be used as a dispersion equation. As a result of the analysis 
in Table 1, Fig. 2 and Fig. 3 present a fragment of the lower part of the spectrum of the  
zone of the HOE QD in the form of tabulated energy values and the relative location of the 
electronic levels  of the substructure, corresponding to a certain 

(lowest) level of the main structure.  is a quantum number characterizing the level of 
the main structure,  are the quantum numbers of substructure levels. In this case, in 
a QD of composition  in the matrix , only one electronic level of the main 
structure, i.e. , is usually placed.  
 

    
    
    

    

    
    
    

    
Table 1. Energy levels of the  zone substructure with cluster parameters , 

,corresponding to the size-quantized level of the main structure . 
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Note that the substructure levels that actually appear in the QD HOE are located in the 
 energy interval (lower part of Table 1).  So, given the thickness 

, diameter  and the value of the interval , a total of  

electronic levels  are placed in the cluster in the parabolic approxima6on for the 

energy spectrum of electrons in : . And of these levels  

                                                                                                             (8) 
are doubly degenerate, which is obvious from the rela6onship between the zeros of the Bessel 
func6on and the deriva6ve of the Bessel func6on  [8]. The doubly degenerate 
levels of the HOE QD spectrum correspond to the following pairs of eigenfunc6ons 
                                                                                                        (9) 

 
 
Fig.2. Configura.on of the spectrum of the  zone of the HOE QD depending on the quantum numbers 

 for the cluster parameters  and . 
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Fig.3. Energy level diagram and allowed transi.ons of the HOE cluster for parameters , 

 and . 
 

3. Electrodipole transitions between states of the zone of the size-quantized 
spectrum of the HOE QD 

 
The nature of intraband dipole electrical transitions between states of the substructure is 
determined by the strength of the transition oscillator  

                                                                                                                           (10) 
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                                                          ,                                                            (11) 

where are the multiplicities of degeneracy of the levels involved in the dipole 
transition. In the lower part of the spectrum of the HOE QD substructure, one can note a 
series of allowed optical transitions, the intensities of which can be characterized by the 
values of the oscillator strengths (Table 2). 
       Wavelength,               Transition    Oscillator strength  

                  
                  
 

          
 

    
                                      

                                               

   
   
                                                

                  
                  

            
 

    
                               

                                                

                  
                  

            
 

                 
                 

Table 2. Oscillator strength for some transitions in the lower part of the spectrum of the HOE QD 
substructure. 
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transi6ons in the mid-IR range occur (upper part of Table 2) 
                    . 

Moreover, for the transi6on between non-degenerate states  we have 
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and for the transi6on between degenerate states  

                                          

It is obvious that by varying the structural parameters , it is possible, for prac6cal 
purposes, to increase the number of states of the substructure corresponding to a certain size-
quan6zed level of the main structure, which actually appear in the quantum well of the HOE 
QD. This will make it possible to use a system of discrete families of substructure levels to 
study, in par6cular, cascade processes of carrier relaxa6on under condi6ons of size 
quan6za6on.  
Of great prac6cal importance is the iden6fica6on of possible changes in the charge 
configura6on of the system during unipolar transi6ons between states of individual families 
of levels. This purpose can be served, first of all, by calcula6ng the dipole moments of the 
states of HOE QDs in the transverse direc6on, perpendicular to the growth axis of the 
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structure. Since solu6on (1) has a certain parity, it is obvious that when inver6ng coordinates, 
the probability density does not change. That is, the charge distribu6on in non-degenerate 
states (1) has a center of symmetry and the electric dipole moment in the transverse plane is 
equal to zero. A similar picture occurs for degenerate states of HOE QDs. This can be verified 
by construc6ng for degenerate quantum states (9) orthogonal superposi6on basis vectors 

without a certain parity, such as the combina6on , and calcula6ng the 

dipole moments in the transverse direc6on . Here, in 

contrast to the hydrogen atom, which is characterized by degeneracy (  is the orbital 
quantum number), transi6ons between the states of the degenerate pair  and  are 

prohibited by selec6on rules. So there is no mixing of degenerate states with the same energy 
, and, accordingly, the forma6on of their own dipole moment [11-14]. In the group 

of states belonging to degenerate levels (8), the electric moment can appear only as a result 
of polariza6on in an external electric field, leading to spli@ng of the levels and removal of 
degeneracy. 
During electric-dipole transi6ons between levels of the substructure, in an axially symmetric 
field of an ellipsoidal cluster, the law of conserva6on of the projec6on of the total moment is 
sa6sfied 
                                                      ,                                                                        (12) 
where  are the projec6ons of the total moment on the  axis, respec6vely, for the 
ini6al and final states of the quantum system involved in the transi6on,  is the projec6on 
of the total moment of the electric dipole radia6on. Taking into account the fact that the spin 
state of a quantum system does not change during a dipole electric transi6on, (12) takes the 
form (in units of ) 
                                                           ,                                                                 (13) 

Equa6on (13) is consistent with the selec6on rule for the quantum number  only in the 
case of radia6on linearly polarized in the transverse plane, for which .  
 

4. Op*cal absorp*on in an HOE QD array 
 
From the point of view of the prac6cal implementa6on of “self-organized” structures during 
epitaxy of strongly mismatched materials  and , the analysis of op6cal absorp6on 
during unipolar transi6ons in HOE QDs is relevant. This is important, in par6cular, for the 
design of such unipolar device structures as quantum-sized IR photodetectors. It is also of 
interest to study the influence of the anisotropy factor of the quantum confinement shape on 
the absorp6on coefficient and sensi6vity of photorecep6on in the IR range during transi6ons 
between states of the substructure of the HOE QD spectrum. Let's calculate the absorp6on 
coefficients using the following expression [15] (Fig. 4) 
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where  are the concentra6ons of QDs in the states involved in the transi6on 

,  is the spectral (Gaussian) form factor describing the inhomogeneous 

broadening of the absorp6on spectrum of QDs due to their size dispersion,  is the 
refrac6ve index of the medium,  is the speed of light,  is the electrical constant, 

 is the total width Gaussian line at half-maximum level. The value of the absorp6on 

coefficient at the center of the broadening band is obtained by subs6tu6ng  

into (14). And the maximum absorp6on during an allowed transi6on from the lowest state 
 is the following 

                                                                                                    (15) 

where , , , , is the 

concentra6on of absorbing centers (near equilibrium ). Table (3) shows the 

values of the absorp6on coefficient in the center of the spectral absorp6on band at the 
volume concentra6on of QDs  when . 

 
 

  

  

  

  

Table 3. Calculated values of  in an environment with HOE QD. 
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Fig.4. Absorp6on line for the  transi6on in the HOE QD medium of the 

heterophase system :blue line -  yellow line - 
 green line - . 

 
5 The discussion of the results 

 
Analysis of quantum states shows that the spectrum of the HOE QD substructure, related to a 
certain  level of the main structure, is formed from discrete families of 

 levels, separated by wide forbidden intervals 

. Moreover, certain levels of each family 

 are doubly degenerate. In par6cular, the spectrum of the 

considered nanoobject of the heterophase system  contains the first two families 
 and . Each family consists of closely spaced dimensional quan6za6on levels, the 

interlevel intervals of which correspond to the terahertz range. It can be assumed that with 
increasing state energy, the localiza6on region of the electron narrows, moving away from the 
transverse plane of the maximum cross sec6on of the HOE QD. This in turn leads to an increase 
in the degree of overlap of the wave func6ons of the states involved in unipolar transi6ons, 
as a consequence of the convergence of their localiza6on regions and, accordingly, to an 
increase in the strengths of the transi6on oscillator as one moves up the energy scale (Table 
2). The fact of random degenera6on of the levels noted above determines a number of 
features of the system’s behavior. Thus, a comparison of the data in Table 2 leads to the 
conclusion that transi6ons between neighboring degenerate  

  

levels are more likely than transi6ons between non-degenerate levels of the corresponding 
families. In this case, the strength of the transi6on oscillator between degenerate levels 
increases with increasing family numbers. The discussed unipolar op6cal transi6ons can only 
occur with the par6cipa6on of radia6on linearly polarized in the transverse plane, as a 
consequence of the laws of parity conserva6on and the projec6on of the total moment onto 
the symmetry axis of the system. As a result of the calcula6ons carried out, one can also note 
the revealed analy6cal dependence of the characteris6cs (oscillator strength) of unipolar 
transi6ons on the dimensional parameters and geometry of the HOE QD. In par6cular, in 
addi6on to the implicit one, there is also an explicit inversely propor6onal dependence of the 
strength of the transi6on oscillator on the degree of flaQening  of the HOE QD within the 
feasibility of condi6on . This makes it possible to control the characteris6cs of 
transi6ons by varying the dimensional parameters  and . The ellipsoidal geometry and 
features of quantum confinement, which shape the dynamics of the behavior of carriers in 
the nanoclusters under considera6on, can lead to other physical consequences that are of 
prac6cal interest. In par6cular, the characteris6c frequencies of mo6on along the short 
dimension of the ellipsoid of rota6on (the "fast" subsystem) are greater than the characteris6c 
frequencies of mo6on in the transverse plane (the "slow" subsystem). Accordingly, the 
frequency of “impacts” of the carrier on the barriers and the probability of tunneling from the 
poten6al well of the HOE QD in the longitudinal (along the axis of structure growth) direc6on 
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are higher than in the transverse direc6on. This difference becomes more significant in the 
case of applying an electric field in the longitudinal direc6on. Carriers filling the working levels 
of the HOE QD by illumina6ng radia6on with a frequency in the interband absorp6on band 
appear in a state lying closer to the edge of the con6nuum. Here, the width of the barrier 
separa6ng discrete states and states of a con6nuous spectrum is smaller than in the absence 
of an electric field. This can lead to an effec6ve increase in tunneling penetra6on through the 
poten6al barrier (QD ioniza6on) and an increase in the photocurrent. Of course, the tunneling 
coherence requirement must be met. The tunneling life6me of an electron at the resonance 
level , where  is the width of the resonance level, must be less than the 
characteris6c relaxa6on 6me of the electron along the momentum , taking into account all 
scaQering mechanisms. The allowed op6cal transi6on , which we considered in 
Sec6on 4, occurs between the levels of different discrete groups of the spectrum of the HOE 
QD substructure. To compare the results obtained with known data, we present the value of 
the dipole moment of transi6on between neighboring levels of a harmonic oscillator for the 
model of a parabolic poten6al well in a spherical QD, with an energy difference 

, calculated in [2], . And the calcula6on for a two-dimensional infinitely deep 

well of width  for the transi6on between the ground and first excited levels gives 
 [16]. So the underes6mated value of the dipole moment (and, accordingly, the 

absorp6on coefficient) that we obtained is apparently explained by the peculiari6es of the 
overlap of the wave func6ons of the states involved in the op6cal transi6on, which have 
different func6onal characteris6cs of spa6al localiza6on. Note that the absorp6on coefficient 
exhibits (like the strength of the transi6on oscillator), in addi6on to an implicit one, also an 
explicit inversely propor6onal dependence on the degree of oblateness  of the HOE QD 
within the limits of the feasibility of condi6on . So, in order to enhance absorp6on, you 
can vary the dimensional parameters of the structural units of . Of course, it is also 
necessary to reduce the spectrum width due to a narrower size distribu6on of QDs. It is 
obvious that more efficient absorp6on is observed in op6cal transi6ons between degenerate 
states (type ), provided that the lower opera6ng level of the 
transi6on is filled by illumina6ng radia6on with a frequency in the interband absorp6on band. 
An important factor in structural analysis is the effects of deforma6on under elas6c stresses 
in a heterophase system . It should be noted that due to the difference in the 
la@ces (with a mismatch  for a pair ), the overgrown islands  in the 
matrix  are coherent elas6c inclusions that create long-range elas6c stress fields 
throughout the overgrown heterophase system, when the distance between the islands 
becomes comparable to the sizes of the islands [1]. The deposited matrix material above the 
islands is elas6cally stressed and this can affect the band characteris6cs of the materials. The 
anisotropy of the strain distribu6on in the heterophase system  leads to a 
displacement of the edges of the conduc6on band of the heteropair in the center of the 
Brillouin zone. Uneven shiDs of the edges of the band at the heterointerface lead to a 
decrease in the depth of the poten6al well and the binding energy of the electron in . In 
addi6on to the inhomogeneous spa6al distribu6on of elas6c deforma6ons, factors such as the 
anisotropic piezoelectric poten6al associated with the appearance of polariza6on charges due 
to shear deforma6ons at the  interfaces, also influence. However, the wave 
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func6ons of the lowest states of the electron are localized at distances , i.e., far from 
the ellipsoidal surfaces of the QD. So the effects at the interfaces of the heteropair 

 have liQle effect on the characteris6cs of the unipolar transi6ons considered 
above. This conclusion is also supported by the rela6vely large depth of the poten6al well 

.  
 
 
 
 

6 Conclusion 
 
The geometric features of quantum limita6on in HOE QD predetermine the use of the well-
known analy6cal approach of complete separa6on of variables by introducing an orthogonal 
quasi-spherical coordinate system. This leads to a classifica6on of the forms and characters of 
movement states, which forms the structure of the spectrum, consis6ng of separate groups 
of discrete levels. Allowed unipolar transi6ons between degenerate levels of neighboring 
lowest groups, corresponding to the mid-IR range, are characterized by rela6vely large values 
of the transi6on oscillator strengths and occur with the par6cipa6on of radia6on linearly 
polarized in the transverse plane. The charge distribu6on in the quantum states of HOE QDs, 
while not spherically symmetric, has a center of symmetry, which is preserved during unipolar 
transi6ons. The anisotropy of the quantum confinement shape is reflected in the absorp6on 

coefficient during unipolar transi6ons, revealing the structural dependence of . 
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