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Non-commutative Divergence and the Turaev Cobracket

Toyo TANIGUCHI

Abstract

The divergence map, an important ingredient in the algebraic description of the Turaev cobracket on a

connected oriented compact surface with boundary, is reformulated in the context of non-commutative ge-

ometry and is generalised to give a similar algebraic description of the Turaev cobracket on a closed surface.

We also look into a relation between the Satoh trace and the divergence map on a free Lie algebra, using a

non-commutative analogue of a flat connection.

0. Introduction

The Turaev cobracket is a loop operation introduced in [Tur91], which endows a structure of an involutive

Lie bialgebra [Cha04] on the space of non-trivial free loops on an oriented surface together with the Goldman

bracket (the involutivity is due to Chas [Cha04]). These topologically defined operations have several interesting

algebraic descriptions ([Mas18] and [KK16], for example), a combinatorial description ([Cha04]) and also relate

to the necklace Lie bialgebra in quiver theory.

Since connected oriented and closed surfaces are distinguished by their fundamental group, one would expect

to recover a significant amount of topological information from the group, including those loop operations. In

that case, an algebraic description of the Goldman bracket was given by Dmitry Vaintrob [Vai07b], and it is the

one induced from the commutator bracket of derivations combined with the Poincaré–Van den Bergh duality.

In the case of connected oriented compact surfaces with non-empty boundary, another algebraic description

of the Turaev cobracket is given in [AKKN18] using a non-commutative analogue of the divergence map. The

Turaev cobracket, together with the divergence map, is deeply related to the Enomoto–Satoh trace originally

introduced in [ES10]. For the detail and the relation to mapping class groups of surfaces, see Theorem 1.14 and

Section 9 of [AKKN18].

The goal of this paper is to generalise their divergence map and algebraic description to the case of connected

oriented and closed surfaces. Let K be a unital ring, Σ a connected oriented and closed surface and π = π1(Σ)

the fundamental group of a surface. The symbol | · | denotes the cyclic quotient, so that the space |Kπ| is the

free K-module spanned by the homotopy classes of free loops on Σ. The main result is the following:

Theorem. We have a K-linear map (“the divergence map”)

Div : HH1(Kπ) → |Kπ/K1|⊗2

from the first Hochschild cohomology of the group ring Kπ, constructed from a flat homological connection (see

Definition 24), such that the composition

|Kπ| HH1(Kπ) |Kπ/K1|
⊗2
.v Div

with the Vaintrob’s map v (denoted by ρ in [Vai07a]) is the Turaev cobracket.

For more precise statement, see Theorem 27 in the body.

Along the way, we introduce a reformulation of the divergence map in terms of non-commutative geometry

in the sense of Kontsevich and Ginzburg (and many others), which is the most important ingredient in this

paper; see Definition 9. This leads us to a conceptual understanding of the Satoh trace on the automorphism

group of a free group. It is combinatorially defined in their original paper [Sat12], but it can be realised as the

divergence map associated with a non-commutative version of a flat connection; for the detail, see Section 5.
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For a pre-existing interpretation of the Satoh trace, we refer to the paper [MS20] by Massuyeau and Sakasai,

where they introduce several variants of the trace map and relate it to the Magnus representation of the group

of certain automorphisms on a free Lie algebra.

Organisation of the paper. In Section 1, we recall the Turaev cobracket and the divergence map defined in

[AKKN18]. Sections 2-4 are the introduction to the language of non-commutative geometry and a reformulation

of the divergence map. In Section 5, which is logically independent with later sections, we look into divergence

maps in geometry over Lie operad and its relation with the Satoh trace. Finally, the case of closed surfaces is

dealt with in Sections 6 and 7.

Acknowledgements. The author would like to thank Nariya Kawazumi for insightful advice, Florian Naef

for useful comments on the draft of this paper, and Yusuke Kuno for generously sharing their notes on this topic.

Conventions. K is a unital commutative ring. All K-algebras contain K1 in their centre. Unadorned tensor

products are always over K.

1. The Turaev Cobracket and its Algebraic Description

Let Σ be a connected oriented surface possibly with boundary, and π = π1(Σ) its fundamental group. Put

|Kπ| = Kπ/[Kπ,Kπ], the cyclic quotient of the algebra Kπ, which is a free K-module spanned by the homotopy

classes of free loops on Σ. The Turaev cobracket is a map δ : |Kπ| → |Kπ/K1|⊗2 defined by, for a generically

immersed free loop α : [0, 1]/{0, 1} → Σ,

δ(α) =
∑

t1 6=t2∈[0,1]
α(t1)=α(t2)

sign(α; t1, t2)α|[t1,t2] ⊗ α|[t2,t1] ,

where sign(α; t1, t2) is the local intersection number with respect to the orientation of Σ. This map is well-

defined up to birth-deaths of monogons, hence takes its value in |Kπ/K1|⊗2. If Σ admits a framing fr (i.e., a

smooth non-vanishing vector field), we can upgrade it to the map

δfr : |Kπ| → |Kπ|⊗2

by taking a rotation-free representative of α.

Now assume that Σ is compact. Then, an algebraic description of δfr involving the non-commutative diver-

gence is given in [AKKN18] as follows. Firstly, σ is defined as the based version of the Goldman bracket

σ : |Kπ| → DerK(Kπ)

from the space of free loops to the space of K-linear derivations on Kπ. It is given by

σ(α)(x) =
∑

p∈α∩x

sign(α, x; p)α ∗p x

for generic representatives of a free loop α and x ∈ π. Here α ∗p x is a based loop obtained by traversing x

until it reaches p, then going along α, and finally following the rest of x. (In [AKKN18], σ is described as the

map induced from the double bracket κ, but we omit the detail here.) Next, take a free generating system

C = (xi)1≤i≤n of π as in Figure 10 of [AKKN18], which induces an isomorphism π ∼= Fn. The associated

divergence is defined by

DivC(f) =
∑

1≤i≤n

|∂i(f(xi))− 1⊗ x−1
i f(xi)| ∈ |Kπ| ⊗ |Kπ| ,

where ∂i is the double derivation (see the end of the next section) defined by ∂i(xj) = δij · 1⊗ 1.

Theorem 1. (Theorem 5.16, [AKKN18]) Let fr be a framing such that all generators xi are rotation-free. Then,

the composite DivC ◦ σ is equal to the framed Turaev cobracket δfr.
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2. Preliminaries on Non-commutative Geometry

In this section, we recall some definitions in non-commutative geometry. Let A be a unital associative K-algebra

with the multiplication map µ : A⊗A→ A, and Ae = A⊗Aop its enveloping algebra. We identify A-bimodules

with left Ae-modules.

Definition 2.

• The left Ae-module structure on A is given by

(x⊗ y) · a = xay for a ∈ A and x⊗ y ∈ Ae .

• The left Ae-module structure on A⊗A, the outer structure, is given by

(x⊗ y) · (a⊗ b) = xa⊗ by for a⊗ b ∈ A⊗A and x⊗ y ∈ Ae,

while the right Ae-module structure, the inner structure, is given by (a ⊗ b) · (x ⊗ y) = ax ⊗ yb. The

natural identification Ae ∼= A⊗A is an isomorphism of Ae-bimodules.

• Ω1A = Ker(µ : A ⊗ A → A) is the space of non-commutative 1-forms. This is a left Ae-submodule of

A⊗A, since µ is a left Ae-module homomorphism.

• Ω•A =
⊕

m≥0

(Ω1A)⊗Am is the tensor algebra over A generated by 1-forms, which is a graded A-algebra.

Let Ā = A/K1. Then Ω1A is canonically isomorphic to A⊗ Ā as a left A-module by the map given by

A⊗ Ā→ Ω1A : a0 ⊗ [a1] 7→ a0da1 := a0 ⊗ a1 − a0a1 ⊗ 1 .

Its inverse is given by the projection A ⊗ A ։ A ⊗ Ā. Similarly, Ω1A is also isomorphic to Ā ⊗ A as a right

A-module. With this notation, every element of Ω•A can be written as a linear combination of elements of the

form a0da1 . . . dan, abbreviating the tensor symbol.

Definition 3. An algebra A is said to be formally smooth if it is finitely generated as a K-algebra with

Ae-projective Ω1A.

This condition is convenient yet very restrictive: it forces Ω1A to be a dualisable (i.e., finitely generated and

projective) module.

Example 4. (1) A finitely generated free associative algebra A = K〈z1, . . . , zn〉 is formally smooth. In fact,

we have a standard Ae-free resolution of A:

0 A⊗K{z1, . . . , zn} ⊗A A⊗A A 0 ,δ µ

δ(1⊗ zi ⊗ 1) = 1⊗ zi − zi ⊗ 1 = dzi ,

which shows that Ω1A is an Ae-free module with the basis (dzi)1≤i≤n.

(2) The group algebra A = KFn of a free group is also formally smooth. The following is the proof the author

learned from Florian Naef. First of all, we fix a free generating system (xi)1≤i≤n of Fn. Then we have an

exact sequence of left A-modules:

0
⊕

1≤i≤n

A⊗K · (xi − 1) A K 0 ,ι ε

where ι is the summation map and ε is the augmentation map. The inverse of ι is given by the direct sum

of the Fox derivatives
∂

∂xi
: Ker ε→ A⊗K · (xi − 1) ,
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which is uniquely specified by the formulae

∂

∂xi
(ab) =

∂

∂xi
(a) + a

∂

∂xi
(b) and

∂

∂xi
(xj) = δij ,

and satisfies the equation

a− ε(a) =
∑

1≤i≤n

∂

∂xi
(a) · (xi − 1) .

Now define a functor as follows:

ΦA : (left A-modules) → (A-bimodules) :M 7→ ΦA(M), ϕ 7→ ϕ⊗ idA . (1)

Here we set ΦA(M) =M ⊗A as a K-module with the Ae-action given by, for a, x, y ∈ A and m ∈M ,

x · (a⊗m) · y = x(1)a⊗ x(2)my,

where ∆(x) = x(1) ⊗ x(2) is the coproduct of A. This functor is exact since A is K-flat. The functor can

be analogously defined for an arbitrary Hopf algebra A. By applying this functor to the resolution above,

we obtain an acyclic complex

0 ΦA


 ⊕

1≤i≤n

A · (xi − 1)


 ΦA(A) ΦA(K) 0 ,

incl⊗id ε⊗id

In addition, we have canonical isomorphisms of A-bimodules: for x, y ∈ Fn and k ∈ K,

ΦA(A) ∼= A⊗2 : x⊗ y 7→ xy−1 ⊗ y and

ΦA(K) ∼= A : x⊗ k 7→ xk .

Transporting differentials using these isomorphisms, we have a left Ae-free resolution of A:

0
⊕

1≤i≤n

A⊗K · (xi − 1)⊗A A⊗2 A 0 ,δ′ µ

δ′(1⊗ (xi − 1)⊗ 1) = xi ⊗ x−1
i − 1⊗ 1 = −dxi x

−1
i .

Therefore Ω1A is an Ae-free module with the basis (dxi x
−1
i )1≤i≤n.

We need some more definitions from non-commutative differential geometry.

Definition 5.

• For a K-subalgebra R of A and an A-bimodule M , an R-linear derivation on A into M is an R-linear map

f : A→M such that

f(ab) = f(a) · b + a · f(b) for a, b ∈ A.

The space of all such derivations is denoted by DerR(A,M). Set DerR(A) = DerR(A,A).

• For f ∈ DerK(A), the contraction map if : Ω
•A→ Ω•A is the A-linear, degree (−1) derivation defined by

if(da) = f(a) for a ∈ A.

This gives a canonical isomorphism of K-modules

DerK(A) → HomAe(Ω1A,A) : f 7→ if .

Conversely, the pair (Ω1A, d) is characterised by the following universal property: for any A-bimodule M

and a K-linear derivation f : A→M , there is a unique Ae-module map if : Ω
1A→M such that if ◦d = f

holds.
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• DDerK(A) = HomAe(Ω1A,Ae) is the space of K-linear double derivations on A. Equivalently, a double

derivation is a K-linear map θ : A→ A⊗A satisfying

θ(ab) = θ(a) · b+ a · θ(b) for a, b ∈ A.

• The exterior derivative d : Ω•A→ Ω•A is the K-linear, degree 1 derivation defined by

d(a0da1 · · · dan) = da0da1 · · · dan for ai ∈ A.

• For f ∈ DerK(A), the Lie derivative Lf = [d, if ] : Ω
•A → Ω•A is the K-linear, degree 0 derivation. For

instance, Lf (a0da1) = f(a0)da1 + a0df(a1) holds. The map

L : DerK(A) → DerK(Ω
•A)(0) : f 7→ Lf

is a Lie algebra homomorphism. Here the superscript (0) denotes the degree 0 part.

• The Hochschild homology and cohomology of A are defined by

HH•(A) = TorA
e

• (A,A) and HH•(A) = Ext•Ae(A,A).

3. Connections and Divergences

In this section, we recall the definition of a non-commutative connection, which we use to further define a

non-commutative divergence map. Let B be another unital associative K-algebra.

Definition 6. Let M be a left B-module.

• A K-linear map ∇ : M → Ω1B ⊗B M is said to be a connection on M if it satisfies the Leibniz rule:

∇(b ·m) = db⊗m+ b · ∇(m) for b ∈ B and m ∈M .

This extends to a degree 1 derivation on Ω•B ⊗B M by

∇(ω ⊗m) = dω ⊗m+ (−1)pω · ∇(m) for ω ∈ ΩpA and m ∈M .

• The curvature of a connection ∇ is defined by R = ∇2 : M → Ω2B ⊗B M , which is a B-module map.

• A connection ∇ is flat if the curvature R vanishes identically.

If M is K-free, M admits a (K-linear) connection if and only if M is B-projective (see, for example, Corollary

8.2 of [CQ95]). The existence of flat connections is more subtle; one sufficient condition is that M is B-free. In

fact, connections on free modules are uniquely specified by their values on a free basis. One necessary condition,

on the other hand, is the vanishing of Chern classes; for the definition, see [Gin05].

Definition 7. Let ∇ be a connection on a B-moduleM . Its push-out by a K-algebra homomorphism ψ : B → C

is a connection ψ∗∇ on C ⊗B M defined by the composition

ψ∗∇ : C ⊗B M → Ω1C ⊗B M ∼= Ω1C ⊗C (C ⊗B M) ,

1⊗m 7→ ψ(∇(m)) .

This is well-defined, since, for b ∈ B and m ∈M ,

ψ∗∇(1⊗ bm) = ψ(db ⊗m+ b∇(m))

= dψ(b)⊗m+ ψ(b)ψ(∇(m))

= ψ∗∇(ψ(b)⊗m) .
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Next, we recall the trace of a module endomorphism over a non-commutative ring. First of all, the dual

space M∗ = HomB(M,B) is naturally a right B-module by

(θ · b)(m) = θ(m)b for θ : M → B , b ∈ B and m ∈M.

Let |B| = HH0(B) = B/[B,B] be the trace space of B. Denoting Z(B) the centre of B, there are well-defined

maps of Z(B)-modules

ι : M∗ ⊗B M → EndB(M) : θ ⊗m 7→ (m′ 7→ θ(m′)m) and

ev : M∗ ⊗B M → |B| : θ ⊗m 7→ |θ(m)| .

If M is a dualisable B-module, ι gives an isomorphism. The composite

Tr = ev ◦ ι−1 : EndB(M)
ι−1

−−→M∗ ⊗B M
ev
−→ |B| ,

is known as the Hattori–Stallings trace [Hat65, Sta65].

Proposition 8. Let M and N be dualisable B-modules. Then, for B-module maps f :M → N and g : N →M ,

we have Tr(f ◦ g) = Tr(g ◦ f).

Proof. For f = θ ⊗ n ∈M∗ ⊗B N and g = ϕ⊗m ∈ N∗ ⊗B M , we have

f ◦ g = ϕ⊗ θ(m)n ,

g ◦ f = θ ⊗ ϕ(n)m, and

Tr(f ◦ g) = |θ(m)ϕ(n)| = |ϕ(n)θ(m)| = Tr(g ◦ f).

This completes the proof.

To define the divergence, suppose that a Lie algebra d is acting on dualisable M by derivation. Namely,

ϕ : d → DerK(B) and ρ : d → EndK(M) are given Lie algebra homomorphisms satisfying

ρ(f)(bm) = ϕ(f)(b) ·m+ b · ρ(f)(m) for f ∈ d, b ∈ B and m ∈M.

In this setting, |B| is a naturally a d-module by the composition

d
ϕ
−→ DerK(B) → EndK(|B|)

of Lie algebra homomorphisms.

Definition 9. Let ∇ be a connection on M . The non-commutative divergence associated with ∇ and (ϕ, ρ) is

defined by

Div(∇,ϕ,ρ) : d → |B| : f 7→ Tr(ρ(f)− (iϕ(f) ⊗ idM ) ◦ ∇) .

Now assume that A is formally smooth until the end of this section, so that Ω1A is dualisable and

DDerK(A)⊗Ae Ω1A ∼= EndAe(Ω1A)

holds. The trace map now takes a form Tr: EndAe(Ω1A) → |Ae|.

In addition, set B = Ae, M = Ω1A, d = DerK(A),

ϕ : DerK(A) → DerK(A
e) : f 7→ f̃ := f ⊗ idAop + idA⊗f, and

ρ : DerK(A) → EndK(Ω
1A) : f 7→ Lf .

The condition above reads

Lf (x · da · y) = (f(x)⊗ y + x⊗ f(y)) · da+ (x⊗ y) · Lf (da),

which amounts to saying that Lf is a derivation. Thus we obtain the divergence

Div∇ : DerK(A) → |Ae| : f 7→ Tr(Lf − (if̃ ⊗ idΩ1A) ◦ ∇)

associated with a connection ∇ : Ω1A → Ω1Ae ⊗Ae Ω1A. In this case, we have an interpretation of it in terms

of the horizontal lift:
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Definition-Lemma 10. For a connection ∇ : Ω1A→ Ω1Ae ⊗Ae Ω1A, there is a unique K-linear map

(−)H : DerK(A) → DerK(Ω
•A)(0) : f 7→ fH

satisfying the following properties: for f ∈ DerK(A),

(1) fH(a) = f(a) in A = Ω0A for a ∈ A; and

(2) fH(α) = (if̃ ⊗ idΩ1A) ◦ ∇(α) in Ae ⊗Ae Ω1A ∼= Ω1A for α ∈ Ω1A.

The map (−)H is called the horizontal lift by ∇.

Proof. The uniqueness follows from the fact that Ω•A is generated as a K-algebra by A and Ω1A. Then, as

Ω•A is the tensor algebra of Ω1A over A, it suffices to show that (1) and (2) are compatible to see that fH is

well-defined. We compute, for x, y ∈ A and α ∈ Ω1A,

fH(xαy) = (if̃ ⊗ idΩ1A) ◦ ∇((x⊗ y) · α)

= (if̃ ⊗ idΩ1A)(d(x ⊗ y)⊗ α+ (x⊗ y) · ∇(α))

= f̃(x⊗ y) · α+ (x⊗ y) · fH(α)

= f(x)αy + xfH(α)y + xαf(y),

which completes the proof.

For the original definition of the horizontal lift in Riemannian geometry, see [YP67].

There is a simple criterion for Div∇ to be a Lie algebra 1-cocycle with coefficients in |Ae|.

Proposition 11. If ∇ is a flat connection, then Div∇ is a Lie algebra 1-cocycle.

We need some preparation for the proof. First, define the action of DerK(A) on DDerK(A) by

f · θ = [f, θ] := (f ⊗ id+ id⊗f) ◦ θ − θ ◦ f for f ∈ DerK(A) and θ ∈ DDerK(A)

with the commutator taken in the space DerK(T (A)), where T (A) denotes the tensor algebra generated by A

over K. This makes a canonical isomorphism of K-modules DDerK(A) ⊗Ae Ω1A ∼= EndAe(Ω1A) into that of

DerK(A)-modules.

Lemma 12. The trace map Tr is a DerK(A)-module homomorphism.

Proof. For θ ⊗ da ∈ DDerK(A)⊗Ae Ω1A ∼= EndAe(Ω1A) and f ∈ DerK(A), we have

f · (θ ⊗ da) = [f, θ]⊗ da+ θ ⊗ Lf (da), so that

Tr(f · (θ ⊗ da)) = |[f, θ](a) + θ(f(a))| = |f(θ(a))| = f · Tr(θ ⊗ da).

Hence follows the DerK(A)-equivariance of the trace.

Lemma 13. Let R be the curvature of ∇ and f, g ∈ DerK(A). Then we have [f, g]H = [fH, gH] + if̃ ig̃R in

EndK(Ω
1A).

Proof. For α ∈ Ω1A, put ∇α =
∑

ω ⊗ β for some ω ∈ Ω1Ae and β ∈ Ω1A. Dropping the summation symbol

and denoting if̃ ⊗ idΩ1A simply by if̃ , we have

[fH, gH]α = fH(ig̃∇α)− gH(if̃∇α)

= fH(ig̃(ω ⊗ β)) − gH(if̃ (ω ⊗ β))

= fH(ig̃ω · β)− gH(if̃ω · β)

= f̃(ig̃ω) · β + ig̃ω · fH(β)− g̃(if̃ω) · β − if̃ω · gH(β)

= f̃(ig̃ω) · β + ig̃ω · if̃∇β − g̃(if̃ω) · β − if̃ω · ig̃∇β.

7



On the other hand, we have

R(α) = ∇(ω ⊗ β) = dω ⊗ β − ω∇β, and

if̃ ig̃R(α) = if̃ ig̃dω · β − ig̃ω · if̃∇β + if̃ω · ig̃∇β.

Therefore, we have
(
[fH, gH] + if̃ ig̃R

)
(α) = (f̃(ig̃ω)− g̃(if̃ω) + if̃ ig̃dω) · β

= [if̃ , Lg̃]ω · β = i[f̃ ,g̃]ω · β

= i[f̃ ,g̃]∇α = [f, g]H(α).

This completes the proof.

Proof of Proposition 11. Consider the following split sequence of Lie algebras:

0 DerA(Ω
•A)(0) DerK(Ω

•A)(0) DerK(A) 0 ,incl resA

L

where resA is the restriction to A. Since any A-linear derivation on Ω•A is uniquely determined by the restriction

on Ω1A, the space DerA(Ω
•A)(0) is isomorphic to EndAe(Ω1A) as a Lie algebra.

Now put c = incl−1 ◦ ((−)H−L). By Lemma 13 and the flatness of ∇, (−)H is a Lie algebra homomorphism.

Then c satisfies the non-abelian 1-cocycle condition

c([f, g]) = f · c(g)− g · c(f) + [c(f), c(g)]

since c is the difference between two Lie algebra homomorphisms. Applying the trace on both sides and using

Proposition 8 and Lemma 12, Div∇ = −Tr ◦ c is indeed a Lie algebra 1-cocycle.

Remark 14. Proposition 11 remains true for the general case Div(∇,ϕ,ρ) in Definition 9; the proof is almost

identical, just less conceptual.

Similar formulations of a connection and the divergence map in the usual differential geometry can be seen

in the context of Lie algebroid theory. For example, a connection is defined using an analogous exact sequence

to above in Definition 3.8 of [LM10], and the corresponding divergence formula can be found in Proposition

3.11 of [Xu99].

An operad-theoretic formulation of a divergence map, on the other hand, has been studied in [Pow21], where

they defined the standard divergence map on a free O-algebra for a reduced operad O. The standard divergences

are also discussed here in the next two sections, only in the case of operads controlling associative algebras and

Lie algebras. They correspond to the ones associated to the canonical flat connections naturally defined from

free generating systems in our setting, as we will see below.

4. Examples of Flat Connections

In this short section, we look into two examples of flat connections.

Firstly, we consider the case A = K〈z1, . . . , zn〉. Define a connection on Ω1A by ∇z(dzi) = 0 for all i. Then

this connection is obviously flat. Now that (dzi)1≤i≤n is a Ae-free basis of Ω1A, we can take its dual basis

(∂i)1≤i≤n, which comprises of double derivations. More precisely, they are given by the formula

∂j(zi) = δij · 1⊗ 1 for 1 ≤ i, j ≤ n.

For f ∈ DerK(A), we compute

(Lf − fH)(dzi) = df(zi)− if̃∇z(dzi) =
∑

j

∂j(f(zi)) · dzj , and

Div∇z (f) = Tr(incl−1 ◦ (Lf − fH)) =
∑

i

|∂i(f(zi))| ,

8



which recovers the standard (double) divergence map.

Next, we investigate the case A = KFn. Recall that the divergence DivC associated with a free generating

system C = (xi)1≤i≤n is given by

DivC(f) =
∑

i

|∂i(f(xi))− 1⊗ x−1
i f(xi)| ∈ |A| ⊗ |A|.

Here ∂i is now defined by ∂i(xj) = δij · 1 ⊗ 1. Since (dxi x
−1
i )1≤i≤n is a Ae-free basis of Ω1A, we define a

canonical connection ∇C associated with C by the formula ∇C(dxi x
−1
i ) = 0 for all i, which is also flat. Denoting

x̄i ∈ Aop the corresponding element to xi ∈ A so that x̄ix̄j = xjxi holds in A
op, this is equivalent to

0 = x̄−1
i ∇C(dxi) + dx̄−1

i ⊗ dxi, or ∇C(dxi) = dx̄i x̄
−1
i ⊗ dxi.

Now we compute the associated divergence:

(Lf − fH)(dxi) = df(xi)− if̃∇C(dxi)

=
∑

j

∂j(f(xi)) · dxj − (f(x̄i)x̄
−1
i ) · dxi, and

Div∇C (f) =
∑

i

|∂i(f(xi))− f(x̄i)x̄
−1
i |,

which coincides with DivC(f) using the identification |Ae| ∼= |A| ⊗ |A|.

5. Geometry over the Lie Operad and the Satoh Trace

The two connections in the previous section, actually, is induced from connections involving geometry over the

Lie operad, as we shall see below. We will not use any operad explicitly, however. At the last of this section, we

briefly discuss the relation between the divergence map and the Satoh trace. Also, this section can be skipped

as there are no logical consequences in later chapters.

Let g be a Lie algebra over K, and Ug its enveloping algebra with the standard coproduct ∆, the antipode

S, and the counit ε given by

∆(x) = x⊗ 1 + 1⊗ x, S(x) = −x, and ε(x) = 0 for x ∈ g.

Put ∆̃ = (id⊗S) ◦ ∆: Ug → (Ug)e, so that it is an algebra homomorphism. Denote by P(Ug) the primitive

part of Ug, which is isomorphic to g as a Lie algebra.

Definition 15.

• DerLie(g,M) is the space of all derivations (i.e., 1-cocycles) on g into M . Set DerLie(g) = DerLie(g, g).

• For f ∈ DerLie(g), denote by Uf the natural extension of f on Ug.

• The space of Lie 1-forms Ω1
Lieg, together with the exterior derivative d : g → Ω1

Lieg , is a Ug-module

defined by the following universal property: for any g-module M and a derivation f : g → M , there is a

unique Ug-module homomorphism if : Ω
1
Lieg →M such that if ◦ d = f holds.

• For f ∈ DerLie(g), the Lie derivative Lf : Ω
1
Lieg → Ω1

Lieg is defined by the formula

Lf (a⊗ dx) = (Uf)(a)⊗ dx+ a⊗ df(x) for a ∈ Ug and x ∈ g, .

Concretely, we can realise Ω1
Lieg as the quotient

(Ug⊗ dg)/〈1⊗ d[x, y] = x⊗ dy − y ⊗ dx〉

of the free (left) Ug-module spanned by the symbols dx, by the submodule generated by the Leibniz relation.
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Definition 16. A Lie algebra g is said to be formally smooth if Ω1
Lieg is dualisable as a Ug-module.

Formally smooth Lie algebras are of cohomological dimension one (see Proposition 21.1.19 of [Gin05]),

and one example is a finitely generated free Lie algebra L(z1, . . . , zn). The existence of cohomologically one-

dimensional non-free Lie algebras is an open problem over a field of characteristic zero; for the reference, see

Introduction of [Zus19] and references there. If g is formally smooth, Ug is automatically formally smooth as

an associative algebra as the functor (1) admits a right adjoint.

Now suppose that g is formally smooth and we are given a connection ∇′ : Ω1
Lieg → Ω1Ug ⊗Ug Ω

1
Lieg . We

consider the divergence map, defined in Definition 9, associated with the following data: B = Ug, M = Ω1
Lieg,

d = DerLie(g),

ϕ : DerLie(g) → DerK(Ug) : f 7→ Uf, and

ρ : DerLie(g) → EndK(Ω
1
Lieg) : f 7→ Lf .

From these, we obtain the associated divergence map

div∇
′

: DerLie(g) → |Ug|.

This single divergence map is related to the double ones in the associative setting via the algebra homomorphism

∆̃. To see this, we need some preparation. Put A = Ug.

Definition-Lemma 17. The module map U : Ω1
Lieg → Ω1A over an algebra homomorphism ∆̃ given by

U(1⊗ dx) = dx for x ∈ g

is well-defined. Similarly, the module map P : Ω1A → Ω1
Lieg over an algebra homomorphism id⊗ ε : Ae → A

given by

P(dx) = 1⊗ dx for x ∈ P(A)

is well-defined. The composition P ◦ U is the identity map.

Proof. For the first one, we only have to check the Leibniz relation. For x, y ∈ g, we have

U(1⊗ d[x, y]) = d(xy − yx)

= dx y + xdy − dy x− ydx

= ∆̃(x) · dy − ∆̃(y) · dx

= U(x⊗ dy − y ⊗ dx),

which proves the first claim. For the second one, it is sufficient to check that the equation [x, y] = xy − yx in

Ug is respected. We compute,

P(d[x, y]) = 1⊗ d[x, y]

= x⊗ dy − y ⊗ dx

= x · P(dy)− y · P(dx)

= (id⊗ ε) ◦ ∆̃(x) · P(dy)− (id⊗ ε) ◦ ∆̃(y) · P(dx)

= P(∆̃(x) · dy − ∆̃(y) · dx)

= P(d(xy − yx)) .

This completes the proof.

Definition-Lemma 18. Let ∇′ : Ω1
Lieg → Ω1A ⊗A Ω1

Lieg be a connection. Then, there is a unique connection

U∇′ : Ω1A→ Ω1Ae⊗Ae Ω1A which lifts ∇′, namely, makes the diagram on the left side commute. Similarly, let

10



∇ : Ω1A → Ω1Ae ⊗Ae Ω1A be a connection. Then, there is a unique connection P(∇) : Ω1
Lieg → Ω1A ⊗A Ω1

Lieg

which makes the diagram on the right side commute.

Ω1
Lieg Ω1A⊗A Ω1

Lieg Ω1
Lieg Ω1A⊗A Ω1

Lieg

Ω1A Ω1Ae ⊗Ae Ω1A Ω1A Ω1Ae ⊗Ae Ω1A

∇′

U ∆̃⊗U

P(∇)

U∇′ ∇

P (id⊗ ε)⊗P

The functors U and P preserve flat connections.

Proof. For the first one, it automatically follows that

U∇′(dx) = (∆̃⊗ U) ◦ ∇′(1 ⊗ dx) for x ∈ g .

The uniqueness follows from the Leibniz property of U∇′ together with the fact that Ug is generated, as an

associative algebra, by g. For the well-definedness, just as the definition-lemma above, it is sufficient to check

that the equation [x, y] = xy − yx in Ug is respected. We have, for x, y ∈ g,

U∇′(d[x, y]) = (∆̃⊗ U) ◦ ∇′(1⊗ d[x, y])

= (∆̃⊗ U) ◦ ∇′(x⊗ dy − y ⊗ dx)

= (∆̃⊗ U)
(
dx⊗ (1⊗ dy) + x · ∇′(1⊗ dy)− dy ⊗ (1 ⊗ dx)− y · ∇′(1⊗ dx)

)

= d∆̃(x) ⊗ dy + ∆̃(x) · U∇′(dy)− d∆̃(y)⊗ dx− y · U∇′(dx)

= U∇′(∆̃(x) · dy − ∆̃(y) · dx)

= U∇′(d(xy − yx)).

This shows the first claim. For the second one, it also follows that

P(∇)(1⊗ dx) = ((id⊗ ε)⊗ P) ◦ ∇(dx) for x ∈ g ,

and the uniqueness follows from the surjectivity of P. For the well-definedness, we check the invariance under

the Leibniz rule. We have

P(∇)(1⊗ d[x, y]) = ((id⊗ ε)⊗ P) ◦ ∇(∆̃(x) · dy − ∆̃(y) · dx)

= ((id⊗ ε)⊗ P)
(
d∆̃(x)⊗ dy + ∆̃(x) · ∇(dy)− d∆̃(y)⊗ dx− y · ∇(dx)

)

= dx⊗ (1⊗ dy) + x · P(∇)(1 ⊗ dy)− dy ⊗ (1⊗ dx) − y · P(∇)(1 ⊗ dx)

= P(∇)(x⊗ dy − y ⊗ dx) .

Lastly, if ∇′ is flat, the composition

(∆̃⊗ U) ◦ ∇′ ◦ ∇′ = (U∇′) ◦ (U∇′) ◦ U

is zero. Since the image of U generates Ω1A as an Ae-module, (U∇′)2 = 0 holds. Conversely, if ∇ is flat, the

composition

((id⊗ ε)⊗ P) ◦ ∇ ◦ ∇ = P(∇) ◦ P(∇) ◦ P

is zero, and P(∇)2 = 0 follows, again, from the surjectivity of P. This completes the proof.

Remark 19. The correspondence in above definition-lemmas is inspired by the theorem of Milnor–Moore,

which states that A ∼= UP(A) holds for a complete topological (or graded) Hopf algebra A admitting a suitable

filtration.

In the following, we give a relation between div and Div in the special case g = L(z1, . . . , zn), as this is

virtually the only example of a formally smooth Lie algebra.

Proposition 20. Let g = L(z1, . . . , zn), and ∇′ : Ω1
Lieg → Ω1A⊗A Ω1

Lieg be a connection. Then

DivU∇′

(Uf) = ∆̃(div∇
′

(f))

holds in |Ae|, for f ∈ DerLie(g).

11



Proof. First of all, we have, for f ∈ DerLie(g),

U ◦ Lf = LUf ◦ U : Ω1
Lieg → Ω1A, and

∆̃ ◦ iUf = i
Ũf

◦ ∆̃ : Ω1A→ Ae .

From now on, we employ the Einstein summation convention. We put ∇′(1 ⊗ dzi) = ωj
i ⊗ (1 ⊗ dzj) for some

ωj
i ∈ Ω1A and Lf (1⊗ dzi) = f i ⊗ dzi for some f i ∈ A. Then, in Ω1A,

∆̃(f i) · dzi = U(f i ⊗ dzi) = U(Lf (1⊗ dzi)) = LUf(U(1⊗ dzi)) = LUf (dzi)

holds. In addition, we have

(U∇′)(dzi) = ∆̃(ωj
i )⊗ dzj

by definition. Therefore, we have

DivU∇′

(Uf) =
∑

i

|∆̃(f i)− i
Ũf
(∆̃(ωi

i))|

= ∆̃

(∑

i

|f i − iUf (ω
i
i)|

)

= ∆̃(div∇
′

(f))

This completes the proof.

Let us get back to the flat connections in the previous section. First of all, the flat connection ∇z(dzi) = 0

on Ω1
K〈z1, . . . , zn〉 is induced from ∇′

z(1⊗ dzi) = 0 on Ω1
LieL(z1, . . . , zn), while the other one, ∇C(dxi x

−1
i ) = 0

on Ω1
KFn, is not, as KFn cannot be written in the form Ug for any g. However, after the completion by

the maximal ideal Ker(ε : KFn → K), the completion K̂Fn is isomorphic, as a complete Hopf algebra, to the

completed free associative algebra K〈〈z1, . . . , zn〉〉 by the following map:

K̂Fn
∼= K〈〈z1, . . . , zn〉〉 : xi 7→ ezi .

Under this identification, we have

dxi x
−1
i = 1⊗ 1− xi ⊗ x−1

i = ∆̃(1 − xi) = ∆̃(1− ezi)

= ∆̃

(
ezi − 1

zi

)
∆̃(−zi) = ∆̃

(
ezi − 1

zi

)
· dzi = U

(
ezi − 1

zi
⊗ dzi

)

which shows that (the continuous extension of) ∇C is induced from the connection ∇′
C on Ω1

LieL((z1, . . . , zn))

defined by

∇′
C

(
ezi − 1

zi
⊗ dzi

)
= 0.

Note that all constructions above work just as well in the topological setting, provided everything is continuous.

Finally, recall the Satoh trace map introduced in [Sat12]. Let H = K{z1, . . . , zn} be a free K-module,

H∗ = HomK(H,K) its dual space, and g = L(z1, . . . , zn). Then A = Ug is isomorphic to K〈z1, . . . , zn〉 as a

Hopf algebra. The Satoh trace map TrSatoh is defined as the composition

TrSatoh : H
∗ ⊗ L(H) H∗ ⊗A A |A|,incl cont proj

where the contraction map is defined by

cont(z∗j ⊗ zi1 · · · zir) = δir ,j · zi2 · · · zir .

Satoh showed in [Sat12] that the kernel of TrSatoh stably coincides with the image of the Johnson homomorphism

on the automorphism group of a free group. On the other hand, the map TrSatoh is exactly the map div∇
′
z (up

to some isomorphisms), as is also observed in Section 9 of [AKKN18].

For an introduction into geometry over an operad, see the last section of [Gin05], for example.
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6. Perfect Modules and Homological Connections

In this section, we define a divergence associated with a connection on a not-necessarily-projective module.

Since the existence of a connection (more or less) implies projectivity, we have to modify the definition to work

with them.

Conventions. A projective resolution of a module M is of the form P = ( · · · → P1
∂1−→ P0

∂0−→ M → 0 ). We

set P−1 =M .

For a B-module N and f ∈ DerK(B), a K-linear map u : N → N is called an f -derivation if

u(bn) = f(b)n+ bu(n)

holds for b ∈ B and n ∈ N . Now suppose DerK(B) is acting on M by derivation, which is the same thing as

the action of each f ∈ DerK(B) is itself an f -derivation on M .

Proposition 21. Let (P, ∂) be a projective resolution of M . Then, the action f : M → M of f ∈ DerK(B)

admits a lift λ[f ] : P → P satisfying [∂, λ[f ]] = 0, which is an f -derivation and is unique up to homotopy.

Proof. Fix f ∈ DerK(B). First, we take an arbitrary family of f -dervations (γn : Pn → Pn)n. In fact, if Pn is

free, we may take γn as the direct sum of f ’s. For a general projective module Pn, we realise it as a summand

of a free module, and then restrict the map to each Pn to obtain γn.

Now using (γn)n, we construct maps by following steps: first,

λ[f ]−1 = f :M →M,

and, for n ≥ 0,

ϕ[f ]n = λ[f ]n−1 ◦ ∂n − ∂n ◦ γn : Pn → Pn−1,

ϕ̃[f ]n : Pn → Pn so that ∂n ◦ ϕ̃[f ]n = ϕ[f ]n, and

λ[f ]n = ϕ̃[f ]n + γn : Pn → Pn.

We check that this inductive procedure is well-defined. Let n ≥ 0 and suppose that λ[f ]n−1 is an f -derivation.

Then, ϕ[f ]n is a B-module map: for b ∈ B and p ∈ Pn,

ϕ[f ]n(bp) = λ[f ]n−1(∂n(bp))− ∂n(γn(bp))

= λ[f ]n−1(b∂n(p))− ∂n(f(b)p+ bγn(p))

= f(b)∂n(p) + bλ[f ]n−1(∂n(p))− f(b)∂n(p) + b∂n(γn(p))

= bϕ[f ]n(p).

Next, we check ∂n−1 ◦ ϕ[f ]n = 0. If n = 0, this is true since ∂−1 is defined to be zero. If n ≥ 1, we have

∂n−1 ◦ ϕ[f ]n = ∂n−1 ◦ (λ[f ]n−1 ◦ ∂n − ∂n ◦ γn)

= ∂n−1 ◦ (ϕ̃[f ]n−1 + γn−1) ◦ ∂n

= (ϕ[f ]n−1 + ∂n−1 ◦ γn−1) ◦ ∂n

= (λ[f ]n−2 ◦ ∂n−1 − ∂n−1 ◦ γn−1 + ∂n−1 ◦ γn−1) ◦ ∂n

= 0,

which shows that we can take a lift of ϕ[f ]n. Lastly, it is clear that λ[f ]n is an f -derivation. This shows the

well-definedness. Next, we have

∂n ◦ λ[f ]n = ∂n ◦ (ϕ̃[f ]n + γn)

= ϕ[f ]n + ∂n ◦ γn

= λ[f ]n−1 ◦ ∂n − ∂n ◦ γn + ∂n ◦ γn

= λ[f ]n−1 ◦ ∂n,

13



which is briefly denoted by [∂, λ[f ]] = 0.

Now suppose we have two such lifts λ[f ] and λ[f ]′. Then the difference λ[f ]−λ[f ]′ is a B-module map, and

at the same time, is a lift of the zero map 0 : M → M . Hence this is null-homotopic and this completes the

proof.

Definition 22. Let (C, ∂) be a chain complex of B-modules.

• We put IHom0
B(C,C) = {(ψn : Cn → Cn)n : B-module maps}, the space of degree zero maps. IHom

stands for internal hom-set.

• (C, ∂) is called a perfect complex if it is of finite length and each Cn is B-dualisable. In this case, the trace

map is defined by

Tr : IHom0
B(C,C) → |B| : (ψn)n 7→

∑

n

(−1)n Tr(ψn).

Lemma 23. Let (C, ∂) be a perfect complex of B-modules and (hn : Cn → Cn+1)n be a family of B-module

maps. Then we have Tr([∂, h]) = 0.

Proof. By definition, we have

Tr([∂, h]) =
∑

n

(−1)nTr(∂n+1 ◦ hn + hn−1 ◦ ∂n)

=
∑

n

(−1)nTr(∂n+1 ◦ hn) +
∑

n

(−1)n+1Tr(hn ◦ ∂n+1).

Since Tr(hn ◦ ∂n+1) = Tr(∂n+1 ◦ hn) by proposition 8, we obtain Tr([∂, h]) = 0.

Now we can define a connection on a B-module and the divergence associated with it.

Definition 24. Let M be a B-module.

• A homological connection on M is a pair (P,∇) where P is a projective resolution of M and

∇ = {∇n : Pn → Ω1B ⊗B Pn}n≥0 is a family of usual connections.

• The curvature of (P,∇) is defined to be R = {(∇n)
2 : Pn → Ω2B ⊗B Pn}n≥0, which is a family of

B-module maps. A homological connection (P,∇) is flat if the curvature R is the zero map.

Note that the collection ∇ of connections above is not required to be cochain maps.

Now suppose that a Lie algebra g and a derivation action (ϕ : g → DerK(B), ρ : g → EndK(M)) on M are

given. Note that ρ(f) is a ϕ(f)-derivation.

Definition 25. Let (P,∇) be a homological connection on M with P perfect. The associated divergence

Div(P,∇,ϕ,ρ) is defined by

Div(P,∇,ϕ,ρ) : g → |B| : f 7→
∑

n≥0

(−1)n Tr
(
λ[ρ(f)]n − (iϕ(f) ⊗ id) ◦ ∇n

)
.

This is well-defined by Proposition 21 and the lemma above.

An algebra A is said to be homologically smooth if A is finitely generated as a K-algebra with perfect Ω1A.

In this case, we obtain a divergence map Div∇ : DerK(A) → |Ae|, associated with ∇, just as in Section 3.

14



7. The Closed Surface Case

Let Σg,1 be an oriented surface of genus g with one boundary component, and pick a base point on the boundary.

Denote by ζ the boundary class in π1(Σg,1) and fix an isomorphism

π1(Σg,1) ∼= F2g = 〈ai, bi (1 ≤ i ≤ g)〉

so that ζ = (a1, b1) · · · (ag, bg) holds. Here (x, y) = xyx−1y−1 is the group commutator. Then the closed surface

Σg is obtained by capping the boundary, with the base point induced from Σg,1. Put π = π1(Σg).

Definition 26. The map v : |Kπ| → HH1(Kπ) is defined by

v(α)(x) =
∑

p∈α∩x

sign(α, x; p)α ∗p x

for generic representatives of a free loop α and x ∈ π. Its well-definedness is due to D. Vaintrob (Lemma 1 of

[Vai07a]).

In this section, we will show the following theorem, which gives an algebraic description of the Turaev

cobracket on a closed surface. Put R = K〈ζ〉, the subalgebra of KFn generated by ζ.

Theorem 27. Let C = (ai, bi)1≤i≤g be a free generating system of π1(Σg,1) with ζ = (a1, b1) · · · (ag, bg). Then

we have a commutative diagram

|KFn| DerR(KFn) |KFn|
⊗2

DerK(Kπ) |Kπ|
⊗2

|Kπ| HH1(Kπ) |Kπ/K1|
⊗2
.

σ DivC

v Div∇′

for some homological connection ∇′ on Ω1
Kπ. Therefore, the composition Div∇

′

◦ v is equal to the Turaev co-

bracket δ.

To prove the theorem above, we first construct a homological connection ∇′. To do so, we have to choose a

free resolution of Kπ.

Lemma 28. Let V = K{ai, bi}1≤i≤g be a free K-module of rank 2g. We have a (Kπ)e-free resolution of Kπ:

0 Kπ ⊗Kπ Kπ ⊗ V ⊗Kπ Kπ ⊗Kπ Kπ 0 ,
d1 d0 µ

(2)

d1(1⊗ 1) =
∑

1≤i≤g

(a1, b1) · · · (ai−1, bi−1)
(
1⊗ ai ⊗ bia

−1
i b−1

i + ai ⊗ bi ⊗ a−1
i b−1

i

− aibia
−1
i ⊗ ai ⊗ a−1

i b−1
i − aibia

−1
i b−1

i ⊗ bi ⊗ b−1
i

)
(ai+1, bi+1) · · · (ag, bg),

d0(1 ⊗ v ⊗ 1) = 1⊗ v − v ⊗ 1.

Proof. We follow a method by R. Lyndon [Lyn50]. By Section 11 of [Lyn50], we have a left Kπ-free resolution

of K using the Fox derivative:

0 Kπ Kπ ⊗ V Kπ K 0 ,
∂1 ∂0 ε

∂1(1) =
∑

1≤i≤g

(
∂ζ

∂ai
⊗ ai +

∂ζ

∂bi
⊗ bi

)

=
∑

1≤i≤g

(a1, b1) · · · (ai−1, bi−1)
(
1⊗ ai + ai ⊗ bi − aibia

−1
i ⊗ ai − aibia

−1
i b−1

i ⊗ bi
)
,

∂0(1 ⊗ c) = c− 1 for c ∈ {ai, bi}1≤i≤g .
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Applying the functor (1) and isomorphisms defined in Example in Section 2, we obtain a left (Kπ)e-free resolution

0 Kπ ⊗Kπ Kπ ⊗ V ⊗Kπ Kπ ⊗Kπ Kπ 0 ,
∂′
1 ∂′

0 µ

∂′1(1 ⊗ 1) =
∑

1≤i≤g

(a1, b1) · · · (ai−1, bi−1)
(
1⊗ ai ⊗ aibia

−1
i b−1

i + ai ⊗ bi ⊗ bia
−1
i b−1

i

−aibia
−1
i ⊗ ai ⊗ b−1

i − aibia
−1
i b−1

i ⊗ bi ⊗ 1
)
(ai+1, bi+1) · · · (ag, bg),

∂′0(1⊗ c⊗ 1) = c⊗ c−1 − 1⊗ 1 for c ∈ {ai, bi}1≤i≤g .

Finally, swapping the second-to-left term by the automorphism

τ : Kπ ⊗ V ⊗Kπ → Kπ ⊗ V ⊗Kπ

1⊗ c⊗ 1 7→ 1⊗ c⊗ c−1 for c ∈ {ai, bi}1≤i≤g

gives the proclaimed resolution: d1 = τ ◦ ∂′1 and d0 = −∂′0 ◦ τ
−1.

Now we define a homological connection on Ω1
Kπ. Truncating (2) yields a resolution

0 Kπ ⊗Kπ Kπ ⊗ V ⊗Kπ Ω1
Kπ 0 .

d1 d0

On each degree, we set

∇′
0(1⊗ ai ⊗ a−1

i ) = 0, ∇′
0(1⊗ bi ⊗ b−1

i ) = 0, and ∇′
1(1 ⊗ 1) = 0 .

∇′
0 is the push-out of ∇C by the natural map p : KFn ։ Kπ. To compute the associated divergence, we need

to lift the Lie derivatives on Ω1
Kπ.

Lemma 29. Let f ∈ DerR(KFn), and f̄ ∈ DerK(Kπ) the induced derivation. Then f̄-derivations defined by

λ[f̄ ]0 : Kπ ⊗ V ⊗Kπ → Kπ ⊗ V ⊗Kπ : 1⊗ v ⊗ 1 7→
∑

c∈{ai,bi}1≤i≤g

p(∂′cf(v))⊗ c⊗ p(∂′′c f(v)) and

λ[f̄ ]1 : Kπ ⊗Kπ → Kπ ⊗Kπ : 1⊗ 1 7→ 0

is a lift of Lf̄ : Ω
1
Kπ → Ω1

Kπ.

Proof. First of all, Lf̄ ◦ d0 = d0 ◦ λ[f̄ ]0 is clear from the construction. Next, we have

(λ[f̄ ]0 ◦ d1)(1 ⊗ 1) = λ[f̄ ]0


 ∑

1≤i≤g

(a1, b1) · · · (ai−1, bi−1)
(
1⊗ ai ⊗ bia

−1
i b−1

i + ai ⊗ bi ⊗ a−1
i b−1

i

− aibia
−1
i ⊗ ai ⊗ a−1

i b−1
i − aibia

−1
i b−1

i ⊗ bi ⊗ b−1
i

)
(ai+1, bi+1) · · · (ag, bg)

)

=
∑

1≤i≤g

f̄((a1, b1) · · · (ai−1, bi−1))
(
1⊗ ai ⊗ bia

−1
i b−1

i + ai ⊗ bi ⊗ a−1
i b−1

i

− aibia
−1
i ⊗ ai ⊗ a−1

i b−1
i − aibia

−1
i b−1

i ⊗ bi ⊗ b−1
i

)
(ai+1, bi+1) · · · (ag, bg)

+ (a1, b1) · · · (ai−1, bi−1)λ[f̄ ]0

(
1⊗ ai ⊗ bia

−1
i b−1

i + ai ⊗ bi ⊗ a−1
i b−1

i

− aibia
−1
i ⊗ ai ⊗ a−1

i b−1
i − aibia

−1
i b−1

i ⊗ bi ⊗ b−1
i

)
(ai+1, bi+1) · · · (ag, bg)

+ (a1, b1) · · · (ai−1, bi−1)
(
1⊗ ai ⊗ bia

−1
i b−1

i + ai ⊗ bi ⊗ a−1
i b−1

i

− aibia
−1
i ⊗ ai ⊗ a−1

i b−1
i − aibia

−1
i b−1

i ⊗ bi ⊗ b−1
i

)
f̄((ai+1, bi+1) · · · (ag, bg)) .
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Using the isomorphism Ω1
KFn

∼= KFn ⊗ V ⊗KFn : dv 7→ 1⊗ v ⊗ 1, the above equals
∑

1≤i≤g

f̄((a1, b1) · · · (ai−1, bi−1))d(ai, bi)(ai+1, bi+1) · · · (ag, bg)

+ (a1, b1) · · · (ai−1, bi−1)df(ai, bi)(ai+1, bi+1) · · · (ag, bg)

+ (a1, b1) · · · (ai−1, bi−1)d(ai, bi)f̄((ai+1, bi+1) · · · (ag, bg))

= (p⊗ idV ⊗p)(df(ζ)),

which is zero as f(ζ) = 0. This concludes the proof.

Lemma 30. Let x ∈ KFn, x̄ ∈ Kπ its image and adx̄ = [x̄ , · ] the adjoint action by x̄ on Kπ. Then adx̄-

derivations defined by

λ[adx̄]0 : Kπ ⊗ V ⊗Kπ → Kπ ⊗ V ⊗Kπ : 1⊗ v ⊗ 1 7→
∑

c∈{ai,bi}1≤i≤g

p(∂′c[x, v])⊗ c⊗ p(∂′′c [x, v]) and

λ[adx̄]1 : Kπ ⊗Kπ → Kπ ⊗Kπ : 1⊗ 1 7→ x̄⊗ 1− 1⊗ x̄

is a lift of Ladx̄
: Ω1

Kπ → Ω1
Kπ.

Proof. As in the previous lemma, Ladx̄
◦ d0 = d0 ◦ λ[adx̄]0 is clear. Next, we have

(λ[adx̄]0 ◦ d1)(1⊗ 1) =
∑

1≤i≤g

[x̄, (a1, b1) · · · (ai−1, bi−1)]
(
1⊗ ai ⊗ bia

−1
i b−1

i + ai ⊗ bi ⊗ a−1
i b−1

i

− aibia
−1
i ⊗ ai ⊗ a−1

i b−1
i − aibia

−1
i b−1

i ⊗ bi ⊗ b−1
i

)
(ai+1, bi+1) · · · (ag, bg)

+ (a1, b1) · · · (ai−1, bi−1)λ[adx̄]0

(
1⊗ ai ⊗ bia

−1
i b−1

i + ai ⊗ bi ⊗ a−1
i b−1

i

− aibia
−1
i ⊗ ai ⊗ a−1

i b−1
i − aibia

−1
i b−1

i ⊗ bi ⊗ b−1
i

)
(ai+1, bi+1) · · · (ag, bg)

+ (a1, b1) · · · (ai−1, bi−1)
(
1⊗ ai ⊗ bia

−1
i b−1

i + ai ⊗ bi ⊗ a−1
i b−1

i

− aibia
−1
i ⊗ ai ⊗ a−1

i b−1
i − aibia

−1
i b−1

i ⊗ bi ⊗ b−1
i

)
[x̄, (ai+1, bi+1) · · · (ag, bg)],

which is equal to, using the isomorphism as before,

∑

1≤i≤g

[x̄, (a1, b1) · · · (ai−1, bi−1)]d(ai, bi)(ai+1, bi+1) · · · (ag, bg)

+ (a1, b1) · · · (ai−1, bi−1)d[x̄, (ai, bi)](ai+1, bi+1) · · · (ag, bg)

+ (a1, b1) · · · (ai−1, bi−1)d(ai, bi)[x̄, (ai+1, bi+1) · · · (ag, bg)]

=
∑

1≤i≤g

x̄(a1, b1) · · · (ai−1, bi−1)d(ai, bi)(ai+1, bi+1) · · · (ag, bg)

− (a1, b1) · · · (ai−1, bi−1)x̄d(ai, bi)(ai+1, bi+1) · · · (ag, bg)

+ (a1, b1) · · · (ai−1, bi−1)dx̄(ai, bi)(ai+1, bi+1) · · · (ag, bg)

+ (a1, b1) · · · (ai−1, bi−1)x̄d(ai, bi)(ai+1, bi+1) · · · (ag, bg)

− (a1, b1) · · · (ai−1, bi−1)(ai, bi)dx̄(ai+1, bi+1) · · · (ag, bg)

− (a1, b1) · · · (ai−1, bi−1)d(ai, bi)x̄(ai+1, bi+1) · · · (ag, bg)

+ (a1, b1) · · · (ai−1, bi−1)d(ai, bi)x̄(ai+1, bi+1) · · · (ag, bg)

− (a1, b1) · · · (ai−1, bi−1)d(ai, bi)(ai+1, bi+1) · · · (ag, bg)x̄

=
∑

1≤i≤g

x̄(a1, b1) · · · (ai−1, bi−1)d(ai, bi)(ai+1, bi+1) · · · (ag, bg)

− (a1, b1) · · · (ai−1, bi−1)d(ai, bi)(ai+1, bi+1) · · · (ag, bg)x̄

= x̄d1(1⊗ 1)− d1(1⊗ 1)x̄

= (d1 ◦ λ[adx̄]1)(1⊗ 1).

This concludes the proof.
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Lemma 31. For y ∈ KFn, we have
∑

1≤i≤n

|∂i[y, xi]| = (n+ 1)|y ⊗ 1− 1⊗ y| in |A| ⊗ |A|.

Proof. Write y = xε1i1 · · ·xεrir for some εk ∈ {1,−1}. Then,

∑

1≤i≤n

|∂i[y, xi]| =
∑

1≤i≤n

|∂i(yxi − xiy)| =
∑

1≤i≤n

|∂i(y)xi − xi∂i(y) + y ⊗ 1− 1⊗ y|.

The first two terms on the RHS read, putting ei = (εi − 1)/2,

∑

1≤i≤n

|∂i(y)xi − xi∂i(y)| =
∑

1≤i≤n

|∂i(x
ε1
i1
· · ·xεrir )xi − xi∂i(x

ε1
i1
· · ·xεrir )|

=
∑

1≤k≤r

|xε1i1 · · · ∂ik(x
εk
ik
) · · ·xεrir xik − xik∂ik(x

εk
ik
) · · ·xεrir |

=
∑

1≤k≤r

|εik(x
ε1
i1
· · ·x

εk−1

ik−1
xekik ⊗ xekik x

εk+1

ik+1
· · ·xεrir xik − xikx

ε1
i1
· · ·x

εk−1

ik−1
xekik ⊗ xekik · · ·xεrir )|

=
∑

1≤k≤r

|xε1i1 · · ·x
εk−1

ik−1
⊗ xεkik · · ·xεrir − xε1i1 · · ·xεkik ⊗ x

εk+1

ik+1
· · ·xεrir |

= |y ⊗ 1− 1⊗ y|.

This completes the proof.

Proof of Theorem 27. The left square is commutative by the construction of σ and v. Next, by Lemmas 30

and 31, the divergence of an inner derivation takes its value in (Kπ ⊗ 1 + 1⊗Kπ), so the map Div∇
′

descends

to HH1(Kπ) → |Kπ/K1|⊗2. By Lemma 29, we have, for f ∈ DerR(KFn),

Div∇
′

(f̄) =
∑

c∈{ai,bi}1≤i≤g

|∂cf(c)| = p(Div∇C (f))

modulo (Kπ ⊗ 1 + 1⊗Kπ). Thus, the right square is also commutative; this completes the proof.
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