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Radiation damping of a Rayleigh scatterer illuminated by a plane wave
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We investigate the radiation damping experienced by a dielectric spherical particle when it is
illuminated by an electromagnetic plane wave within the Rayleigh regime. We derive the equivalent
electric dipole of the moving particle and subsequently calculate the electromagnetic force acting on
it from two different approaches. In the first approach, we calculate the force from the integration
of stress tensor and field momentum. In the second one, we calculate the force directly from the
integration of the force density. Our derivations reveal that the damping coefficient is equal to
6Pscat/mc2 along the propagation direction, whereas it is Pscat/mc2 along perpendicular directions.
Here, Pscat denotes the power scattered by the particle, and mc2 represents the particle’s mass
energy. The radiation damping derived in this study sets upper limits on the quality factor of
optically levitated objects and ensures the existence of a steady-state solution of the particle’s
dynamics.

I. INTRODUCTION

Arthur Ashkin, in his pioneering 1970 paper on trap-
ping of particles by radiation pressure writes ”The ex-
tension to vacuum of the present experiments on particle
trapping in potential wells would be of interest since then
any motions are frictionless” [1]. Later, in 1976, based
on the Doppler effect he provides an estimate for the
friction in vacuum (radiation damping) and concludes
that the particle’s oscillation will damp out with a half-
time of roughly half a year [2]. Over the past decade,
optical trapping of levitated nanoparticles in high vac-
uum has gained renewed interest [3–5], and it has been
shown that the particle’s motion accelerates due to the
random momentum transfer from photon scattering, so
called photon recoil heating [6]. Radiation damping was
predicted to counteract this heating mechanism in order
to establish a stable equilibrium [7].
The rates of radiation damping and recoil heating are

fundamental parameters in the study of optomechanics
concerning levitated nanoparticles[6, 8]. In his renowned
1905 paper on special relativity, Einstein calculated the
radiation pressure acting on a moving totally reflecting
mirror, employing the principle of energy conservation[9].
From this calculation, the radiation damping rate for a
movable mirror could be derived by linearizing the radia-
tion pressure with respect to the particle’s velocity. Fur-
ther analysis of the friction forces due to the electromag-
netic radiation for mirrors has been presented for one-
dimensional structures like Fabry–Pérot cavities[10, 11].
Moreover, radiation reaction forces of accelerated charges
and two-level systems like atoms has been extensively
studied in the literature[12–18]. Radiation reaction of
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charged particles are usually studied by using retarded
Liénard-Wiechert fields[19]. When an atom is moving
toward a red-detuned laser, its momentum decreases due
to the Doppler effect[18]. In a paper by one of our
authors[7], the radiation damping of a polarizable par-
ticle interacting with an incident plane wave was derived
by integrating the Maxwell stress tensor in the rest frame.
However, we have found that this analysis is not com-
plete, and that the contribution of the field momentum
has to be accounted for when the integration is performed
in the particle’s rest frame. Moreover, the scattered far
field of a moving particle is no longer transverse in the
laboratory frame, which affects the net momentum flux.
In this paper, we revise the derivation for the radiation
damping, taking into account the two mentioned correc-
tions. We also present an alternative derivation by di-
rectly integrating the Lorentz force density. The results
obtained from both approaches are in agreement.

In the following, we explore the scattering problem of a
moving dielectric particle in the Rayleigh regime when it
is illuminated by an incident plane wave in Sec. II. Then,
we investigate the calculation of the force acting on the
moving particle in Sec. III. We introduce two approaches
for calculating the force, and consequently the radiation
damping. The first involves surface integration of the
stress tensor and field momentum in the particle’s rest
frame, presented in Sec. III A. The second method entails
directly integrating the force density, presented in Sec.
III B. Finally, the conclusions are made in Sec. IV.

II. DIPOLE APPROXIMATION FOR A

MOVING PARTICLE

Consider a dielectric spherical particle moving with ve-
locity v and being illuminated by a monochromatic plane
wave. The incident wave in the laboratory frame is con-
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sidered as

Ei = Re
[

E0x̂e
i(kz−ωt)

]

, (1a)

Hi = Re
[E0

η0
ŷei(kz−ωt)

]

, (1b)

where ω is the angular frequency of the incident wave,
and k = ω/c is its wave number. Here, η0 and c denote
the characteristic impedance and the speed of light in
vacuum, respectively.
When v ≪ c, the incident electric field in the rest frame

of the particle can be expressed as[20]

E′

i = Re
[

E0 (x̂+ β × ŷ) eik(z
′
−β·r

′)e−iω′t′
]

, (2)

where r′ = r− vt and t′ = t− v · r/c2 are the space and
time in that frame, and β = v/c represents the normal-
ized velocity of the particle. The incident wave in the
rest frame is also a monochromatic plane wave with an-
gular frequency of ω′ = ω(1−βz). In fact, we are dealing
with a not moving spherical particle in the rest frame be-
ing illuminated by a monochromatic field E′

i. When the
particle’s radius is much smaller than the wavelength of
the incident wave referred to as the Rayleigh regime, the
particle acts as an electric dipole. The induced electric
dipole is given by

p = Re
[

pe−iω′t′
]

= Re
[

α(ω′)E0 (x̂+ β × ŷ) eik(z
′

p
−β·r

′

p
)e−iω′t′

]

,
(3)

where α denotes the polarizability of the particle. For a
spherical particle with radius Rp and dielectric constant
ǫp, the polarizability can be written as

α(ω) =
α0

1− iω3α0/6πǫ0c3
, (4)

with α0 = 4πǫ0R
3
p(ǫp − 1)/(ǫp +2) being the quasi-static

polarizability of a sphere[21–24].
In the rest frame, the electromagnetic fields scattered

by the particle can be written as

E′

s = Re
[

ω′2µ0G0(r
′, r′p;ω

′) · pe−iω′t′
]

, (5a)

H′

s = Re
[

−iω′
∇×G0(r

′, r′p;ω
′) · pe−iω′t′

]

. (5b)

Here, G0 represents the dyadic Green’s function in the
free space, given by

G0(r
′, r′p;ω

′) =
eik

′R′

4πR′

[

(

1 +
i

k′R′
−

1

k′2R′2

)

I

+

(

3

k′2R′2
−

3i

k′R′
− 1

)

R′R′

R′2

]

,

(6)
with k′ = ω′/c being the wave number of the field in
the rest frame, and R′ = r′ − r′p[25]. Without loss of
generality, we assume that the particle is located at the
origin in the rest frame, i.e., r′p = 0. Then, the scattered
electromagnetic fields in the rest frame can be written as

E′

s = Re







ω′2µ0α(ω
′)E0

ei(k
′R′

−ω′t′)

4πR′





(1− βz)(A1 +A2 sin
2 θ′ cos2 φ′) + βxA2 sin θ

′ cos θ′ cosφ′

(1− βz)A2 sin
2 θ′ cosφ′ sinφ′ + βxA2 sin θ

′ cos θ′ sinφ′

βxA1 + (1− βz)A2 sin θ
′ cos θ′ cosφ′ + βxA2 cos

2 θ′











, (7a)

H′

s = Re







ω′2µ0

η0
α(ω′)E0

ei(k
′R′

−ω′t′)

4πR′





βxA3 sin θ
′ sinφ′

(1− βz)A3 cos θ
′ − βxA3 sin θ

′ cosφ′

−(1− βz)A3 sin θ
′ sinφ′











, (7b)

Here, (R′, θ′, φ′) represents the spherical coordinate sys-
tem in the rest frame of the particle which is considered
as

x′ = R′ sin θ′ cosφ′, (8a)

y′ = R′ sin θ′ sinφ′, (8b)

z′ = R′ cos θ′, (8c)

and the coefficients A1, A2, and A3 are defined by

A1 = 1 +
i

k′R′
−

1

k′2R′2
, (9a)

A2 = −1−
3i

k′R′
+

3

k′2R′2
. (9b)

A3 = 1 +
i

k′R′
. (9c)

To get the far-fields, it suffices to substitute A1, A3 → 1,
and A2 → −1.
Now, we can obtain the scattered fields in the labora-

tory frame from the following transformations[26]:

Es = E′

s − η0β ×H′

s, (10a)

Hs = H′

s +
1

η0
β ×E′

s. (10b)
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Hence, the scattered fields in the laboratory frame can
be written as

Es = Re

{

ω′2µ0α(ω
′)E0

ei(k
′R′

−ω′t′)

4πR′
es(θ

′, φ′)

}

, (11a)

Hs = Re

{

ω′2µ0

η0
α(ω′)E0

ei(k
′R′

−ω′t′)

4πR′
hs(θ

′, φ′)

}

,

(11b)
where

es(θ
′, φ′) =





(1− βz)(A1 +A2 sin
2 θ′ cos2 φ′) + βxA2 sin θ

′ cos θ′ cosφ′ + βyA3 sin θ
′ sinφ′ + βzA3 cos θ

′

(1− βz)A2 sin
2 θ′ cosφ′ sinφ′ + βxA2 sin θ

′ cos θ′ sinφ′ − βxA3 sin θ
′ sinφ′

βxA1 + (1− βz)A2 sin θ
′ cos θ′ cosφ′ + βxA2 cos

2 θ′ − βxA3 cos θ
′



 , (12)

and

hs(θ
′, φ′) =





βxA3 sin θ
′ sinφ′ + βyA2 sin θ

′ cos θ′ cosφ′ − βzA2 sin
2 θ′ cosφ′ sinφ′

(1− βz)A3 cos θ
′ − βxA3 sin θ

′ cosφ′ + βz(A1 +A2 sin
2 θ′ cos2 φ′)− βxA2 sin θ

′ cos θ′ cosφ′

−(1− βz)A3 sin θ
′ sinφ′ + βxA2 sin

2 θ′ cosφ′ sinφ′ − βy(A1 +A2 sin
2 θ′ cos2 φ′)



 . (13)

III. FORCE CALCULATION

According to the Lorentz force law, the electromag-
netic force density exerted on a charge density ρ and a
current density j is given by

f = ρE+ j×B. (14)

where ρ and j are the charge and current densities, re-
spectively. We can also express the force density as

f = ∇ ·T−
∂g

∂t
, (15)

in which

T = ǫ0EE+ µ0HH−
1

2

(

ǫ0|E|2 + µ0|H|2
)

I, (16)

is the stress tensor, and

g = µ0ǫ0E×H, (17)

is the momentum of the electromagnetic fields. When
v ≪ c, the Lorentz transformation implies ∇ = ∇

′ −
(v/c2)∂t and ∂t = ∂t′−v ·∇′. Hence, we can also express
the force density as

f = ∇′ ·T+ (v · ∇′)g −
∂

∂t′
(g +

v

c2
·T), (18)

To obtain the total force acted on the particle, we should
calculate

∫

fd3r. Since the Jacobian determinant is
equivalent to |J(r, r′)| = 1 + O(v2), the total force can
also be calculated from

∫

fd3r′. Therefore, the total force
exerted upon the particle can be written as

F =

∮

T·ds′+

∮

g(v ·ds′)−

∫

∂

∂t′
(g+

v

c2
·T)d3r′. (19)

We can also apply a time-average to eliminate the high
oscillating force terms. The time-averaged force can be
obtained from

〈F〉 =

∮

〈T〉 · ds′ +

∮

〈g〉(v · ds′). (20)

We can calculate the force acted on the moving parti-
cle from two distinct approaches: calculating the surface
integral of the stress tensor and the field momentum, or
directly calculating the volume integral of the force den-
sity. In the following, we investigate these two approaches
in detail, separately.

A. Surface integration of stress tensor and field

momentum

The time-averaged force acting on the particle can be
determined by calculating the surface integrals of stress
tensor and field momentum according to Eq. 20. As
seen in Sec. II, the total electromagnetic fields can be
represented as the combination of incident and scattered
fields. Consequently, both the stress tensor and field mo-
mentum can be decomposed into three parts:

T = Tii +Tss +Tis, (21a)

g = gii + gss + gis. (21b)

Tii and gii are the components of the stress tensor and
the field momentum that solely pertain on the incident
fields that are defined as

Tii = ǫ0EiEi+µ0HiHi−
1

2

(

ǫ0|Ei|
2 + µ0|Hi|

2
)

I, (22a)

gii = µ0ǫ0Ei ×Hi. (22b)

Tss and gss are the ones that only pertain on the scat-
tered field that are described by

Tss = ǫ0EsEs + µ0HsHs −
1

2

(

ǫ0|Es|
2 + µ0|Hs|

2
)

I,

(23a)

gss = µ0ǫ0Es ×Hs. (23b)
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Eventually, Tis and gis represent the mutual terms, de-
fined as

Tis = ǫ0EiEs + ǫ0EsEi + µ0HiHs + µ0HsHi

− (ǫ0Ei ·Es + µ0Hi ·Hs) I,
(24a)

gis = µ0ǫ0 (Ei ×Hs +Es ×Hi) . (24b)

We have evaluated the surface integrals of the stress ten-
sor components in Appendix A. The results are

∮

〈Tii〉 · ds
′ = 0, (25)

∮

〈Tss〉 · ds
′ = −

ω4µ2
0ǫ0α

2
0E

2
0

60πc
(6vxx̂+ 7vyŷ + 7vzẑ) ,

(26)

∮

〈Tis〉 · ds
′ =

ω4µ2
0ǫ0α

2
0E

2
0

12π

(

1− 4
vz
c

)

ẑ. (27)

We can also evaluate the field momentum integrals. In
Appendix B we have demonstrated that

∮

〈gii〉 (ds
′ · v) = 0, (28)

∮

〈gss〉 (ds
′ · v) =

ω4µ2
0ǫ0α

2
0E

2
0

60πc
(vxx̂+ 2vyŷ + 2vzẑ) ,

(29)

∮

〈gis〉 (ds
′ · v) = −

ω4µ2
0ǫ0α

2
0E

2
0

12πc
vz ẑ. (30)

Therefore, the time-averaged force exerted upon the par-
ticle is

〈F〉 =
Pscat

c
ẑ−

Pscat

c2
(vxx̂+ vyŷ + 6vzẑ) (31)

where Pscat = k4α2
0E

2
0/12πǫ0 is the power scattered by

the particle. The first term in the above expression rep-
resents the radiation pressure force that acts on the par-
ticle along the propagation direction. The second one
represents the radiation damping force experienced by
the particle. Hence, the radiation damping tensor can be
defined as

Γrad =
Pscat

mc2





1 0 0
0 1 0
0 0 6



 . (32)

B. Volume integration of the force density

Here, we present another approach for deriving the ra-
diation damping. We calculate the force acting on the
moving particle directly from the volume integration of
the force density. According to the Lorentz force law,

the force exerted on a charge density ρ and the current
density j can be obtained from

F =

∫

ρE+ j×Bd3r, (33)

where the volume integral should be taken over the
charge distribution.
In the rest frame, the induced dipole p is not mov-

ing and is located at position r′p. Thus, the charge and
current densities in that frame can be written as

ρ′ = −∇
′ ·
[

pδ(r′ − r′p)
]

, (34a)

j′ =
∂p

∂t′
δ(r′ − r′p), (34b)

Then, we can obtain the charge and current densities in
the laboratory frame from ρ = ρ′+ v

c2
· j′ and j = j′+ρ′v,

respectively. Hence, we can express ρ and j as a function
of laboratory-frame variables as

ρ = −∇ · pδ [r− rp(t)]− p ·∇δ [r− rp(t)] , (35a)

j =
[∂p

∂t
+ (v ·∇)p− v∇ · p

]

δ [r− rp(t)]

−v

(

p ·∇δ [r− rp(t)]
)

.
(35b)

Upon substituting ρ and j from Eqs. 35a and 35b into
the force expression and computing the volume integral,
one obtains

F =
[

(p ·∇)E+
∂p

∂t
×B

−B× (v ·∇)p+ v × (p ·∇)B
]

r=rp(t)
.

(36)

We can also express the force as a function of the rest
frame variables:

F =
[

(p ·∇′)E′ +
∂p

∂t′
×B′

+
∂p

∂t′
×
( v

c2
×E′

)

−
(

p ·
v

c2

) ∂E′

∂t′

]

r
′=r

′

p

,
(37)

in which E′ = E+ v ×B and B′ = B− (v/c2)×E rep-
resent the electric and magnetic fields in the rest frame,
respectively.
As discussed in Sec. II, the electromagnetic fields in

the particle’s rest frame are monochromatic with angular
frequency ω′. Hence, we can represent the fields as

E′ = Re
[

E′e−iω(1−βz)t
′

]

, (38a)

B′ = Re
[

B′e−iω(1−βz)t
′

]

, (38b)
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with E′ and B′ being the complex amplitude of the elec-
tric and magnetic fields, respectively. Upon substitut-
ing these expressions in Eq. 37, it can be easily shown
that the time-averaged force acting on the particle can
be written as

〈F〉 =
1

2
Re

[

p∗
k
∇

′E′

k+iω(1−βz)
(

p∗ ·E′
) v

c2

]

r
′=r

′

p

. (39)

When calculating the force, it’s important to account for
the total electric field. We can decompose the electric
field that needs to be incorporated into the force expres-
sion into two parts:

E′ = E′

inc +E′

rad. (40)

The first term is the incident electric field, given by

E′

inc = E0 (x̂+ β × ŷ) eik(z
′
−β·r′). (41)

The second term is referred to as the radiation field, de-
fined as

E′

rad = ω2µ0Im
[

G0(r
′, r′p)

]

· p. (42)

It should be noted that the remaining part of the scat-
tered field that is proportional to the real part of G0

is singular at the particle’s position, and should not be
considered when calculating the force.
Now, we can decompose 〈F〉 into two parts:

〈F〉 = 〈Finc〉+ 〈Frad〉. (43)

The first term represents the force that E′

inc applies to
the induced dipole, given by

〈Finc〉 =
kE2

0

2
(1− 2βz)Im [α] ẑ−

ωkE2
0

2
βzIm

[

∂α

∂ω

]

ẑ.

(44)
Upon using Eq. 4, it can be easily shown that 〈Finc〉 can
be simplified to

〈Finc〉 =
Pscat

c

(

ẑ− 5
vz
c
ẑ
)

, (45)

The second force term represented by 〈Frad〉 is the force
that E′

rad applies to the induced dipole. By employing
the following relations that can be easily demonstrated
from the Taylor expansion of G0

Im
[

G0(r
′

p, r
′

p)
]

=
ω

6πc
I, (46a)

Im
[

∇G0(r
′

p, r
′

p)
]

= 0, (46b)

we can find that

〈Frad〉 = −
Pscat

c2
v. (47)

Therefore, the total time-averaged force acting on the
particle is

〈F〉 =
Pscat

c
ẑ−

Pscat

c2
(vxx̂+ vyŷ + 6vzẑ) . (48)

This result matches the one obtained in Sec. III A
through the integration of the stress tensor and field mo-
mentum.

IV. CONCLUSIONS

In summary, we have derived the radiation damping
experienced by a moving dielectric particle exposed to an
incident plane wave using two distinct approaches: one
involves the surface integration of the stress tensor and
field momentum, and the other involves the integration
of the force density, directly. Our analysis has shown that
the damping coefficient along the propagation direction
is 6Pscat/mc2, while it equates to Pscat/mc2 in perpen-
dicular directions. We note that radiation damping is a
necessary ingredient for the existence of a steady state so-
lution of the particle’s dynamics. While zero-point field
fluctuations heat the particle’s motion via radiation pres-
sure shot noise, radiation damping cools the motion and
gives rise to a steady-state solution in which heating and
cooling are balanced. Such an equilibrium is the prereq-
uisite for Einstein’s famous fluctuation formula and the
particle nature of radiation [27].

Appendix A: Derivation of stress tensor integrals

Here, we provide a detailed derivation of stress ten-
sor integrals. As previously discussed in Sec. III, the
stress tensor is decomposed into three components. One
of these components is Tii that represents the stress ten-
sor of the incident wave, as defined in Eq. 22a. Substi-
tuting the incident fields from Eqs. 1 results in
∮

〈Tii〉 · ds
′ =

∮

1

2
Re

{

ǫ0E
2
0

[

(e∗i · R̂
′)ei + (h∗

i · R̂
′)hi

−
1

2
(ei · e

∗

i + hi · h
∗

i ) R̂
′

]

}

ds′,

(A1)

Here, ei = (1, 0, 0) and hi = (0, 1, 0) represents the direc-
tion of the incident electric and magnetic fields, respec-
tively, and R̂′ = (sin θ′ cosφ′, sin θ′ sinφ′, cos θ′). After
evaluating the integration over the polar angle, i.e. φ′,
we obtain

∮

〈Tii〉 · ds
′ = πǫ0E

2
0

∫ π

0





0
0

− cos θ′



R′2 sin θ′dθ′. (A2)

It can be easily shown that the above integral vanishes.
Consequently,

∮

〈Tii〉 · ds
′ = 0. (A3)

Now, we aim calculating the surface integral of 〈Tss〉.
As defined in Eq. 23a, Tss is the component of the stress
tensor associated solely with the scattered fields. Substi-
tuting the incident fields from Eqs. 11 yields
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∮

〈Tss〉 · ds
′ =

∮

1

2
Re

{

ω′4µ2
0ǫ0α

2
0E

2
0

16π2R′2

[

(e∗s · R̂
′)es + (h∗

s · R̂
′)hs −

1

2
(es · e

∗

s + hs · h
∗

s) R̂
′

]

}

ds′. (A4)

We can use the far-fields values when calculating the above expression. After evaluating the integration over the polar
angle, i.e. φ′, it becomes

∮

〈Tss〉 · ds
′ =

ω′4µ2
0ǫ0α

2
0E

2
0

32π

∫ π

0





βx

(

− 5
4 + 2 cos θ′ − 3

2 cos
2 θ′ − 2 cos3 θ′ + 3

4 cos
4 θ′

)

βy

(

− 7
4 − 1

2 cos
2 θ′ + 1

4 cos
4 θ′

)

−2 cos θ′ − 2 cos3 θ′ + βz

(

−1 + 2 cos θ′ − 2 cos2 θ′ + 2 cos3 θ′ − cos4 θ′
)



 sin θ′dθ′.

(A5)
If we evaluate the integral above and retain terms up to first order in β, one obtains

∮

〈Tss〉 · ds
′ = −

ω4µ2
0ǫ0α

2
0E

2
0

60πc
(6vxx̂+ 7vyŷ + 7vzẑ) . (A6)

Eventually, we want to calculate the surface integral of the mutual component of the stress tensor, as defined in
Eq. 27. Upon substituting the incident and scattered fields from Eqs. 1 and 11, respectively, we obtain

∮

〈Tis〉 · ds
′ =

∮

1

2
Re

{

ω′2µ0ǫ0α(ω
′)E2

0

ei(k
′R′

−ω′t′−kz+ωt)

4πR′

[

(e∗i · R̂
′)es + (es · R̂

′)e∗i + (h∗

i · R̂
′)hs + (hs · R̂

′)h∗

i

− (e∗i · es + h∗

i · hs) R̂
′

]

}

ds′.

(A7)

If we retain terms up to first order in β and compute the integral over φ′, the expression becomes

∮

〈Tis〉 · ds
′ = Re





k′α(ω′)E2
0

8
lim

k′R′
→0







k′R′

∫ π

0

eik
′R′(1−cos θ′)





Cx
0 + Cx

1 cos θ′ + Cx
2 cos2 θ′ + Cx

3 cos3 θ′

Cy
0 + Cy

1 cos θ′ + Cy
2 cos2 θ′

Cz
0 + Cz

1 cos θ
′ + Cz

2 cos
2 θ′ + Cz

3 cos
3 θ′



 sin θ′dθ′









 .

(A8)

The coefficients appearing in the x-component of the
above expression are defined as

Cx
0 = βx [A3 + ik′R′(A1 +A2)] , (A9a)

Cx
1 = βx (2A1 + 3A2 − ik′R′A3) , (A9b)

Cx
2 = βx [−3A3 − ik′R′(A1 +A2)] , (A9c)

Cx
3 = βx (−A2 + ik′R′A3) . (A9d)

The ones appeared in the y-component are given by

Cy
0 = βy (−A3 − ik′R′A1) , (A10a)

Cy
1 = −2βyA1, (A10b)

Cy
2 = βx (A3 + ik′R′A1) , (A10c)

and eventually the ones in the z-component are

Cz
0 = −(1− βz)A3, (A11a)

Cz
1 = −2A1 − βzA2, (A11b)

Cz
2 = −(1 + βz)A3, (A11c)

Cz
3 = βzA2. (A11d)

Upon performing the integral and taking the limit, the
resultant expression is:

∮

〈Tis〉 · ds
′ =

ω4µ2
0ǫ0α

2
0E

2
0

12π

(

1− 4
vz
c

)

ẑ. (A12)

Appendix B: Derivation of field momentum integrals

Here, we provide a detailed derivation of the field mo-
mentum integrals appeared in Eq. 20. As discussed
previously, the field momentum can be decomposed into
there components: gii, gss, and gis. According to the
definition of gii given in Eq. 22b, and upon substituting
the incident fields from Eqs. 1, one obtains
∮

〈gii〉(ds
′ ·v) =

∮

1

2
Re

[

ǫ0µ0E
2
0

η0
êi × ĥ∗

i

]

(ds′·v), (B1)
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which can be expressed as:

∮

〈gii〉(ds
′ · v) = Re

{

∫ π

0

∫ 2π

0

ǫ0E
2
0

2





0
0
1



 (βx sin θ
′ cosφ′ + βy sin θ

′ sinφ′ + βz cos θ
′)R′2 sin θ′dθ′dφ′

}

. (B2)

Upon computing the above integral, we can easily demonstrate that

∮

〈gii〉(ds
′ · v) = 0. (B3)

Now, we aim the calculation of 〈gss〉 integral. According to the definition of gss given in Eq. 23b, and substituting
the scattered fields from Eqs. 11, we obtain

∮

〈gss〉(ds
′ · v) =

∮

1

2
Re

{

ω′4µ2
0ǫ0α

2
0E

2
0

16π2R′2
ês × ĥ∗

s

}

(ds′ · v), (B4)

that can be further expanded into

∮

〈gss〉(ds
′ · v) =

1

2
Re

{

∫ π

0

∫ 2π

0

ω4µ2
0ǫ0α

2
0E

2
0

16π2R′2





sin θ′ cos2 θ′ cosφ′ + sin3 θ′ sin2 φ′ cosφ′

sin θ′ sinφ′ − sin3 θ′ sinφ′ cos2 φ′

cos θ′ − sin2 θ′ cos θ′ cos2 φ′





×(βx sin θ
′ cosφ′ + βy sin θ

′ sinφ′ + βz cos θ
′)R′2 sin θ′dθ′dφ′

}

.

(B5)

If we evaluate the integral above and retain terms up to first order in β, one obtains

∮

〈gss〉 (ds
′ · v) =

ω4µ2
0ǫ0α

2
0E

2
0

60πc
(vxx̂+ 2vyŷ + 2vzẑ) . (B6)

Eventually, we aim the calculation of the mutual term. According the definition of gis given in Eq. 24b, it can be
easily shown that

∮

〈gis〉 (ds
′ · v) =

∮

1

2
Re

{

ω′2µ0ǫ0α(ω
′)E2

0

ei(k
′R′

−ω′t′−kz+ωt)

4πR′

[

êi × ĥ∗

s + ês × ĥ∗

i

]

}

(ds′ · v). (B7)

Since we want to calculate the above expression up to first order terms in β, we can retain êi × ĥ∗

s + ês × ĥ∗

i up to
zero order in beta. Then, the above expression can be written as

∮

〈gis〉 (ds
′ · v) = Re

[

k′α(ω′)E2
0

8π
lim

k′R′→0

{

k′R′

∫ π

0

∫ 2π

0

eik
′R′(1−cos θ′)





A2 sin θ
′ cos θ′ cosφ′

A3 sin θ
′ sinφ′

A3 cos θ
′ −A1 −A2 sin

2 θ′ cos2 φ′





×(βx sin θ
′ cosφ′ + βy sin θ

′ sinφ′ + βz cos θ
′) sin θ′dθ′

}]

.

(B8)

Upon evaluating the above expression and retaining terms up to first order in β, one obtains

∮

〈gis〉 (ds
′ · v) = −

ω4µ2
0ǫ0α

2
0E

2
0

12πc
vzẑ. (B9)
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