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Abstract

This paper investigates the role of supply chain unobservability in generating
endogenously fragile production networks. In a simple production game, in which
firms with imperfect information need to multisource to hedge against suppliers’
risk, firms underdiversify vis-à-vis the social optimum. The unobservability of
suppliers’ relations is the driver behind this. In production networks where up-
stream risk is highly correlated and supplier relationships are not observable, the
marginal risk reduction of adding an additional supplier is low, because this ad-
ditional supplier’s risk is likely to be correlated to that of existing suppliers. This
channel reduces firm incentives to diversify, which gives rise to inefficiently fragile
production networks.

By solving the social planner problem, I show that, if the risk reduction experi-
enced downstream resulting from upstream diversification were to be internalised
by upstream firms, endogenous production networks would be resilient to most
levels of risk. Furthermore, I show that the opaqueness of the supply chain yields
less fragile but more inefficient production networks. Despite its stylised form,
the model identifies the trade-off firms face when diversifying risk and isolates the
mechanism that aggregates these decisions into a production network. Further-
more, it maps the conditions of the trade-off, such as expected profits of the firm
or the pairing costs, to the properties of the production network.

∗Faculty of Economics and Business, University of Amsterdam (a.titton@uva.nl). I thank my super-
visors Florian Wagener and Cees Diks for the patient guidance on this paper. I also thank the
CeNDEF group and the Quantitative Economics section at the University of Amsterdam for helpful
comments throughout the many seminars. Finally, I thank attendees of the EEA-ESESM confer-
ence, Barcelona, 2023, and the Dutch Network Science Society Symposium, Leiden, 2022, for the
constructive comments.

1

ar
X

iv
:2

40
3.

16
63

2v
1 

 [
ec

on
.T

H
] 

 2
5 

M
ar

 2
02

4



In August 2020, hurricane Laura hit one of the world’s largest petrochemical districts,
in the U.S. states of Louisiana and Texas. As polymer producers in the area were forced
to halt production, up to 15% of the country’s polypropene (PE) and polypropene (PP)
producers were unable to source polymer inputs, which in turn caused shortages across
the economy (Vakil, 2021). Such a widespread disruption raised awareness on the role
suppliers’ correlation has in destabilising production networks and its importance in
firms’ sourcing decisions. Yet, the structure of the supply chain is often opaque: firms
do not observe sourcing relations beyond their immediate suppliers (Williams et al.,
2013). In face of this opacity, how do producers make sourcing decisions? And, should
we expect these sourcing decisions to yield resilient production networks?

In this paper, I study the role of supply chain opacity in determining firms’ sourcing
decisions and, in turn, the consequences on the resilience of the production network. A
widespread approach to mitigate risk is to diversify it by multisourcing. This practice
consists of procuring the same inputs from multiple suppliers, sometimes redundantly
(Zhao and Freeman, 2019). Yet, when deciding how many suppliers from which to
source, a firm faces decreasing marginal benefits in risk reduction, because each addi-
tional supplier’s failure to deliver is increasingly likely to be correlated with that of the
firm’s current suppliers. In the presence of marginal costs of sourcing, for example con-
tractual costs or higher prices, the uncertainty behind the correlation of a firm’s potential
suppliers might induce it to diversify risk less than socially optimal. The wedge between
endogenous firm decisions and social optimality arises because downstream firms would
be willing to compensate their suppliers for increased diversification of inputs. This
underdiversification can generate aggregate fragility in production networks. To under-
stand the relationship between the opacity of the supply chain, firms’ diversification
decisions, and production network fragility, I study the properties of a stylised produc-
tion game. In the equilibrium of the game, unobserved correlation among suppliers
generates fragility via two channels. First, it directly introduces endogenous correlation
in downstream firms’ risk, which amplifies through the production network. This in-
creases the probability of cascading failures, in which the entire production network is
unable to produce. Second, it indirectly affects firms’ decisions by reducing the expected
marginal gain from adding a source of input goods. The latter channel leads to firms
diversifying increasingly less, such that small shocks in the production of basal goods
can generate cascading failures downstream.

The role that production networks play in determining economic outcomes has been long
recognised. As far back as Leontief (1936), economists have studied how networks in
production can act as aggregators of firm level activity. Following a foundational paper
by Hulten (1978), which showed that the first order impact of a productivity shock to an
industry is independent of the production network structure, macroeconomics has since
de-emphasised this role (Baqaee and Farhi, 2019, p. 2). However, more recently, Baqaee
and Farhi (2019) illustrated how the structure of the production network can aggregate
micro shocks via second order effects.(1) Furthermore, the degree of competition in an

(1)These results build on a vast literature and recent literature (e.g. )
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industry also interacts with the production network to aggregate shocks, which can lead
to cascading failures (Baqaee, 2018). Once established that production networks play a
central role in aggregating shocks, two natural questions arise. First, which networks can
we expect to observe, given that firm endogenously and strategically choose suppliers?
Second, are these endogenous network formations responsible for the growth or fragility
that large economies display? These questions fuelled a number of recent papers studying
endogenous production network formation. Focusing on growth, Acemoglu and Azar
(2020) show that endogenous production networks can be a channel through which firms’
increased productivity lowers costs throughout the supply chain and allows for sustained
economic growth. In parallel, a vast literature dealt with studying the role of endogenous
production networks and firm incentives in determining fragile or resilient economies.
Erol and Vohra (2014) showed that in networks with strategic link formation, systemic
endogenous fragility arises if the shocks experienced by firms are correlated. Later
work, by Amelkin and Vohra (2020), shows that uncertainty in the time of production
is crucial in determining whether production networks in equilibrium are sparse, hence
fragile. Finally, Elliott et al. (2022) illustrate how complexity in the production process
can also be a key driver of endogenous fragility in production networks. (2)

A less understood link is that between the opacity of the supply chain, how firms deal
with it, and which consequences this has on the economy. Kopytov et al. (2021) studied
the effect of uncertainty in endogenous production network formation on firms’ produc-
tivity and business cycles. They find that higher uncertainty can lead to lower economic
growth. In contrast, this paper focuses on the role of uncertainty in generating endoge-
nous fragility to cascading failures using a more stylised production network model, akin
to that studied by Elliott et al. (2022). In line with the existing literature, in the model
small idiosyncratic shocks can be massively amplified. The degree of amplification de-
pends on the equilibrium behaviour of firms. This phenomenon holds true in vertical
economies producing simple goods. The novel theoretical contribution of this paper is to
extend the analysis of production network formation to an opaque environment in which
firms aim to minimise risk while accounting for correlation between suppliers. To do so, I
develop a tractable analytical framework that describes the propagation of idiosyncratic
shocks through the supply chain when firms take sourcing decisions endogenously in an
imperfect information environment. The model describes the evolution of risk through
the supply chain as a dynamical system over the depth of the production network. The
social planner solution shows that endogenous fragility can impose large welfare losses.
Importantly, these losses might be discontinuous: an arbitrary small increase in the cor-
relation of risk among basal firms, can generate large welfare losses. Finally, I study
a benchmark case without opacity, in which firms have full information. In this case,
despite each individual firm being able to achieve smaller disruption risk, the production
network is maximally fragile and there is a high probability of large disruptions.

The remainder of the paper is structured as follows. Section 1 discusses the assumptions

(2)The literature on production networks is vast and it is unfortunately impossible to give a fair overview
in this introduction. For a more comprehensive review of the literature I refer the reader to Carvalho
and Tahbaz-Salehi (2019) and Amelkin and Vohra (2020)

3



on the supply chain disruptions, the problem of the firm, and establishes the results that
allow the firm to make sourcing decisions. Section 2 derives the law of propagation of
the disruption events through the production network. Section 3 establishes the firm’s
optimal sourcing strategy and how this endogenously determines the fragility of the
production network. These results are then compared, in Section 4, to the social planner
solution to determine the welfare losses induced by the firm’s endogenous decisions.
Finally, in Section 5, the role of opacity is isolated by solving the model under perfect
information.

1. Model

1.1. Production Technology and the Firm Objective

Consider a vertical economy producing K +1 goods, indexed by k ∈ {0, 1, . . . K}. Each
firm produces a single good and each good is produced by mk firms. Production of the
basal good k = 0 does not require any input, yet, it is at risk of random exogenous
disruptions in the production process. A disrupted basal firm is unable to deliver its
good as input to downstream producers. Each downstream good k > 0 requires only
good k− 1 as input. If a firm producing good k is unable to source its input good k− 1,
the firm is itself disrupted and hence unable to deliver downstream. In other words,
the i-th firm producing good k, indexed by (k, i), is able to produce if at least one of
its suppliers is able to deliver, namely, not all of its suppliers are disrupted. To avoid
being disrupted, the firm chooses which firms to source from, among the producers of
its input good. Letting Dk be the random set of disrupted firms in layer k and Sk,i the
set of suppliers of firm (k, i), we can say that (k, i) ∈ Dk if and only if all of its suppliers
(k − 1, j) ∈ Sk,i are in Dk−1. I refer to the set of the firm’s suppliers Sk,i as its sourcing
strategy. The disruption events are random and the probability that a firm is disrupted
can be written as

Pk,i := P
(
(k, i) ∈ Dk

)
= P

(
Sk,i ⊂ Dk−1

)
. (1)

Figure 1 illustrates this mechanism.

S1 S2 S1 S2

Figure 1: The supply chain is depicted in the left panel. The left firm is sourcing its input good from
all three suppliers, S1, while the right firm only from the latter two, S2. As a disruption
occurs, some upstream firms are unable to supply the input good (white box). Unlike the
left firm, the right firm is unable to source its inputs and is hence disrupted.

If a firm is not disrupted, it obtains a profit π. Implementing a given sourcing strategy
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costs the firm C
(
|Sk,i|

)
. The cost C is assumed to be increasing in the number |Sk,i| of

suppliers. The problem of firm (k, i) is then to maximise the expected profit(3)

Πk,i(Sk,i) =
(
1− P

(
Sk,i ⊆ Dk−1

))
π − C

(
|Sk,i|

)
(2)

by picking a sourcing strategy Sk,i. Before moving on with the solution of the model,
it is useful to discuss the assumptions presented in this section. The production game
is highly stylised: first, firms do not adjust prices but only quantities, such that failure
to produce only arises in the case that no input is sourced; second, they are able to
obtain profits by simply producing; third, contracting with new suppliers has a cost.
There are both theoretical and empirical reasons behind these choices. Theoretically, a
simpler model allows us to isolate the interplay between the variables of interest: cor-
relation in the risk of suppliers, supply chain opacity, and the endogenous production
network fragility. Empirically, these assumption capture well the rationale behind firms’
multisourcing. There is strong evidence that firms, first, when faced with supply chain
shocks, adjust quantities rather than prices in the short run (), second, that produc-
tion shutdowns can be extremely costly (), and third, that fostering relationships with
suppliers is costly, but important in guaranteeing operational performance (Cousins and
Menguc, 2006). The model establishes a link between these issues faced by firms when
choosing a sourcing strategy and the fragility of the production network.

1.2. Opacity of the Supply Chain

The supply chain is opaque: firms cannot observe the sourcing decisions of their potential
suppliers before making their own. Furthermore, firms do not know how risky individual
basal producers are, nor how their risk is correlated. Yet, firms know the distribution
from which the probabilities of disruption in the basal layer are drawn. To motivate this
definition of opacity, recall the introductory example of hurricane Laura. A downstream
firm producing PP, might not be able to trace back the production steps from its input
to individual polymer producers in Louisiana or Texas, and, hence, the exact exposure of
its production process to hurricanes. Yet, it can estimate the aggregate risk the polymer
industry faces in the region. Given this information about the basal layer and their
own depth k in the production network, firms can derive the distribution of risk among
their suppliers and make sourcing decisions based on it. By symmetry, the risk of two
firms downstream sourcing from the same number of suppliers is ex-ante identical, albeit
possibly correlated. The following two assumptions formalise this idea. Introduce

Xk,j :=

{
1 if (k, j) is disrupted and

0 otherwise,
(3)

and P0 the space of probability distributions over the basal disruption events.

(3)The expectation is taken over the random set Dk−1.
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Assumption 1. Fix an arbitrary symmetric measure ν over P0, that is, ν is invariant
under relabelling of basal firms. The probability distribution P0 of disruptions in the
basal layer is sampled from ν. I assume ν is observed by all firms, while P0 is hidden.

Going back to the example of polymer producers, under this assumption, downstream
PP producers understand how hurricane risk can impact the production of their input
good, via ν, yet, they cannot estimate the risk that individual polymer producers face,
nor how this risk is correlated, since they do not observe P0.

Assumption 2. If there are multiple sourcing strategies that yield the same expected
profit, the firm chooses one with equal probability.

Proposition 1. Under these assumptions, in each downstream layer k ≥ 1, disruption
events

Xk,1, Xk,2, Xk,3 . . . Xk,mk
,

are exchangeable, that is, their distribution is invariant under permutation.

Proposition 1, proven in Appendix B.1, asserts that, from the point of view of the firm,
all suppliers are ex-ante equal, yet their risk might be correlated. Hence, the profit
of the firm depends exclusively on how many suppliers it chooses, rather than which
suppliers it chooses. Hence, a firm producing good k can first infer the distribution of
the number Dk−1 := |Dk−1| of disrupted firms among its potential suppliers and then
choose the optimal number sk,i := |Sk−1,i| of firms from which to source its input good.
Furthermore, by symmetry, all firms in layer k choose the same number sk of sources,
that is,

sk,i = sk for all i. (4)

As a result, the sourcing strategies Sk,i and Sk,j of any two firms i and j are such that
their disruption probabilities Pk,i and Pk,j are identically distributed ().

2. Disruptions Propagation

Building on the mechanisms behind firms’ disruptions introduced above, this section
studies how these disruptions propagate through the supply chain. To do so, I consider
the case in which the number mk of firms in each layer k grows large. To study the limit,
it is first necessary to characterise how the sourcing relations Sk,j form as the number
of firms in each layer increases.

Assumption 3. As a new firm is introduced in layer k, it starts establishing relations
with its sk suppliers. As soon as it pairs with a supplier, a new firm is introduced among
the producers of its input good k − 1, which, in turn, selects its sources. This procedure
continues recursively until all firms realised their sourcing strategy sk.

6



Indexing by n the n-th step of this procedure, this section focuses on the limit as n→ ∞.
Every new firm introduced in the basal layer has a disruption probability that is ν-
distributed, hence, the new firm is ex-ante identical to existing firms. This ensures that,
as n → ∞, Assumption 1 is satisfied and the downstream sourcing decisions s1, s2 . . .
are unaffected. This, allows us to simply consider the problem of the representative firm
in layer k.

To analytically characterise the disruption propagation through the production network,
the only missing piece is the distribution ν of the disruption probabilities in the basal
layer. As mentioned in the previous section, I assume that basal firms fail with a not
necessarily independent probability P0. We can model this by assuming that P0 follows
a Beta distribution.

Assumption 4. The probability of a disruption in the basal layer follows

P0 ∼ ν0 ≡ Beta for all j. (5)

The Beta distribution allows to flexibly model shocks that might happen due to spacial
or technological proximity of basal producers, which cannot be diversified. Consider, for
example, how oil extraction plants must be located nearby oil reserves and are hence
all subject to correlated weather shocks that might force them to shut down. In this
case, despite the small expected probability that an individual firm is disrupted, as a
hurricane is a rare occurrence, disruptions are highly correlated, as when a hurricane
occurs most of them are disrupted. To keep track of the expected disruption probabil-
ity and the correlation of risk through the layers, I introduce the following alternative
parametrisation of the Beta distribution.

Definition 1. Let µ and ρ be respectively the mean and the overdispersion of a Beta
distribution with shape parameters α and β, defined by

µ :=
β

α + β
and ρ :=

1

1 + α + β
. (6)

I write Y ∼ Beta(µ, ρ).

Given Assumption 4, the following result links the probabilities of experiencing a dis-
ruption from upstream suppliers of k to downstream producers k + 1.

Definition 2. A random variable Y follows a BetaPower distribution, with mean µ,
overdispersion ρ, and power s if it can be written as Y = Xs where X follows a Beta
distribution with mean µ and overdispersion ρ.

Proposition 2. If the disruption probability Pk among suppliers of good k follows a
BetaPower distribution, so does the downstream probability Pk+1.

7



The proof is provided in Appendix B.2. Proposition 2 guarantees that the distribution
of disrupted firms will remain in the same distribution family as risk amplifies through
the production network. This result allows us to describe disruption propagation in the
supply chain by mapping the evolution of the parameters µk and ρk through the layers.
Furthermore, it allows firms to estimate µk and ρk and use this to determine the optimal
sourcing strategy sk+1. It is useful at this point to give an interpretation of µk and
ρk in the context of our model. The parameter µk is the average number of disrupted
firms. The parameter ρk tracks the degree of correlation in the disruption of firms
operating in layer k. I illustrate this in Figure 2. This figure shows the distribution of
the disruption probability Pk+1 among downstream firms in the case the firm has a single
supplier (dotted lines) or two suppliers (solid line). For low overdispersion, ρk = 0.01, the
suppliers’ disruptions are weakly correlated and the downstream disruption probability
is concentrated around the average µk. If firms contract an additional supplier, the
distribution of failures decreases and remains concentrated around the average. As ρk
increases, the suppliers’ disruption events become more correlated and the downstream
disruption probabilities become fat-tailed, that is, a significant fraction of firms is likely
to be disrupted and, as a consequence, diversification is ineffective. If firms contract an
additional supplier, risk decreases, but a large probability of disruptions remains.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

Failure probability, pk+1

D
en
si
ty

ρk = 0.02
ρk = 0.1

Figure 2: Distribution of disruption probabilities of downstream firms for different levels of upstream
correlation ρk, in the cases of single sourcing (dotted) and multisourcing (solid). In both
cases µk = 1

2 .
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Having established the link between the disruptions of layer k to layer k+1, I now turn
to the analysis of how these propagate through the whole supply chain, before study-
ing how firms make decisions endogenously. The following result recursively connects
downstream distributions with upstream sourcing decisions and initial conditions.

Proposition 3. The average number of disrupted firms between one layer k and the
next k + 1 depends on the sourcing strategy sk+1 via

µk+1 = η(sk+1, Sk) µk, (7)

where Sk :=
∏k

j=1 sj is the diversification level up to layer k and η is the risk reduction
factor, which is given by

η(sk+1, Sk) =

(
µ0

1− ρ0
ρ0

+ Sk

)Sksk+1

/(
1− ρ0
ρ0

+ Sk

)Sksk+1

=

(
µ0

ρ0
1−ρ0

+ Sk

ρ0
1−ρ0

+ Sk

)(
µ0

ρ0
1−ρ0

+ Sk + 1
ρ0

1−ρ0
+ Sk + 1

)
. . .

(
µ0

ρ0
1−ρ0

+ Sksk+1 − 1
ρ0

1−ρ0
+ Sksk+1 − 1

)
.

(8)

This is proven in Appendix B.3. The risk reduction factor η(sk+1, Sk) governs how
the firms’ choice sk+1, the choices along the firms’ production chain Sk, and the basal
conditions µ0, ρ0 affect the expected number of disruptions downstream. This interplay
is illustrated in the following figures.

Figure 3 shows how the risk reduction factor varies with basal correlation ρ0 for different
sourcing strategies sk, fixing the upstream diversification of Sk = 2. If correlation ρ0 in
the basal layer grows, to obtain a given level of risk reduction η, firms producing good k
needs to source more suppliers. If ρ0 → 1, diversification becomes impossible, as η → 1
and µk+1 → µk for any sourcing strategy sk+1.
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Figure 3: Risk reduction factor µk+1/µk at different basal overdispersion levels ρ0 and for different
sourcing strategies sk+1. Sk = 2.

As the above, Figure 4 shows the response of the risk reduction factors to different
levels of basal correlation, but instead of varying the strategy sk of the firm, it varies
the level of upstream diversification Sk. For low levels of basal correlation ρ0, more
upstream diversification Sk allows downstream producers to achieve lower risk with
fewer suppliers. Yet, there is a level of basal correlation after which more diversification
is detrimental for the downstream firm, as this high upstream diversification simply
exacerbates tail-risk. This represents a crucial externality the upstream suppliers impose
on downstream producers. For low level of correlation, sourcing downstream represents a
positive externality downstream. This externality shrinks as correlation increases, until
it becomes a negative externality. Section 4 explores the welfare consequences of this
mechanism.
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Figure 4: Risk reduction factor µk+1/µk at different basal overdispersion levels ρ0 and for different
upstream diversification levels strategies Sk. sk+1 = 2.

3. Firm Optimal Diversification and Competitive
Equilibrium

The mechanics of disruption propagation, derived in the previous section, determine the
firms’ risk diversification incentives and, as a consequence, their optimal sourcing strat-
egy. This section derives such optimal strategies. Importantly, due to Proposition 1, all
firms in a given layer are ex-ante identical and so is their optimisation problem. We can
hence focus of the representative firm in layer k+1, choosing how many suppliers in layer
k to source from, based on the inferred distribution of their probability of experiencing
a disruption event. This, in turn, is fully determined by the expected fraction of firms
disrupted in the basal layer µ0, the correlation of such disruptions ρ0, and the sourcing
strategies of the representative firm upstream {sk, sk−1 . . . s0}. For illustration purposes
in the next section, I assume firms face quadratic costs from contracting suppliers, with
a fixed marginal cost c, such that expected profits(4) can be written as

Πk(sk) =
(
1− E

[
Pk | sk

])
π − c

2
s2k, (9)

(4)Expectation is taken over the random variable Dk−1 = |Dk−1|.
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The optimisation problem of the firm is to then choose the optimal sourcing strategy

sk = arg max
s∈{0,1,2,...}

Πk(s). (10)

3.1. Limit Case: Uncorrelated Disruptions

Before turning towards the general framework, I first analyse a limit case in which
suppliers’ risk is not correlated, ρ0 → 0. This limit case allows to derive more results
analytically, gives a useful interpretation of the incentives behind multisourcing, and
allows to establish a benchmark against which to study the introduction of correlated
shocks.

Proposition 4. If risk among basal firms becomes uncorrelated ρ0 → 0, disruption
events in layer k become independent and happen with probability

µk = µsk
k−1 = (µ

sk−1

k−2 )
sk = . . . = µSk

0 . (11)

Proof. Follows immediately from Pk → µk as ρ0 → 0.

Using the law of motion (11), we can rewrite profits (9) as

Πk+1(s) =
(
1− µs

k

)
π − c

2
s2. (12)

Consider the marginal profits attained by adding an additional source of input goods,

∆Πk+1(s) := Πk+1(s+ 1)− Πk+1(s) = µs
k(1− µk)π − c

(
s+

1

2

)
. (13)

A firm with a given number of suppliers, contracts an extra supplier if doing so yields
a positive expected marginal profit. Hence, the optimal number of suppliers sk+1 is the
smallest s for which the expected marginal profit is negative ∆Πk+1(s) < 0.

Definition 3. Let s̃k+1 be the unique root of ∆Πk+1(s) over [−1/2,∞). I refer to this
quantity as the “diversification incentive”.

Proposition 5. The optimal sourcing strategy is given by sk+1 = ⌈s̃k+1⌉.

The proof of the uniqueness of s̃k+1 and of Proposition 5 is given in Appendix B.4.1.

Corollary 5.1. The firm does not source any input sk+1 = 0 if the suppliers’ risk µk is
greater than the threshold µ0,

µk ≥ µ0 := 1− c/2

π
. (14)

I refer to all levels of risk µk > µ0 as “collapse regime”.
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Proof. Suppose firms do not source any inputs sk+1 = 0. This implies that the marginal
benefit of adding the first supplier is negative, namely ∆Πk+1(0) ≤ 0, which yields the
desired inequality.

As expected, the diversification incentive s̃k+1 and the optimal sourcing strategy sk+1

are implicitly determined by the suppliers’ risk µk and the relative marginal cost of
contracting a new supplier c/2

π
. Figure 5 shows the optimal diversification incentive s̃k+1

(solid line) and sourcing strategy sk+1 (dotted line), given a suppliers’ level of risk µk,

for three different marginal costs ratios c/2
π
. First, as the marginal pairing costs increase,

the firm’s diversification incentives decrease. Second, higher levels of risk increase the
diversification incentives of firms until a threshold is reached, after which, diversification
incentives and, in turn, optimal diversification start decreasing. The concavity of the
optimal sourcing strategy sk+1 in the suppliers’ risk µk, highlights a vicious cycle which is
introduced in production networks when firm decisions are endogenised: after a certain
level of risk, firms have less incentives to diversify, which, in turn, “flattens” the marginal
expected profits downstream. This mechanisms can lead to endogenous fragilities in
production networks.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

3

5

7

9

µk

s k
+
1

π/c = 200
π/c = 50
π/c = 20

Figure 5: s̃k+1 (solid) and sk+1 (dotted)

To illustrate the mechanism behind the endogenous fragility, we can combine the law of
risk propagation (4) and the optimal firm sourcing (5) to obtain the risk dynamics in
the production network,

µk+1 = µ
sk+1(µk)
k . (15)

The recursive relation (15) maps risk from suppliers to firms throughout the production
network, hence studying its properties allows to describe how risk propagates through
the supply chain. Two natural questions arise: first, which levels of risk remain stable
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through the supply chain, that is, they are neither amplified nor dampened as one moves
from suppliers to firms? Second, how are initial levels of risk mapped to these stable
risk levels? The former can be answered by determining levels of risk µ̄ which are fixed
points of equation (15). The latter by looking at the basin of attraction of such points.

Proposition 6. The stable levels of risk µ̄ are all points satisfying

µ̄(1− µ̄)

3
≤ c/2

π
. (16)

Proof. A steady state is attained if s̃k+1 ≤ 1. This implies that the marginal benefit of
multisourcing is not positive ∆Πk+1(1) ≤ 0. This yields the desired inequality.

Corollary 6.1. For all basal risk levels µ0 larger than the critical threshold

µc :=
1

2
+

√
1

4
− 3

c/2

π
, (17)

the endogenous supply chain is unable to diversify risk µ = µ0. I refer to this situation
as “endogenous fragility”.
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c/2π

µ

µ0

µc

Figure 6

Propositions 6 and 6.1 (proven in Appendix B.4.2)

link the firms’ relative costs c/2
π

and the aggre-
gate outcomes in term of production network risk.
As relative marginal costs increase, the capacity of
the production network to endogenously diversify
basal risk µ0 decreases and firms’ underdiversifica-
tion yields endogenous fragility. It is interesting
to notice that, comparing the aggregate threshold
µc with the firm shutdown threshold µ0 (Figure 6),
for some levels of basal risk µ0, despite no firm
shutting down production µ0 < µ0, the production
network as a whole is still unable to endogenously
diversify risk µ0 > µc. This is true even in this
special case, where firms’ risk is uncorrelated. In
the next section, I introduce correlation risk ρ > 0
and investigate how doing so changes the dynamics
illustrated here.

3.2. Optimal Sourcing with Correlated Distributions

If disruption events are not independent, ρ0 > 0, risk among suppliers throughout the
production network is correlated, and firms’ optimisation incentives change. The firm
problem (9) in layer k + 1 is to choose the number of suppliers sk+1 ∈ {0, 1, 2 . . .} that
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maximises the profits Π given an upstream diversification Sk. The firm’s expected dis-
ruption probability is given by the expected probability of disruption among its suppliers
µk, scaled by a factor η(sk+1, Sk) (Proposition 3) which depends on the firm sourcing
strategy. As in the limit case analysed in the previous section, the firm will increase
diversification as long as the expected reduction in profits obtained by adding an addi-
tional supplier outweighs the costs of contracting that additional supplier. The expected
marginal profits are given by

∆Πk+1(sk+1) =
(
η(sk+1, Sk)− η(sk+1 + 1, Sk)

)
µkπ − c

(
sk+1 +

1

2

)
. (18)

As above, let s̃k+1 be the “diversification incentive”, that is, the level of s such that the
marginal benefits and marginal costs of diversification are equal ∆Πk+1(s) = 0. Since
the marginal profits are strictly decreasing in the number of suppliers (see Appendix
B.5), the firm will choose its optimal sourcing strategy as sk+1 = ⌈s̃k+1⌉ (Proposition
5). The correlation of risk among producers of its input good changes the firm’s incen-
tives, as illustrated in Figure 7. In particular, as correlation increases, the firm needs to
increase its sources to diversify risk. Yet, for large levels of correlation, the disruption
of an additional source of the input good is likely correlated to a disruption among the
firm’s existing suppliers, which reduces the firm’s multisourcing incentives. As disrup-
tions among suppliers become perfectly correlated, ρk → 1, the firm has no reason to
multisource s̃k+1 → 0.
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Figure 7: Sourcing incentive (i.e. s such that ∆Πk+1(s) = 0) as suppliers’ risk correlation ρk increases,
for different values of suppliers’ risk, µk

This result, proven in Appendix B.5, can be summarised as follows.
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Proposition 7. The sourcing incentive s̃k+1 is concave in the overdispersion among
suppliers ρk.

Corollary 7.1. The optimal sourcing strategy is weakly concave in the overdispersion
among suppliers ρk.

Proof. If s̃k+1 is concave in ρ0 (Proposition 7), then taking the next largest integer ⌈·⌉
yields weak concavity.

This result (7.1) introduces a channel through which the correlation of disruptions in
the production networks, can generate externalities in the firms’ choices and yield an
endogenously fragile production network. To analyse these ramifications, consider the
recursive relation of risk µk, when firms optimally source sk+1 (parallel to equation 15),

µk+1 = η(sk+1, Sk) µk = . . . =
k∏

j=0

η(sk+1−j, Sk−j)µ0. (19)

From the definition of η, it follows that downstream there exists a layer k, such that,
the distribution of disruptions is constant, or more formally, sl = 1 for all l ≥ k. Let
µ := µK be the stable downstream fraction of firms expected to fail downstream. Figure
8 illustrates this fraction for different levels of basal risk µ0 and overdispersion ρ0 in a low
(left) and a high (right) relative pairing cost regime. First, in both cases if ρ0 → 1 there is
no possible diversification since all firms are either disrupted or not, hence the disruption
risk is constant across the production network µ = µ0, regardless of the sourcing strategy.
Likewise, if risk among basal producers becomes independent, ρ0 → 0, the problem
converges to the limit case discussed in the previous section. Second, for a given level of
basal correlation ρ0, there is a critical threshold µc such that an arbitrary small increase
in the initial risk level µ0 has a discontinuous effect in the fraction of downstream firms
µ. As discussed in the previous section, this discontinuity is induced on the production
network by the firms’ endogenous diversification incentives. As correlation increases, the
maximum “diversifiable” level of basal risk, µc, becomes smaller. This lowering critical
threshold suggests that, when allowed to form endogenously, production networks display
a tendency towards endogenous fragility. Importantly, the model suggests that cascading
failures can be triggered not only by increases in basal risk µ0 but also by increases in
basal correlation ρ0, even as basal risk remains constant. This fragility, unlike the one
studied by Elliott et al. (2022), is not induced by the structure of the production function,
but rather arises endogenously due to the decreasing diversification motives of firms.
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Figure 8: Surface of the downstream fraction of non functioning firms µ, given the initial condition µ0

and ρ0 in a low (left) and a high (right) relative pairing costs regime.

4. Social Planner Problem

To establish a benchmark to which one can compare the competitive equilibrium anal-
ysed above, in this section I solve the model from the perspective of a social planner.
The social planner attempts to, on the one hand, minimise the number of firms expected
to fail, and, on the other, minimise the number of costly sourcing relations. To develop a
useful benchmark, it is important to define a social planner problem that can be mean-
ingfully compared to the decentralised firm’s problem. To do so, I make the following
two assumptions.

Assumption 5. The social planner knows the distribution of failure in the basal layer
P0 ∼ Beta(µ0, ρ0) and makes decision before P0 is realised.

Assumption 6. As in the firm problem, I consider the case n → ∞. This allows the
social planner to recursively, from the last layer K upwards, assign suppliers Sk,i such
that there are sufficiently many firms so that no two firms share suppliers Sk,i∩Sk,j = ∅.

Figure 9

To understand the intuition behind Assumption 6, consider the
possible supplier overlap illustrate in Figure 9: if a supplier has
multiple downstream clients (dashed box), the social planner
can always rewire a link towards a supplier without downstream
clients (solid box). By doing so, the social planner can “diversify
away” all the correlation that arises due to the network struc-
ture. Hence, the only source of risk in the model is represented
by the shutdowns experienced by firms in the basal layer, which
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happen with non-idiosyncratic probabilities P0 (Assumption 5).
Combining Assumptions 5 and 6, the social planner problem is then to maximise average
expected payoffs

W ({Sk,i}) :=
1

K

K∑
k=0

lim
n→∞

1

mk(n)

mk(n)∑
i=1

(
1− P

(
Sk,i ⊂ Dk−1

))
π − c

2
|Sk,i|2 , (20)

by choosing a sourcing strategy Sk,i ⊆ {1, 2, . . .} for each firm in each layer such that
Sk,i ∩ Sk,j is empty for all i, j. The social planner problem can be further simplified by
noticing that, given that all firms in layer k are identical, if establishing an additional
path from a firm in layer k to a basal firm has positive marginal benefits, then it has
positive marginal benefits for all firms in layer k which share the same number of paths
to basal firms. Hence, as in the decentralised firms’ problem, the social planner can
choose the optimal number of sources in each layer, let the firms source at random, and
finally disentangle any overlapping paths. Using this, the social planner problem can be
formulated recursively, by letting Vk be the maximal average welfare from layer k to the
last layer K. This can be recursively defined as

Vk(Pk−1) = max
sk

{(
1− E

[
P sk
k−1

])
π − c

2
s2k + E

[
Vk+1(Rk)

]}
(21)

where the state Pk−1 ∼ BetaPower(µ0, ρ0, s1s2 . . . sk−1) is the fraction of disrupted firms,
which evolves as

Pk = P sk
k−1. (22)

The average welfare in layer K+1 is given by VK+1(PK) = 0, since firms in the last layer
are never sources to other firms, and an initial state condition P0 ∼ Beta(µ0, ρ0). This
problem can be solved using standard backward induction techniques (see Appendix C).
The optimum average social welfare (20) can then be written as

V1(P0) = max
s1,s2,...sK−1

W ({s1, s2, . . . sK−1}). (23)

Letting {spk}Kk=1 be the socially optimal sourcing strategies sequence and {µp
k}Kk=1 be the

expected disruption in each layer given by such sourcing strategies, we can compute
the change in downstream risk compared to the decentralised case (as illustrated in
Figure 8). Figure 10 shows this difference µ− µp for the same two cost regimes. On the
one hand, when relative pairing costs are low (left panel), the social planner achieves
marginally lower risk levels of downstream risk for most initial conditions. If initial
basal correlation ρ0 is sufficienctly large and basal risk µ0 is sufficienctly low, the firms
overdiversify compared to the socially optimum µ < µp. On the other hand, if relative
pairing costs are high (right panel), the differences between the social optimum and
the competitive level of downstream risk are starker. First, for larger levels of basal
risk µ0 and lower levels of basal correlation ρ0 the firms overdiversify compared to the
social optimum, µ < µp. Second, the social planner is able to diversify risk around the
critical threshold µc, µ > µp. This implies that the cascading failures that occur around
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the critical threshold are fully attributable to firms’ endogenous underdiversification
motives.
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Figure 10: Change in downstream expected failure probability between the firms’ µ and the social
planner µp equilibrium, given different initial conditions µ0 and ρ0 in a low (left) and a
high (right) relative pairing costs regime.

The differences between the firms’ sourcing strategies and the social optimum gener-
ate welfare losses in the production network. Letting W be the average firm profit in
the decentralised case and W p be the average profit achieved by the social planner, in
Figure 11 I show the welfare loss due to the firms’ diversification decisions W −W p,
in the high cost scenario ( c

2
= 0.02π). The welfare loss is largest around the critical

value µc, where the production network suffer is endogenously fragile. At these levels
of risk, firms’ upstream firms’ diversification incentives are weak, which creates large
downstream resilience externalities. Crucially, both an increase in basal risk µ0 and an
increase in basal correlation ρ0 can generate discontinuous welfare losses.
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and ρ0.

5. The Role of Opacity

So far I assumed that firms cannot observe the realisation of the supply chain when
making sourcing decisions. To understand how this assumption affects optimal decisions
and fragility within the supply chain, I now analyse the supply chain under perfect
information. The following assumption clarifies what is meant by perfect information in
the context of the model.

Assumption 7. In a regime of perfect information each firm firm i in level k is able
to perfectly estimate the disruption probability of each potential supplier and the full
correlation structure of the disruption events.

Under this perfect information regime, the firm can assign correct probabilities to its
own disruption risk

P
(
Sk,i ⊂ Dk−1

)
for all possible sourcing strategies Sk,i.

The firm can hence rank suppliers by the marginal reduction in risk they provide and
source from the “safest” sk desired suppliers. As all firms downstream are ex-ante
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identical, the marginal benefits of diversification experienced by firm (i, j) are the same
as those of all other firms in layer k, which implies that, in equilibrium, all firms in
layer k will employ the same sourcing strategy, given that they are ex-ante identical.
This outcome is beneficial for any single firm, but detrimental for the stability of the
production network. The following to propositions formalise this.

Proposition 8. Compared to the opaque scenario, for the same number of sources, firm
(k, i) is (weakly) less likely to be disrupted.

Proof. Given the same number of sources, the firm with perfect information minimises
its disruption risk with fewer constraints than in the opaque scenario.

Proposition 9. Under perfect information, the supply chain is maximally fragile: either
all firms fail or none do.

Proof. The equilibrium outcome under perfect information implies that a disruption in
layer k affects all firm simultaneously as they all share the same sources, namely

Xk,i = Xk,j for all i and j.

This, in turn, removes any diversification incentives downstream: a firm producing k+1
cannot diversify its risk by multisourcing, hence it will single source.

Opacity has a dual role: on the one hand, it prevents firms from optimally choosing the
best sourcing strategy; on the other hand, it mitigates endogenous fragility by forcing
firm to diversify.

6. Conclusion

Risk diversification is a crucial determinant of firms’ sourcing strategies. In this paper,
I show that firms endogenously underdiversify risk when they have incomplete infor-
mation about upstream sourcing relations. This endogenous underdiversification gen-
erates fragile production networks, in which, arbitrarily small increases in correlation
among disruptions between basal producers can generate discontinuously large disrup-
tions downstream. I do so by deriving an analytical solution to a simple production
game in which firms’ sole objective is to minimise the risk of failing to source input
goods.

Despite its simple structure, the game identifies an important externality firms impose
on the production network when making sourcing decisions: upstream multisourcing in-
troduces correlation in firms’ risk, which reduces incentives to multisource downstream.
This externality exacerbates the risk of fragile production networks. Furthermore, I show
that a social planner can design production networks that mitigate fully this externality.
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A consequence of this result is that, in principle, it is possible to design a transfer mech-
anism that allows downstream firms to compensate upstream firms to internalise the
diversification externalities. By analysing the welfare loss in competitive equilibrium, I
show that there is a critical region of basal conditions where arbitrary small increases in
suppliers’ correlation, even if the expected number of disrupted firms remains constant,
can generate catastrophic downstream disruptions by altering downstream firm diver-
sification incentives. This result illustrates how an increase in correlation among basal
producers, for example due to widespread offshoring to the same country, can endoge-
nously generate fragile production networks which have a large tail risk of disruption.
Surprisingly, opacity plays a role in mitigating this effect, suggesting that if firms were
to acquire information about the production network, despite the individual firm being
better off, this could generate further endogenous fragility.
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A. Notation and Distributions

This appendix introduces standard notation and definitions that will be used throughout
the following appendices.

For x ∈ R and n ∈ Z, I denote the falling factorial as

xn := x(x− 1)(x− 2) . . . (x− (n+ 1))︸ ︷︷ ︸
n terms

. (24)

For non-integer exponents s ∈ R, (24) can be extended as

xn :=
Γ(x+ n)

Γ(x)
, (25)

where Γ is the gamma function.

Two properties of the falling factorial that are used below but not proven are the additive
property of the exponent

xn+m = xn(x+m)m, (26)

and that it is strictly increasing in its base

∂xn

∂x
> 0. (27)

B. Omitted Proofs

This appendix contains the proofs omitted from the paper.

B.1. Proof of Proposition 1

Proving Proposition 1, requires the following Lemma.

Lemma 1. If the disruption events among upstream firms are exchangeable, then the
probability that a downstream firm is disrupted depends only on the number of suppliers
it picks.

Proof. Consider the (possibly infinite) sequence of disruption events among upstream
firms Xk,1, Xk,2, Xk,3 . . .. We assume the sequence to be exchangeable, that is,

Xk,1, Xk,2, Xk,3 . . .
d
= Xk,σ(1), Xk,σ(2), Xk,σ(3) . . . , (28)

for an arbitrary permutation of its indices σ. Fix two arbitrary finite subsets of firms
A = {Xk,a1 , Xk,a2 . . . Xk,an} and B = {Xk,b1 , Xk,b2 . . . Xk,bn} of size n. Here ai, bi ∈ [m]
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are the indices of the original sequence corresponding to the i-th index of the subset.
Let σ be a permutation that takes elements of A to B, namely,

σ(A) = B and σ(Ac) = Bc. (29)

Then the probability distribution over A is

P(A) = P(A and Ac taking any value)

= P(σ(A) and σ(Ac) taking any value) then by exchangeability

= P(B and Bc taking any value) = P(B).
(30)

Now we can prove Proposition 1

Proof. It can be proven by induction.

The base case k = 0 follows from Assumption 1, as the disruption probabilities are
ν-distributed and ν is symmetric.

Assume that for some layer k − 1 the disruption events Xk−1,1, Xk−1,2 . . . , Xk−1,m are
exchangeable. By Lemma 1 we know that the downstream expected profit Πk,i(S)
depends only the number of suppliers |S|. By symmetry and Assumption 2, all firms
in layer k are then selecting a random subset of supplier from layer k − 1 with equal
probability, which in turn determines their disruption risk Xk,i. This construction is
independent of the downstream firm index i, hence

Xk,1, Xk,2 . . . , Xk,m

are exchangeable.

B.2. Proof of Proposition 2

Proof. A firm producing good k + 1 sources from sk+1 suppliers, hence, its disruption
event is given by

Xi,k+1 = Xj1,kXj2,k . . . Xjsk+1
,k, (31)

where {j1, j2 . . . jsk+1
} is an arbitrary subset of suppliers and Xj,k are exchangeable

Bernoulli trials with a Pk success probability, where

Pk ∼ BetaPower.
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Conditional on the underline distribution Pk of disruption probabilities, the trials Xj,k

are independent and identically distributed. Hence, we have

Pk+1 = E[Xi,k+1] = E

[
sk∏
l=1

Xjl,k

]

= E

[
E

[
sk∏
l=1

Xjl,k

∣∣Pk = pjl

]]
by conditional independence,

= E
[
E
[
Xjl,k

∣∣Pk = pjl
]sk] by independence of the draws pj,l

= E
[
E
[
Xjl,k

∣∣Pk = pjl
]]sk = P sk

k .

(32)

B.3. Mapping of risk across layers

This section derives the risk reduction factor η.

Lemma 2. If Pk−1 ∼ BetaPower(m,α, β, S) for some integer S, then

Pk ∼ BetaPower(m,α, β, Ssk) (33)

where sk is the choice of suppliers in layer k.

Proof. Follows from the definition of BetaPower.

Proposition 10. The expected probability of disruption faced by a firm is given by

E
[
Pk

]
=
B
(
µ0

1−ρ0
ρ0

+ Sk−1sk, (1− µ0)
1−ρ0
ρ0

)
B
(
µ0

1−ρ0
ρ0
, (1− µ0)

1−ρ0
ρ0

) . (34)

Proof. It follows from rewriting the moment generating function of the beta distribution
as

M(t) =
∞∑
n=0

tn

n!

B(α + n, β)

B(α, β)
. (35)

and noticing that Pk ∼ BetaPower(α, β, Sk−1sk).

To simplify notation, let r0 =
1−ρ0
ρ0

and

η(s, S) =
(µ0r0 + S)S(s−1)

(r0 + S)S(s−1)
(36)
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which satisfies the recursion

η(s+ 1, S) = η(s, S)
(µ0r0 + Ss)S

(r0 + Ss)S
. (37)

Another property of (36) which will be use later is

∂η

∂s
= η(s, S)S

(
ψ(µ0r0 + Ss)− ψ(r0 + Ss)

)
. (38)

Corollary 10.1. From equation (38) and the fact that ψ is increasing over positive
values, it follows that η is decreasing in s.

Using Proposition (10), the coefficient η allows us to write the propagation of risk re-
cursively

µk+1 = η(sk+1, Sk) µk. (39)

B.4. Limit case ρ0 → 0

In this section, for convenience, I suppress the layer indices k and k + 1.

B.4.1. Optimal sourcing strategy

This proves Proposition 5 and that Definition 3 is well defined.

Proof. Notice that π > 0 and 0 < µ < 1, the expected marginal benefit ∆Π : R → R is
strictly decreasing as

∂

∂s
∆Π(s) = log(µ) (1− µ)µsπ − c < 0. (40)

Furthermore, ∆Π is continuous with

∆Π(−1/2) =
1− µ√

µ
π > 0 and (41)

lim
s→∞

∆Π(s) = −∞ < 0. (42)

Hence, s̃ exists and is unique in the interval [−1/2,∞). Since s̃ is the unique root and
∆Π is strictly decreasing the integer value s = ⌈s̃⌉ is the smallest integer such that the
marginal benefits are negative ∆Π(s) < 0.

28



B.4.2. Properties of the Law of Motion

For the following proof I only consider non-trivial values of upstream risk µ < µ0. If
µ ≥ µ0, no firm has suppliers and the supply chain is by definition stable.

Lemma 3. A fixed point of the law of motion g(µ̄) = µ̄, is attained iff g̃(µ̄) ≥ µ̄.

Proof. By definition g̃(µ̄) = µ̄s̃(µ̄) and 0 ≤ µ̄ ≤ 1. Hence g̃(µ̄) ≥ µ̄ ⇐⇒ s̃(µ̄) ∈ (0, 1].
By definition s(µ̄) = ⌈s̃(µ̄)⌉ = 1, which implies that g(µ̄) = µ̄.

Now we can prove Corollary 6.1.

Proof. We seek µ, such that g̃(µ) ≥ µ, which then implies that g(µ) = µ. This will be
the case if s̃(µ) ∈ (0, 1]. This is the case if ∆Π(1) ≤ 0 and ∆Π(0) > 0, which yields the
desired inequality.

B.5. General Case, ρ0 > 0

This is the proof of Proposition 5 in the more general case, ρ0 > 0.

Proof. It is sufficient to show that ∆Π is strictly decreasing in s when ρ0 > 0. It is
convenient to rewrite η (36) as

η(s) =
Γ(r0 + S)

Γ(µ0 r0 + S)

Γ(µ0 r0 + Ss)

Γ(r0 + Ss)
. (43)

Then

∆Π(s) =
(
η(s)− η(s+ 1)

)
πµ− c

(
s+

1

2

)
, (44)

hence

∆Π′(s) = −c− µπS

(
η(s+ 1)

(
ψ(µ0r0 + S(s+ 1))− ψ(r0 + S(s+ 1))

)
−

η(s)
(
ψ(µ0r0 + Ss)− ψ(r0 + Ss)

))
.

(45)

Then ∆Π′(s) < 0, since ψ is increasing. Finally notice that ∆Π(−1/2) = (η(−1/2) −
η(1/2))πµ < 0 and lims→∞ ∆Π(s) = ∞.

After proving that a solution exists, I will now prove that it is concave in the level of
correlation ρ0 (Proposition 7).
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Proof. Notice that another way of writing ∆Π is letting P ∼ BetaPower(µ, ρ, s) and
writing

∆Π(s) = E
[
P s − P s−1

]
π − c

(
s+

1

2

)
. (46)

The optimal incentive s, is a root of ∆Π, hence

s =
E
[
P s − P s−1

]
c

πµ− 1

2
=
πµ

c

(
E[P s]− E[P s−1]

)
− 1

2
. (47)

C. Solution of the Social Planner Problem

First, notice that the terminal condition VK is linear in PK−1, hence EVK(PK−1) =
VK(EPK−1). In turn, this implies that Vk is linear for all k. Hence we can rewrite the
value to be a function of the state space S,

Vk(Sk−1) = max
s

{(
1− E

[
BetaPower(µ0, ρ0, Sk−1 s)

])
π − c

2
s2 + Vk(Sk−1 sk)

}
. (48)

We can find Vk numerically. Let Ω = [m]× [mK ] for some m ∈ N and

l(s, S) :=
(
1− E

[
BetaPower(µ0, ρ0, Sk−1 s)

])
π − c

2
s2. (49)

Then we can recursively compute

VK(S) = max
s
l(Ω), (50)

Vk−1(S) = max
s
l(Ω) + VK(S s), (51)

... (52)

V1(S) = max
s
l(Ω) + V2(S s). (53)
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