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Diffusive transport has implications for the long-term status of underground storage of hydrogen
(H2) fuel and carbon dioxide (CO2), technologies which are being pursued to mitigate climate change
and advance the energy transition. Once injected underground, CO2 and H2 will exist in multiphase
fluid-water-rock systems: being partially-soluble, injected fluids can flow through the porous rack
in a connected plume, become disconnected and trapped as ganglia surrounded by groundwater
within the storage rock pore space, and also dissolve and migrate through the aqueous phase once
dissolved. Recent analyses have focused on the concentration gradients induced by differing capillary
pressure between fluid ganglia which can drive diffusive transport (“Ostwald ripening”). However,
studies have neglected or excessively simplified important factors; namely: the non-ideality of gases
under geologic conditions, the opposing equilibrium state of dissolved CO2 and H2 driven by the
partial molar density of dissolved solutes, and entropic and thermodiffusive effects resulting from
geothermal gradients. We conduct an analysis from thermodynamic first principles and use this
to provide numerical estimates for CO2 and H2 at conditions relevant to underground storage
reservoirs. We show that while diffusive transport in isothermal systems is upwards for both gases,
as indicated by previous analysis, entropic contributions to the free energy are so significant as to
cause a reversal in the direction of diffusive transport in systems with geothermal gradients. For
CO2, even geothermal gradients less than 10oC/km (far less than typical gradients of 25oC/km)
induce downwards diffusion at depths relevant to storage. Diffusive transport of H2 is less affected,
but still reverses direction under typical gradients, e.g. 30oC/km, at a depth of 1000 m. The entropic
contribution also modifies the magnitude of flux where geothermal gradients are present, with the
largest diffusive fluxes estimated for CO2 with a 30oC/km gradient, despite the higher diffusion
coefficient of H2. We find a maximum flux on the order of 10−13 for CO2 in the 30oC/km scenario,
still four orders of magnitude smaller than literature estimates of density-driven convective flux.
Contrary to previous studies, we find that in diffusion and convection will likely work in concert –
both driving CO2 downwards, and both driving H2 upwards – for conditions representative of their
respective storage reservoirs.

I. INTRODUCTION

Geologic formations underground offer high capacity,
potentially long-term storage options for fluids such as
waste carbon dioxide (CO2) and gaseous hydrogen fuel
(H2), offering significant potential to mitigate climate
change, provide energy storage, and accelerate the en-
ergy transition away from fossil fuels [1–6]. Saline reser-
voirs – porous host rock formations saturated with saline
aqueous phase (“brine”) – comprise the largest resource
of underground storage options [7]. Once injected into a
saline reservoir underground, the partially soluble CO2

or H2 fluid (which will be referred to as ‘gas’ in this work
to distinguish if from the aqueous fluid phase) will flow
through the architecture of the porous host rock along
with the brine, with configurations and flow properties
dictated by the local (pore-scale) capillary behavior of
the rock-brine-fluid multiphase system. Because CO2 or
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H2 are typically non-wetting relative to the aqueous liq-
uid, much of the injected gas may become “snapped off”
into small disconnected ganglia, and held by capillarity
within pore bodies of the host rock [8]. This is known as
residual trapping. From this point, the primary trans-
port of the injected fluids will occur through the aque-
ous phase: advection with the aqueous flow field, convec-
tion due to density gradients (e.g. [9, 10]), and diffusion
due to concentration, gravitational, and thermal gradi-
ents (e.g. [11]).

This work focuses on the diffusive transport processes
and how these may manifest in a multiphase system
where concentration gradients of dissolved gas are im-
posed due to the presence of these residually-trapped
ganglia. For partially soluble fluids in a multi-fluid
porous media system, bubbles or ganglia of bulk gas
may exist at different pressures [12–15]; inducing solute
concentration difference in the aqueous solvent follow-
ing partitioning relationships (e.g. at ambient pressures,
partitioning follows Henry’s Law). For ganglia trapped
within porous media, the capillary pressure difference
between the ganglia and the aqueous phase (Pg − Pw)
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is reflected by the interface curvature (κ) following the
Young-Laplace equation:

Pg − Pw = 2κσ (1)

where σ is the fluid-fluid interfacial tension. Because
these ganglia will exist in relatively large vertical spans of
the storage reservoir, the ganglia pressure will be related
to the hydrostatic pressure gradients of the reservoir, and
the partitioning relationships will be subject to both hy-
drostatic and geothermal gradients. Similarly, the final
steady-state distribution of injected fluid molecules in the
aqueous phase (after diffusion has acted) must also be de-
termined as a function of the gravitational and geother-
mal gradients. Determination of the direction and rate of
diffusive flux of injected fluid molecules from a residual
state to an equilibrium state is thus non-trivial and sub-
ject to molecule-specific thermodynamic properties and
behavior.

Recent work has identified “Ostwald ripening” as a dif-
fusive mechanism with potential to drive mass redistribu-
tion due to the varying pressure distribution (and thus
concentration gradients) of injected gas ganglia. Ost-
wald ripening is hypothesized to drive mass transport
from the high to low pressure ganglia (high to low lo-
cal concentration) as the system evolves towards its ulti-
mate equilibrium state. In the absence of hydrostatic and
geothermal gradients, Ostwald ripening can drive fluid
from high-pressure, high curvature bubbles to lower pres-
sure, lower curvature bubbles. Multiple recent studies
have highlighted that over long time frames, this could
potentially drive injected gases to move upwards from
small, isolated, capillary trapped ganglia to reconnect
with the larger mobile gas plume sitting in place under
the caprock [16–22]. For H2 storage, this could be a bene-
fit, as it would reduce the likelihood of gas loss; however,
this scenario could reduce the long-term safety of CO2

storage schemes, as migration of CO2 into the plume will
increase the capillary pressure below the caprock, caus-
ing lateral expansion of the plume and increasing the
likelihood that the plume will break through the caprock.
However, direct observations of diffusive transport due to
Ostwald ripening are limited, and the existing analysis of
potential long-term impacts is theoretical. Furthermore,
the impact of geothermal gradients has been scarcely ad-
dressed and remains unresolved.

Throughout the existing literature, there are some per-
sistent inconsistencies with respect to several important
assumptions:

• CO2 and H2 do not exist as ideal gases in high pres-
sure subsurface storage reservoirs – both will most
often be present as a non-ideal supercritical fluid.
Consequently the partial molar volumes and fugac-
ities of the gases must be considered; and the par-
titioning between ganglia and aqueous phase with
depth is nonlinear (i.e., does not follow Henry’s
Law) in both cases.

• The effective density of dissolved H2 is lower than
that of pure aqueous phase; however the opposite

is true for CO2: the aqueous phase with CO2 dis-
solved in it is more dense than pure aqueous phase.
This indicates opposite directionality in the concen-
tration gradient of gravity-driven thermodynamic
equilibrium states for these two solutes.

• In subsurface environments, geothermal gradients
exist along with hydrostatic gradients; this affects
all the variables that affect the diffusive flux and
induces transport by thermodiffusion with recent
work [20, 23, 24] suggesting that geothermal effects
may be much larger the effects of buoyancy and
capillarity on diffusive transport in many subsur-
face conditions.

Xu et al. [18] and Blunt [19] provided good concep-
tual descriptions of the Ostwald ripening process as well
as estimates of relevant timescales of fluid ganglia re-
distribution due to Ostwald ripening; however, both ne-
glected geothermal gradients and aspects of the non-
ideality of the injected fluid phase. Li et al. [20] pro-
vided a more complete thermodynamics-based analysis
which incorporated many impacts of non-ideality and a
simplified treatment of geothermal gradients for the case
of CO2 sequestration; but explicitly neglected the role of
thermodiffusion. Coelho et al. [23, 24] calculated ther-
modiffusion coefficients for CO2 but conducted a par-
tial analysis and incorrectly assumed that CO2 thermo-
phobicity would automatically drive it upwards under
geothermal gradients.
This work seeks to extend previous work by providing a

more generalized thermodynamic description of Ostwald
ripening and general diffusive flux in subsurface systems,
considering the above-noted factors, for the important
cases of CO2 and H2 storage in saline reservoir forma-
tions. We incorporate the non-ideality of the gas phase
from ganglia initialization to equilibrium. We argue that
the Krichevsky-Kazarnovsky law [25] should be used to
determine phase partitioning in geologic systems (rather
than Henry’s Law); and demonstrate how this applies to
systems where gas-phase fugacity coefficients differ sig-
nificantly from unity and in the presence of thermal gra-
dients. Our presentation adds to previous analysis by
making explicit the impacts of non-ideality in terms of
fugacity, molar volume, partial molar volume (and thus,
effective density), molar entropy, and Soret coefficients
in quantifying concentration gradients and the direction-
ality and magnitude of diffusive fluxes.
For application to the important gas storage technolo-

gies of CO2 sequestration and underground hydrogen
storage, we show that, in agreement with previous work,
diffusion does indeed drive dissolved H2 and CO2 up-
wards to reconnect with the bulk gas-cap plume under
isothermal condition. However, we show for the first
time that, for low to moderate geothermal gradients,
the direction of diffusive transport is reversed – act-
ing downwards – at storage-relevant depths. For CO2,
even small geothermal gradients, present in almost ev-
ery potential storage site, will overwhelm capillary and
buoyuancy effects to drive CO2 downwards for all CCS-
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relevant depths; in the case of H2, upper regions of the
reservoir favor upwards transport, but this is reversed for
sufficient depths and geothermal gradients.

In Section II we present the analysis of the isothermal
case, and then treat the geothermal gradient case in Sec-
tion III. Section IV provides some estimates of flux under
both cases.

II. THERMODYNAMICS OF THE
ISOTHERMAL CASE

For clarity, we refer to bulk CO2 and H2 as “gas”
phases (using the subscript g) throughout the text and
in equations, despite the fact these fluids will exist as su-
percritical fluids at most depths of interest for geologic
storage projects. The pure or bulk gas phase is distin-
guished from the dissolved “solute” phase (subscript s),
and the aqueous solvent (subscript w).
Chemical potential, µ, is the change in Gibbs free en-

ergy of a system with respect to a change in amount of
the component of interest at constant pressure and tem-
perature, and can also be considered as partial molar
Gibbs free energy. Chemical potential is a useful met-
ric for multiphase systems because it provides a direct
comparison of the component in bulk and solute form:
equality of chemical potential for the component in two
forms implies chemical partitioning and diffusive equilib-
rium. Furthermore, since chemical potential is a measure
of free energy, the impacts of pressure (P ), temperature
(T ), location in a gravitational field (z), and concentra-
tion in a solution (x) can all be incorporated directly; i.e.
µ = f(P, T, z, x). We begin by stating the general de-
pendence of µ on pressure P . From the thermodynamic
identity:

∂µ

∂P
= Vm, (2)

where Vm is the molar volume of the fluid. In contrast
to liquids (including those with dissolved solutes) where
Vm can be considered constant over significant pressure
ranges, for gases and supercritical fluids, Vm cannot be
considered constant (Figure 1). This points to the fun-
damental source of disequilibrium between dissolved and
pure gas components as pressure increases moving deeper
underground. In Section III we consider disequilibrium
caused by temperature as well as pressure gradients.

In practice, empirical Equations of State (EoS) are
used to obtain values of Vm as a function of pressure
for the bulk gas phases. Herein, we utilize the Peng-
Robinson EoS [26] for CO2; and the Abel-Noble EoS for
H2, using parameter values presented in [27]; results are
shown in Figure 1. We note that although H2 is a small
molecule, as total system pressure increases, the molar
volume of H2 is significantly larger than CO2, due to
stronger attractive Van der Waals interactions between
CO2 molecules at a given pressure and temperature.

FIG. 1. Molar volume values calculated via equations of state
for CO2 and H2, under isothermal temperature of 50oC. Mo-
lar volumes are identical at low pressures where both can be
considered ideal gases.

A. Bulk Gas and Aqueous Phases

For any static fluid or fluid component in a gravita-
tional field g, conservation of energy gives the dependence
of chemical potential µ on height z (at constant P , T )
through

∂µ

∂z
= mmg, (3)

where mm is the fluid component’s molar mass and g is
the acceleration due to gravity (herein, g takes a positive
value in the downwards direction and height z positive
upwards). Note that chemical potential is sometimes de-
fined to exclude the of influence external fields such as
gravity; for example, [20] uses this alternative definition,
while in [28] it is called the physicochemical potential.
For a fluid column in equilibrium, the chemical poten-

tial is the same at all heights: µ(z) = µ(zo), leading to
the hydrostatic pressure gradient [29]:

∂P

∂z
= −ρ(z)g (4)

For an ideal gas (“ig”) this is integrated to give the
barometric equation

Pig

P0
= e

−mmg(z−zo)
RT , (5)

whereas the aqueous phase can be considered an incom-
pressible liquid with density ρw, independent of pressure,
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so the hydrostatic pressure Ps for the aqueous solution
can be calculated:

(Ps − Po) = −ρwg(z − zo). (6)

Here we define zo to be the height where there is
mechanical equilibrium between the aqueous solution
(s) and and bulk gas (g) fluid components: Ps(zo) =
Pg(zo) = Po. The difference in hydrostatic pressure gra-
dient for the gas and aqueous solution results in mechan-
ical disequilibrium between the fluids: Pg(z) ̸= Ps(z)
for z ̸= zo. In unconstrained geometries, this leads to
gravitational separation; however, in a porous medium,
the two phases can coexist in mechanical equilibrium
over a finite height range due to Young-Laplace pres-
sure differences (eq. 1) arising from the non-wetting fluid
forming bubble-like ganglia with positively-curved inter-
faces. This results in a height-dependent capillary pres-
sure Pc(z) = Pg −Ps that can compensate for the hydro-
static pressure gradient.

The bulk solute (gas phase) will generally be less dense
than the aqueous phase, and is assumed to be the non-
wetting fluid in a geologic porous medium. This has been
established for typical conditions and geologic materials
of subsurface storage projects [8]; although shifts towards
intermediate-wetting have been observed [30–32], par-
ticularly when organic carbon constituents are present
[33, 34]. Nonetheless, we assume water-wet conditions;
and therefore a ganglion of bulk gaseous (or supercritical)
fluid can only exist in contact with aqueous phase above
the equilibrium height, z ≥ zo, where Pg > Ps and cap-
illary pressure can restore mechanical equilibrium. The
capillary pressure must increase as the height above zo
increases, indicating smaller and smaller radii of curva-
ture; in pore sizes typical of storage reservoirs, mechani-
cal equilibrium can only be maintained by capillarity for
a few tens of meters. This implies that as height above zo
increases, the water is increasingly pushed into crevices
until its presence is negligible and the pore space can be
considered to be filled with bulk gas phase. At depths
below the equilibrium height (z < zo) the capillary pres-
sure would need to be negative to support coexistence -
this indicates that bulk gas cannot reside z < zo unless
supported by a reversal of wettability.

We now consider dissolved gas solute within the aque-
ous phase; of principal interest is the behaviour of solu-
tions with CO2 or H2 dissolved in water. Since CO2 or
H2 are only weakly soluble in water, we treat them as di-
lute solutions, which greatly simplifies the analysis as the
solute can be treated independently of the solvent. The
dependence of the chemical potential of the dissolved so-
lute phase, µs on pressure (other variables held constant)
is the equivalent of eq. 2 for a solute rather than bulk
phase:

∂µs(P )

∂P
= V m (7)

Where V m is the partial molar volume of the dissolved
solute; i.e. the volume occupied by a mole of gas dissolved

in the aqueous phase (defined formally as the increase in
volume of the solution associated with addition of a mole
of solute). Note that while pure gas molar volume Vm

is clearly not constant with pressure, the partial molar
volume V m refers to gas dissolved in the liquid phase.
While CO2 partial molar volume has been shown to be
a function of dissolved concentration and temperature
[35–37], the data compilation of Garcia [37] shows that
V m,CO2 varies only between 30-40 cm3/mol for temper-
atures from 0-100oC, and the data of [36] shows only a
weak dependence on aqueous composition in the concen-
tration range of approximately 1% (molar percent); for
simplicity, we don’t model variability in V m,CO2 in the
calculations in this work. These values imply a density
higher than the aqueous solvent; this negative buoyancy
is the driver for downwards convection of CO2 as well as
the gravitational diffusive fluxes discussed here. To our
knowledge, the variation of H2 partial molar volume un-
der geologically relevant pressure, temperature and con-
centration is not well documented.
For dilute solutions, it is assumed that the properties

of the solution are not affected by the presence of the so-
lute, and that interactions between solute molecules can
be neglected. These assumptions (which also imply that
V m is independent of concentration, and that activity
coefficients are 1) lead to the standard expression for the
chemical potential of a dilute solution [29]:

µs(P, x) = µs(P, xo) +RT ln
x

xo
, (8)

where x is the molar concentration, and xo is an arbitrary
reference solute concentration.
To derive a relationship between µ, P , T , z and x,

we begin with the definition of the total differential
dµ(P, T, z, x):

dµ(P, T, z, x) =
∂µ

∂P
dP +

∂µ

∂T
dT +

∂µ

∂z
dz +

∂µ

∂x
dx (9)

We first apply this for dissolved gas, so that µ is the chem-
ical potential of the solute µs. The partial derivatives of
µs with respect to pressure P , height z and concentra-
tion x are obtained, respectively, from eqns. 7, 3 and
from differentiating eqn. 8; then, taking the isothermal
case dT = 0 gives the thermodynamic identity for dilute
solutions in a gravitational field:

dµs(P, z, x) = V m dP +mmg dz +
RT

x
dx. (10)

This can be re-written in a more convenient form, using
dP = −ρwg dz (from eq. 4 for the aqueous phase), and
mm = V mρs (recall that ρs is the effective density of the
dissolved solute):

dµs(P, z, x) = V m (ρs − ρw) g dz +
RT

x
dx. (11)

At equilibrium, µs does not change with height; thus,
if ρs ̸= ρw, the equilibrium concentration of dissolved
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solute (i.e. gas solubility) must vary with depth, in
order to compensate for the effect of a gravitational
field. Thus, the equilibrium concentration profile of so-
lute xe(z), is obtained by imposing constant chemical
potential dµs(z) = 0 in eq. 11:

1

xe

dxe

dz
=

d(lnxe)

dz
= −V m

RT
(ρs − ρw)g (12)

Approximating V m to be independent of pressure (dis-
cussed below), this equation can be integrated by defining
a reference height zo such that x(zo) = xo, and integrat-
ing from zo to z and xo to x; revealing that the gradient
in concentration depends on the relative density of the
dissolved phase and the water [29]:

xe(z) = xe(zo)e
−V m(ρs−ρw)g(z−zo)/RT (13)

Diffusive flux will act to establish this equilibrium dis-
tribution in the aqueous phase. Li et al. [20] provide
additional description and dynamic analysis of this pro-
cess (often called “sedimentation”) for CO2 in geologic
reservoirs.

The equilibrium distribution of solute concentration in
the aqueous phase as a function of depth, calculated from
equation 13 and using parameter values as indicated in
Table I, is shown in solid lines in Figure 2. As discussed
above, we assume a constant partial molar volume for
both CO2 and H2, while noting that this is an approxi-
mation only, with likely accuracy of around 25%. There is
a single unavoidable free parameter in equation 13: the
final equilibrium concentration at the reference height
xe(zo), which cannot be known a-priori for a reservoir
gas storage scheme. In this analysis, in order to estimate
an upper bound on mass transport due to diffusion, we
apply the assumption that xe(zo) is equal to the solubil-
ity limit at the pressure in the aqueous phase at a depth
of 2000 m. However, this assumption is highly unlikely
to be achieved in the context of CO2 storage; instead it
is more likely that there will be no depth at which the
equilibrium concentration is equivalent to the fully sat-
urated condition, as this would imply that enough CO2

has been injected to fully saturate the formation or that
downwards mass transfer due to convective dissolution
has been somehow negated.

Here we highlight an important result: because dis-
solved CO2 is more dense than water under typical sub-
surface conditions, the equilibrium CO2 concentration
increases with depth, whereas the reverse is true for H2.
Some previous work has overlooked this [19] or (assuming
an ideal solution) used Vm in place of V m [18] leading to
erroneous conclusions that the equilibrium CO2 concen-
tration gradient decreases with depth (the error in [18]
has been pointed out already in [20]).

Equation 13 describes the final equilibrium state of the
aqueous solution in a gravitational field, while equations
4, 5 and 6 give the equilibrium state of a continuous

FIG. 2. Initial ganglia-initialized and equilibrium aqueous
concentration profiles for CO2 and H2 under isothermal as-
sumption. Ganglia-initialized concentrations are calculated
from the Krichevsky-Karzarnovsky equation (eq. 15). Val-
ues interpolated from literature tabulations are included for
comparison for both CO2 [38, 39] and H2 [40] under pure
water and saline conditions. Long term equilibrium shown
for µi = µe (based on the KK-concentration estimates) at
z1 = 2000 m (and depth = 2000 m). Note the difference in
scale between CO2 and H2.

gas column (the “gas cap”). Since in both cases equilib-
rium derives from imposing uniform chemical potential,
we can therefore also infer the equilibrium state of a mul-
tiphase fluid-porous media system consisting of both bulk
and dissolved gas; if the bulk and dissolved phases are in
equilibrium at any one depth, they must be in equilib-
rium at all depths. As depth increases, the pressure of
the column of H2 increases, and is in equilibrium with the
aqueous phase which contains a decreasing concentration
of H2. For CO2, the increasing bulk phase pressure is in
equilibrium with water containing an increasing concen-
tration of CO2. Note that, as explained earlier, since
the aqueous and gaseous phases have different densities,
the phase pressures are not equal at all heights. In the
presence of thermal gradients, there is no longer diffusive
equilibrium between solute and continuuous gas phase,
as discussed in section III.

B. Gas Ganglia

Now consider the non-equilibrium case where there ex-
ists a continuous aqueous liquid with dissolved solute
(in a dilute solution) as the wetting phase in a porous
medium, in contact with disconnected (trapped) ganglia
of the solute at a height-independent capillary pressure.
This scenario may arise following CO2 or H2 injection
into an aquifer, after some re-imbibition has occurred
to disconnect the gas phase. We assume that enough
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time has elapsed since injection for the dissolved solute
to be in equilibrium with nearby trapped ganglia at the
same depth, but not enough time for equilibrium be-
tween depths within the column. This residual, ganglia-
initialized state is our “initial” condition, with concen-
tration indicated as xi(z).
We first consider pressure dependence. Equilibrium

between solute and ganglia implies that µs(P, x) = µg(P )
for all P , where µg is the chemical potential of the pure
gas ganglia.

Therefore, integration of eq. 11 from Po to P , assuming
constant V m and T gives:

µg(P )− µg(Po) = RT ln
xi(P )

xi(Po)
+ (P − Po)V m (14)

Using the fact that chemical potential µg and fugacity
fg of the bulk phase in the ganglia are related through
µg = RT ln fg+const., we see that this is the Krichevsky-
Karzarnovsky equation [25], a high-pressure generalisa-
tion of Henry’s law:

RT ln
fg(P )

x(P )
= RT lnK + (P − Pvapw

)V m, (15)

where K is the Henry’s law coefficient, generalised for
real gases:

K = lim
x→0

fg
x

and Pvapw
is the vapour pressure of the solvent (water); it

is insignificant for our system – and neglected elsewhere
in this work – but necessary in general because in the
limit of zero solute concentration x → 0 the ganglia are
composed entirely of water vapour, so (P − Pvapw

) →
0. We note that the Krichevsky-Karzarnovsky equa-
tion was originally derived to describe the H2-water
(and N2-water) system [25]; additionally, previous anal-
ysis of experimental data has concluded that the CO2-
water system is accurately modelled by the Krichevsky-
Karzarnovsky equation for temperatures less than 100o

C; at higher temperatures the activity of dissolved CO2

must also be taken into account [41].
With fugacity calculated from the EoSs noted above,

we use eqn. 15 to determine the partitioning relationship
between concentration and fugacity of the pure gas phase
over our considered range of depths (3). Fugacity coeffi-
cient is defined as the ratio of fugacity to system pressure,
ϕ = f

P . Partition coefficients (ratios quantifying how a
species will be distributed in two phases at equilibrium)
calculated from eq. 15 are presented as gas phase fugacity
to aqueous solubility, with units of MPa

mol gas / mol aq. phase ,

simplified to MPa.
Note that fugacity – in this case, the equivalent pres-

sure exhibited by the gas for phase partitioning purposes
– shows opposing behaviour for H2 and CO2. For H2, the
bulk gas phase behaves as though it is at higher pressure
than the system pressure; the opposite is the case for
CO2. H2 shows a much stronger affinity to partition into

FIG. 3. Calculation of gas fugacity coefficients from EoSs,
and gas-solution partition coefficients from the Krichevsky-
Karzarnovsky equation (eq. 15) under isothermal tempera-
ture conditions of 50oC.

the bulk gas phase (i.e. it has a much lower dissolved
concentration at the same pressure); and a more extreme
variation in partitioning with depth.
By applying eq. 9 for the chemical potential of the

bulk gas phase µg, we can use eqs. 2 and 3 to obtain a
thermodynamic identity for a column of bulk gas phase
(assuming pure phase - i.e. neglecting the small fraction
of water vapour)

dµg(P, z) = VmdP +mmgdz. (16)

Relating 11 and 16 by imposing equilibrium between
the ganglia and the dissolved solute at all depths,
µs(z, x) = µg(z), and simplifying gives the vertical con-
centration gradient

RT
1

xi

dxi

dz
= RT

d(lnxi)

dz
= −

(
Vm − V m

)
ρwg, (17)

which is determined by the density difference between
the bulk and dissolved phases. In all typical scenarios,
the dissolved phase will be more dense than the bulk
gas phase (Vm − V m > 0), so this initial concentration
gradient will increase downwards.
To illustrate the ganglia-initialized aqueous solute con-

centration distribution, we first estimate that ganglia
pressure is 100 kPa higher than the hydrostatic pressure
(to account for Laplace pressure of the gas ganglia); this
is significantly higher than would generally be expected
based on capillary pressure-saturation relationships for
model quarry sandstones (e.g. [14, 42]) but this overes-
timate has no impact on our findings. Then, converting
the ganglia pressure to fugacity, f , through the EoSs and
applying the Krichevsky-Karzarnovsky derived partition
coefficient, we arrive at an aqueous concentration value
that would be present in the local aqueous phase equili-
brated with these ganglia (Figure 2). Note that the same
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result is obtained by numerical integration of eq. 17 us-
ing values for Vm from the EoS. In Figure 2 we also plot
concentration values derived from interpolation of litera-
ture tabulations; including CO2 solubility in pure water
[38], CO2 solubility in seawater-type brine [39], and H2

solubility in pure water and 1 mol/kg NaCl [40]. In the
isothermal case, the concentrations estimated via eq. 15
are quite similar to the literature results, despite the fact
that the Krichevsky-Karzarnovsky equation includes no
correction for activity.

Comparison of the ganglia-initialized and equilibrium
concentrations shows the direction of the concentration
difference driving diffusive transport. Diffusion will drive
the system from the concentration gradient described by
eq. 17 (the ganglia-initialized state) to the global equi-
librium gradient of eq. 13 (the final state). Setting a
reference height z1 to be the point where the initial and
final concentrations are the same (labeled “Equilibirum
Depth” in Figure 2); then, above z1 the initial concen-
tration is lower than the final state - there must be an
influx of dissolved gas. Below z1 the initial concentration
is higher than the final state - gas must be depleted to
reach equilibrium. This implies upward migration of so-
lute in all isothermal cases, even though the equilibrium
concentration is increasing downwards for CO2.

This conceptual description of the system in terms
of concentrations is intuitive, and it is accurate in the
isothermal case regardless of selection of equilibrium
height z1 because concentration profiles are monotonic
with depth. However, we caution that this logic can only
be applied when both initial and equilibrium concentra-
tion profiles are monotonic. We will show in section III
that for non-monotonic concentration gradients, the di-
rection of diffusion cannot easily be inferred, because the
concentration difference between initial and equilibrium
states depends on the choice of z1. Instead, it is more
useful to directly interrogate the chemical potential of
the system. From eq. 11:

dµsi

dz
= (ρs − ρw)g V m +RT

d

dz
ln(xi) (18)

This can be simplified by writing the concentration
gradient term using eq. 17 and using the fact that
ρsV m = mm = ρgVm:

dµs

dz
= (ρg − ρw)g Vm (19)

This reveals that the chemical potential gradient is
controlled by the difference in density between the bulk
gas and the aqueous solution, and since ρg < ρw for CO2

and H2, the chemical potential of dissolved solute in the
ganglia-initialized state decreases with z (i.e. increases
with depth). Under global equilibrium, µs is the same
everywhere and dµs/dz = 0 – comparison of these two
gradients demonstrates that diffusion must act upwards,
as described earlier. In general, in the isothermal case:

for any fluid that is less dense than the aqueous phase,
the concentration in local equilibrium with trapped gan-
glia increases with depth more quickly than the global
equilibrium concentration. Therefore Ostwald ripening
will occur upwards for isothermal dilute solutions of all
fluids less dense than brine.
In summary, under the assumptions of dilute solution,

constant partial molar volume, and isothermal condi-
tions; we find that:

1. In global equilibrium, µs(z) = const., and the
dissolved concentration gradient is proportional to
−(ρs − ρw); thus xH2

and xCO2
have opposing gra-

dients.

2. For a solution in local equilibrium with trapped
ganglia µsi(z) = µg(z); chemical potential gradi-
ent is proportional to (ρs − ρg); i.e. µsi increases
downwards for both H2 and CO2, driving upwards
diffusive mass transport of both H2 and CO2 under
isothermal conditions.

This analysis thus echos previous studies finding up-
wards transport due to Ostwald ripening in isothermal
systems [16–20].

III. IMPACT OF TEMPERATURE GRADIENTS

Geologic storage will, of course, be affected by geother-
mal gradients. The non-isothermal case adds significant
challenges to the analysis and relatively few works have
analysed the impact of typical geothermal gradients. Li
et al. [20] provide an initial treatment of non-isothermal
conditions; while they pointed out that this treatment
requires taking into account thermodiffusion (the Soret
effect), they did not include it in their models due to
the scarcity of data on thermodiffusion in CO2-water
system; instead their model only accounted for thermal
gradients by incorporating the change in solubility with
depth. Their results showed thermal gradients suppress
diffusive fluxes; and under certain rare conditions, have
the potential to reverse their direction - i.e. for CO2 to
flow downwards. As we show later, the simplified anal-
ysis in Li et al. [20] greatly underestimates the effect of
geothermal gradients; in fact, fluxes reverse direction for
low to moderate geothermal gradients (diffusive trans-
port is downwards for both gases) and rates may increase
by an order of magnitude when the entropic impacts on
chemical potential are properly considered.
Following the work of Li et al. [20], Coelho et al.

[23, 24] conducted non-equilibrium molecular dynamics
(NEMD) simulations to determine the Soret coefficient
of CO2 in water and brine at reservoir conditions. Their
values for pure water corroborate experimental results
from Guo et al. [49]; while there is still significant uncer-
tainty, the effects of thermodiffusion on CO2 storage can
now be estimated quantitatively. Coelho et al. [23, 24]
also conducted a partial analysis of CO2 diffusive fluxes,
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TABLE I. Parameters used in numerical estimates

Parameter

Aqueous Density [kg/cm3]a 1.050 × 10−3
Aqueous Molar Volume [cm3/mol] 18.07
Acceleration of Gravity [m/s2] 9.81
Isothermal Temperature [oC]a 50
Non-isothermal Surface Temperature [oC] 25
Vapor Pressure of Water [MPa] 0.012b

Parameter CO2 H2

Henry’s Law Constant, 50oC c[MPa] 281 7683
Partial Molar Volume [cm3/mol] 35.1d 26.7e

Molar Mass [kg/mol] 0.044 0.002
Diffusion Coefficient (pure water, 25oC) [m2/s] 2.2 × 10−9f 5.11 × 10−9g

Critical Temperature [oC] 30.978 -239.95
Critical Pressure [MPa] 7.38 1.30
Acentric Factorh[-] 0.228 -0.220

a. Assumed, following [19].
b. [43]
c. Calculated from values presented in [44] and converted to pressure
units using presented values for brine.
d. [37]
e. [45]
f. [46]
g. [47]
h. [48]

incorrectly assuming that CO2 thermophobicity would
necessarily drive CO2 upwards under geothermal gradi-
ents. To our knowledge, Soret coefficients for H2 under
reservoir-relevant temperatures and pressures are still not
well characterized.

There has been significant debate about whether ther-
modiffusion must be treated as a non-equilibrium ki-
netic phenomenon, or can be treated by local thermody-
namic equilibrium [50, 51]. Kocherginsky and Gruebele
[28, 52, 53] have made significant progress on developing
local equilibrium theory of thermodiffusion and conclude
that it is valid given the following assumptions [53]:

1. transport is diffusive without hydrodynamic contri-
butions;

2. particle numbers Ni in a volume δV (z) under con-
sideration are large enough (Ni ≫

√
Ni).

3. local average thermodynamic variables remain
meaningful; and the shortest time scale δt is long
enough so that the local equilibrium may be as-
sumed: a local temperature T (x) and concentration
c(z) can be defined in each volume δV .

Condition 1 is a fundamental assumption of this work
due to its focus on diffusive transport: we assume that
there is no advective or convective transport within
the storage reservoir. The remaining two conditions
will clearly be valid for subsurface storage environments
where thermal gradients are some decades of degrees per
kilometer.

Therefore, we treat the non-isothermal case by assum-
ing the reservoir consists of vertical subsections in lo-
cal thermodynamic equilibrium. Return to eq. 9 where,

rather than assuming dT = 0, we assume a thermal gra-
dient T ′(z) such that dT = T ′dz.
First, considering the dissolved gas phase and using

the definition of partial molar entropy Sm from the ther-
modynamic identity:

∂µs

∂T
= −Sm,

gives the generalization of equation 11 for non-constant
T :

dµs = −V m(ρs − ρw)g dz − SmT ′dz +
RT

x
dx. (20)

Within the above-stated assumptions we can associate
the partial molar entropy with the Soret coefficient ST
[53]:

ST = −Sm

RT
(21)

As mentioned above, the value of ST for supercritical
CO2-water systems has only recently been determined,
through the experimental work of Guo et al. [49] and
computational works of Coelho et al. [23, 24]. These
works agree on the magnitude and trend of the Soret co-
efficient, finding that ST for CO2 in pure water is positive
with values between 0.01 − 0.03 K−1 at lower tempera-
tures, and transitions to negative values in the region
370-400 K; note: a positive Soret coefficient implies a
tendency to migrate to lower temperature regions. The
impact of salts has been estimated by Coelho et al. [24],
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FIG. 4. Contributions of gravitational and thermal terms to
the gradient of natural logarithm of concentration at equi-
librium (eq. 22). Note that the y-axis for the isothermal
condition is an order of magnitude smaller than the cases
with a geothermal gradient. The gravitational contribution is
present in all cases, but too small to be visible under scenarios
with a geothermal gradient.

who show a less positive ST , transitioning to negative
values at lower T . Earlier, Windisch et al. [54] had not
found a Soret coefficient significantly different than zero,
but this work had a very large uncertainty so is consis-
tent with the values of refs Guo et al. [49] and Coelho
et al. [23, 24].

The concentration gradient in the final equilibrium
state for non-constant T , obtained by setting dµs = 0
(global diffusive equilibrium) in eq. 20, is:

d(lnxe)

dz
= −V m

RT
(ρs − ρw)g − ST T

′. (22)

As discussed, for CO2 where ρs > ρw, the first term
is negative, leading to negative concentration gradient
(increasing with depth) for the isothermal case T ′ = 0.
However, the additional term is positive at lower tem-

peratures (where ST > 0), since T increasing with depth
implies T ′ < 0. In Figure 4 we display the relative size of
the gravitational and thermal contributions to eq. 22 for
a range of depths, using the Soret relationship for CO2 in
1 mol/kg NaCl brine from Coelho et al. [24], for isother-
mal conditions as well as typical geothermal gradients
of 10 oC/km and 30 oC/km. The Soret effect does not
exist in isothermal conditions, hence the 0 thermal term
in the leftmost column. The gravitational term exists as
a negative term under all temperature conditions; how-
ever, its magnitude remains on the order of 10−5 m−1 –
too small to be seen - and its contribution is completely
overwhelmed by the Soret effect in non-isothermal cases.
We note that similar estimates are not available for H2

due to the absence of published Soret coefficient data for
aqueous solutions of H2.
The thermodiffusion term will be sufficient to invert

the concentration gradient in regions of the reservoir:
equilibrium CO2 concentrations will decrease with depth
in middle-upper regions of reservoirs that have a typi-
cal geothermal gradient, before increasing again once the

Soret coefficient transitions to negative values. While
these qualitative statements can be made, quantitative
estimates of the equilibrium concentration profile have
very high uncertainty, since numerical integration of eq.
22 amplifies the uncertainties in ST . As we show below,
the equilibrium concentration profile is, in fact, not sig-
nificant in determining the direction of diffusive flux for
either CO2 or H2, because it is not the gradient of con-
centration that determines the direction of diffusive flux,
but the gradient of chemical potential.
For the gas phase, equation 16 is modified by a similar

additional term for the non-isothermal case:

dµg(P, z) = VmdP − SmT ′dz −mmgdz. (23)

Where Sm is the molar entropy of the gas phase.
As for the isothermal case, the ganglia-initialized

(residual-state) concentration gradient in equilibrium
with the gas ganglia is obtained by equating the gas and
solute chemical potential from eqs. 20 and 23:

RT
d(lnxi)

dz
= −

(
Vm − V m

)
ρwg − (Sm − Sm)T ′ (24)

Differentiating eq. 20 and using eq. 23 gives the chem-
ical potential gradient for gas molecules in the ganglia-
initialized solution:

dµsi

dz
= (ρg − ρw)gVm − SmT ′ (25)

This will be proportional to the diffusive flux of
a ganglia-initialised system, which will be discussed
further in section IV.

Equation 25 relies only on the assumptions of dilute so-
lution and local thermodynamic equilibrium. It is note-
worthy that the diffusive flux of dissolved gas from a
ganglia-initialised residual state is independent of the
Soret coefficient of the dissolved gas. Since the temper-
ature profile is the same for the ganglia-initialised and
equilibrium states, the Soret effect, which depends only
on temperature, cancels out as it makes an equal contri-
bution to the concentration profiles in both cases. With
the Soret effect not playing a role, the flux is determined
by how chemical potential varies with depth in the bulk
gas ganglia. Sufficient contribution by the entropic term
−SmT ′ causes a positive gradient in µg=µsi, due to the
positive entropy of the bulk gas and negative T ′. For
large enough −SmT ′, this leads to free energy decreasing
with increasing depth because the temperature depen-
dence of the −TS term outweighs the pressure depen-
dence in the PV term.
In order to calculate the impact of thermal gradients,

We obtain values for molar entropy Sm for CO2 and H2

under our considered pressure and temperature condi-
tions via the following steps. The molar entropy for an
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FIG. 5. Variation of CO2 and H2 bulk molar entropy with
depth for various geothermal gradients.

ideal gas (Sig) at a given temperature (Sig
T )is found using

the Shomate equation with parameters tabulated by [44],
calculated from data originally from Chase [55], and mod-

ified for pressure through Sig = Sig
T −Rln(P/PR) (PR is

the reduced pressure P/Pc where Pc is the pressure at
the critical point). Deviation from the ideal gas value is
found using a departure function [56, 57], calculated us-
ing the compressibility factor and constants calculated in
the Peng-Robinson EOS [26]. Under our considered con-
ditions, CO2 molar entropy ranges from approximately
140-220 J/mol-K, and H2 from 80-110 J/mol-K; these
calculated values are consistent with tabulated data [58]
to approx. 2%. Higher pressure decreases the molar en-
tropy while higher temperature increases molar entropy;
the relationship of entropy to depth is thus nontrivial and
dependent on geothermal gradient (Figure 5).

The real-gas calculated entropy values are sufficient to
reverse the chemical potential gradient for CO2 at rela-
tively shallow depths, even for low geothermal gradients;
for H2, a gradient of 10oC is insufficient to reverse the
gradient, but 30oC suffices (Figure 6). Recall that posi-
tive dµsi/dz indicates chemical potential increasing up-
wards, and therefore induces downwards-driven diffusion.
Larger geothermal gradients generate higher positive gra-
dients and shift the crossover point to shallower depths.
At shallow depths <1000 m, the molar volume of the gas
phase varies significantly, leading to large negative gradi-
ents. Upwards diffusive transport is thus favored in very
shallow regions; however, these depths are generally not
relevant for gas storage schemes.

In Figure 7, we present curves of the ganglia-initialized
chemical potential (µsi) vs. depth, calculated through
numerical integration of eq. 25. With these figures, we
return to the conceptual model presented in Section II.
At equilibirum, the chemical potential µse will be equal
at all depths, i.e. present as a vertical line in Figure
7. The precise value at equilibrium does not need to

FIG. 6. Variation of the vertical gradient of chemical poten-
tial with depth for the ganglia-initialized state under different
thermal assumptions, indicating the direction of diffusive flux.
A positive value indicates that chemical potential is increasing
with z (i.e. decreasing with depth) – resulting in downward
net diffusion of dissolved gas molecules.

be determined a-prioi, it is sufficient to know that it
will be between the minimum and maximum values of
µsi. For regions where µsi > µse, the chemical potential
must decrease to reach equilibrium and molecules will
diffuse away; where µsi < µse, there must be an influx to
reach equilibrium. For curves where µsi monotonically
increases with depth (CO2 and H2 under isothermal con-
ditions, and H2 at −T ′ = 10oC), there must be diffusive
transport upwards. However, for non-monotonic curves,
it is possible for transport to be both upwards (for shal-
low depths above the inflection point) and downwards
(for all depths below the inflection point). For carbon
storage, reservoirs at depths below 1000 m are targeted;
thus, only downwards diffusion is expected for any real-
istic carbon storage situation.
It is also worth mentioning the behaviour in the upper

part of the reservoir where there is continuous gas. In the
presence of geothermal gradients, it is not possible for a
column of gas in mechanical equilibrium (dP = −ρggdz)
to also be in diffusive equilibrium; eq. 23 gives for the
“equilibrium” chemical potential µge :

dµge

dz
= −SmT ′ (26)

Again we see a positive gradient with z. This will tend
to cause ex-solution at the bottom of the ganglion (lower
chemical potential in the gas phase) and dissolution at
the top, creating a cyclic transport of gas molecules: hy-
drodynamic upward flow within the gas phase and down-
ward diffusive transport of dissolved molecules within the
aqueous phase. This is effectively the same as the pro-
cess described in Blunt [19] for the isothermal case (er-
roneously, as there is equilibrium in that case). Energy
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FIG. 7. Variation of chemical potential µsi of the ganglia-
initialized system with depth. The equilibrium condition
would be represented by constant µ (vertical line). The direc-
tion of diffusive flux is thus given by the sign of the gradient
dµs/dz = 0: for µs increasing with z (decreasing with depth),
diffusion acts downwards, according to eq. 27.

for the continual motion of gas molecules comes from the
continual heat flux through the reservoir.

IV. KINETICS OF DIFFUSION

Flux in this diffusion-controlled system will be de-
scribed by:

J(z) =
−Dx(z)

RT (z)

dµsi

dz
(27)

This expression is different from the empirically-derived
Fick’s first law (i.e. J = −D dx

dz ) because in this system,
the gradient of chemical potential µs driving diffusion is
not only a function of concentration x(z), but also has a
significant contribution due to the gravitational field and
temperature gradient.

Here we assume that the diffusion coefficient, D is inde-
pendent of concentration and pressure, but does increase
with temperature following the Stokes-Einstein equation:

DT (x) = DT=25oC
T (x)

298K

µT=25oC

µT (x)
(28)

Where µT is the dynamic viscosity of water; viscos-
ity ratios were calculated via the correlation presented in
Kestin et al. [59]. Diffusion coefficients were thus calcu-
lated based on the values presented in Table I; for the
10oC/km and 30oC/km geothermal cases, diffusion coef-
ficients increase by a factor of approx. 2.3 and 6.3 re-
spectively over the depth range investigated. Following

FIG. 8. Diffusive flux as a function of depth for the ganglia-
initialized state. Positive flux indicates upwards transport,
negative flux indicates downwards.

the analysis of Blunt [19], diffusion coefficients are mul-
tiplied by an assumed porosity value of 0.2 to adjust for
diffusion within porous media; this also should be an up-
per bound as it neglects any reduction in diffusion due
to tortuosity.

The maximum diffusive flux will occur when the chemi-
cal potential gradient dµ/dz is largest, i.e. at the ganglia-
initialized state. In Figure 8, we provide estimates for
flux of CO2 and H2 based on equations 27 and 19. Here,
to provide an upper bound on flux estimates, we assign
x(z) to be the gas solubility in pure water at the depth-
defined temperature and pressure, with xCO2

(z) inter-
polated from data reported by Duan and Sun [38] and
xH2

(z) interpolated from Zhu et al. [40]. The units of
x(z) in eq. 27 are mol/volume, in contrast to the rest of
the manuscript.

As shown in Figure 8, diffusive flux in the isothermal
case is always positive (diffusion transports molecules up-
wards), and estimated values for CO2 and H2 are simi-
lar (in the region relevant to storage of both gases), on
the order of 10−15 − 10−14 mol/cm2/s. As observed
above, flux quickly becomes negative (diffusive trans-
port is downwards) for CO2 under even the low geother-
mal gradient of 10oC/km; H2 shows a more subtle de-
pendence, only achieving negative fluxes below 1000 m
for the 30oC/km case. In the geothermal gradient case
(30oC), downwards CO2 flux is several times larger than
the flux of H2; its magnitude is an order larger than the
isothermal CO2 case, on the order of 10−13 mol/cm2/s.
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A. Comparison with Mass Transport via
Convective Dissolution

Neufeld et al. [9] estimated a convective CO2 flux
equalling 20 kg m−2 yr−1 for the Sleipner site in
the North sea, which is equivalent to 1.44×10−9 mol
CO2/cm

2/s. Compared to the upper limit of the dif-
fusive CO2 flux estimated above, the convective flux is
≈ 4 orders of magnitude larger (depending on tempera-
ture assumption), indicating that even for the maximal
assumptions considered above, diffusive transport of CO2

will be a minor factor. Li et al. provide a more thorough
analysis of convective transport rates for a range of sce-
narios and similarly conclude that convective transport is
likely to initiate and complete well before diffusive trans-
port becomes significant, for almost all scenarios consid-
ered [20]. However, it is important to note that in situ-
ations with positive geothermal gradients (i.e. all likely
storage reservoirs) , we predict that diffusion will drive
CO2 downwards, thus increasing storage security – in the
geothermal case, diffusion and convection of CO2 are not
acting in competing directions.

As noted in Section II above, the partial molar volume
of H2 dissolved in water is larger than pure water, while
the opposite is true for CO2; i.e. water containing dis-
solved CO2 is more dense and water containing dissolved
H2 is less dense than pure water. This indicates that
while convective dissolution will drive mass transport of
CO2 downwards, the same process should drive H2 up-
wards. Estimates of upward H2 flux due to this process
are outside the scope of this study; however, our analysis
shows that in more shallow and lower-temperature reser-
voirs, diffusive transport will drive hydrogen upwards,
again demonstrating that convection and diffusion act in
the same direction. Our analysis indicates that it would
require significantly deeper and warmer reservoirs to in-
vert the H2 diffusive flux directionality. Additional study
is needed to determine the comparative importance of
convective and diffusive processes for application to un-
derground hydrogen storage.

V. CONCLUSIONS

We have presented an analysis of diffusive transport
in geologic storage scenarios. We detail the thermody-
namic derivation of the phenomenon, taking into account
the non-ideality of supercritical fluids (i.e. H2 and CO2)
stored under high pressure in geologic formations. We
show that under the assumption of isothermal conditions,
diffusion drives injected gas molecules upwards, echoing
previous analysis of the process of “Ostwald ripening”
[16–20].

However, our main contribution is in the incorporation

of temperature variation via geothermal gradients. We
demonstrate that with more complete consideration of
entropic constributions to free energies, diffusive trans-
port reverses direction under low to moderate geother-
mal gradients at storage-relevant depths; furthermore,
the magnitude of flux can increase by up to two orders
of magnitude. Because the entropic contribution relative
to the gravitational contribution is larger for CO2 than
H2, this reversal happens at lower temperature gradients
and shallower depths for CO2, with practical impacts to
storage operations. Our analysis indicates that in CO2

storage scenarios, diffusive transport will invariably be
downwards, along with convective transport; thus both
mechanisms increase the storage security of CO2 storage.
In H2 storage systems, which are likely to be more shal-
low and less warm, diffusive transport will likely move gas
upwards (again, in concert with convective dissolution);
thereby making H2 recovery more favorable.
We provide an upper estimate for flux rates, using as-

sumptions favorable to faster diffusion. The maximum
diffusive flux estimated for CO2 occurs under our largest
investigated geothermal gradient of 30oC and is on the or-
der of 10−13 mol/cm2/s; four orders of magnitude smaller
than the downwards convective flux estimated for CO2

by Neufeld et al. [9]. In this case, both diffusion and
convection act in concert to drive CO2 downwards.
Our analysis has relaxed many of the assumptions

prior studies have made; particularly with respect to
the isothermal temperature assumption and the ideality
of the gas (supercritical) phases. However, the analy-
sis does employ two key assumptions: (1) dilute solu-
tions, implying unity activity coefficients, and (2) local
thermodynamic equilibrium in non-isothermal cases. We
have also used a single representative value for partial
molar volume in all our calculations. At depths greater
than those considered here, it is possible for CO2 par-
tial molar volume to increase to a point that the effective
density of the solution is no longer greater than pure
aqueous phase density, at which point the gravitational
driver may reverse. Our results show that this is un-
likely to impact diffusive transport of since the entropic
contributions overwhelm the gravitational contributions
in all storage-relevant conditions for CO2. However, this
density inversion at extreme depths will have a major
overall impact as it will cause a reversal of convective
fluxes, likely creating a barrier to convection.
Under these assumptions, we find that (contrary to

previous studies) diffusion and convection will tend to
work in concert - both driving CO2 downwards, and
both driving H2 upwards - for conditions representative
of their respective storage reservoirs (i.e CO2 in deeper
reservoirs, and H2 in more shallow formations). While
still slow, diffusive transport is thus predicted to be ben-
eficial for both carbon storage and hydrogen storage tech-
nologies.
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